AN ADDITIVE VERSION OF HIGHER CHOW GROUPS UNE VERSION ADDITIVE DES GROUPES DE CHOW SUPÉRIEURS

SPENCER BLOCH AND HÉLÈNE ESNAULT

ABSTRACT. The cosimplicial scheme

$$\Delta^{\bullet} = \Delta^{0} \stackrel{\rightarrow}{\to} \Delta^{1} \stackrel{\rightarrow}{\xrightarrow{\to}} \dots; \quad \Delta^{n} := \operatorname{Spec}\left(k[t_{0}, \dots, t_{n}]/(\sum t_{i} - t)\right)$$

was used in [3] to define higher Chow groups. In this note, we let t tend to 0 and replace Δ^{\bullet} by a degenerate version

$$Q^{\bullet} = Q^0 \stackrel{\rightarrow}{\rightarrow} Q^1 \stackrel{\rightarrow}{\rightarrow} \dots; \quad Q^n := \operatorname{Spec}\left(k[t_0, \dots, t_n]/(\sum t_i)\right)$$

to define an additive version of the higher Chow groups. For a field k, we show the Chow group of 0-cycles on Q^n in this theory is isomorphic to the group of absolute (n-1)-Kähler forms Ω_k^{n-1} .

An analogous degeneration on the level of de Rham cohomology associated to "constant modulus" degenerations of varieties in various contexts is discussed.

Résumé en français: Le schéma cosimplicial

$$\Delta^{\bullet} = \Delta^0 \stackrel{\rightarrow}{\to} \Delta^1 \stackrel{\rightarrow}{\to} \dots; \quad \Delta^n := \operatorname{Spec}\left(k[t_0, \dots, t_n]/(\sum t_i - t)\right)$$

a été utilisé dans [3] afin de définir des groupes de Chow supérieurs. Dans cette note, nous définissons une version additive des groupes de Chow supérieurs en faisant tendre t vers 0 et en remplaçant Δ^{\bullet} par une version dégénérée

$$Q^{\bullet} = Q^0 \stackrel{\rightarrow}{\rightrightarrows} Q^1 \stackrel{\rightarrow}{\xrightarrow{\rightarrow}} \dots; \quad Q^n := \operatorname{Spec}\left(k[t_0, \dots, t_n]/(\sum t_i)\right)$$

Nous montrons que sur un corps k, le groupe de Chow des 0-cycles dans cette théorie est isomorphe aux formes de Kähler absolues de degré (n-1).

Nous discutons une dégénerescence analogue en cohomologie de de Rham apparaissant dans diverses situations pour des familles à module constant.

Date: July 21, 2002.

¹⁹⁹¹ Mathematics Subject Classification. Primary 14C15, 14C35.

1. INTRODUCTION

The purpose of this note is to study a common sort of limiting phenomenon which occurs in the study of motives. Here is a simple example. Let k be a field. Let $S = \mathbb{A}_t^1 = \operatorname{Spec}(k[t])$ and let $T = \operatorname{Spec}(k[x,t]/(x(x-t)) \hookrightarrow \mathbb{A}_{t,x}^2$. Over S[1/t] the Picard scheme $\operatorname{Pic}(\mathbb{A}_{x,t}^2,T)/S$ is represented by $\mathbb{G}_{m,S[1/t]}$. On the other hand, when t = 0 one gets $\operatorname{Pic}(\mathbb{A}_x^1, \{x^2 = 0\}) \cong \mathbb{G}_{a,k}$. In some sense, \mathbb{G}_m has "jumped" to \mathbb{G}_a .

In higher dimension, for $t \neq 0$, the homology of the group of algebraic cycles associated to the cosimplicial scheme

(1.1)
$$\Delta^{\bullet} = \Delta^{0} \stackrel{\rightarrow}{\rightarrow} \Delta^{1} \stackrel{\rightarrow}{\rightarrow} \dots; \quad \Delta^{n} := \operatorname{Spec}\left(k[t_{0}, \dots, t_{n}]/(\sum t_{i} - t)\right)$$

is known to give motivic cohomology ([9]). What can one say about the algebraic cycle groups (1.3) of the degenerate cosimplicial complex:

(1.2)
$$Q^{\bullet} = Q^{0} \stackrel{\rightarrow}{\rightarrow} Q^{1} \stackrel{\rightarrow}{\xrightarrow{\rightarrow}} \dots; \quad Q^{n} := \operatorname{Spec}\left(k[t_{0}, \dots, t_{n}]/(\sum t_{i})\right)?$$

Our main result is a calculation of the Chow groups of 0-cycles on Q^{\bullet} . Let $\mathcal{Z}^n(Q^r)$ be the free abelian group on codimension n algebraic cycles on Q^r satisfying a suitable general position condition with respect to the face maps. Let $SH^n(k, r)$ be the cohomology groups of the complex

(1.3)
$$\ldots \mathcal{Z}^n(Q^{r+1}) \to \mathcal{Z}^n(Q^r) \to \mathcal{Z}^n(Q^{r-1}) \to \ldots$$

where the boundary maps are alternating sums of pullbacks along face maps. Write Ω_k^{\bullet} for the absolute Kähler differentials.

Theorem 1.1. $SH^n(k,n) \cong \Omega_k^{n-1}$.

Note for n = 1, this is the above \mathbb{G}_a .

We explain another example of this limiting phenomenon. We consider \mathbb{P}^{n+1} with homogeneous coordinates U_0, \ldots, U_{n+1} over a field k. Let

(1.4)
$$X: f(U_0, \dots, U_{n+1}) = 0$$

be a hypersurface X defined by a homogeneous polynomial f of degree n+2 (e.g. an elliptic curve in \mathbb{P}^2).

Write $u_i = U_i/U_0$, and define a log (n+1)-form on $\mathbb{P}^{n+1} \setminus X$

(1.5)
$$\omega_f := \frac{du_1 \wedge \ldots \wedge du_{n+1}}{f(1, u_1, \ldots, u_{n+1})}.$$

As well known, this form generates $\omega_{\mathbb{P}^{n+1}}(X) \cong \mathcal{O}_{\mathbb{P}^{n+1}}$.

Let $r_1, \ldots, r_{n+1} \ge 0$ be integers. We consider the action of \mathbb{G}_m given by the substitutions $u_i = t^{-r_i} v_i$. Let N be minimal such that

 $t^N f(1, t^{-r_1}u_1, \ldots, t^{-r_{n+1}}u_{n+1})$ is integral in t. Assume $s := N - \sum r_i > 0$ and s is invertible in k. One checks easily that in the coordinates v_i one has

(1.6)
$$\omega_f = t^s \nu_f(t, v_1, \dots, v_{n+1}) + s t^{s-1} dt \wedge \gamma_f(t, v_1, \dots, v_{n+1})$$
with

with

$$\nu_f(t, v_1, \dots, v_{n+1}) = \frac{dv_1 \wedge \dots \wedge dv_{n+1}}{t^N f(1, t^{-r_1} v_1, \dots, t^{-r_{n+1}} v_{n+1})}$$
$$\gamma_f(t, v_1, \dots, v_{n+1}) = \frac{1}{s} \sum_i (-1)^i r_i v_i \frac{dv_1 \wedge \dots \wedge dv_i \wedge \dots \wedge dv_{n+1}}{t^N f(1, t^{-r_1} v_1, \dots, t^{-r_{n+1}} v_{n+1})}$$

Thus ν_f and γ_f are forms in dv_i of degrees n+1 and n respectively which are integral in t. As ω_f is an (n+1)-form on \mathbb{P}^{n+1} in the *u*coordinates, it is closed, so

$$st^{s-1}dt \wedge \left(\nu_f(t, v_1, \dots, v_{n+1}) - d\gamma_f(t, v_1, \dots, v_{n+1})\right) \\ + st^{s-1} \cdot \frac{t}{s} d\nu_f(t, v_1, \dots, v_{n+1}) = 0.$$

Dividing by t^{s-1} and restricting to t = 0 yields

(1.7)
$$\nu_f|_{t=0} = d\gamma_f|_{t=0}.$$

In other words, under the action of the 1-parameter subgroup, ν_f degenerates to the exact form $d\gamma_f$.

To see the relationship with the 0-cycles, take

$$\Delta_{n+1}: f(1, u_1, \dots, u_{n+1}) = u_1 u_2 \cdots u_{n+1} (1 - u_1 - \dots - u_{n+1}) = 0.$$

Substitute $v_i = tu_i$, $1 \le i \le n+1$. Then s = 1, and a calculation yields

$$\gamma_{\Delta_{n+1}}(:=\gamma_f) = \frac{\sum_{i=1}^{n+1} (-1)^i d \log(v_1) \wedge \ldots \wedge d \widehat{\log(v_i)} \wedge \ldots \wedge d \log(v_{n+1})}{t - v_1 - \ldots - v_{n+1}};$$
$$\nu_{\Delta_{n+1}}(:=\nu_f) = \frac{dv_1 \wedge \ldots \wedge dv_{n+1}}{v_1 v_2 \cdots v_{n+1} (t - v_1 - \ldots - v_{n+1})}.$$

Note the limiting configuration as $t \to 0$ is (compare (1.2))

$$v_1v_2\cdots v_{n+1}(v_1+\ldots+v_{n+1})=0.$$

For convenience we write

(1.9)
$$\gamma_n := \gamma_{\Delta_{n+1}}|_{t=0}$$

We view $\nu_{\Delta_{n+1}}|_{t=1}$ (resp. γ_n) as a map

$$\mathcal{Z}_0\left(\mathbb{A}_k^{n+1}\setminus\{(1-u_1+\cdots+u_{n+1})u_1\cdots u_{n+1}=0\}\right)\to\Omega_k^{n+1}$$

(resp.

$$\mathcal{Z}_0\left(\mathbb{A}_k^{n+1}\setminus\{v_1v_2\cdots v_{n+1}(v_1+\cdots+v_{n+1})=0\}\right)\to\Omega_k^n).$$

Here \mathcal{Z}_0 denotes the free abelian group on closed points (0-cycles) and the maps are respectively

(1.10)
$$x \mapsto \operatorname{Tr}_{k(x)/k} \nu|_{\{x\}}; \quad x \mapsto \operatorname{Tr}_{k(x)/k} \gamma|_{\{x\}}.$$

In the first case, the Nesterenko-Suslin-Totaro theorem ([7], [8]) identifies the zero cycles modulo relations coming from curves in \mathbb{A}^{n+2} with the Milnor K-group $K_{n+1}^M(k)$. The evaluation map (1.10) passes to the quotient, and the resulting map $K_{n+1}^M(k) \to \Omega_k^{n+1}$ is given on symbols by the $d\log$ -map

(1.11)
$$\{x_1, \dots, x_{n+1}\} \mapsto d\log(x_1) \wedge \dots \wedge d\log(x_{n+1}).$$

In the second case, factoring out by the relations coming from curves on \mathbb{A}^{n+2} as in (1.3) yields the Chow group of 0-cycles $SH^{n+1}(k, n+1)$, and our main result is that evaluation on γ_n gives an isomorphism

(1.12)
$$SH^{n+1}(k, n+1) \cong \Omega_k^n.$$

Sections 2-5 contain the proof of theorem 1.1. Section 6 contains some brief remarks on specialization of forms as it relates to Aomoto's theory of configurations, to 0-cycles on hypersurfaces, and to Goncharov's theory of hyperbolic motives. Finally, section 7 computes $SH^1(k, n)$, responding to a question of S. Lichtenbaum.

The authors wish to thank A. Goncharov and S. Lichtenbaum for several very inspiring conversations, also the referee for very careful reading and helpful remarks.

2. The additive Chow groups

In this section, we consider a field k, and a k-scheme X of finite type. We will throughout use the following notations.

Notations 2.1. We set $Q^n = \text{Spec } k[t_0, \ldots, t_n]/(\sum_{i=0}^n t_i)$, together with the faces

$$\partial_j : Q^{n-1} \to Q^n; \quad \partial_j^*(t_i) = \begin{cases} t_i & i < j \\ 0 & i = j \\ t_{i-1} & i > j \end{cases}$$

One also has degeneracies

$$\pi_j : Q^n \to Q^{n-1}; \quad \pi_j^*(t_i) = \begin{cases} t_i & i < j \\ t_i + t_{i+1} & i = j \\ t_{i+1} & i > j \end{cases}$$

4

We denote by $\{0\} \in Q^n$ the vertex defined by $t_i = 0$. We write $Q_X^n = Q^n \times_{\text{Spec}(k)} X$. The above face and degeneracy maps make Q_X^n a cosimplicial scheme.

Definition 2.2. Let $SZ_q(X, n)$ be the free abelian group on irreducible, dimension q subvarieties in Q_X^n with the property:

- (i) They don't meet $\{0\} \times X$.
- (ii) They meet all the faces properly, that is in dimension $\leq q$.

Thus the face maps induce restriction maps

$$\partial_i : \mathcal{SZ}_q(X, n) \to \mathcal{SZ}_{q-1}(X, n-1); \quad i = 0, \dots n; \quad \partial = \sum_{i=0}^n (-1)^i \partial_i;$$

yielding complexes $\mathcal{SZ}_{q-\bullet}(X, \bullet)$:

$$\dots \xrightarrow{\partial} \mathcal{SZ}_{q+1}(X, n+1) \xrightarrow{\partial} \mathcal{SZ}_q(X, n) \xrightarrow{\partial} \mathcal{SZ}_{q-1}(X, n-1) \xrightarrow{\partial} \dots$$

Definition 2.3. The additive higher Chow groups are given for $n \ge 1$ by

$$SH_q(X,n) = H_n(\mathcal{SZ}_{q-\bullet}(X,\bullet))$$

and (for X equidimensional)

$$SH^p(X, n) = SH_{\dim X-p}(X, n).$$

The groups are not defined for n = 0.

- **Remarks 2.4.** (i) The above should be compared with the higher Chow groups $CH^p(X, n)$ defined as above with Q^{\bullet} replaced by Δ^{\bullet} , where $\Delta^n := \operatorname{Spec} \left(k[t_0, \ldots, t_n] / (\sum t_i - 1) \right).$
 - (ii) The cosimplicial scheme Q^{\bullet} admits an action of $\mathbb{G}_{m,k}$, which we define by

$$x \star (t_0, \ldots, t_n) := (t_0/x, \ldots, t_n/x).$$

(The reason for the inverse will be clear below.) By functoriality, we obtain a k^{\times} -action on the $SH^p(X, n)$.

(iii) Let $f : X' \to X$ be a proper map with $n = \dim X' - \dim X$. Then one has a push-forward map

$$f_*: \mathcal{SZ}^p(X', \bullet) \to \mathcal{SZ}^{p-n}(X, \bullet).$$

On homology this yields $SH^p(X',n) \to SH^{p-n}(X,n)$. We will be particularly interested in the case X = Spec(k), X' =Spec(k') with $[k':k] < \infty$. We write $\operatorname{tr}_{k'/k} : SH^p(k',n) \to$ $SH^p(k,n)$ for the resulting map. This trace map is compatible with the action of k^{\times} from (ii) in the sense that for $x \in k^{\times}$ and $a' \in SH^p(k',n)$ we have $x \star \operatorname{tr}_{k'/k}(a') = \operatorname{tr}_{k'/k}(x \star a')$. **Lemma 2.5.** The \star action of k^{\times} on $SH^n(k, n)$ extends to an action of the multiplicative monoid k by setting $0 \star x = 0$. This action comes from a k-vector space structure on $SH^n(k, n)$.

Proof. We have to show that for a closed point $x = (u_0, \ldots, u_n) \in Q^n \setminus \bigcup_{i=0}^n \partial_i(Q^{n-1})$, and $a, b \in k$, one has $(a + b) \star x = a \star x + b \star x$. For either a or b = 0, this is trivial. Thus we assume $ab \neq 0$. Let k' = k(x). Then the class in $SH^n(k, n)$ of x is the trace from k' to k of a k'-rational point $x' \in SH^n(k', n)$. Using the compatibility of \star and trace from Remarks 2.4(iii) above, we reduce to the case x k-rational.

Write (t_0-u_0,\ldots,t_n-u_n) for the ideal of x. Define $\ell(t) = -\frac{ab}{u_0}t + a + b$. Consider the curve $W \subset Q^{n+1}$ defined parametrically by

$$W = \{(t, -t + \frac{u_0}{\ell(t)}, \frac{u_1}{\ell(t)}, \dots, \frac{u_n}{\ell(t)})\}.$$

To check that this parametrized locus is Zariski-closed, we consider the ideal:

$$I_W = \left((t_1 + t_0)\ell(t_0) - u_0, t_2\ell(t_0) - u_1, \dots, t_n\ell(t_0) - u_n \right).$$

If $y = (y_0, \ldots, y_{n+1})$ is a geometric point in the zero locus of I_W , then since the $u_i \neq 0$ we see that $\ell(y_0) \neq 0$. Substituting $t = y_0$, we see that y lies on the parametrized locus W.

The equation $-t + \frac{u_0}{\ell(t)} = 0$ leads to a quadratic equation in t with solutions $t = \frac{u_0}{a}, t = \frac{u_0}{b}$. If $a + b \neq 0$ we have

$$\partial_0(W) = \left(\frac{u_0}{a+b}, \dots, \frac{u_n}{a+b}\right) = (a+b) \star (u_0, \dots, u_n);$$

$$\partial_1(W) = \left(\frac{u_0}{a}, \dots, \frac{u_n}{a}\right) + \left(\frac{u_0}{b}, \dots, \frac{u_n}{b}\right)$$

$$= a \star (u_0, \dots, u_n) + b \star (u_0, \dots, u_n)$$

$$\partial_i(W) = 0; \quad i \ge 2,$$

so the lemma follows in this case. If a + b = 0, then $\partial_0 W = 0$ as well, and again the assertion is clear.

3. Additive Chow groups and Milnor K-theory

We consider the map (compatible with faces) $\iota : \Delta^{\bullet} \to Q^{\bullet+1}$ defined on k-rational points by $(u_0, \ldots, u_n) \mapsto (-1, u_0, \ldots, u_n)$. It induces a map of complexes $\mathcal{Z}^p(k, \bullet) \to \mathcal{SZ}^{p+1}(k, \bullet + 1)$, which in turn induces a map

(3.1)
$$\iota: CH^p(k, n) \to SH^{p+1}(k, n+1).$$

By [7] and [8], one has an isomorphism

(3.2)
$$K_n^M(k) \cong CH^n(k,n)$$

of the higher Chow groups of 0-cycles with Milnor K-theory. It is defined by:

(3.3)
$$(u_0, \dots, u_n) \mapsto \{-\frac{u_0}{u_n}, \dots, -\frac{u_{n-1}}{u_n}\}$$

(3.4)
$$\{b_1, \dots, b_n\} \mapsto (\frac{b_1}{c}, \dots, \frac{b_n}{c}, -\frac{1}{c}); \quad c = -1 + \sum_{i=1}^n b_i.$$

Note that if $\sum_{i=1}^{n} b_i = 1$, then the symbol $\beta := \{b_1, \ldots, b_n\}$ is trivial in Milnor K-theory, and one maps β to 0.

In this way, one obtains a map

$$(3.5) \quad K_{n-1}^{M}(k) \to SH^{n}(k,n); \quad \{x_{1},\ldots,x_{n-1}\} \mapsto \\ \left(-1,\frac{x_{1}}{-1+\sum_{i=1}^{n-1}x_{i}},\ldots,\frac{x_{n-1}}{-1+\sum_{i=1}^{n-1}x_{i}},\frac{-1}{-1+\sum_{i=1}^{n-1}x_{i}}\right).$$

4. DIFFERENTIAL FORMS

In this section we construct a k-linear map $\Omega_k^{n-1} \to SH^n(k, n)$. (Here Ω_k^i are the absolute Kähler differential *i*-forms.)

The following lemma is closely related to calculations in [5].

Lemma 4.1. As a k-vector space, the differential forms Ω_k^{n-1} are isomorphic to $(k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times})/\mathcal{R}$. The k-structure on $k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times}$ is via multiplication on the first argument. The relations \mathcal{R} , for $n \geq 2$, are the k-subspace spanned by

$$a \otimes (a \wedge b_1 \wedge \ldots \wedge b_{n-2}) + (1-a) \otimes ((1-a) \wedge b_1 \wedge \ldots \wedge b_{n-2}),$$

for $b_i \in k^{\times}$, $a \in k$. The map $(k \otimes_{\mathbb{Z}} \wedge^{n-1} k^{\times})/\mathcal{R} \to \Omega_k^{n-1}$ is then defined by $(a, b_1, \ldots, b_{n-1}) \mapsto ad \log b_1 \wedge \ldots \wedge d \log b_{n-1}$.

Proof. Write $\Omega^* := (k \otimes_{\mathbb{Z}} \wedge^* k^{\times})/\mathcal{R}$. This is a quotient of the graded k-algebra $k \otimes_{\mathbb{Z}} \wedge^* k^{\times}$ by the graded ideal \mathcal{R} and hence has a graded k-algebra structure, generated in degree 1. There is an evident surjection of graded algebras $\Omega^* \to \Omega^*$, so, by the universal mapping property of the exterior algebra Ω^* , it suffices to check $\Omega^1 \cong \Omega^1$.

Define $D: k \to (k \otimes_{\mathbb{Z}} k^{\times})/\mathcal{R}$ by $D(a) = a \otimes a$ for $a \in k^{\times}$, else D(0) = 0. To define the required inverse, it suffices to show D is a derivation. Clearly, D(ab) = aD(b) + bD(a). Also $1 \otimes -1$ is trivial in

 $k \otimes k^{\times}$, so D(-a) = -D(a). Given $a, b \in k^{\times}$, write b = -ac. We have

(4.1)
$$D(a+b) = D(a-ac) = aD(1-c) + (1-c)D(a) =$$

 $-aD(c) + D(a) - cD(a) = D(a) + D(-ac) = D(a) + D(b).$

Hence D is a derivation so the inverse map $\Omega^1 \to' \Omega^1$ is defined. \Box

Remark 4.2. We will frequently use the relations in the equivalent form $a \otimes a \wedge (\cdots) - (1 + a) \otimes (1 + a) \wedge (\cdots) \sim 0$.

Proposition 4.3. One has a well-defined k-linear map

$$\phi: \Omega_k^{n-1} \to SH^n(k, n)$$
$$\alpha := ad \log b_1 \land \ldots \land d \log b_{n-1} \mapsto a \star (-1, \frac{b_1}{\gamma}, \ldots, \frac{b_{n-1}}{\gamma}, -\frac{1}{\gamma})$$

where $\gamma = -1 + \sum_{i=1}^{n-1} b_i$. (Define $\alpha = 0$ when $\gamma = 0$.) The diagram

$$\begin{array}{cccc} K_{n-1}^{M}(k) & \xrightarrow{d \log} & \Omega_{k}^{n-1} \\ & & & \downarrow (3.5) & & \phi \\ SH^{n}(k,n) & \underbrace{\qquad} & SH^{n}(k,n) \end{array}$$

is commutative.

Proof. We write $c = -1 + a + \sum_{i=2}^{n-1} b_i$. By Lemma 4.1, we have to show

$$0 = \rho :=$$

$$a \star (-1, \frac{a}{c}, \dots, \frac{b_{n-1}}{c}, -\frac{1}{c}) - (a+1) \star (-1, \frac{a+1}{c+1}, \dots, \frac{b_{n-1}}{c+1}, -\frac{1}{c+1}).$$

If a = 0, then one has

$$\rho = -(-1, \frac{1}{c}, \dots, \frac{b_{n-1}}{c}, -\frac{1}{c}) = -\iota\{1, b_2, \dots, b_{n-1}\} = 0.$$

Similarly, $\rho = 0$ if a = -1. Assume now $a \neq 0, -1$. Set $b = -a \in k \setminus \{0, 1\}$. One defines, for $n \geq 3$ and $(u_1, \ldots, u_{n-1}) \in (\Delta^{n-2} \setminus \bigcup_{i=1}^{n-1} \Delta^{n-3})(k)$, the parametrized curve

$$\Gamma(b,u) := \{ \left(\frac{-1}{b} + t, \frac{1}{b-1}, -t, \frac{-u_1}{b(b-1)}, \dots, \frac{-u_{n-1}}{b(b-1)} \right) \} \subset Q^{n+1}$$

and for n = 2

(4.2)
$$\Gamma(b) := \{ (\frac{-1}{b} + t, \frac{1}{b-1}, -t, \frac{-1}{b(b-1)}) \} \subset Q^3.$$

(See [8] for the origin of this definition). This curve is indeed in good position, so it lies in $SZ^n(Q^{n+1})$. One computes

(4.3)
$$\partial \Gamma(b,u) = (1-b) \star (-1, 1-\frac{1}{b}, \frac{u_1}{b}, \dots, \frac{u_{n-1}}{b}) + b \star (-1, \frac{b}{b-1}, \frac{-u_1}{b-1}, \dots, \frac{-u_{n-1}}{b-1}).$$

(Resp. in the case n = 2

$$\partial \Gamma(b) = (1-b) \star (-1, 1-\frac{1}{b}, \frac{1}{b}) + b \star (-1, \frac{b}{b-1}, \frac{-1}{b-1}).)$$

Now one has

$$(-1, 1 - \frac{1}{b}, \frac{u_1}{b}, \dots, \frac{u_{n-1}}{b}) = \iota \{ \frac{1-b}{u_{n-1}}, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}} \}$$
$$= \iota [\{1-b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\} - \{u_{n-1}, u_1, \dots, u_{n-2}\}],$$

as the rest of the multilinear expansion contains only symbols of the shape $\{\ldots, u_{n-1}, \ldots, -u_{n-1}, \ldots\}$. On the other hand, since $\sum_{i=1}^{n-1} u_i = 1$, one has $\{u_{n-1}, u_1, \ldots, u_{n-2}\} = 0$. Similarly, one has

$$(-1, \frac{b}{b-1}, \frac{-u_1}{b-1}, \dots, \frac{-u_{n-1}}{b-1}) = \iota\{\frac{b}{u_{n-1}}, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\}.$$

The same argument yields that this is

$$\iota\{b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\}.$$

It follows now from (4.3) that for $n \ge 3$ we have the relation in $SH^n(k,n)$

(4.4)
$$(1-b) \star \iota \{1-b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\} + b \star \iota \{b, -\frac{u_1}{u_{n-1}}, \dots, -\frac{u_{n-2}}{u_{n-1}}\} = 0$$

(The analogous relation for n = 2 is similar.)

Proposition 4.4. With notation as above, the map

$$\phi: \Omega_k^{n-1} \to SH^n(k, n)$$

is surjective. In particular, $SH^n(k,n)$ is generated by the classes of k-rational points in Q^n .

Proof. It is easy to check that the image of ϕ coincides with the subgroup of $SH^n(k, n)$ generated by k-points. Clearly, $SH^n(k, n)$ is generated by closed points, and any closed point is the trace of a k'-rational point for some finite extension k'/k. We first reduce to the case k'/k

separable. If $x \in Q_k^n$ is a closed point in good position (i.e. not lying on any face) such that k(x)/k is not separable, then a simple Bertini argument shows there exists a curve C in good position on Q^{n+1} such that $\partial C = x + y$ where y is a zero cycle supported on points with separable residue field extensions over k. Indeed, let $W \subset Q^{n+1}$ be the union of the faces. View $x \in W$. Since x is in good position, it is a smooth point of W. Bertini will say that a non-empty open set in the parameter space of *n*-fold intersections of hypersurfaces of large degree containing x will meet W in x plus a smooth residual scheme. Since k is necessarily infinite, there will be such an n-fold intersection defined over k. Since the residual scheme is smooth, it cannot contain inseparable points. Then $x \equiv -y$ which is supported on separable points.

We assume now k'/k finite separable, and we must show that the trace of a k'-point is equivalent to a zero cycle supported on k-points. Since the image of ϕ is precisely the subgroup generated by k-rational points, it suffices to check that the diagram

(4.5)
$$\Omega_{k'}^{n-1} \xrightarrow{\phi} SH^{n}(k',n)$$

$$\downarrow^{\operatorname{Tr}_{k'/k}} \qquad \qquad \downarrow^{\operatorname{Tr}_{k'/k}}$$

$$\Omega_{k}^{n-1} \xrightarrow{\phi} SH^{n}(k,n)$$

commutes. Because k'/k is separable, one has $\Omega_k^{n-1} \hookrightarrow \Omega_{k'}^{n-1}$, and $\Omega_{k'}^{n-1} = k' \cdot \Omega_k^{n-1}$. One reduces to showing, for $\alpha = (-1, \alpha_1, \ldots, \alpha_n) \in Q^n(k)$ and $t \in k'$, that $\operatorname{Tr}(t \star \alpha) = (\operatorname{Tr}(t)) \star \alpha$ in $SH^n(k, n)$. Let $P(V) = V^N + a_{N-1}V^{N-1} + \ldots + a_1V + a_0 \in k[V]$ be the minimal polynomial of $-\frac{1}{t}$. We set $b_N = \frac{-1}{\alpha_n}$, $b_i = \frac{-a_i}{\alpha_n}$, $i = N - 1, \ldots, 2$ and $b_i = a_i, i = 1, 0$. We define the polynomial $Q(V, u) = b_N V^{N-1} u + \ldots + b_2 V u + b_N V + b_N \in k[V]$ where $A_i = 0$ and $A_i = 0$. $b_1V + b_0 \in k[V, u]$, which by definition fulfills $Q(V, -\alpha_n V) = P(V)$. We define the ideal

$$\mathcal{I} = (Q(V_0, u), V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0)$$

$$\subset k[V_0, \dots, V_{n-1}, u].$$

It defines a curve $W \subset \mathbb{A}^{n+1}$. We think of \mathbb{A}^{n+1} as being Q^{n+1} with the faces $V_0 = 0, ..., V_{n-1} = 0, u = 0, u + \sum_{i=0}^{n-1} V_i = 0$. Then this curve is in general position and defines a cycle in $\mathcal{SZ}^1(k, n+1)$.

Since $b_0 \neq 0$, and $\alpha_i \neq 0$, one has

(4.6)
$$\partial_i W = 0, i = 0, 1, \dots, n-1.$$

One has

 $\partial_u W$ defined by $(a_1V_0 + a_0, V_1 + \alpha_1V_0, \dots, V_{n-1} + \alpha_{n-1}V_0)$. To compute the last face, we observe that the ideal

$$(u + \sum_{i=0}^{n-1} V_i, V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0),$$

contains $u + \alpha_n V_0$. Consequently $\partial_{u + \sum_{i=0}^{n-1} V_i} W$ is defined by

$$(Q(V_0, -\alpha_n V_0), V_1 + \alpha_1 V_0, \dots, V_{n-1} + \alpha_{n-1} V_0),$$

with $Q(V_0, -\alpha_n V_0) = P(V_0)$. Thus one obtains

$$0 \equiv (-1)^n \partial W = \frac{a_1}{a_0} \star (-1, \alpha) - t \star (-1, \alpha).$$

Since P is the minimal polynomial of $-\frac{1}{t}$, $\frac{a_1}{a_0}$ is the trace of t.

5. The main theorem

Recall (1.8) we have a logarithmic (n - 1)-form γ_{n-1} on $Q^n = \operatorname{Spec}(k[v_0, \ldots, v_n]/(\sum_{i=0}^n v_i))$

(5.1)
$$\gamma_{n-1} = \frac{1}{v_0} \sum_{i=1}^{n} (-1)^i d\log(v_1) \wedge \ldots \wedge d\widehat{\log(v_i)} \wedge \ldots \wedge d\log(v_n)$$
$$d\gamma_{n-1} = \nu_n = \frac{dv_1 \wedge \ldots \wedge dv_n}{v_0 v_1 \cdots v_n}$$

Writing $v_i = V_i/V_{n+1}$, we can view γ_{n-1} as a meromorphic form on $\mathbb{P}^n = \operatorname{Proj}(k[V_0, \ldots, V_{n+1}]/(\sum_{i=1}^{n} V_i))$. Let $\mathcal{A} : V_0 \cdots V_n = 0$; $\infty : V_{n+1} = 0$. The fact that $d\gamma_{n-1}$ has log poles on the divisors $V_i = 0$, $0 \le i \le n$ implies that

(5.2)
$$\gamma_{n-1} \in \Gamma\left(\mathbb{P}^n, \Omega^{n-1}_{\mathbb{P}^n}(\log(\mathcal{A} + \infty))(-\infty)\right)$$

In particular, γ_{n-1} has log poles, so we can take the residue along components of \mathcal{A} . (The configuration \mathcal{A} does not have normal crossings. The sheaf $\Omega_{\mathbb{P}^n}^{n-1}(\log(\mathcal{A} + \infty))$ is defined to be the subsheaf of $j_*\Omega_{\mathbb{P}^n-\mathcal{A}-\infty}^{n-1}$, where $j:\mathbb{P}^n \setminus (\mathcal{A} \cup \infty) \to \mathbb{P}^n$ is the open embedding, generated by forms without poles and the evident log forms with residue 1 along one hyperplane and (-1) along another one. According to [1], the global sections of this naturally defined log sheaf compute de Rham cohomology.)

In the following, we adopt the sign convention $\operatorname{Res}_{t=0}\frac{dt}{t} \wedge \omega = \omega$. This yields $\operatorname{Res}_{t=0}d(\frac{dt}{t} \wedge \omega) = -d(\operatorname{Res}_{t=0}\frac{dt}{t} \wedge \omega)$. Lemma 5.1. We have the following residue formulae

$$\operatorname{Res}_{v_i=0}\gamma_n = (-1)^i \gamma_{n-1}; \quad 0 \le i \le n+1.$$

Proof. One can either compute directly or argue indirectly as follows:

(5.3)
$$-d\operatorname{Res}_{v_i=0}\gamma_n = \operatorname{Res}_{v_i=0}d\gamma_n = \operatorname{Res}_{v_i=0}\nu_{n+1} = (-1)^{i+1}\nu_n = -d((-1)^i\gamma_{n-1}) \neq 0.$$

To conclude now, it suffices to show that the space of global sections (5.2) has dimension 1. To verify the dimension 1 property, let $\mathcal{A}' \subset \mathcal{A}$ be defined by $V_1 \cdots V_n = 0$. Then $\mathcal{A}' + \infty$ consists of n+1 hyperplanes in general position in \mathbb{P}^n , so $\Omega_{\mathbb{P}^n}^{n-1}(\log(\mathcal{A}'+\infty)) = \wedge^{n-1}\Omega_{\mathbb{P}^n}^1(\log(\mathcal{A}'+\infty)) \cong \mathcal{O}_{\mathbb{P}^n}^{\oplus n}$. One looks at the evident residue

$$\Omega_{\mathbb{P}^n}^{n-1}(\log(\mathcal{A}+\infty))(-\infty) \to \Omega_{\mathbb{P}^{n-1}}^{n-2}(\log(\mathcal{A}+\infty))(-\infty).$$

$$\Box_{0}^{n-1}(\log(\mathcal{A}+\infty))(-\infty) \to \Omega_{\mathbb{P}^{n-1}}^{n-2}(\log(\mathcal{A}+\infty))(-\infty).$$

along $V_0 = 0.$

Remark 5.2. The computation of the lemma shows that γ_{n-1} is the unique (n-1)-differential form in $\Gamma(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^{n-1}(\log(\mathcal{A} + \infty))(-\infty))$ with $d\gamma_{n-1} = \nu_n$. The configuration \mathcal{A} being given, fixing ∞ fixes γ_{n-1} .

Theorem 5.3. The assignment $x \mapsto \operatorname{Tr}_{k(x)/k}(\gamma(x))$ gives an isomorphism for $n \geq 1$

$$SH^n(k,n) \cong \Omega_k^{n-1}$$

Proof. Let $X \subset Q_k^{n+1}$ be a curve in good position. For a zero-cycle c in good position on Q^n we write $\operatorname{Tr}\gamma_{n-1}(c) \in \Omega_k^{n-1}$ (absolute differentials) for the evident linear combination of traces from residue fields of closed points. We must show $\operatorname{Tr}\gamma_{n-1}(\partial X) = 0$. Let \overline{X} denote the closure of X in \mathbb{P}^n . We consider $\gamma_{n-1}|_{\overline{X}} \in \Gamma(\overline{X}, \Omega_{\overline{X}/\mathbb{Z}}^{n-1}(*D))$, where D is the pole set of $\gamma_{n-1}|_{\overline{X}}$. The form γ_{n-1} dies when restricted to ∞ . Thus $D = \bigcup_{j=0}^n D_j \subset X$, with $D_j := \partial_j(Q^n) \cap \overline{X}$. We define the residue along D_j as follows. One has an exact sequence

(5.4)
$$0 \to \Omega_k^n \otimes \mathcal{O}_{\overline{X}} \to \Omega_{\overline{X}}^n(\log D) \to \Omega_k^{n-1} \otimes \omega_{\overline{X}}(\log D) \to 0.$$

The residue map followed by the trace

(5.5)
$$\omega_{\overline{X}}(\log D) \xrightarrow{\operatorname{Tro}\sum \operatorname{Res}_{D_j}} k$$

yields, by the reciprocity formula, a vanishing residue map on global $n\mbox{-}forms$

(5.6)
$$H^0(\overline{X}, \Omega^n_{\overline{X}/\mathbb{Z}}(\log D)) \to \Omega^{n-1}_k \otimes_k H^0(\overline{X}, \omega_{\overline{X}}(\log D)) \xrightarrow{0} \Omega^{n-1}_k$$

ADDITIVE CHOW GROUPS

On the other hand, the residue decomposes as

(5.7)
$$H^{0}(\overline{X}, \Omega^{n}_{\overline{X}/\mathbb{Z}}(\log D)) \xrightarrow{\sum_{j} \operatorname{Res}_{D_{j}}} \oplus_{j=0}^{n} \Omega^{n-1}_{D_{j}} \xrightarrow{\sum_{j} \operatorname{Tr}} \Omega^{n-1}_{k}.$$

By Lemma 5.1, $\gamma_{n-1}(D_j) = (\text{Res}_{v_j=0}\gamma_n)(D_j)$. The desired vanishing follows.

We now have

$$\Omega_k^{n-1} \xrightarrow{\phi} SH^n(k,n) \xrightarrow{\gamma_{n-1}} \Omega_k^{n-1}.$$

It suffices to check the composition is multiplication by $(-1)^{n+1}$. Given $b_1, \ldots, b_{n-1} \in k$ with $c := \sum b_i - 1 \neq 0$, the composition is computed to be (use (5.1) and Proposition 4.3)

 $a \cdot d \log(b_1) \wedge \ldots \wedge d \log(b_{n-1}) \mapsto$

$$-a\sum(-1)^{i}d\log(\frac{b_{1}}{ac})\wedge\ldots\wedge d\log(\frac{b_{i}}{ac})\wedge\ldots\wedge d\log(\frac{-1}{ac})$$

Expanding the term on the right yields

$$-a\sum_{i=1}^{i}(-1)^{i}d\log(\frac{b_{1}}{c})\wedge\ldots\wedge d\log(\frac{b_{i}}{c})\wedge\ldots\wedge d\log(\frac{-1}{c})+$$
$$-a\cdot d\log(a)\wedge\left(\ldots\right),$$

and it is easy to check that the terms involving $d \log(a)$ cancel. In this way, one reduces to the case a = 1. Here

(5.8)
$$-\sum_{i=1}^{\infty}(-1)^{i}d\log(\frac{b_{1}}{c})\wedge\ldots\wedge d\log(\frac{b_{i}}{c})\wedge\ldots\wedge d\log(\frac{-1}{c}) = (-1)^{n+1}\frac{db_{1}}{b_{1}}\wedge\ldots\wedge\frac{db_{n-1}}{b_{n-1}} + \frac{dc}{c}\wedge\left(\ldots\right).$$

Again the terms involving $d \log(c)$ cancel formally, completing the proof.

Challenge 5.4. Finally, as a challenge we remark that the Kähler differentials have operations (exterior derivative, wedge product,...) which are not evident on the cycles SZ. For example, one can show that the map

(5.9)
$$\nabla(x_0, \dots, x_n) = (x_0, -\frac{x_1 x_0}{1 - x_0}, \dots, -\frac{x_n x_0}{1 - x_0}, -\frac{x_0}{1 - x_0})$$

satisfies

(5.10)
$$\gamma_n(\nabla(x)) = (-1)^n d\gamma_{n-1}(x)$$

and hence induces the exterior derivative on the 0-cycles. The map is not uniquely determined by this property, and this particular map does not preserve good position for cycles of dimension > 0. Can one find a geometric correspondence on the complex SZ^{\bullet} which induces d on the 0-cycles? What about the pairings $(a, b) \mapsto a \wedge b$ or $(a, b) \mapsto a \wedge db$?

6. Specialization of Forms

In this section we consider again the specialization of differential forms as in §1. Recall $f(U_0, \ldots, U_{n+1})$ is homogeneous of degree n+2, $u_i = U_i/U_0$, and $v_i = t^{r_i}u_i$. N is minimal such that $t^N f(1, t^{-r_1}v_1, \ldots, t^{-r_{n+1}}v_{n+1})$ is integral in t, and we assume $s = N - \sum r_i > 0$. We have forms

(6.1)
$$\omega_f := \frac{d(t^{-r_1}v_1) \wedge \ldots \wedge d(t^{-r_{n+1}}v_{n+1})}{f(1, t^{-r_1}v_1, \ldots, t^{-r_{n+1}}v_{n+1})} = t^s \nu_f + st^{s-1}dt \wedge \gamma_f$$

and $\nu_f|_{t=0} = d\gamma_f|_{t=0}$.

We have already mentioned the case

$$f = \Delta_{n+1} = (t^{-1}v_1) \cdots (t^{-1}v_{n+1})(1 - t^{-1}v_1 - \dots - t^{-1}v_{n+1}).$$

The forms $\nu_{\Delta_{n+1}}$ and $\gamma_{\Delta_{n+1}}$ are given in (1.8). As before, we write $\nu_{n+1} := \nu_{\Delta_{n+1}}|_{t=0}; \ \gamma_n := \gamma_{\Delta_{n+1}}|_{t=0}.$ The differential form ν_{n+1} plays an interesting rôle in the computation of de Rham cohomology of the complement of hyperplane configurations. Let \mathcal{A}_t be the configuration in \mathbb{P}^n of (n+1) hyperplanes in general position with with affine equation $u_0u_1\cdots u_n = 0, u_0+u_1+\ldots+u_n = t \neq 0$. Then $H^n(\mathbb{P}^n\setminus \mathcal{A}_t) =$ $H^0(\mathbb{P}^n, \Omega^n_{\mathbb{P}^n}(\log \mathcal{A}_t))$ is a pure Tate structure generated by $\nu_{\Delta n+1}$. Now make t tend to 0 and consider the degenerate configuration \mathcal{A}_0 with affine equation $u_0u_1\cdots u_n = 0, u_0 + u_1 + \ldots + u_n = 0$. Exactness of $\nu_{n+1} = d\gamma_n$ in the case (1.7) follows from Aomoto's theory ([1], [4]). Due to the special shape of the configurations \mathcal{A}_t considered, however, more is true. We have fixed ∞ , and the differential form γ_n lies in $H^0(\mathbb{P}^{n+1}, \Omega^n(\log(\mathcal{A}_0 + \infty)(-\infty)))$. That is, it has log poles along all components of \mathcal{A}_0 , and it vanishes as a differential form at ∞ (see Lemma 5.1). This k-vector space of differential forms is 1dimensional. In other words, the differential form γ_n is uniquely defined by the vanishing condition at ∞ and the secondary data $d\gamma_n = \nu_{n+1}$ (see remark 5.2). Do such primitives for more general degenerating configurations admit an interpretation identifying 0-cycles with spaces of differential forms?

Here is another example of specialization and 0-cycles. Define

(6.2)
$$f(1, u_1, u_2) = u_1^2 - u_2^3 - au_2 - b; \quad v_1 = t^3 u_1, \ v_2 = t^2 u_2$$

One computes

(6.3)
$$\nu = \frac{dv_1 \wedge dv_2}{v_1^2 - v_2^3 - at^4v_2 - bt^6}; \quad \gamma = \frac{2v_2dv_1 - 3v_1dv_2}{v_1^2 - v_2^3 - at^4v_2 - bt^6}$$

One checks that $\operatorname{Res}(\gamma|_{t=0}) = v_2/v_1$ and

(6.4)
$$d(v_2/v_1) = -dv_2/2 = d\operatorname{Res}(\nu|_{t=0}) \text{ on } v_1^2 - v_2^3 = 0$$

The assignment $x \mapsto \operatorname{Tr}_{k(x)/k}(v_2/v_1)(x)$ identifies the jacobian of the special fibre $v_1^2 - v_2^3 = 0$ with $\mathbb{G}_a(k) = k$.

A final example of specialization, which we understand less well, though it was an inspiration for this article, concerns the hyperbolic motives of Goncharov [6]. The matrix coefficients of his theory (in the sense of [2]) are the objects $H^{2n-1}(\mathbb{P}^{2n-1} \setminus Q, M \setminus Q \cap M)$. Here $Q \subset \mathbb{P}^{2n-1}$ is a smooth quadric and M is a simplex (union of 2nhyperplanes in general position). The subschemes Q and M are taken in general position with respect to each other. The notation is intended to suggest a sort of abstract relative cohomology group. In de Rham cohomology, the non-trivial class in $H_{DR}^{2n-1}(\mathbb{P}^{2n-1} \setminus Q)$ is represented by

(6.5)
$$\omega = \frac{du_1 \wedge \ldots \wedge du_{2n-1}}{(u_1^2 + \ldots + u_{2n-1}^2 - 1)^n}$$

Substituting $u_i = v_i t$, we get

$$(6.6) \quad \omega = \frac{t^{2n-1}dv_1 \wedge \ldots \wedge dv_{2n-1} + t^{2n-2}dt \wedge \sum (-1)^i v_i dv_1 \wedge \ldots \widehat{dv_i} \ldots \wedge dv_{2n-1}}{\left(t^2(v_1^2 + \ldots + v_{2n-1}^2) - 1\right)^n}$$

We get $\nu|_{t=0} = \pm dv_1 \wedge \ldots \wedge dv_{2n-1}$ and $\gamma|_{t=0} = \frac{1}{2n-1} \sum (-1)^i v_i dv_1 \wedge \ldots \widehat{dv_i} \ldots \wedge dv_{2n-1}$. Let $\Delta_M \in H_{2n-1}(\mathbb{P}^{2n-1}, M; \mathbb{Z})$ be a generator. The hyperbolic volume

(6.7)
$$\int_{\Delta_M} \omega$$

is the real period ([6] section 4.1) of the Hodge structure associated to $H^{2n-1}(\mathbb{P}^{2n-1} \setminus Q)$. Goncharov remarks (op. cit., Question 6.4 and Theorem 6.5) that this volume degenerates to the euclidean volume as $t \to 0$. (More precisely, from (6.7), we see that as a relative form, $dv_1 \wedge \ldots \wedge dv_{2n-1} = \lim_{t\to 0} t^{1-2n} \omega$.) He asks for an interpretation of the degenerated volume in terms of some sort of motive over $k[t]/(t^2)$.

In the Goncharov picture we can view Q as fixed and degenerate M. Suppose $M: L_0L_1 \cdots L_{2n-1} = 0$ where

$$L_i = L_i(v_1, \dots, v_{2n-1}) = L_i(u_1/t, \dots, u_{2n-1}/t)$$

Assuming the L_i are general, clearing denominators and passing to the limit $t \to 0$ yields a degenerate simplex M_0 consisting of 2n hyperplanes meeting at the point v = 0. This limiting configuration leads to the Chow groups $SH^*(k, 2n - 1)$, but we do not see how to relate $\gamma|_{t=0}$ to cycles.

7. Cycle Groups of Divisors

We compute $SH^1(k, n)$ for $n \ge 1$.

Let $\mathcal{O}_{Q^n,0}$ be the local ring at $(0,\ldots,0) \in Q^n$. Let

(7.1)
$$I^n \subset J^n \subset \mathcal{O}_{Q^n,0}$$

be the ideals of all (resp. all but the last) face.

Lemma 7.1. $SH^1(k,n) \cong (1+I^n)^{\times}/\partial_{n+1}(1+J^{n+1})^{\times}$.

Proof. Let $D \subset Q^n$ be an effective divisor. Let

$$f \in k_n := k[t_0, \dots, t_n] / (\sum t_i)$$

be a defining equation for D. Then D meets faces properly in our sense if and only if $f \in \mathcal{O}_{Q^n,0}^{\times}$. Conversely, any $f \in \mathcal{O}_{Q^n,0}^{\times}$ defines a (not necessarily effective) divisor on Q^n meeting faces properly. Further

(7.2)
$$(f) \cdot Q_i^{n-1} = 0 \Leftrightarrow f \in k^{\times} \cdot (1 + t_i \mathcal{O}_{Q^n, 0}).$$

By general simplicial considerations, the $SH^1(k, n)$ is given by divisors meeting all faces trivially, modulo the restriction to the last face of divisors on Q^{n+1} meeting all but the last face trivially. Scaling the f above to remove the factor k^{\times} , this is precisely the assertion of the lemma.

Proposition 7.2. We have $SH^1(k, 1) = k$, and $SH^1(k, n) = (0)$ for $n \ge 2$.

Proof. The first assertion is part of theorem 5.3. The exact sequence

(7.3)
$$0 \to I^{n+1} \to J^{n+1} \xrightarrow{\partial_{n+1}} I^n \to 0$$

yields the surjectivity $1 + J^{n+1} \rightarrow 1 + I^n$. We observe that when n = 1, we have $I^1 = (t_0)$ but $\partial_2(J^2) = (t_0^2)$.

ADDITIVE CHOW GROUPS

References

- [1] Aomoto, K.: Un théorème du type de Matsushima-Murakami concernant l'intégrale des fonctions multiformes. J. Math. Pures Appl. **52** (1973), 1-11.
- [2] Beilinson, A., Goncharov, A., Schechtman, V., Varchenko, A.: Aomoto dilogarithms, mixed Hodge structures, and motivic cohomology of a pair of triangles in the plane, The Grothendieck Festschrift, Birkhäuser (1990), 131-172.
- [3] Bloch, S.: Algebraic cycles and higher K-theory, Adv. in Math. 61 (1986), no 3, 267-304.
- [4] Brieskorn, E.: Sur les groupes de tresses. In Sém. Bourbaki 401, Lect. Notes in Math. 317, 21-44, Berlin Heideleberg New York, Springer (1973).
- [5] Cathelineau, J-L.: Remarques sur les différentielles des polylogarithmes uniformes, Ann. Inst. Fourier, Grenoble 46 (1996) no. 5, 1327-1347.
- [6] Goncharov, A.: Volumes of hyperbolic manifolds and mixed Tate motives, JAMS 12 (1999), no 2, 569-618.
- [7] Nesterenko, Yu., Suslin, A.: Homology of the general linear group over a local ring, and Milnor's K-theory, Izv. Akad. Nauk SSSR Ser. Math. 53 (1989), no 1, 121-146, translation in Math. USSR-Izv. 34 (1990), no 1, 121-145.
- [8] Totaro, B.: Milnor K-theory is the simplest part of algebraic K-theory, K-Theory 6 (1992), no 2, 177-189.
- [9] Voevodsky, V.: Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. 7 (2002), 7, 351-355.

Dept. of Mathematics, University of Chicago, Chicago, IL 60637, USA

E-mail address: bloch@math.uchicago.edu

MATHEMATIK, UNIVERSITÄT ESSEN, FB6, MATHEMATIK, 45117 ESSEN, GER-MANY

E-mail address: esnault@uni-essen.de