Periods Associated to Algebraic Cycles

Spencer Bloch

March 3, 2014
Albert Lectures, University of Chicago

Outline

(9) Motivic Cohomology via Chow Groups
(2) Higher Chow DGA
(3) Extensions of Hodge Structures

4 Regulators and Amplitudes
(5) The Beilinson Conjectures
(6) Nahm's Conjecture

Motivic Cohomology and K-theory

- Beilinson definition

$$
H_{M}^{p}(X, \mathbb{Q}(q)):=g r_{\gamma}^{q} K_{2 q-p}(X)_{\mathbb{Q}} .
$$

- Example:

$$
H_{M}^{2 p}(X, \mathbb{Q}(p))=g r_{\gamma}^{p} K_{0}(X) \cong C H^{p}(X)_{\mathbb{Q}}
$$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.

- Complex $\mathcal{Z}^{p}(X, \cdot)$:

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{P}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{P}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.

- Complex $\mathcal{Z}^{p}(X, \cdot)$:

- $C H^{p}(X, n):=H^{-n}\left(\mathcal{Z}^{p}(X, \cdot)\right)$.

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

$$
\cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{1}\right)^{\prime} \xrightarrow{\delta} \mathcal{Z}^{p}(X)
$$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

$$
\cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{1}\right)^{\prime} \xrightarrow{\delta} \mathcal{Z}^{p}(X)
$$

- $C H^{p}(X, n):=H^{-n}\left(\mathcal{Z}^{p}(X, \cdot)\right)$.

Higher Chow Groups and Motivic Cohomology

- X smooth, $H_{M}^{p}(X, \mathbb{Z}(q)) \cong C H^{q}(X, 2 q-p)$.
- Variant: Cubical cycles: $\square:=\mathbb{P}^{1}-\{1\}$; Replace Δ^{n} with \square^{n}; factor out by degeneracies.
- Face maps $\iota_{i}^{j}: \square^{n-1} \hookrightarrow \square^{n}, j=0, \infty$

Examples

- Chow groups: $C H^{p}(X, 0)=C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.

Examples

- Chow groups: $C H^{p}(X, 0)=C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.
- Units: $\mathrm{CH}^{1}(X, 1)=H_{M}^{1}(X, \mathbb{Z}(1))=\Gamma\left(X, \mathcal{O}_{X}^{\times}\right)$.

Examples

- Chow groups: $C H^{p}(X, 0)=C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.
- Units: $\mathrm{CH}^{1}(X, 1)=H_{M}^{1}(X, \mathbb{Z}(1))=\Gamma\left(X, \mathcal{O}_{X}^{\times}\right)$.
- Milnor classes: $f_{1}, \ldots, f_{n} \in \Gamma\left(X, \mathcal{O}_{X}^{\times}\right) .\left\{f_{1}, \ldots, f_{n}\right\}:=$ $\left[\left(x, f_{1}(x), \ldots, f_{n}(x)\right) \cap\left(X \times \square^{n}\right)\right] \in C H^{n}(X, n)=H_{M}^{n}(X, \mathbb{Z}(n))$.

Examples

- Chow groups: $C H^{p}(X, 0)=C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.
- Units: $\mathrm{CH}^{1}(X, 1)=H_{M}^{1}(X, \mathbb{Z}(1))=\Gamma\left(X, \mathcal{O}_{X}^{\times}\right)$.
- Milnor classes: $f_{1}, \ldots, f_{n} \in \Gamma\left(X, \mathcal{O}_{X}^{\times}\right) .\left\{f_{1}, \ldots, f_{n}\right\}:=$ $\left[\left(x, f_{1}(x), \ldots, f_{n}(x)\right) \cap\left(X \times \square^{n}\right)\right] \in C H^{n}(X, n)=H_{M}^{n}(X, \mathbb{Z}(n))$.
- $\operatorname{dim} X=2, C_{i} \subset X$ curves, $f_{i} \in k\left(C_{i}\right)^{\times}$rational functions.

$$
\Gamma_{i}:=\left\{\left(c, f_{i}(c)\right) \mid c \in C_{i}\right\} \in \mathcal{Z}^{2}\left(X \times \square^{1}\right)
$$

$$
\sum_{i}\left(f_{i}\right)=0 \in \mathcal{Z}_{0}(X) \Rightarrow \sum \Gamma_{i} \in C H^{2}(X, 1)=H_{M}^{3}(X, \mathbb{Z}(2))
$$

Higher Chow DGA

- $X=\operatorname{Spec} k$ a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

Higher Chow DGA

- $X=$ Spec k a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

- $\mathfrak{N}^{p}(r):=\mathcal{Z}^{r}\left(\square_{k}^{2 r-p}\right)_{\mathbb{Q}, A l t}$

Higher Chow DGA

- $X=$ Spec k a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

- $\mathfrak{N}^{p}(r):=\mathcal{Z}^{r}\left(\square_{k}^{2 r-p}\right)_{\mathbb{Q}, A l t}$
- $\mathfrak{N}^{*}(\bullet):=\bigoplus_{r, p \geq 0} \mathfrak{N}^{p}(r)$

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Example: Dilogarithm Motive

$$
\begin{array}{ccc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} & \mathfrak{N}^{2}(2) \\
\uparrow_{\partial} & & \uparrow_{\partial} \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \longrightarrow & \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

Example: Dilogarithm Motive

$$
\begin{array}{cc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} \\
\uparrow_{\partial} & \mathfrak{N}^{2}(2) \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \uparrow_{\partial} \\
& \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

Example: Dilogarithm Motive

$$
\begin{array}{ccc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} & \mathfrak{N}^{2}(2) \\
\uparrow_{\partial} & & \uparrow_{\partial} \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \longrightarrow & \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles

Example: Dilogarithm Motive

$$
\begin{array}{ccc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} & \mathfrak{N}^{2}(2) \\
\uparrow_{\partial} & & \uparrow_{\partial} \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & & \\
& & \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.
- $0 \rightarrow H_{M}^{1}(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \xrightarrow{\partial} \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is Dilog(x).

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.
- $0 \rightarrow H_{M}^{1}(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \xrightarrow{\partial} \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

Extensions associated to Cycles

- X smooth variety dim. d over $\mathbb{C} . Z=\sum n_{i} Z_{i} \in \mathcal{Z}^{p}(X)$ algebraic cycle. Write $|Z|=\bigcup_{i} Z_{i}$.
- Betti cohomology sequence

Extensions associated to Cycles

- X smooth variety dim. d over $\mathbb{C} . Z=\sum n_{i} Z_{i} \in \mathcal{Z}^{p}(X)$ algebraic cycle. Write $|Z|=\bigcup_{i} Z_{i}$.
- Betti cohomology sequence

$$
\begin{aligned}
0 \rightarrow H^{2 p-1}(X, \mathbb{Q}(p)) & \rightarrow H^{2 p-1}(X-|Z|, \mathbb{Q}(p)) \\
& \xrightarrow{\partial} H_{2 d-2 p}(|Z|, \mathbb{Q}(p-d)) \xrightarrow{c l} H^{2 p}(X, \mathbb{Q}(p))
\end{aligned}
$$

Extensions associated to Cycles II

- $H_{2 d-2 p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot\left[Z_{i}\right]$.
- Assume $c l(Z)=\sum n_{i} c l\left[Z_{i}\right]=0 \in H^{2 p}(X, \mathbb{Q}(p))$.
- Extension of Hodge structures
- Extension class $\langle Z\rangle \in \operatorname{Ext}_{M H S}^{1}\left(\mathbb{Z}, H^{2 p-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles II

- $H_{2 d-2 p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot\left[Z_{i}\right]$.
- Assume $c l(Z)=\sum n_{i} c l\left[Z_{i}\right]=0 \in H^{2 p}(X, \mathbb{Q}(p))$.
- Extension of Hodge structures
- Extension class $\langle Z\rangle \in \operatorname{Ext}_{M H S}^{1}\left(\mathbb{Z}, H^{2 p-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles II

- $H_{2 d-2 p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot\left[Z_{i}\right]$.
- Assume $c l(Z)=\sum n_{i} c l\left[Z_{i}\right]=0 \in H^{2 p}(X, \mathbb{Q}(p))$.
- Extension of Hodge structures

$$
0 \rightarrow H^{2 p-1}(X, \mathbb{Q}(p)) \rightarrow \partial^{-1}(\mathbb{Q} \cdot Z) \rightarrow \mathbb{Z} \rightarrow 0
$$

- Extension class $\langle Z\rangle \in \operatorname{Ext}_{M H S}^{1}\left(\mathbb{Z}, H^{2 p-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles II

- $H_{2 d-2 p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot\left[Z_{i}\right]$.
- Assume $c l(Z)=\sum n_{i} c l\left[Z_{i}\right]=0 \in H^{2 p}(X, \mathbb{Q}(p))$.
- Extension of Hodge structures

$$
0 \rightarrow H^{2 p-1}(X, \mathbb{Q}(p)) \rightarrow \partial^{-1}(\mathbb{Q} \cdot Z) \rightarrow \mathbb{Z} \rightarrow 0
$$

- Extension class $\langle Z\rangle \in \operatorname{Ext}_{M H S}^{1}\left(\mathbb{Z}, H^{2 p-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles III

- $Z \in \mathcal{Z}^{p}\left(X \times \Delta^{q}\right)$ meeting faces properly. Assume $\partial_{i} Z=0 \in \mathcal{Z}^{p}\left(X \times \Delta^{q-1}\right), \forall i$.
- $[Z] \in H^{2 p-q}(X, \mathbb{Z}(p))$. Example:

- If X is projective and $q \geq 1$, or if $q \geq p$, then $[Z]$ is torsion.
- when $[Z]$ torsion, same construction, working with $\left(X \times \Delta^{q}-|Z|, X \times \partial \Delta^{q}-|Z| \cap X \times \partial \triangle^{q}\right)$ yields
$\quad 0 \rightarrow H^{2 p-1}\left(X \times \Delta^{q}, X \times \partial \Delta^{q} ; \mathbb{Q}(p)\right) \rightarrow M_{Z} \rightarrow \mathbb{Q} \rightarrow 0$
- Get class in $\operatorname{Ext}_{M H S}^{1}\left(\mathbb{Q}(0), H^{2 p-q-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles III

- $Z \in \mathcal{Z}^{p}\left(X \times \Delta^{q}\right)$ meeting faces properly. Assume $\partial_{i} Z=0 \in \mathcal{Z}^{p}\left(X \times \Delta^{q-1}\right), \forall i$.
- $[Z] \in H^{2 p-q}(X, \mathbb{Z}(p))$. Example:

$$
Z=\{(x, x)\} \subset\left(\mathbb{P}^{1}-\{0, \infty\}\right) \times \square^{1},[Z] \in H^{1}(\mathbb{G} m, \mathbb{Z}(1))
$$

- If X is projective and $q \geq 1$, or if $q \geq p$, then $[Z]$ is torsion.
- when $[Z]$ torsion, same construction, working with $\left(X \times \Delta^{q}-|Z|, X \times \partial \Delta^{q}-|Z| \cap X \times \partial \Delta^{q}\right)$ yields

- Get class in $\operatorname{Ext}_{M H S}^{1}\left(\mathbb{Q}(0), H^{2 p-q-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles III

- $Z \in \mathcal{Z}^{p}\left(X \times \Delta^{q}\right)$ meeting faces properly. Assume $\partial_{i} Z=0 \in \mathcal{Z}^{p}\left(X \times \Delta^{q-1}\right), \forall i$.
- $[Z] \in H^{2 p-q}(X, \mathbb{Z}(p))$. Example:

$$
Z=\{(x, x)\} \subset\left(\mathbb{P}^{1}-\{0, \infty\}\right) \times \square^{1},[Z] \in H^{1}\left(\mathbb{G}_{m}, \mathbb{Z}(1)\right)
$$

- If X is projective and $q \geq 1$, or if $q \geq p$, then $[Z]$ is torsion.
- when $[Z]$ torsion, same construction, working with $\left(X \times \Delta^{q}-|Z|, X \times \partial \Delta^{q}-|Z| \cap X \times \partial \Delta^{q}\right)$ yields

$$
0 \rightarrow H^{2 p-1}\left(X \times \Delta^{q}, X \times \partial \Delta^{q} ; \mathbb{Q}(p)\right) \rightarrow M_{Z} \rightarrow \mathbb{Q} \rightarrow 0
$$

- Get class in $\operatorname{Ext}_{M H S}^{1}\left(\mathbb{Q}(0), H^{2 p-q-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles III

- $Z \in \mathcal{Z}^{p}\left(X \times \Delta^{q}\right)$ meeting faces properly. Assume $\partial_{i} Z=0 \in \mathcal{Z}^{p}\left(X \times \Delta^{q-1}\right), \forall i$.
- $[Z] \in H^{2 p-q}(X, \mathbb{Z}(p))$. Example:

$$
Z=\{(x, x)\} \subset\left(\mathbb{P}^{1}-\{0, \infty\}\right) \times \square^{1},[Z] \in H^{1}\left(\mathbb{G}_{m}, \mathbb{Z}(1)\right)
$$

- If X is projective and $q \geq 1$, or if $q \geq p$, then [$Z]$ is torsion.
- when $[Z]$ torsion, same construction, working with $\left(X \times \Delta^{q}-|Z|, X \times \partial \Delta^{q}-|Z| \cap X \times \partial \Delta^{q}\right)$ yields

$$
0 \rightarrow H^{2 p-1}\left(X \times \Delta^{q}, X \times \partial \Delta^{q} ; \mathbb{Q}(p)\right) \rightarrow M_{Z} \rightarrow \mathbb{Q} \rightarrow 0
$$

- Get class in $\operatorname{Ext}_{M H S}^{1}\left(\mathbb{Q}(0), H^{2 p-q-1}(X, \mathbb{Q}(p))\right)$

Extensions associated to Cycles IV

$$
\operatorname{Ext}_{M H S}^{1}(\mathbb{Z}(0), H) \cong H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)
$$

- H a pure Hodge structure; $F^{*} H_{C}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0$;
- $s(1) \in M_{\mathbb{Z}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1)-s_{\mathcal{F}} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)$.

Extensions associated to Cycles IV

$$
\operatorname{Ext}_{M H S}^{1}(\mathbb{Z}(0), H) \cong H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)
$$

- H a pure Hodge structure; $F^{*} H_{\mathbb{C}}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0$;
- $s(1) \in M_{\mathbb{Z}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)$.

Extensions associated to Cycles IV

$$
\operatorname{Ext}_{M H S}^{1}(\mathbb{Z}(0), H) \cong H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)
$$

- H a pure Hodge structure; $F^{*} H_{\mathbb{C}}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0$;
- $s(1) \in M_{\mathbb{Z}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)$.

Extensions associated to Cycles IV

$$
\operatorname{Ext}_{M H S}^{1}(\mathbb{Z}(0), H) \cong H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)
$$

- H a pure Hodge structure; $F^{*} H_{C}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0$;
- $s(1) \in M_{\mathbb{Z}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)$.

Extensions associated to Cycles IV

$$
\operatorname{Ext}_{M H S}^{1}(\mathbb{Z}(0), H) \cong H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)
$$

- H a pure Hodge structure; $F^{*} H_{\mathbb{C}}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0$;
- $s(1) \in M_{\mathbb{Z}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)$.

Examples; Chow groups

- (Intermediate Jacobians) $Z \in \mathcal{Z}^{p}(X),[Z]=0 \in H^{2 p}(X, \mathbb{Z}(p)) \leadsto$

$$
0 \rightarrow H^{2 p-1}(X, \mathbb{Z}(p)) \rightarrow M_{Z} \rightarrow \mathbb{Z}(0) \rightarrow 0
$$

Examples; Chow groups

- (Intermediate Jacobians) $Z \in \mathcal{Z}^{p}(X),[Z]=0 \in H^{2 p}(X, \mathbb{Z}(p)) \sim$

$$
0 \rightarrow H^{2 p-1}(X, \mathbb{Z}(p)) \rightarrow M_{Z} \rightarrow \mathbb{Z}(0) \rightarrow 0
$$

- (Biextensions) $\operatorname{dim} X=d, p+q=d+1, Z \in \mathcal{Z}^{p}(X), V \in$ $\mathcal{Z}^{q}(X),[Z]=0=[V],|Z| \cap|V|=\emptyset$
Construct $M_{Z, V}$ subquotient of $H^{2 p-1}(X-|Z|,|V| ; \mathbb{Q}(p))$
$W_{2} M_{Z, V}=\mathbb{Q}(1) ; \quad g r_{-1}^{W} M_{Z, V}$ pure weight $-1 ; \quad g r_{0}^{W} M_{Z, V}=\mathbb{Q}(0)$.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$. - $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.
- $H_{M}^{2}(X, \mathbb{Z}(3))$; Work of Rob deJeu.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$. - $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.
- $H_{M}^{2}(X, \mathbb{Z}(3))$; Work of Rob deJeu.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$.

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.
- $H_{M}^{2}(X, \mathbb{Z}(3))$; Work of Rob deJeu.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$.
- $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

$$
\operatorname{dim} H_{M}^{1}(K, \mathbb{Q}(p))= \begin{cases}r_{2} & p \text { even } \\ r_{1}+r_{2} & p \text { odd }\end{cases}
$$

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$.
- $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

$$
\operatorname{dim} H_{M}^{1}(K, \mathbb{Q}(p))= \begin{cases}r_{2} & p \text { even } \\ r_{1}+r_{2} & p \text { odd }\end{cases}
$$

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.
- $H_{M}^{2}(X, \mathbb{Z}(3))$; Work of Rob deJeu.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$.
- $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

$$
\operatorname{dim} H_{M}^{1}(K, \mathbb{Q}(p))= \begin{cases}r_{2} & p \text { even } \\ r_{1}+r_{2} & p \text { odd }\end{cases}
$$

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.

Examples: Higher Chow groups

- $X=\operatorname{Spec} K$ a point.
- $H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(p))=C H^{p}(\operatorname{Spec} K, 2 p-1)$
- Classes represented by codim. p cycles on $\Delta^{2 p-1}$ or $\square^{2 p-1}$.
- $[K: \mathbb{Q}]=d=r_{1}+2 r_{2}, p \geq 2$.

$$
\operatorname{dim} H_{M}^{1}(K, \mathbb{Q}(p))= \begin{cases}r_{2} & p \text { even } \\ r_{1}+r_{2} & p \text { odd }\end{cases}
$$

- X a curve
- $H_{M}^{2}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_{2}(X)$.
- $H_{M}^{2}(X, \mathbb{Z}(3))$; Work of Rob deJeu.

Rigidity

- Rigidity; degenerating families of cycles.

```
* }\mp@subsup{X}{t}{}\mathrm{ degenerating family of elliptic curves.
* Z Zt }\in\mp@subsup{H}{M}{2}(\mp@subsup{X}{t}{},\mathbb{Z}(2))->\mp@subsup{Z}{0}{}\in\mp@subsup{H}{M}{1}(\operatorname{Spec}K,\mathbb{Z}(2))
- H
* Z Zt degenerating family of extensions of Hodge structures M}\mp@subsup{M}{t}{
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.
```


Rigidity

- Rigidity; degenerating families of cycles.
- X_{t} degenerating family of elliptic curves.
- $Z_{t} \in H_{M}^{2}\left(X_{t}, \mathbb{Z}(2)\right) \rightarrow Z_{0} \in H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(2))$.
- $H_{M}^{2}\left(X_{t}, \mathbb{Z}(3)\right)$ is rigid.
- $Z_{t} \leadsto$ degenerating family of extensions of Hodge structures M_{t}.
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

Rigidity

- Rigidity; degenerating families of cycles.
- X_{t} degenerating family of elliptic curves.
- $Z_{t} \in H_{M}^{2}\left(X_{t}, \mathbb{Z}(2)\right) \rightarrow Z_{0} \in H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(2))$.
> $Z_{t} \leadsto$ degenerating family of extensions of Hodge structures M_{t}.
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

Rigidity

- Rigidity; degenerating families of cycles.
- X_{t} degenerating family of elliptic curves.
- $Z_{t} \in H_{M}^{2}\left(X_{t}, \mathbb{Z}(2)\right) \rightarrow Z_{0} \in H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(2))$.
- $H_{M}^{2}\left(X_{t}, \mathbb{Z}(3)\right)$ is rigid.
- $Z_{t} \leadsto$ degenerating family of extensions of Hodge structures M_{t}.

Rigidity

- Rigidity; degenerating families of cycles.
- X_{t} degenerating family of elliptic curves.
- $Z_{t} \in H_{M}^{2}\left(X_{t}, \mathbb{Z}(2)\right) \rightarrow Z_{0} \in H_{M}^{1}(\operatorname{Spec} K, \mathbb{Z}(2))$.
- $H_{M}^{2}\left(X_{t}, \mathbb{Z}(3)\right)$ is rigid.
- $Z_{t} \leadsto$ degenerating family of extensions of Hodge structures M_{t}.
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

A Final Example: Mahler Measure Extension

- $P \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{n}, z_{n}^{-1}\right], \mathbb{G}_{m}^{n} \supset V: P=0$.
- $\Gamma_{P}=\left\{\left(z_{1}, \ldots, z_{n} ; z_{1}, \ldots, z_{n}, P(z)\right) \in\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}\right\}$.
$0 \rightarrow H^{n}\left(\mathbb{G}_{m}^{n}-V, \mathbb{Z}(n+1)\right) \rightarrow M_{P} \rightarrow \mathbb{Z}(0) \rightarrow 0$
$M_{P}=H^{2 n+1}\left(\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}-\Gamma_{P},\left(\mathbb{G}_{m}^{n}-V\right) \times \partial \square^{n+1} ; \mathbb{Z}(n+1)\right)$

A Final Example: Mahler Measure Extension

- $P \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{n}, z_{n}^{-1}\right], \mathbb{G}_{m}^{n} \supset V: P=0$.
- $\Gamma_{P}=\left\{\left(z_{1}, \ldots, z_{n} ; z_{1}, \ldots, z_{n}, P(z)\right) \in\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}\right\}$.

A Final Example: Mahler Measure Extension

- $P \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{n}, z_{n}^{-1}\right], \mathbb{G}_{m}^{n} \supset V: P=0$.
- $\Gamma_{P}=\left\{\left(z_{1}, \ldots, z_{n} ; z_{1}, \ldots, z_{n}, P(z)\right) \in\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}\right\}$.

$$
0 \rightarrow H^{n}\left(\mathbb{G}_{m}^{n}-V, \mathbb{Z}(n+1)\right) \rightarrow M_{P} \rightarrow \mathbb{Z}(0) \rightarrow 0
$$

$M_{P}=H^{2 n+1}\left(\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}-\Gamma_{P},\left(\mathbb{G}_{m}^{n}-V\right) \times \partial \square^{n+1} ; \mathbb{Z}(n+1)\right)$

A Final Example: Mahler Measure Extension

- $P \in \mathbb{C}\left[z_{1}, z_{1}^{-1}, \ldots, z_{n}, z_{n}^{-1}\right], \mathbb{G}_{m}^{n} \supset V: P=0$.
- $\Gamma_{P}=\left\{\left(z_{1}, \ldots, z_{n} ; z_{1}, \ldots, z_{n}, P(z)\right) \in\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}\right\}$.

$$
0 \rightarrow H^{n}\left(\mathbb{G}_{m}^{n}-V, \mathbb{Z}(n+1)\right) \rightarrow M_{P} \rightarrow \mathbb{Z}(0) \rightarrow 0
$$

$$
M_{P}=H^{2 n+1}\left(\left(\mathbb{G}_{m}^{n}-V\right) \times \square^{n+1}-\Gamma_{P},\left(\mathbb{G}_{m}^{n}-V\right) \times \partial \square^{n+1} ; \mathbb{Z}(n+1)\right)
$$

Real regulators and Amplitudes Associated to Extensions

$$
(*) \quad 0 \rightarrow H \rightarrow M \rightarrow \mathbb{Q}(0) \rightarrow 0
$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Q}}\right)$ - conj : $H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}, \mathbb{C}$ antilinear, identity on $H_{\mathbb{R}}$.

$$
r e g_{\mathbb{R}}(*)=\left(s(1)-s_{F}\right)^{\text {conj }=-1} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+\bar{F}^{0} H_{\mathbb{C}}\right) .
$$

- Amplitude: Assume given $\omega \in F^{1} H_{\mathbb{C}}^{\vee}$.

$$
A m p(*):=\left\langle\omega, s^{\prime}(1)-s_{F}\right\rangle \in \mathbb{C} /\left\langle\omega, H_{\mathbb{Q}}\right\rangle
$$

Real regulators and Amplitudes Associated to Extensions

$$
(*) \quad 0 \rightarrow H \rightarrow M \rightarrow \mathbb{Q}(0) \rightarrow 0
$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Q}}\right)$ - conj : $H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}, \mathbb{C}$ antilinear, identity on $H_{\mathbb{R}}$.

$$
\operatorname{reg}(*)=\left(s(1)-s_{F}\right)^{\text {coni }}-1 \in H_{c} /\left(F^{0} H_{c}+F^{0} H_{c}\right) .
$$

- Amplitude: Assume given $\omega \in F^{1} H_{\mathbb{C}}^{\vee}$.

$$
A m p(*):=\left\langle\omega, s^{(}(1)-s_{F}\right\rangle \in \mathbb{C} /\left\langle\omega, H_{\mathrm{Q}}\right\rangle
$$

Real regulators and Amplitudes Associated to Extensions

$$
(*) \quad 0 \rightarrow H \rightarrow M \rightarrow \mathbb{Q}(0) \rightarrow 0
$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Q}}\right)$
- Amplitude: Assume given $\omega \in F^{1} H_{\mathbb{C}}^{\vee}$.

$$
\left.A m p^{(} *\right):=\left\langle\omega, s(1)-s_{F}\right\rangle \in \mathbb{C} /\left\langle\omega, H_{Q}\right\rangle
$$

Real regulators and Amplitudes Associated to Extensions

$$
(*) \quad 0 \rightarrow H \rightarrow M \rightarrow \mathbb{Q}(0) \rightarrow 0
$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Q}}\right)$
- conj : $H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}, \mathbb{C}$ antilinear, identity on $H_{\mathbb{R}}$.

$$
r e g_{\mathbb{R}}(*)=\left(s(1)-s_{F}\right)^{\text {conj }=-1} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+\bar{F}^{0} H_{\mathbb{C}}\right)
$$

- Amplitude: Assume given $\omega \in F^{1} H_{\mathbb{C}}^{\vee}$.

$$
A m p(*):=\left\langle\omega, s(1)-s_{F}\right\rangle \in \mathbb{C} /\left\langle\omega, H_{\mathbb{Q}}\right\rangle
$$

Real regulators and Amplitudes Associated to Extensions

$$
(*) \quad 0 \rightarrow H \rightarrow M \rightarrow \mathbb{Q}(0) \rightarrow 0
$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_{F} \in F^{0} M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1)-s_{F} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Q}}\right)$
- conj : $H_{\mathbb{C}} \rightarrow H_{\mathbb{C}}, \mathbb{C}$ antilinear, identity on $H_{\mathbb{R}}$.

$$
r e g_{\mathbb{R}}(*)=\left(s(1)-s_{F}\right)^{c o n j=-1} \in H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+\bar{F}^{0} H_{\mathbb{C}}\right)
$$

- Amplitude: Assume given $\omega \in F^{1} H_{\mathbb{C}}^{\vee}$.

$$
A m p(*):=\left\langle\omega, s(1)-s_{F}\right\rangle \in \mathbb{C} /\left\langle\omega, H_{\mathbb{Q}}\right\rangle
$$

Comments

- $\left\langle F^{1} H_{\mathbb{C}}^{\vee}, F^{0} H_{\mathbb{C}}\right\rangle=(0)$
- \Rightarrow Amplitude independent of S_{F}.
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \leadsto$
multi-valued function $a m p\left(*_{t}\right)$ with variation $\in\left\langle\omega, H_{\pi}\right\rangle$.

- $F^{0} H_{\mathbb{C}}=(0) \Rightarrow\langle\omega, r e g(*)\rangle$ defined.

March 3, 2014 Albert Lectures, University of C

Comments

- $\left\langle F^{1} H_{\mathbb{C}}^{\vee}, F^{0} H_{\mathbb{C}}\right\rangle=(0)$
- \Rightarrow Amplitude independent of s_{F}.
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \leadsto$
multi-valued function $a m p\left(*_{t}\right)$ with variation $\in\left\langle\omega, H_{\pi}\right\rangle$.

- $F^{0} H_{\mathbb{C}}=(0) \Rightarrow\langle\omega, r e g(*)\rangle$ defined.

Comments

- $\left\langle F^{1} H_{\mathbb{C}}^{\vee}, F^{0} H_{\mathbb{C}}\right\rangle=(0)$
- \Rightarrow Amplitude independent of s_{F}.
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \leadsto$ multi-valued function $\operatorname{amp}\left(*_{t}\right)$ with variation $\in\left\langle\omega, H_{\mathbb{Z}}\right\rangle$.

- $F^{0} H_{\mathbb{C}}=(0) \Rightarrow\langle\omega, r e g(*)\rangle$ defined.

Comments

- $\left\langle F^{1} H_{\mathbb{C}}^{\vee}, F^{0} H_{\mathbb{C}}\right\rangle=(0)$
- \Rightarrow Amplitude independent of s_{F}.
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \leadsto$ multi-valued function $\operatorname{amp}\left(*_{t}\right)$ with variation $\in\left\langle\omega, H_{\mathbb{Z}}\right\rangle$.

- $F^{0} H_{\mathbb{C}}=(0) \Rightarrow\langle\omega, r e g(*)\rangle$ defined.

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \Delta: X Y Z=0$.
- E_{t}
$(X+Y+Z)(X Y+X Z+Y Z)-t X Y Z=0$.

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \Delta: X Y Z=0$.
- E_{t}

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

$$
A:=\text { Amplitude }=\int_{0^{2}}^{\infty^{2}} \frac{d x \wedge d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}\right)(x+y+x y)-p^{2} x y}
$$

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \Delta: X Y Z=0$.
- E_{t}

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

$$
A:=\text { Amplitude }=\int_{0^{2}}^{\infty^{2}} \frac{d x \wedge d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}\right)(x+y+x y)-p^{2} x y}
$$

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \triangle: X Y Z=0$.
- E_{t}

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

$$
A:=\text { Amplitude }=\int_{0^{2}}^{\infty^{2}} \frac{d x \wedge d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}\right)(x+y+x y)-p^{2} x y}
$$

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \Delta: X Y Z=0$.
- E_{t}

Feynman Amplitudes in Physics; joint work with P. Vanhove

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p=\left(p_{1}, \ldots, p_{4}\right)$ external momentum; $p^{2}:=\sum p_{i}^{2}$. m_{j} mass associated to j-th edge.

$$
A:=\text { Amplitude }=\int_{0^{2}}^{\infty^{2}} \frac{d x \wedge d y}{\left(m_{1}^{2} x+m_{2}^{2} y+m_{3}\right)(x+y+x y)-p^{2} x y}
$$

- Equal mass case: $m=m_{1}=m_{2}=m_{3} . t=p^{2} / m^{2}$.
- Homogeneous coordinates $X, Y, Z ; \Delta: X Y Z=0$.
- $E_{t}:(X+Y+Z)(X Y+X Z+Y Z)-t X Y Z=0$.

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.

- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- $\mathfrak{h}:=\pi^{-1}(\Delta)=$ hexagon $; \mathfrak{h} \cap E_{t}=$ cyclic group of order 6 .
- Localization sequence splits as Hodge structures (because $\mathfrak{h} \cap E_{t}$ torsion)

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.
- $P:=\mathbb{P}^{2}$ blown up at $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- $\mathfrak{h}:=\pi^{-1}(\Delta)=$ hexagon; $\mathfrak{h} \cap E_{t}=$ cyclic group of order 6 .
- Localization sequence splits as Hodge structures (because $\mathfrak{\square} \cap E_{t}$ torsion)

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.
- $P:=\mathbb{P}^{2}$ blown up at $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- Localization sequence splits as Hodge structures (because $\mathfrak{h} \cap E_{t}$ torsion)

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.
- $P:=\mathbb{P}^{2}$ blown up at $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- $\mathfrak{h}:=\pi^{-1}(\Delta)=$ hexagon; $\mathfrak{h} \cap E_{t}=$ cyclic group of order 6 .
- Localization sequence splits as Hodge structures (because $\mathfrak{h} \cap E_{t}$ torsion)

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.
- $P:=\mathbb{P}^{2}$ blown up at $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- $\mathfrak{h}:=\pi^{-1}(\Delta)=$ hexagon; $\mathfrak{h} \cap E_{t}=$ cyclic group of order 6.
- Localization sequence splits as Hodge structures (because $\mathfrak{h} \cap E_{t}$ torsion)

$$
0 \rightarrow H^{2}(P, \mathbb{Q}(1)) / \mathbb{Q} \cdot\left[E_{t}\right] \rightarrow H^{2}\left(P-E_{t}, \mathbb{Q}(1)\right) \leftrightarrows H^{1}(E, \mathbb{Q}) \rightarrow 0
$$

Feynman Amplitudes in Physics II

- $E_{t} \cap \Delta=\{(1,0,0),(0,1,0),(0,0,1)\}$ plus 3 other points.
- $P:=\mathbb{P}^{2}$ blown up at $\{(1,0,0),(0,1,0),(0,0,1)\}$.
- $E_{t} \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^{2}$.
- $\mathfrak{h}:=\pi^{-1}(\Delta)=$ hexagon; $\mathfrak{h} \cap E_{t}=$ cyclic group of order 6.
- Localization sequence splits as Hodge structures (because $\mathfrak{h} \cap E_{t}$ torsion)

$$
\begin{gathered}
0 \rightarrow H^{2}(P, \mathbb{Q}(1)) / \mathbb{Q} \cdot\left[E_{t}\right] \rightarrow H^{2}\left(P-E_{t}, \mathbb{Q}(1)\right) \leftrightarrows H^{1}(E, \mathbb{Q}) \rightarrow 0 \\
H^{1}\left(\mathfrak{h}-E_{t} \cap \mathfrak{h}, \mathbb{Q}\right)=H^{1}\left(\bigcup_{6} \mathbb{A}^{1}, \mathbb{Q}\right)=\mathbb{Q}(0)
\end{gathered}
$$

Feynman Amplitudes in Physics III

$$
0 \rightarrow H^{1}\left(\mathfrak{h}-\mathfrak{h} \cap E_{t}, \mathbb{Q}\right) \rightarrow H^{2}\left(P-E_{t}, \mathfrak{h}-\mathfrak{h} \cap E_{t}, \mathbb{Q}\right) \rightarrow H^{2}\left(P-E_{t}, \mathbb{Q}\right) \rightarrow 0
$$

Feynman Amplitudes in Physics III

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(\mathfrak{h}-\mathfrak{h} \cap E_{t}, \mathbb{Q}\right) \rightarrow H^{2}\left(P-E_{t}, \mathfrak{h}-\mathfrak{h} \cap E_{t}, \mathbb{Q}\right) \rightarrow H^{2}\left(P-E_{t}, \mathbb{Q}\right) \rightarrow 0 \\
& \begin{array}{cccc}
& \| & \uparrow & \uparrow \text { spliting } \\
0 \rightarrow & M_{t}(0) & \rightarrow H^{1}\left(E_{t}, \mathbb{Q}(-1)\right) \rightarrow 0
\end{array} \\
& (*) \quad 0 \rightarrow H^{1}\left(E_{t}, \mathbb{Q}(2)\right) \rightarrow M_{t}^{\vee} \rightarrow \mathbb{Q}(0) \rightarrow 0
\end{aligned}
$$

Feynman Amplitudes in Physics III

- $\omega=\frac{d x \wedge d y}{(x+y+1)(x+y+x y)-t x y} \in F^{2} M_{t} \otimes \mathbb{C}$.
- Chain of integration $[0, \infty]^{2} \in M_{t}^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_{F} \in F^{0} M_{t}^{\vee} \otimes \mathbb{C}$.
- $M_{t} \otimes M_{t}^{\vee} \rightarrow \mathbb{Q}(0) ; F^{2} M_{t} \otimes \mathbb{C} \otimes F^{0} M_{t}^{\vee} \otimes \mathbb{C} \rightarrow F^{2} \mathbb{C}(0)=(0)$
- $\left\langle\omega, s(1)-s_{F}\right\rangle=\langle\omega, s(1)\rangle=\int_{0^{2}}^{\infty^{2}} \omega=A$

Feynman Amplitudes in Physics III

- $\omega=\frac{d x \wedge d y}{(x+y+1)(x+y+x y)-t x y} \in F^{2} M_{t} \otimes \mathbb{C}$.
- Chain of integration $[0, \infty]^{2} \in M_{t}^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_{F} \in F^{0} M_{t}^{\vee} \otimes \mathbb{C}$.

Feynman Amplitudes in Physics III

- $\omega=\frac{d x \wedge d y}{(x+y+1)(x+y+x y)-t x y} \in F^{2} M_{t} \otimes \mathbb{C}$.
- Chain of integration $[0, \infty]^{2} \in M_{t}^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_{F} \in F^{0} M_{t}^{\vee} \otimes \mathbb{C}$.

Feynman Amplitudes in Physics III

- $\omega=\frac{d x \wedge d y}{(x+y+1)(x+y+x y)-t x y} \in F^{2} M_{t} \otimes \mathbb{C}$.
- Chain of integration $[0, \infty]^{2} \in M_{t}^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_{F} \in F^{0} M_{t}^{\vee} \otimes \mathbb{C}$.
- $M_{t} \otimes M_{t}^{\vee} \rightarrow \mathbb{Q}(0) ; F^{2} M_{t} \otimes \mathbb{C} \otimes F^{0} M_{t}^{\vee} \otimes \mathbb{C} \rightarrow F^{2} \mathbb{C}(0)=(0)$

Feynman Amplitudes in Physics III

- $\omega=\frac{d x \wedge d y}{(x+y+1)(x+y+x y)-t x y} \in F^{2} M_{t} \otimes \mathbb{C}$.
- Chain of integration $[0, \infty]^{2} \in M_{t}^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_{F} \in F^{0} M_{t}^{\vee} \otimes \mathbb{C}$.
- $M_{t} \otimes M_{t}^{\vee} \rightarrow \mathbb{Q}(0) ; F^{2} M_{t} \otimes \mathbb{C} \otimes F^{0} M_{t}^{\vee} \otimes \mathbb{C} \rightarrow F^{2} \mathbb{C}(0)=(0)$
- $\left\langle\omega, s(1)-s_{F}\right\rangle=\langle\omega, s(1)\rangle=\int_{0^{2}}^{\infty^{2}} \omega=A$

Sunset Amplitude

- $L i_{2}(x):=\sum x^{n} / n^{2}$ dilogarithm.

$A=2 \pi i\left(\right.$ rational multiple of periods of $\left.E_{t}\right)+\frac{6 \varpi_{r}(t)}{\tau} E_{\Theta}(q)$

- $q=\exp (2 \pi i \tau) ; \tau=\varpi_{c}(t) / \varpi_{r}(t)$

Sunset Amplitude

- $L i_{2}(x):=\sum x^{n} / n^{2}$ dilogarithm.

$$
A=2 \pi i\left(\text { rational multiple of periods of } E_{t}\right)+\frac{6 \varpi_{r}(t)}{\pi} E_{\Theta}(q)
$$

Sunset Amplitude

- $L i_{2}(x):=\sum x^{n} / n^{2}$ dilogarithm.

$$
A=2 \pi i\left(\text { rational multiple of periods of } E_{t}\right)+\frac{6 \varpi_{r}(t)}{\pi} E_{\Theta}(q)
$$

- $q=\exp (2 \pi i \tau) ; \tau=\varpi_{c}(t) / \varpi_{r}(t)$

Elliptic Dilogarithm

$$
\begin{array}{r}
E_{\Theta}(q)=\frac{i}{2} \sum_{n \geq 0}\left(L i_{2}\left(q^{n} \zeta_{6}^{5}\right)+L i_{2}\left(q^{n} \zeta_{6}^{4}\right)-L i_{2}\left(q^{n} \zeta_{6}^{2}\right)-L i_{2}\left(q^{n} \zeta_{6}\right)\right) \\
- \\
-\frac{i}{4}\left(L i_{2}\left(\zeta_{6}^{5}\right)+L i_{2}\left(\zeta_{6}^{4}\right)-L i_{2}\left(\zeta_{6}^{2}\right)-L i_{2}\left(\zeta_{6}\right)\right)
\end{array}
$$

- $E_{\Theta}(q)=E_{\Theta}\left(q^{-1}\right)$.
- Relation with elliptic di logarithm. Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

Elliptic Dilogarithm

$$
\begin{array}{r}
E_{\Theta}(q)=\frac{i}{2} \sum_{n \geq 0}\left(L i_{2}\left(q^{n} \zeta_{6}^{5}\right)+L i_{2}\left(q^{n} \zeta_{6}^{4}\right)-L i_{2}\left(q^{n} \zeta_{6}^{2}\right)-L i_{2}\left(q^{n} \zeta_{6}\right)\right) \\
-\frac{i}{4}\left(L i_{2}\left(\zeta_{6}^{5}\right)+L i_{2}\left(\zeta_{6}^{4}\right)-L i_{2}\left(\zeta_{6}^{2}\right)-L i_{2}\left(\zeta_{6}\right)\right)
\end{array}
$$

- $E_{\Theta}(q)=E_{\Theta}\left(q^{-1}\right)$.
- Relation with elliptic dilogarithm.

Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

Elliptic Dilogarithm

$$
\begin{array}{r}
E_{\Theta}(q)=\frac{i}{2} \sum_{n \geq 0}\left(L i_{2}\left(q^{n} \zeta_{6}^{5}\right)+L i_{2}\left(q^{n} \zeta_{6}^{4}\right)-L i_{2}\left(q^{n} \zeta_{6}^{2}\right)-L i_{2}\left(q^{n} \zeta_{6}\right)\right) \\
- \\
-\frac{i}{4}\left(L i_{2}\left(\zeta_{6}^{5}\right)+L i_{2}\left(\zeta_{6}^{4}\right)-L i_{2}\left(\zeta_{6}^{2}\right)-L i_{2}\left(\zeta_{6}\right)\right)
\end{array}
$$

- $E_{\Theta}(q)=E_{\Theta}\left(q^{-1}\right)$.
- Relation with elliptic dilogarithm.

Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

Where did the cycle go?

- Milnor symbol $\{X / Z, Y / Z\} \in H_{M}^{2}\left(E_{t}-S, \mathbb{Z}(2)\right)$.
- Because $S:=\mathfrak{h} \cap E_{t} \subset E_{t}$ (tors), symbol extends to $H_{M}^{2}\left(E_{t}, \mathbb{Z}(2)\right)$.
- Amplitude \leftrightarrow regulator of this symbol.
- If m_{1}, m_{2}, m_{3} distinct, $S \not \subset E_{f}$ (tors), calculating A seems to involve Gromov-Witten invariants:
Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

Where did the cycle go?

- Milnor symbol $\{X / Z, Y / Z\} \in H_{M}^{2}\left(E_{t}-S, \mathbb{Z}(2)\right)$.
- Because $S:=\mathfrak{h} \cap E_{t} \subset E_{t}$ (tors), symbol extends to $H_{M}^{2}\left(E_{t}, \mathbb{Z}(2)\right)$.
- Amplitude \leftrightarrow regulator of this symbol.
- If m_{1}, m_{2}, m_{3} distinct, $S \not \subset E_{t}$ (tors), calculating A seems to involve Gromov-Witten invariants:
Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

Where did the cycle go?

- Milnor symbol $\{X / Z, Y / Z\} \in H_{M}^{2}\left(E_{t}-S, \mathbb{Z}(2)\right)$.
- Because $S:=\mathfrak{h} \cap E_{t} \subset E_{t}$ (tors), symbol extends to $H_{M}^{2}\left(E_{t}, \mathbb{Z}(2)\right)$.
- Amplitude \leftrightarrow regulator of this symbol.
- If m_{1}, m_{2}, m_{3} distinct, $S \not \subset E_{t}$ (tors), calculating A seems to involve

Gromov-Witten invariants:
Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

Where did the cycle go?

- Milnor symbol $\{X / Z, Y / Z\} \in H_{M}^{2}\left(E_{t}-S, \mathbb{Z}(2)\right)$.
- Because $S:=\mathfrak{h} \cap E_{t} \subset E_{t}$ (tors), symbol extends to $H_{M}^{2}\left(E_{t}, \mathbb{Z}(2)\right)$.
- Amplitude \leftrightarrow regulator of this symbol.
- If m_{1}, m_{2}, m_{3} distinct, $S \not \subset E_{t}$ (tors), calculating A seems to involve Gromov-Witten invariants:
Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

Hasse-Weil L-functions

- $X /$ Spec \mathbb{Q} projective, smooth.
- ℓ-adic cohomology group $H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$.
- Hasse-Weil L-function $\left(I_{p} \subset \operatorname{Gal}(\mathbb{Q} / \mathbb{Q})=\right.$ inertia subgroup at p; $F_{p}=$ geo. frobenius; $\ell \neq p$)

- Ex: $X=\operatorname{Spec} \mathbb{Q}, L\left(H^{0}, s\right)=\zeta(s)$
- Ex. X elliptic curve,

$$
a_{p}=p+1-\# X\left(\mathbb{F}_{p}\right)
$$

Hasse-Weil L-functions

- $X /$ Spec \mathbb{Q} projective, smooth.
- ℓ-adic cohomology group $H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$.
- Hasse-Weil L-function $\left(I_{p} \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})=\right.$ inertia subgroup at p; $F_{p}=$ geo. frobenius; $\ell \neq p$)

$$
L\left(H^{q}, s\right):=\prod_{p} L_{p}\left(H^{q}, s\right) ; \quad L_{p}=\operatorname{det}\left(1-F_{p} p^{-s} \mid H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)^{l_{p}}\right)^{-1}
$$

$$
\text { Ex: } X=\operatorname{Spec} \mathbb{Q}, L\left(H^{0}, s\right)=\zeta(s)
$$

$$
\text { Ex. } X \text { elliptic curve, }
$$

Hasse-Weil L-functions

- $X /$ Spec \mathbb{Q} projective, smooth.
- ℓ-adic cohomology group $H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$.
- Hasse-Weil L-function $\left(I_{p} \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})=\right.$ inertia subgroup at p; $F_{p}=$ geo. frobenius; $\ell \neq p$)

$$
L\left(H^{q}, s\right):=\prod_{p} L_{p}\left(H^{q}, s\right) ; \quad L_{p}=\operatorname{det}\left(1-F_{p} p^{-s} \mid H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{l}\right)^{\rho_{p}}\right)^{-1}
$$

- Ex: $X=\operatorname{Spec} \mathbb{Q}, L\left(H^{0}, s\right)=\zeta(s)$

Hasse-Weil L-functions

- $X / \operatorname{Spec} \mathbb{Q}$ projective, smooth.
- ℓ-adic cohomology group $H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)$.
- Hasse-Weil L-function $\left(I_{p} \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})=\right.$ inertia subgroup at p; $F_{p}=$ geo. frobenius; $\ell \neq p$)

$$
L\left(H^{q}, s\right):=\prod_{p} L_{p}\left(H^{q}, s\right) ; \quad L_{p}=\operatorname{det}\left(1-F_{p} p^{-s} \mid H_{e t}^{q}\left(\bar{X}, \mathbb{Q}_{\ell}\right)^{\rho_{p}}\right)^{-1}
$$

- Ex: $X=\operatorname{Spec} \mathbb{Q}, L\left(H^{0}, s\right)=\zeta(s)$
- Ex. X elliptic curve,

$$
\begin{gathered}
L\left(H^{1}, s\right)=\prod_{p \text { good }}\left(1-a_{p} p^{-s}+p^{1-2 s}\right)^{-1} \times \text { bad factors } \\
a_{p}=p+1-\# X\left(\mathbb{F}_{p}\right)
\end{gathered}
$$

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:

```
- \(F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})\).
- conj : \(H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{\text {Betti }}^{*}(X, \mathbb{C})\)
\(\rightarrow \bar{F}_{\infty}:=F_{\infty} \circ\) conj \(=\) conj \(\circ F_{\infty}\).
```

- de Rham conjugation ($H_{D R}^{*}$ defined algebraically)

- Compatibility with period isomorphism

March 3, 2014 Albert Lectures, University of C

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:
- $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$.
\rightarrow conj: $H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{B e t t i}^{*}(X, \mathbb{C})$
- $\bar{F}_{\infty}:=F_{\infty} \circ c o n j=c o n j \circ F_{\infty}$.
- de Rham conjugation ($L_{D R}^{*}$ defined algebraically)
$\operatorname{conj}_{D R}: H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)=H_{D R}^{*}(X / \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \rightarrow H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)$
- Compatibility with period isomorphism

March 3, 2014 Albert Lectures, University of C

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:
- $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$.
- conj : $H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{\text {Betti }}^{*}(X, \mathbb{C})$
$\rightarrow F_{\infty}:=F_{\infty} \circ$ conj $=$ conj○ F_{∞}
- de Rham conjugation ($H_{D R}^{*}$ defined algebraically)
conjon $: H_{D R}^{*}\left(X_{C} / \mathbb{C}\right)=H_{D R}^{*}(X / \mathbb{R}) Q_{\mathbb{R}} \mathbb{C} \rightarrow H_{D R}^{*}\left(X_{C} / \mathbb{C}\right)$
- Compatibility with period isomorphism

March 3, 2014 Albert Lectures, University of C

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:
- $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$.
- conj: $H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{\text {Betti }}^{*}(X, \mathbb{C})$
- $\bar{F}_{\infty}:=F_{\infty} \circ$ conj $=$ conj $\circ F_{\infty}$.
- de Rham conjugation ($H_{D R}^{*}$ defined algebraically)
$\operatorname{conj}_{D R}: H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)=H_{D R}^{*}(X / \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \rightarrow H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)$
- Compatibility with period isomorphism

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:
- $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$.
- conj : $H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{\text {Betti }}^{*}(X, \mathbb{C})$
- $\bar{F}_{\infty}:=F_{\infty} \circ$ conj $=$ conj $\circ F_{\infty}$.
- de Rham conjugation ($H_{D R}^{*}$ defined algebraically)

$$
\operatorname{conj}_{D R}: H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)=H_{D R}^{*}(X / \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \rightarrow H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)
$$

- Compatibility with period isomorphism

The Real Involution(s)

- X / \mathbb{R}.
- 3 involutions:
- $F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})$.
- conj: $H_{\text {Betti }}^{*}(X, \mathbb{C}) \rightarrow H_{\text {Betti }}^{*}(X, \mathbb{C})$
- $\bar{F}_{\infty}:=F_{\infty} \circ$ conj $=$ conj $\circ F_{\infty}$.
- de Rham conjugation ($H_{D R}^{*}$ defined algebraically)

$$
\operatorname{conj}_{D R}: H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)=H_{D R}^{*}(X / \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \rightarrow H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)
$$

- Compatibility with period isomorphism

$$
\begin{array}{rrr}
H_{\text {Betti } i}^{*}\left(X_{\mathbb{C}}, \mathbb{C}\right) & \xrightarrow{\text { period iso. }} & H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right) \\
& & \downarrow \bar{F}_{\infty} \\
& & \\
H_{\text {Betti }}^{*}\left(X_{\mathbb{C}}, \mathbb{C}\right) & \\
\text { period iso. } & & H_{D R}^{*}\left(X_{\mathbb{C}} / \mathbb{C}\right)
\end{array}
$$

Volume Form

- $X / \operatorname{Spec} \mathbb{Q}$ smooth, projective, geometrically connected.
- $n>\frac{q}{2}+1, H_{\mathbb{Z}}:=H_{\text {Betti }}^{q}\left(X_{\mathbb{C}}, \mathbb{Z}(n)\right)$ Hodge structure with \bar{F}_{∞} action.

- G is abelian Lie group with tangent space

$$
\begin{aligned}
T_{G, \mathbb{R}}:= & H_{D R}(X / \mathbb{R})(n) / F^{0} H_{D R}(X / \mathbb{R})(n)= \\
& \left(H_{D R}(X / \mathbb{Q})(n) / F^{0} H_{D R}(X / \mathbb{Q})(n)\right) \otimes \mathbb{R}=: T_{G, \mathbb{Q}} \otimes \mathbb{R}
\end{aligned}
$$

- $\operatorname{det} T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times}on G.

Volume Form

- $X / \operatorname{Spec} \mathbb{Q}$ smooth, projective, geometrically connected.
- $n>\frac{q}{2}+1, H_{\mathbb{Z}}:=H_{B e t t i}^{q}\left(X_{\mathbb{C}}, \mathbb{Z}(n)\right)$ Hodge structure with \bar{F}_{∞} action.

- G is abelian Lie group with tangent space

$$
\begin{aligned}
& T_{G, \mathbb{R}}:=H_{D R}(X / \mathbb{R})(n) / F^{0} H_{D R}(X / \mathbb{R})(n)= \\
& \\
& \quad\left(H_{D R}(X / \mathbb{Q})(n) / F^{0} H_{D R}(X / \mathbb{Q})(n)\right) \otimes \mathbb{R}=: T_{G, \mathbb{Q}} \otimes \mathbb{R}
\end{aligned}
$$

- $\operatorname{det} T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times}on G.

Volume Form

- $X / \operatorname{Spec} \mathbb{Q}$ smooth, projective, geometrically connected.
- $n>\frac{q}{2}+1, H_{\mathbb{Z}}:=H_{B e t t i}^{q}\left(X_{\mathbb{C}}, \mathbb{Z}(n)\right)$ Hodge structure with \bar{F}_{∞} action.

$$
G:=\left(H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)\right)^{\bar{F}_{\infty}=+1}
$$

- G is abelian Lie group with tangent space

- $\operatorname{det} T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times}on G.

Volume Form

- $X / \operatorname{Spec} \mathbb{Q}$ smooth, projective, geometrically connected.
- $n>\frac{q}{2}+1, H_{\mathbb{Z}}:=H_{B e t t i}^{q}\left(X_{\mathbb{C}}, \mathbb{Z}(n)\right)$ Hodge structure with \bar{F}_{∞} action.

$$
G:=\left(H_{\mathbb{C}} /\left(F^{0} H_{\mathbb{C}}+H_{\mathbb{Z}}\right)\right)^{\bar{F}_{\infty}=+1}
$$

- G is abelian Lie group with tangent space

$$
\begin{aligned}
& T_{G, \mathbb{R}}:=H_{D R}(X / \mathbb{R})(n) / F^{0} H_{D R}(X / \mathbb{R})(n)= \\
& \quad\left(H_{D R}(X / \mathbb{Q})(n) / F^{0} H_{D R}(X / \mathbb{Q})(n)\right) \otimes \mathbb{R}=: T_{G, \mathbb{Q}} \otimes \mathbb{R}
\end{aligned}
$$

- $\operatorname{det} T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times}on G.

Beilinson Conjecture

- $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \subset H_{M}^{q+1}(X, \mathbb{Z}(n)) ;$ classes with everywhere good reduction.

- Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in G.
(ii) The rank of $H_{M}^{q+1}(X, \mathbb{Z}(n))$ z equals the order of zero of $L\left(H^{q}, s\right)$
at $q+1-n$.
(iii) The volume of $G / H_{M}^{q+1}(X, \mathbb{Z}(n))$ z is a non-zero rational multiple of $L\left(H^{q}, s=n\right)$.

Beilinson Conjecture

- $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \subset H_{M}^{q+1}(X, \mathbb{Z}(n))$; classes with everywhere good reduction.

0

$$
H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{\text { Ext.cl. }} G
$$

- Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in G.
(ii) The rank of $H_{M}^{q+1}(X, \mathbb{Z}(n))$ z equals the order of zero of $L\left(H^{q}, s\right)$
(iii) The volume of $G / H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ is a non-zero rational
multiple of $L\left(H^{q}, s=n\right)$.

Beilinson Conjecture

- $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \subset H_{M}^{q+1}(X, \mathbb{Z}(n))$; classes with everywhere good reduction.
-

$$
H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{\text { Ext.cl. }} G
$$

- Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in G.
(iii) The volume of $G / H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ is a non-zero rational multiple of $L\left(H^{q}, s=n\right)$.

Beilinson Conjecture

- $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \subset H_{M}^{q+1}(X, \mathbb{Z}(n))$; classes with everywhere good reduction.
0

$$
H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{\text { Ext.cl. }} G
$$

- Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in G.
(ii) The rank of $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ equals the order of zero of $L\left(H^{q}, s\right)$ at $q+1-n$.
(iii) The volume of $G / H_{M}^{q+1}(X, \mathbb{Z}(n)) \mathbb{Z}$ is a non-zero rational
multiple of $L\left(H^{q}, s=n\right)$.

Beilinson Conjecture

- $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \subset H_{M}^{q+1}(X, \mathbb{Z}(n))$; classes with everywhere good reduction.
-

$$
H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{\text { Ext.cl. }} G
$$

- Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in G.
(ii) The rank of $H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ equals the order of zero of $L\left(H^{q}, s\right)$ at $q+1-n$.
(iii) The volume of $G / H_{M}^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ is a non-zero rational multiple of $L\left(H^{q}, s=n\right)$.

Beilinson Conjecture II

- For $X / F, F$ numberfield, the conjecture is formulated by taking G_{σ} for the various \mathbb{R} - and \mathbb{C}-embeddings of F.
- Beilinson conjecture is true for $X=\operatorname{Spec} F$ a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for $H_{M}^{2}\left(X_{K}, \mathbb{Z}(2)\right)$; $K \subset G L_{2}\left(\mathbb{A}_{f}\right)$ compact open, X_{K} modular curve.

Beilinson Conjecture II

- For $X / F, F$ numberfield, the conjecture is formulated by taking G_{σ} for the various \mathbb{R} - and \mathbb{C}-embeddings of F.
- Beilinson conjecture is true for $X=\operatorname{Spec} F$ a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for $H_{M}^{2}\left(X_{K}, \mathbb{Z}(2)\right)$; $K \subset G L_{2}\left(\mathbb{A}_{f}\right)$ compact open, X_{K} modular curve.

Beilinson Conjecture II

- For $X / F, F$ numberfield, the conjecture is formulated by taking G_{σ} for the various \mathbb{R} - and \mathbb{C}-embeddings of F.
- Beilinson conjecture is true for $X=\operatorname{Spec} F$ a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for $H_{M}^{2}\left(X_{K}, \mathbb{Z}(2)\right)$; $K \subset G L_{2}\left(\mathbb{A}_{f}\right)$ compact open, X_{K} modular curve.

Nahm's Conjecture

$-$

$$
F_{A, B, C}(q)=\sum_{n \in \mathbb{Z}_{\geq 0}^{r}} \frac{q^{\frac{1}{2} n^{t} A n+n^{t} B+C}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

- $A \in M_{r}(\mathbb{Q})$ symmetric, $>0, B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$. $(q)_{n}:=(1-q) \cdots\left(1-q^{n}\right)$.
- Question (Nahm): For which A do there exist B, C such that $F_{A, B, C}(q)$ is a modular function?

Nahm's Conjecture

$$
F_{A, B, C}(q)=\sum_{n \in \mathbb{Z}_{\geq 0}^{r}} \frac{q^{\frac{1}{n^{t}} A n+n^{t} B+C}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

- $A \in M_{r}(\mathbb{Q})$ symmetric, $>0, B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$. $(q)_{n}:=(1-q) \cdots\left(1-q^{n}\right)$.
- Question (Nahm): For which A do there exist B, C such that $F_{A, B, C}(q)$ is a modular function?

Nahm's Conjecture

$$
F_{A, B, C}(q)=\sum_{n \in \mathbb{Z}_{\geq 0}^{r}} \frac{q^{\frac{1}{2} n^{t} A n+n^{t} B+C}}{(q)_{n_{1}} \cdots(q)_{n_{r}}}
$$

- $A \in M_{r}(\mathbb{Q})$ symmetric, $>0, B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$. $(q)_{n}:=(1-q) \cdots\left(1-q^{n}\right)$.
- Question (Nahm): For which A do there exist B, C such that $F_{A, B, C}(q)$ is a modular function?

Nahm's Conjecture II

Lemma

$A \in M_{r}(\mathbb{Q})$ symmetric, $>0 . \exists$ unique $0<Q_{i}<1,1 \leq i \leq r$ such that

$$
1-Q_{i}=\prod_{j=1}^{r} Q_{j}^{A_{j}} .
$$

- $T_{Q_{i}}$ Totaro cycle

Nahm's Conjecture II

Lemma

$A \in M_{r}(\mathbb{Q})$ symmetric, $>0 . \exists$ unique $0<Q_{i}<1,1 \leq i \leq r$ such that

$$
1-Q_{i}=\prod_{j=1}^{r} Q_{j}^{A_{j}} .
$$

- $T_{Q_{i}}$ Totaro cycle

$$
\partial\left(\sum_{i=1}^{r} T_{Q_{i}}\right)=\prod_{i}\left(Q_{i} \otimes \prod_{j} Q_{j}^{A_{i j}}\right)=1 \in \bigwedge^{2} \mathbb{C}^{\times} \otimes \mathbb{Q}
$$

Nahm's Conjecture II

Lemma

$A \in M_{r}(\mathbb{Q})$ symmetric, $>0 . \exists$ unique $0<Q_{i}<1,1 \leq i \leq r$ such that

$$
1-Q_{i}=\prod_{j=1}^{r} Q_{j}^{A_{j}} .
$$

- $T_{Q_{i}}$ Totaro cycle

$$
\partial\left(\sum_{i=1}^{r} T_{Q_{i}}\right)=\prod_{i}\left(Q_{i} \otimes \prod_{j} Q_{j}^{A_{i j}}\right)=1 \in \bigwedge^{2} \mathbb{C}^{\times} \otimes \mathbb{Q}
$$

$$
K=\mathbb{Q}\left(Q_{1}, \ldots, Q_{r}\right) ; \quad \sum T_{Q_{i}} \in H_{M}^{1}(K, \mathbb{Q}(2)) .
$$

Regulator Computation

$$
0 \rightarrow \mathbb{C}_{\mathbb{Q}}^{\times} \xrightarrow{a \mapsto 2 \pi i \otimes a} \mathbb{C} \otimes \mathbb{C}^{\times} \xrightarrow{\exp \otimes i d} \mathbb{C}^{\times} \otimes \mathbb{C}^{\times} \rightarrow 0
$$

Lemma

Evprassion

$$
\varepsilon(a):=[\log (1-a) \otimes a]+
$$

is well-defined independent of the choice of a path from 0 to a. We have $(\exp \otimes i d) \varepsilon(a)=(1-a) \otimes a$.

Regulator Computation

$$
0 \rightarrow \mathbb{C}_{\mathbb{Q}}^{\times} \xrightarrow{a \mapsto 2 \pi i \otimes a} \mathbb{C} \otimes \mathbb{C}^{\times} \xrightarrow{\exp \otimes i d} \mathbb{C}^{\times} \otimes \mathbb{C}^{\times} \rightarrow 0
$$

Lemma

Expression

$$
\begin{aligned}
& \varepsilon(a):=[\log (1-a) \otimes a]+ \\
& {\left[2 \pi i \otimes \exp \left(\frac{-1}{2 \pi i} \int_{0}^{a} \log (1-t) \frac{d t}{t}\right)\right] \in \mathbb{C} \otimes \mathbb{C}^{\times} }
\end{aligned}
$$

is well-defined independent of the choice of a path from 0 to a. We have $(\exp \otimes i d) \varepsilon(a)=(1-a) \otimes a$.

Regulator and Nahm's Conjecture

Example

$\sum_{i=1}^{r}\left(\varepsilon\left(Q_{i}\right)-\varepsilon\left(1-Q_{i}\right)\right) \in \mathbb{C}_{\mathbb{Q}}^{\times} \subset \mathbb{C} \otimes \mathbb{C}^{\times}$

Regulator and Nahm's Conjecture

Example

$\sum_{i=1}^{r}\left(\varepsilon\left(Q_{i}\right)-\varepsilon\left(1-Q_{i}\right)\right) \in \mathbb{C}_{\mathbb{Q}}^{\times} \subset \mathbb{C} \otimes \mathbb{C}^{\times}$

Definition

Rogers dilogarithm $L(x):=L i_{2}(x)+\frac{1}{2} \log (x) \log (1-x), 0<x<1$. $L(1)=\pi^{2} / 6$. Here $L i_{2}(x)=\sum x^{n} / n^{2}$. Note $L(x)+L(1-x)=\pi^{2} / 6$

Regulator and Nahm's Conjecture II

Proposition

Consider the compact piece of the regulator

$$
H_{M}^{1}(K, \mathbb{Q}(2)) \xrightarrow{r e g} \mathbb{C}_{\mathbb{Q}}^{\times}=\mathbb{R} \oplus S_{\mathbb{Q}}^{1} \rightarrow S_{\mathbb{Q}}^{1} .
$$

If we identify $\mathbb{R} / \pi^{2} \mathbb{Q}=S_{\mathbb{Q}}^{1}$ by $x \mapsto \exp (x / 2 \pi i)$, then

$$
\operatorname{reg}\left(\sum T_{Q_{i}}\right) \equiv \sum L\left(Q_{i}\right) \bmod \mathbb{Q} \pi^{2}
$$

Proposition
Given $A \in M_{r}(\mathbb{Q})$ with A symmetric, >0, a necessary condition for there to exist $B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$ such that $F_{A, B, C}(q)$ is modular is

Regulator and Nahm's Conjecture II

Proposition

Consider the compact piece of the regulator

$$
H_{M}^{1}(K, \mathbb{Q}(2)) \xrightarrow{r e g} \mathbb{C}_{\mathbb{Q}}^{\times}=\mathbb{R} \oplus S_{\mathbb{Q}}^{1} \rightarrow S_{\mathbb{Q}}^{1} .
$$

If we identify $\mathbb{R} / \pi^{2} \mathbb{Q}=S_{\mathbb{Q}}^{1}$ by $x \mapsto \exp (x / 2 \pi i)$, then $\operatorname{reg}\left(\sum T_{Q_{i}}\right) \equiv \sum L\left(Q_{i}\right) \bmod \mathbb{Q} \pi^{2}$

Proposition

Given $A \in M_{r}(\mathbb{Q})$ with A symmetric, >0, a necessary condition for there to exist $B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$ such that $F_{A, B, C}(q)$ is modular is $\sum L\left(Q_{i}\right) \in \mathbb{Q} \pi^{2}$.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_{i}} \in H_{M}^{1}(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$, $F_{A, B, C}(q)$ has the correct asymptotics as $q \rightarrow 1$ to be a modular function.
(ii) The Q_{i} are algebraic and real. If they are totally real, then (i) holds.

$x_{i}=Q_{i}$ so Q_{i} algebraic.

- One has examples where Q_{i} not totally real and $\sum T_{Q_{i}}$ is not torsion.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_{i}} \in H_{M}^{1}(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$, $F_{A, B, C}(q)$ has the correct asymptotics as $q \rightarrow 1$ to be a modular function.
(ii) The Q_{i} are algebraic and real. If they are totally real, then (i) holds.

- Jacobian matrix for system $1-x_{i}=\prod_{j=1}^{r} x_{j}^{A_{i j}}$ is invertible at $x_{i}=Q_{i}$ so Q_{i} algebraic.
- One has examples where Q_{i} not totally real and $\sum T_{Q_{i}}$ is not torsion.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_{i}} \in H_{M}^{1}(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^{r}, C \in \mathbb{Q}$, $F_{A, B, C}(q)$ has the correct asymptotics as $q \rightarrow 1$ to be a modular function.
(ii) The Q_{i} are algebraic and real. If they are totally real, then (i) holds.

- Jacobian matrix for system $1-x_{i}=\prod_{j=1}^{r} x_{j}^{A_{i j}}$ is invertible at $x_{i}=Q_{i}$ so Q_{i} algebraic.
- One has examples where Q_{i} not totally real and $\sum T_{Q_{i}}$ is not torsion.

