Periods Associated to Algebraic Cycles

Spencer Bloch

March 3, 2014 Albert Lectures, University of Chicago

Spencer Bloch ()

Periods Associated to Algebraic Cycles

March 3, 2014 Albert Lectures, University of C

/38

Outline

2 Higher Chow DGA

- 3 Extensions of Hodge Structures
- 4 Regulators and Amplitudes
- 5 The Beilinson Conjectures
- 6 Nahm's Conjecture

March

Lectures, University of C

/38

Motivic Cohomology and K-theory

Beilinson definition

$$H^p_M(X,\mathbb{Q}(q)) := gr^q_{\gamma} K_{2q-p}(X)_{\mathbb{Q}}.$$

Example:

$$H^{2p}_M(X,\mathbb{Q}(p))=gr^p_\gamma K_0(X)\cong CH^p(X)_\mathbb{Q}$$

2014 Albert Lectures, University of C / 38

• $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i - 1)$ algebraic *n*-simplex.

- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

$\cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{\rho}(X)$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

2014 Albert Lectures, University of C

- $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i 1)$ algebraic *n*-simplex.
- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

 $\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

2014 Albert Lectures, University of C

- $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i 1)$ algebraic *n*-simplex.
- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \, \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

 $\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

2014 Albert Lectures, University of C

•
$$\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$$

• Complex $\mathcal{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

Albert Lectures, University of C

March 3, 2

•
$$\Delta_k^n := \operatorname{Spec} k[t_0, \dots, t_n] / (\sum t_i - 1)$$
 algebraic *n*-simplex.
• $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
• $\mathcal{Z}^p(X \times \Delta^n)' \subset \mathcal{Z}^p(X \times \Delta^n)$ cycles in good position w.r.t. faces.
• $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
• Complex $\mathcal{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

March 3, 2014

Albert Lectures, University of C / 38

•
$$\Delta_k^n := \operatorname{Spec} k[t_0, \dots, t_n] / (\sum t_i - 1)$$
 algebraic *n*-simplex.
• $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
• $\mathcal{Z}^p(X \times \Delta^n)' \subset \mathcal{Z}^p(X \times \Delta^n)$ cycles in good position w.r.t. faces.
• $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
• Complex $\mathcal{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^{p}(X, n) := H^{-n}(\mathcal{Z}^{p}(X, \cdot)).$

Albert Lectures, University of C

Higher Chow Groups and Motivic Cohomology

- X smooth, $H^p_M(X,\mathbb{Z}(q)) \cong CH^q(X,2q-p)$.
 - Variant: Cubical cycles: □ := ℙ¹ {1}; Replace Δⁿ with □ⁿ; factor out by degeneracies.
 - Face maps $\iota_i^j : \Box^{n-1} \hookrightarrow \Box^n, j = 0, \infty$

Albert Lectures, University of C

• Chow groups: $CH^{p}(X,0) = CH^{p}(X) = H^{2p}_{M}(X,\mathbb{Z}(p)).$

• Units: $CH^1(X, 1) = H^1_M(X, \mathbb{Z}(1)) = \Gamma(X, \mathcal{O}_X^{\times})$.

- Milnor classes: $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X^{\times})$. $\{f_1, \ldots, f_n\} := [(x, f_1(x), \ldots, f_n(x)) \cap (X \times \square^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$.
- dim X = 2, $C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $\Gamma_i := \{(c, f_i(c)) | c \in C_i\} \in \mathcal{Z}^2(X \times \Box^1).$

 $\sum_{i} (f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$

March 3, 2014 Albert Lectures, University of C

- Chow groups: $CH^{p}(X,0) = CH^{p}(X) = H^{2p}_{M}(X,\mathbb{Z}(p)).$
- Units: $CH^{1}(X, 1) = H^{1}_{M}(X, \mathbb{Z}(1)) = \Gamma(X, \mathcal{O}_{X}^{\times}).$
- Millior classes: $f_1, \ldots, f_n \in I(X, \mathcal{O}_X^\circ)$. $\{f_1, \ldots, f_n\} := [(X, f_1(X), \ldots, f_n(X)) \cap (X \times \square^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$. • dim $X = 2, C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $F_{i} := \{(c, f_i(c)) | c \in C_i\} \in \mathcal{P}^2(X \times \square^1)$

 $\sum_{i} (f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$

March 3, 2014 Albert Lectures, University of C

- Chow groups: $CH^{p}(X,0) = CH^{p}(X) = H^{2p}_{M}(X,\mathbb{Z}(p)).$
- Units: $CH^{1}(X, 1) = H^{1}_{M}(X, \mathbb{Z}(1)) = \Gamma(X, \mathcal{O}_{X}^{\times}).$
- Milnor classes: $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X^{\times})$. $\{f_1, \ldots, f_n\} := [(x, f_1(x), \ldots, f_n(x)) \cap (X \times \square^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$.
- dim X = 2, $C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $\Gamma_i := \{(c, f_i(c)) | c \in C_i\} \in Z^2(X \times \square^1).$

 $\sum_{i} (f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$

- Chow groups: $CH^{p}(X, 0) = CH^{p}(X) = H^{2p}_{M}(X, \mathbb{Z}(p)).$
- Units: $CH^{1}(X, 1) = H^{1}_{M}(X, \mathbb{Z}(1)) = \Gamma(X, \mathcal{O}_{X}^{\times}).$
- Milnor classes: $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X^{\times})$. $\{f_1, \ldots, f_n\} := [(x, f_1(x), \ldots, f_n(x)) \cap (X \times \square^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$.
- dim X = 2, $C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $\Gamma_i := \{(c, f_i(c)) | c \in C_i\} \in \mathbb{Z}^2(X \times \square^1).$

$$\sum_{i}(f_{i})=0\in\mathcal{Z}_{0}(X)\Rightarrow\sum\Gamma_{i}\in CH^{2}(X,1)=H^{3}_{M}(X,\mathbb{Z}(2)).$$

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^p(\Box^n)\otimes\mathcal{Z}^q(\Box^m)\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^{p}(r) := \mathcal{Z}^{r}(\Box_{k}^{2r-p})_{\mathbb{Q},Ah}$$

• $\mathfrak{N}^{*}(\bullet) := \bigoplus_{r,p \ge 0} \mathfrak{N}^{p}(r)$

March 3, 2014 Albert Lectures, University of C / 38

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^p(\Box^n)\otimes\mathcal{Z}^q(\Box^m)\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^{p}(r) := \mathcal{Z}^{r}(\Box_{k}^{2r-p})_{\mathbb{Q},Alt}$$

• $\mathfrak{N}^{*}(\bullet) := \bigoplus_{r,p\geq 0} \mathfrak{N}^{p}(r)$

March 3, 2014 Albert Lectures, University of C

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^{p}(\Box^{n})\otimes\mathcal{Z}^{q}(\Box^{m})\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^p(r) := \mathcal{Z}^r(\Box_k^{2r-p})_{\mathbb{Q},Alt}$$

• $\mathfrak{N}^*(\bullet) := \bigoplus_{r,p \ge 0} \mathfrak{N}^p(r)$

March 3, 2014 Albert Lectures, University of C

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

ectures. University of

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

ectures. University o

$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\mathsf{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow^{\partial} & & \uparrow^{\partial} \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$

- $\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\mathsf{mult} \circ \partial \cong \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

Albert Lectures, University of C

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\mathsf{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow \partial & & \uparrow \partial \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

• $\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0) \cong k^{\times} \otimes \mathbb{Q}$

- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

Albert Lectures, University of C

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \stackrel{\text{mult}}{\longrightarrow} & \mathfrak{N}^{2}(2) \\ & \uparrow \partial & & \uparrow \partial \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

•
$$\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0)\cong k^{\times}\otimes\mathbb{Q}$$

• $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k - \{0, 1\}$ Totaro cycles

• $\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\text{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow \partial & & \uparrow \partial \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

•
$$\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0)\cong k^{ imes}\otimes\mathbb{Q}$$

- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\text{mult} \circ \partial \cong \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

• $T_x = \{(t, 1 - t, 1 - xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \Box^3 .

- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 . • $\partial T_x = (x, 1 - x) \in \mathcal{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

2014 Albert Lectures, University of

March 3

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \Box^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$

• Comodule generated is *Dilog*(*x*).

• 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

2014 Albert Lectures, University of

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

2014 Albert Lectures, University of

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- $0 \to H^1_M(k, \mathbb{Q}(2)) \to \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- X smooth variety dim. *d* over C. Z = ∑ n_iZ_i ∈ Z^p(X) algebraic cycle. Write |Z| = ⋃_iZ_i.
- Betti cohomology sequence

$$0 \to H^{2p-1}(X, \mathbb{Q}(p)) \to H^{2p-1}(X - |Z|, \mathbb{Q}(p))$$
$$\xrightarrow{\partial} H_{2d-2p}(|Z|, \mathbb{Q}(p-d)) \xrightarrow{cl} H^{2p}(X, \mathbb{Q}(p))$$

2014 Albert Lectures, University of C

- X smooth variety dim. *d* over C. Z = ∑ n_iZ_i ∈ Z^p(X) algebraic cycle. Write |Z| = ⋃_iZ_i.
- Betti cohomology sequence

$$\begin{split} 0 &\to H^{2p-1}(X,\mathbb{Q}(p)) \to H^{2p-1}(X-|Z|,\mathbb{Q}(p)) \\ & \xrightarrow{\partial} H_{2d-2p}(|Z|,\mathbb{Q}(p-d)) \xrightarrow{cl} H^{2p}(X,\mathbb{Q}(p)) \end{split}$$

Albert Lectures, University of

• $H_{2d-2p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot [Z_i].$

• Assume $cl(Z) = \sum n_i cl[Z_i] = 0 \in H^{2p}(X, \mathbb{Q}(p)).$

• Extension of Hodge structures

$$0 \to H^{2p-1}(X, \mathbb{Q}(p)) \to \partial^{-1}(\mathbb{Q} \cdot Z) \to \mathbb{Z} \to 0$$

• Extension class $\langle Z \rangle \in \operatorname{Ext}^{1}_{MHS}(\mathbb{Z}, H^{2p-1}(X, \mathbb{Q}(p)))$

14 Albert Lectures, University o

March 3

•
$$H_{2d-2p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot [Z_{i}].$$

• Assume $cl(Z) = \sum n_i cl[Z_i] = 0 \in H^{2p}(X, \mathbb{Q}(p)).$

• Extension of Hodge structures

$$0 \to H^{2p-1}(X, \mathbb{Q}(p)) \to \partial^{-1}(\mathbb{Q} \cdot Z) \to \mathbb{Z} \to 0$$

• Extension class $\langle Z \rangle \in \operatorname{Ext}^{1}_{MHS}(\mathbb{Z}, H^{2p-1}(X, \mathbb{Q}(p)))$

14 Albert Lectures, University of C

•
$$H_{2d-2p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot [Z_i].$$

• Assume $cl(Z) = \sum n_i cl[Z_i] = 0 \in H^{2p}(X, \mathbb{Q}(p)).$

Extension of Hodge structures

$$0 \to H^{2p-1}(X, \mathbb{Q}(p)) \to \partial^{-1}(\mathbb{Q} \cdot Z) \to \mathbb{Z} \to 0$$

• Extension class $\langle Z \rangle \in \operatorname{Ext}^{1}_{MHS}(\mathbb{Z}, H^{2p-1}(X, \mathbb{Q}(p)))$

4 Albert Lectures, University o

March

•
$$H_{2d-2p}(|Z|, \mathbb{Q}(p-d)) \cong \bigoplus_{i} \mathbb{Q} \cdot [Z_i].$$

• Assume $cl(Z) = \sum n_i cl[Z_i] = 0 \in H^{2p}(X, \mathbb{Q}(p)).$

Extension of Hodge structures

$$0 \to H^{2p-1}(X, \mathbb{Q}(p)) \to \partial^{-1}(\mathbb{Q} \cdot Z) \to \mathbb{Z} \to 0$$

• Extension class $\langle Z \rangle \in \operatorname{Ext}^{1}_{MHS}(\mathbb{Z}, H^{2p-1}(X, \mathbb{Q}(p)))$

• $Z \in \mathbb{Z}^{p}(X \times \Delta^{q})$ meeting faces properly. Assume $\partial_{i}Z = 0 \in \mathbb{Z}^{p}(X \times \Delta^{q-1}), \forall i$.

• $[Z] \in H^{2p-q}(X, \mathbb{Z}(p))$. Example:

 $Z = \{(x,x)\} \subset (\mathbb{P}^1 - \{0,\infty\}) \times \Box^1, \ [Z] \in H^1(\mathbb{G}_m,\mathbb{Z}(1))$

- If X is projective and $q \ge 1$, or if $q \ge p$, then [Z] is torsion.
- when [Z] torsion, same construction, working with $(X \times \Delta^q |Z|, X \times \partial \Delta^q |Z| \cap X \times \partial \Delta^q)$ yields

 $0
ightarrow H^{2p-1}(X imes \Delta^q, X imes \partial \Delta^q; \mathbb{Q}(p))
ightarrow M_Z
ightarrow \mathbb{Q}
ightarrow 0$

• Get class in $\operatorname{Ext}^{1}_{MHS}(\mathbb{Q}(0), H^{2p-q-1}(X, \mathbb{Q}(p)))$

- $Z \in \mathbb{Z}^{p}(X \times \Delta^{q})$ meeting faces properly. Assume $\partial_{i}Z = 0 \in \mathbb{Z}^{p}(X \times \Delta^{q-1}), \forall i$.
- $[Z] \in H^{2p-q}(X, \mathbb{Z}(p))$. Example:

 $Z = \{(x,x)\} \subset (\mathbb{P}^1 - \{0,\infty\}) \times \square^1, \ [Z] \in H^1(\mathbb{G}_m,\mathbb{Z}(1))$

- If X is projective and $q \ge 1$, or if $q \ge p$, then [Z] is torsion.
- when [Z] torsion, same construction, working with $(X \times \Delta^q |Z|, X \times \partial \Delta^q |Z| \cap X \times \partial \Delta^q)$ yields

 $0
ightarrow H^{2p-1}(X imes \Delta^q, X imes \partial \Delta^q; \mathbb{Q}(p))
ightarrow M_Z
ightarrow \mathbb{Q}
ightarrow 0$

• Get class in $\operatorname{Ext}^{1}_{MHS}(\mathbb{Q}(0), H^{2p-q-1}(X, \mathbb{Q}(p)))$

- $Z \in \mathbb{Z}^{p}(X \times \Delta^{q})$ meeting faces properly. Assume $\partial_{i}Z = 0 \in \mathbb{Z}^{p}(X \times \Delta^{q-1}), \forall i$.
- $[Z] \in H^{2p-q}(X, \mathbb{Z}(p))$. Example:

$$Z = \{(x,x)\} \subset (\mathbb{P}^1 - \{0,\infty\}) \times \Box^1, \ [Z] \in H^1(\mathbb{G}_m,\mathbb{Z}(1))$$

- If X is projective and $q \ge 1$, or if $q \ge p$, then [Z] is torsion.
- when [Z] torsion, same construction, working with $(X \times \Delta^q |Z|, X \times \partial \Delta^q |Z| \cap X \times \partial \Delta^q)$ yields

 $0 \to H^{2p-1}(X \times \Delta^q, X \times \partial \Delta^q; \mathbb{Q}(p)) \to M_Z \to \mathbb{Q} \to 0$

Get class in Ext¹_{MHS}(Q(0), H^{2p-q-1}(X, Q(p)))

- $Z \in \mathbb{Z}^{p}(X \times \Delta^{q})$ meeting faces properly. Assume $\partial_{i}Z = 0 \in \mathbb{Z}^{p}(X \times \Delta^{q-1}), \forall i$.
- $[Z] \in H^{2p-q}(X, \mathbb{Z}(p))$. Example:

$$Z = \{(x,x)\} \subset (\mathbb{P}^1 - \{0,\infty\}) \times \square^1, \ [Z] \in H^1(\mathbb{G}_m,\mathbb{Z}(1))$$

- If X is projective and $q \ge 1$, or if $q \ge p$, then [Z] is torsion.
- when [Z] torsion, same construction, working with $(X \times \Delta^q |Z|, X \times \partial \Delta^q |Z| \cap X \times \partial \Delta^q)$ yields

$$0 o H^{2p-1}(X imes \Delta^q, X imes \partial \Delta^q; \mathbb{Q}(p)) o M_Z o \mathbb{Q} o 0$$

2014 Albert Lectures, University of

• Get class in $\operatorname{Ext}^{1}_{MHS}(\mathbb{Q}(0), H^{2p-q-1}(X, \mathbb{Q}(p)))$

$\operatorname{Ext}^1_{MHS}(\mathbb{Z}(0),H)\cong H_{\mathbb{C}}/(F^0H_{\mathbb{C}}+H_{\mathbb{Z}})$

• *H* a pure Hodge structure; $F^*H_{\mathbb{C}}$ Hodge filtration.

• $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0;$

- $s(1) \in M_{\mathbb{Z}}, \ s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Z}})$.

2014 Albert Lectures, University of C

$$\operatorname{Ext}^{1}_{MHS}(\mathbb{Z}(0),H)\cong H_{\mathbb{C}}/(F^{0}H_{\mathbb{C}}+H_{\mathbb{Z}})$$

• *H* a pure Hodge structure; $F^*H_{\mathbb{C}}$ Hodge filtration.

- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0;$
- $s(1) \in M_{\mathbb{Z}}, \ s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Z}})$.

2014 Albert Lectures, University of C

$$\operatorname{Ext}^{1}_{MHS}(\mathbb{Z}(0),H)\cong H_{\mathbb{C}}/(F^{0}H_{\mathbb{C}}+H_{\mathbb{Z}})$$

- *H* a pure Hodge structure; *F***H*_C Hodge filtration.
 0 → *H* → *M* → Z(0) → 0;
- $s(1) \in M_{\mathbb{Z}}, \ s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Z}})$.

2014 Albert Lectures, University of C

$$\operatorname{Ext}^{1}_{MHS}(\mathbb{Z}(0),H) \cong H_{\mathbb{C}}/(F^{0}H_{\mathbb{C}}+H_{\mathbb{Z}})$$

- *H* a pure Hodge structure; $F^*H_{\mathbb{C}}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0;$
- $s(1) \in M_{\mathbb{Z}}, \ s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Z}})$.

14 Albert Lectures. University of C

$$\operatorname{Ext}^{1}_{MHS}(\mathbb{Z}(0),H) \cong H_{\mathbb{C}}/(F^{0}H_{\mathbb{C}}+H_{\mathbb{Z}})$$

- *H* a pure Hodge structure; $F^*H_{\mathbb{C}}$ Hodge filtration.
- $0 \rightarrow H \rightarrow M \rightarrow \mathbb{Z}(0) \rightarrow 0;$
- $s(1) \in M_{\mathbb{Z}}, \ s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Z}(0)$.
- extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Z}})$.

4 Albert Lectures. University of C

March

Examples; Chow groups

• (Intermediate Jacobians) $Z \in \mathcal{Z}^{p}(X), [Z] = 0 \in H^{2p}(X, \mathbb{Z}(p)) \rightsquigarrow$

 $0
ightarrow H^{2p-1}(X,\mathbb{Z}(p))
ightarrow M_Z
ightarrow \mathbb{Z}(0)
ightarrow 0$

• (Biextensions) dim X = d, p + q = d + 1, $Z \in \mathbb{Z}^{p}(X)$, $V \in \mathbb{Z}^{q}(X)$, [Z] = 0 = [V], $|Z| \cap |V| = \emptyset$ Construct $M_{Z,V}$ subquotient of $H^{2p-1}(X - |Z|, |V|; \mathbb{Q}(p))$

 $W_2M_{Z,V} = \mathbb{Q}(1); \quad gr_{-1}^WM_{Z,V} \text{ pure weight } -1; \quad gr_0^WM_{Z,V} = \mathbb{Q}(0).$

Examples; Chow groups

• (Intermediate Jacobians) $Z \in \mathcal{Z}^{p}(X), [Z] = 0 \in H^{2p}(X, \mathbb{Z}(p)) \rightsquigarrow$

$$0
ightarrow H^{2p-1}(X,\mathbb{Z}(p))
ightarrow M_Z
ightarrow \mathbb{Z}(0)
ightarrow 0$$

• (Biextensions) dim X = d, p + q = d + 1, $Z \in \mathbb{Z}^{p}(X)$, $V \in \mathbb{Z}^{q}(X)$, [Z] = 0 = [V], $|Z| \cap |V| = \emptyset$ Construct $M_{Z,V}$ subquotient of $H^{2p-1}(X - |Z|, |V|; \mathbb{Q}(p))$

 $W_2M_{Z,V} = \mathbb{Q}(1); \quad gr^W_{-1}M_{Z,V} \text{ pure weight } -1; \quad gr^W_0M_{Z,V} = \mathbb{Q}(0).$

• $X = \operatorname{Spec} K$ a point.

- $\models H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K:\mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K, \mathbb{Q}(p)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

• X a curve

- $\vdash H^2_M(X,\mathbb{Z}(2)) \text{ Milnor symbols } \{f,g\}, K_2(X).$
- $H^2_M(X,\mathbb{Z}(3))$; Work of Rob deJeu.

2014 Albert Lectures, University of C

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K:\mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K, \mathbb{Q}(p)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

• X a curve

- $\vdash H^2_M(X,\mathbb{Z}(2)) \text{ Milnor symbols } \{f,g\}, K_2(X).$
- $H^2_M(X,\mathbb{Z}(3))$; Work of Rob deJeu.

2014 Albert Lectures, University of C

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- ► Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K:\mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K, \mathbb{Q}(p)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

• X a curve

- $\vdash H^2_M(X,\mathbb{Z}(2)) \text{ Milnor symbols } \{f,g\}, K_2(X).$
- $H^2_M(X,\mathbb{Z}(3))$; Work of Rob deJeu.

2014 Albert Lectures, University o

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- ► Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K : \mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K, \mathbb{Q}(p)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

• X a curve

- $\vdash H^2_M(X,\mathbb{Z}(2)) \text{ Milnor symbols } \{f,g\}, K_2(X).$
- $H^2_M(X,\mathbb{Z}(3))$; Work of Rob deJeu.

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- ► Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K : \mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K, \mathbb{Q}(p)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

• X a curve

*H*²_M(X,ℤ(2)) Milnor symbols {*f*, *g*}, *K*₂(X).
 *H*²_M(X,ℤ(3)): Work of Rob deJeu.

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- ► Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K : \mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K,\mathbb{Q}(\rho)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

X a curve

- *H*²_M(*X*,ℤ(2)) Milnor symbols {*f*,*g*}, *K*₂(*X*).
 *H*²_M(*X*,ℤ(3)): Work of Rob deJeu.
 - $M(\mathcal{H}, \mathbb{Z}(0)),$ from of flob ac

• $X = \operatorname{Spec} K$ a point.

- $H^1_M(\operatorname{Spec} K, \mathbb{Z}(p)) = CH^p(\operatorname{Spec} K, 2p-1)$
- ► Classes represented by codim. *p* cycles on Δ^{2p-1} or \Box^{2p-1} .
- $[K : \mathbb{Q}] = d = r_1 + 2r_2, \ p \ge 2.$

$$\dim H^1_M(K,\mathbb{Q}(\rho)) = \begin{cases} r_2 & p \text{ even} \\ r_1 + r_2 & p \text{ odd} \end{cases}$$

X a curve

- $H^2_{\underline{M}}(X, \mathbb{Z}(2))$ Milnor symbols $\{f, g\}, K_2(X)$.
- $H^2_M(X,\mathbb{Z}(3))$; Work of Rob deJeu.

• Rigidity; degenerating families of cycles.

- X_t degenerating family of elliptic curves.
- ► $Z_t \in H^2_M(X_t, \mathbb{Z}(2)) \to Z_0 \in H^1_M(\operatorname{Spec} K, \mathbb{Z}(2)).$
- $H^2_M(X_t, \mathbb{Z}(3))$ is rigid.
- $Z_t \sim$ degenerating family of extensions of Hodge structures M_t .
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

• Rigidity; degenerating families of cycles.

- X_t degenerating family of elliptic curves.
- $\blacktriangleright Z_t \in H^2_M(X_t, \mathbb{Z}(2)) \to Z_0 \in H^1_M(\operatorname{Spec} K, \mathbb{Z}(2)).$
- $H^2_M(X_t, \mathbb{Z}(3))$ is rigid.
- $Z_t \sim$ degenerating family of extensions of Hodge structures M_t .
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

Rigidity; degenerating families of cycles.

- X_t degenerating family of elliptic curves.
- ► $Z_t \in H^2_M(X_t, \mathbb{Z}(2)) \to Z_0 \in H^1_M(\operatorname{Spec} K, \mathbb{Z}(2)).$
- $H^2_M(X_t, \mathbb{Z}(3))$ is rigid.
- $Z_t \sim$ degenerating family of extensions of Hodge structures M_t .
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

Rigidity; degenerating families of cycles.

- X_t degenerating family of elliptic curves.
- ► $Z_t \in H^2_M(X_t, \mathbb{Z}(2)) \to Z_0 \in H^1_M(\operatorname{Spec} K, \mathbb{Z}(2)).$
- $H^2_M(X_t,\mathbb{Z}(3))$ is rigid.
- $Z_t \sim$ degenerating family of extensions of Hodge structures M_t .
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

Rigidity; degenerating families of cycles.

- X_t degenerating family of elliptic curves.
- ► $Z_t \in H^2_M(X_t, \mathbb{Z}(2)) \to Z_0 \in H^1_M(\operatorname{Spec} K, \mathbb{Z}(2)).$
- $H^2_M(X_t, \mathbb{Z}(3))$ is rigid.
- $Z_t \sim$ degenerating family of extensions of Hodge structures M_t .
- Work of Kato, Nakayama, Usui on compactifying the period space of mixed Hodge structures.

• $P \in \mathbb{C}[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}], \mathbb{G}_m^n \supset V : P = 0.$ • $\Gamma_P = \{(z_1, \dots, z_n; z_1, \dots, z_n, P(z)) \in (\mathbb{G}_m^n - V) \times \square^{n+1}\}.$ $0 \rightarrow H^n(\mathbb{G}_m^n - V, \mathbb{Z}(n+1)) \rightarrow M_P \rightarrow \mathbb{Z}(0) \rightarrow 0$

 $M_{P} = H^{2n+1} \left((\mathbb{G}_{m}^{n} - V) \times \Box^{n+1} - \Gamma_{P}, (\mathbb{G}_{m}^{n} - V) \times \partial \Box^{n+1}; \mathbb{Z}(n+1) \right)$

• $P \in \mathbb{C}[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}], \mathbb{G}_m^n \supset V : P = 0.$ • $\Gamma_P = \{(z_1, \dots, z_n; z_1, \dots, z_n, P(z)) \in (\mathbb{G}_m^n - V) \times \square^{n+1}\}.$ $0 \rightarrow H^n(\mathbb{G}_m^n - V, \mathbb{Z}(n+1)) \rightarrow M_P \rightarrow \mathbb{Z}(0) \rightarrow 0$

 $M_{P} = H^{2n+1} \left((\mathbb{G}_{m}^{n} - V) \times \Box^{n+1} - \Gamma_{P}, (\mathbb{G}_{m}^{n} - V) \times \partial \Box^{n+1}; \mathbb{Z}(n+1) \right)$

•
$$P \in \mathbb{C}[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}], \mathbb{G}_m^n \supset V : P = 0.$$

• $\Gamma_P = \{(z_1, \dots, z_n; z_1, \dots, z_n, P(z)) \in (\mathbb{G}_m^n - V) \times \square^{n+1}\}.$
 $0 \rightarrow H^n(\mathbb{G}_m^n - V, \mathbb{Z}(n+1)) \rightarrow M_P \rightarrow \mathbb{Z}(0) \rightarrow 0$

 $M_{P} = H^{2n+1} \left((\mathbb{G}_{m}^{n} - V) \times \Box^{n+1} - \Gamma_{P}, (\mathbb{G}_{m}^{n} - V) \times \partial \Box^{n+1}; \mathbb{Z}(n+1) \right)$

•
$$P \in \mathbb{C}[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}], \mathbb{G}_m^n \supset V : P = 0.$$

• $\Gamma_P = \{(z_1, \dots, z_n; z_1, \dots, z_n, P(z)) \in (\mathbb{G}_m^n - V) \times \square^{n+1}\}.$
 $0 \rightarrow H^n(\mathbb{G}_m^n - V, \mathbb{Z}(n+1)) \rightarrow M_P \rightarrow \mathbb{Z}(0) \rightarrow 0$

$$M_{P} = H^{2n+1} \left((\mathbb{G}_{m}^{n} - V) \times \Box^{n+1} - \Gamma_{P}, (\mathbb{G}_{m}^{n} - V) \times \partial \Box^{n+1}; \mathbb{Z}(n+1) \right)$$

$$(*) \quad 0 \to H \to M \to \mathbb{Q}(0) \to 0$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Q}})$
 - ▶ conj : $H_{\mathbb{C}} \to H_{\mathbb{C}}$, \mathbb{C} antilinear, identity on $H_{\mathbb{R}}$.

$$reg_{\mathbb{R}}(*) = (s(1) - s_F)^{conj=-1} \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + \overline{F}^0H_{\mathbb{C}}).$$

Albert Lectures, University of

$$Amp(*) := \langle \omega, s(1) - s_F \rangle \in \mathbb{C} / \langle \omega, H_{\mathbb{Q}} \rangle$$

$$(*) \quad 0 \to H \to M \to \mathbb{Q}(0) \to 0$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class s(1) s_F ∈ H_C/(F⁰H_C + H_Q)
 conj : H_C → H_C, C antilinear, identity on H_R.

$$\operatorname{reg}_{\mathbb{R}}(*) = (s(1) - s_F)^{\operatorname{conj}=-1} \in H_{\mathbb{C}}/(F^0 H_{\mathbb{C}} + \overline{F}^0 H_{\mathbb{C}}).$$

Albert Lectures, University of

$$Amp(*) := \langle \omega, s(1) - s_F \rangle \in \mathbb{C} / \langle \omega, H_{\mathbb{Q}} \rangle$$

$$(*) \quad 0 \to H \to M \to \mathbb{Q}(0) \to 0$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Q}})$
 - conj : $H_{\mathbb{C}} \to H_{\mathbb{C}}$, \mathbb{C} antilinear, identity on $H_{\mathbb{R}}$.

$$\operatorname{reg}_{\mathbb{R}}(*) = (s(1) - s_F)^{\operatorname{conj}=-1} \in H_{\mathbb{C}}/(F^0 H_{\mathbb{C}} + \overline{F}^0 H_{\mathbb{C}}).$$

Albert Lectures Univers

$$Amp(*) := \langle \omega, s(1) - s_F \rangle \in \mathbb{C} / \langle \omega, H_{\mathbb{Q}} \rangle$$

$$(*) \quad 0 \to H \to M \to \mathbb{Q}(0) \to 0$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Q}})$
 - conj : $H_{\mathbb{C}} \to H_{\mathbb{C}}$, \mathbb{C} antilinear, identity on $H_{\mathbb{R}}$.

$$\operatorname{reg}_{\mathbb{R}}(*) = (s(1) - s_F)^{\operatorname{conj}=-1} \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + \overline{F}^0H_{\mathbb{C}}).$$

Albert Lectures Univers

$$Amp(*) := \langle \omega, s(1) - s_F \rangle \in \mathbb{C} / \langle \omega, H_{\mathbb{Q}} \rangle$$

$$(*) \quad 0 \to H \to M \to \mathbb{Q}(0) \to 0$$

extension of Hodge structures.

- $s(1) \in M_{\mathbb{Q}}, s_F \in F^0 M_{\mathbb{C}}$ lifting $1 \in \mathbb{Q}(0)$.
- Regulator: Extension class $s(1) s_F \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + H_{\mathbb{Q}})$
 - conj : $H_{\mathbb{C}} \to H_{\mathbb{C}}$, \mathbb{C} antilinear, identity on $H_{\mathbb{R}}$.

$$\operatorname{reg}_{\mathbb{R}}(*) = (s(1) - s_F)^{\operatorname{conj}=-1} \in H_{\mathbb{C}}/(F^0H_{\mathbb{C}} + \overline{F}^0H_{\mathbb{C}}).$$

t Lectures Univers

• Amplitude: Assume given $\omega \in F^1 H^{\vee}_{\mathbb{C}}$.

$$\textit{Amp}(*) := \langle \omega, s(1) - s_F
angle \in \mathbb{C} / \langle \omega, H_{\mathbb{Q}}
angle$$

• $\langle F^1 H_{\mathbb{C}}^{\vee}, F^0 H_{\mathbb{C}} \rangle = (0)$

- \Rightarrow Amplitude independent of s_F .
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \rightsquigarrow$ multi-valued function $amp(*_t)$ with variation $\in \langle \omega, H_{\mathbb{Z}} \rangle$.

• $F^0 H_{\mathbb{C}} = (0) \Rightarrow \langle \omega, reg(*) \rangle$ defined.

- $\langle F^1 H_{\mathbb{C}}^{\vee}, F^0 H_{\mathbb{C}} \rangle = (0)$
- \Rightarrow Amplitude independent of s_F .
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \rightsquigarrow$ multi-valued function $amp(*_t)$ with variation $\in \langle \omega, H_{\mathbb{Z}} \rangle$.

• $F^0 H_{\mathbb{C}} = (0) \Rightarrow \langle \omega, reg(*) \rangle$ defined.

- $\langle F^1 H_{\mathbb{C}}^{\vee}, F^0 H_{\mathbb{C}} \rangle = (0)$
- \Rightarrow Amplitude independent of s_F .
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \rightsquigarrow$ multi-valued function $amp(*_t)$ with variation $\in \langle \omega, H_{\mathbb{Z}} \rangle$.

• $F^0 H_{\mathbb{C}} = (0) \Rightarrow \langle \omega, reg(*) \rangle$ defined.

- $\langle F^1 H_{\mathbb{C}}^{\vee}, F^0 H_{\mathbb{C}} \rangle = (0)$
- \Rightarrow Amplitude independent of s_F .
- Amplitude as a multiple-valued function.

Family of cycles parametrized by $t \rightsquigarrow$ multi-valued function $amp(*_t)$ with variation $\in \langle \omega, H_{\mathbb{Z}} \rangle$.

•
$$F^0H_{\mathbb{C}} = (0) \Rightarrow \langle \omega, reg(*) \rangle$$
 defined.

14 Albert Lectures. University of

March 3

Feynman Amplitudes in Physics; joint work with P. Vanhove

• Sunset (or sunrise) graph; 2 vertices and 3 edges.

• $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_i mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates $X, Y, Z; \Delta : XYZ = 0.$
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_j mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates $X, Y, Z; \Delta : XYZ = 0.$
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

Albert Lectures, University o

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_i mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates $X, Y, Z; \Delta : XYZ = 0.$
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_i mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates $X, Y, Z; \Delta : XYZ = 0.$
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

Albert Lectures, University o

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_i mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates X, Y, Z; $\Delta : XYZ = 0$.
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

4 Albert Lectures, University o

- Sunset (or sunrise) graph; 2 vertices and 3 edges.
- $p = (p_1, ..., p_4)$ external momentum; $p^2 := \sum p_i^2$. m_i mass associated to *j*-th edge.

$$A := \text{Amplitude} = \int_{0^2}^{\infty^2} \frac{dx \wedge dy}{(m_1^2 x + m_2^2 y + m_3)(x + y + xy) - p^2 xy}$$

- Equal mass case: $m = m_1 = m_2 = m_3$. $t = p^2/m^2$.
- Homogeneous coordinates $X, Y, Z; \Delta : XYZ = 0.$
- $E_t: (X + Y + Z)(XY + XZ + YZ) tXYZ = 0.$

- $E_t \cap \Delta = \{(1,0,0), (0,1,0), (0,0,1)\}$ plus 3 other points.
- $P := \mathbb{P}^2$ blown up at $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}.$
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

 $0 \to H^2(P, \mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P - E_t, \mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E, \mathbb{Q}) \to 0$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

2014 Albert Lectures, University of

- *E_t* ∩ Δ = {(1,0,0), (0,1,0), (0,0,1)} plus 3 other points. *P* := P² blown up at {(1,0,0), (0,1,0), (0,0,1)}.
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

 $0 \to H^2(P, \mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P - E_t, \mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E, \mathbb{Q}) \to 0$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

014 Albert Lectures, University of

- $E_t \cap \Delta = \{(1,0,0), (0,1,0), (0,0,1)\}$ plus 3 other points.
- $P := \mathbb{P}^2$ blown up at $\{(1,0,0), (0,1,0), (0,0,1)\}.$
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

 $0 \to H^2(P, \mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P - E_t, \mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E, \mathbb{Q}) \to 0$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

14 Albert Lectures, University of C

- $E_t \cap \Delta = \{(1,0,0), (0,1,0), (0,0,1)\}$ plus 3 other points.
- $P := \mathbb{P}^2$ blown up at $\{(1,0,0), (0,1,0), (0,0,1)\}.$
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

 $0 \to H^2(P, \mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P - E_t, \mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E, \mathbb{Q}) \to 0$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

014 Albert Lectures, University of C

- $E_t \cap \Delta = \{(1,0,0), (0,1,0), (0,0,1)\}$ plus 3 other points.
- $P := \mathbb{P}^2$ blown up at $\{(1,0,0), (0,1,0), (0,0,1)\}.$
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

$$0 \to H^2(P,\mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P-E_t,\mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E,\mathbb{Q}) \to 0$$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

Albert Lectures. University o

- $E_t \cap \Delta = \{(1,0,0), (0,1,0), (0,0,1)\}$ plus 3 other points.
- $P := \mathbb{P}^2$ blown up at $\{(1,0,0), (0,1,0), (0,0,1)\}.$
- $E_t \hookrightarrow P \xrightarrow{\pi} \mathbb{P}^2$.
- $\mathfrak{h} := \pi^{-1}(\Delta) = \text{hexagon}; \mathfrak{h} \cap E_t = \text{cyclic group of order 6.}$
- Localization sequence splits as Hodge structures (because ħ ∩ E_t torsion)

$$0 \to H^2(P,\mathbb{Q}(1))/\mathbb{Q} \cdot [E_t] \to H^2(P-E_t,\mathbb{Q}(1)) \xrightarrow{\leftarrow} H^1(E,\mathbb{Q}) \to 0$$

$$H^1(\mathfrak{h}-E_t\cap\mathfrak{h},\mathbb{Q})=H^1(\bigcup_6\mathbb{A}^1,\mathbb{Q})=\mathbb{Q}(0).$$

Albert Lectures. University o

$$\begin{array}{cccc} 0 & \rightarrow H^{1}(\mathfrak{h} - \mathfrak{h} \cap E_{t}, \mathbb{Q}) & \rightarrow H^{2}(P - E_{t}, \mathfrak{h} - \mathfrak{h} \cap E_{t}, \mathbb{Q}) & \rightarrow H^{2}(P - E_{t}, \mathbb{Q}) & \rightarrow 0 \\ & & & \\ & & & \\ 0 & \rightarrow & \mathbb{Q}(0) & \rightarrow & M_{t} & & \rightarrow H^{1}(E_{t}, \mathbb{Q}(-1)) & \rightarrow 0 \\ & & (*) & 0 & \rightarrow H^{1}(E_{t}, \mathbb{Q}(2)) & \rightarrow M_{t}^{\vee} & \rightarrow \mathbb{Q}(0) & \rightarrow 0 \end{array}$$

$$\begin{array}{cccc} 0 & \to H^{1}(\mathfrak{h} - \mathfrak{h} \cap E_{t}, \mathbb{Q}) & \to H^{2}(P - E_{t}, \mathfrak{h} - \mathfrak{h} \cap E_{t}, \mathbb{Q}) & \to H^{2}(P - E_{t}, \mathbb{Q}) & \to 0 \\ & & & & \\ & & & & \\ 0 & \to & & \mathbb{Q}(0) & \to & M_{t} & & \to H^{1}(E_{t}, \mathbb{Q}(-1)) & \to 0 \\ & & & & (*) & 0 \to H^{1}(E_{t}, \mathbb{Q}(2)) \to M_{t}^{\vee} \to \mathbb{Q}(0) \to 0 \end{array}$$

•
$$\omega = \frac{dx \wedge dy}{(x+y+1)(x+y+xy)-txy} \in F^2 M_t \otimes \mathbb{C}.$$

- Chain of integration $[0,\infty]^2 \in M_t^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_F \in F^0 M_t^{\vee} \otimes \mathbb{C}$.
- $M_t \otimes M_t^{\vee} \to \mathbb{Q}(0); \ F^2 M_t \otimes \mathbb{C} \otimes F^0 M_t^{\vee} \otimes \mathbb{C} \to F^2 \mathbb{C}(0) = (0)$
- $\langle \omega, \mathbf{s}(1) \mathbf{s}_F \rangle = \langle \omega, \mathbf{s}(1) \rangle = \int_{0^2}^{\infty^2} \omega = A$

•
$$\omega = \frac{dx \wedge dy}{(x+y+1)(x+y+xy)-txy} \in F^2 M_t \otimes \mathbb{C}.$$

• Chain of integration $[0,\infty]^2 \in M_t^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.

• Hodge lifting $s_F \in F^0 M_t^{\vee} \otimes \mathbb{C}$.

- $M_t \otimes M_t^{\vee} \to \mathbb{Q}(0); \ F^2 M_t \otimes \mathbb{C} \otimes F^0 M_t^{\vee} \otimes \mathbb{C} \to F^2 \mathbb{C}(0) = (0)$
- $\langle \omega, \mathbf{s}(1) \mathbf{s}_F \rangle = \langle \omega, \mathbf{s}(1) \rangle = \int_{0^2}^{\infty^2} \omega = A$

•
$$\omega = \frac{dx \wedge dy}{(x+y+1)(x+y+xy)-txy} \in F^2 M_t \otimes \mathbb{C}.$$

- Chain of integration $[0,\infty]^2 \in M_t^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_F \in F^0 M_t^{\vee} \otimes \mathbb{C}$.
- $M_t \otimes M_t^{\vee} \to \mathbb{Q}(0); \ F^2 M_t \otimes \mathbb{C} \otimes F^0 M_t^{\vee} \otimes \mathbb{C} \to F^2 \mathbb{C}(0) = (0)$
- $\langle \omega, \mathbf{s}(1) \mathbf{s}_F \rangle = \langle \omega, \mathbf{s}(1) \rangle = \int_{0^2}^{\infty^2} \omega = A$

•
$$\omega = \frac{dx \wedge dy}{(x+y+1)(x+y+xy)-txy} \in F^2 M_t \otimes \mathbb{C}.$$

- Chain of integration $[0,\infty]^2 \in M_t^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.
- Hodge lifting $s_F \in F^0 M_t^{\vee} \otimes \mathbb{C}$.
- $M_t \otimes M_t^{\vee} \to \mathbb{Q}(0); \ F^2 M_t \otimes \mathbb{C} \otimes F^0 M_t^{\vee} \otimes \mathbb{C} \to F^2 \mathbb{C}(0) = (0)$
- $\langle \omega, s(1) s_F \rangle = \langle \omega, s(1) \rangle = \int_{0^2}^{\infty^2} \omega = A$

•
$$\omega = \frac{dx \wedge dy}{(x+y+1)(x+y+xy)-txy} \in F^2 M_t \otimes \mathbb{C}.$$

• Chain of integration $[0,\infty]^2 \in M_t^{\vee}$ lifting $1 \in \mathbb{Q}(0)$.

- $M_t \otimes M_t^{\vee} \to \mathbb{Q}(0); \ F^2 M_t \otimes \mathbb{C} \otimes F^0 M_t^{\vee} \otimes \mathbb{C} \to F^2 \mathbb{C}(0) = (0)$
- $\langle \omega, s(1) s_F \rangle = \langle \omega, s(1) \rangle = \int_{0^2}^{\infty^2} \omega = A$

Sunset Amplitude

•
$$Li_2(x) := \sum x^n / n^2$$
 dilogarithm.

 $A = 2\pi i$ (rational multiple of periods of E_t) + $\frac{6\varpi_r(t)}{\pi}E_{\Theta}(q)$

• $q = \exp(2\pi i \tau); \ \tau = \varpi_c(t)/\varpi_r(t)$

Sunset Amplitude

 π

•
$$q = \exp(2\pi i \tau); \ \tau = \varpi_c(t)/\varpi_r(t)$$

Sunset Amplitude

•
$$Li_2(x) := \sum x^n/n^2$$
 dilogarithm.
• $A = 2\pi i$ (rational multiple of periods of E_t) + $\frac{6\varpi_r(t)}{\pi} E_{\Theta}(q)$

•
$$q = \exp(2\pi i \tau); \ \tau = \varpi_c(t)/\varpi_r(t)$$

Elliptic Dilogarithm

۲

$$E_{\Theta}(q) = \frac{i}{2} \sum_{n \ge 0} (Li_2(q^n \zeta_6^5) + Li_2(q^n \zeta_6^4) - Li_2(q^n \zeta_6^2) - Li_2(q^n \zeta_6)) \\ - \frac{i}{4} (Li_2(\zeta_6^5) + Li_2(\zeta_6^4) - Li_2(\zeta_6^2) - Li_2(\zeta_6))$$

•
$$E_{\Theta}(q) = E_{\Theta}(q^{-1}).$$

Relation with elliptic dilogarithm.
 Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

Elliptic Dilogarithm

۲

$$\begin{split} E_{\Theta}(q) &= \frac{i}{2} \sum_{n \geq 0} (Li_2(q^n \zeta_6^5) + Li_2(q^n \zeta_6^4) - Li_2(q^n \zeta_6^2) - Li_2(q^n \zeta_6)) \\ &- \frac{i}{4} (Li_2(\zeta_6^5) + Li_2(\zeta_6^4) - Li_2(\zeta_6^2) - Li_2(\zeta_6)) \end{split}$$

•
$$E_{\Theta}(q) = E_{\Theta}(q^{-1}).$$

Relation with elliptic dilogarithm.
 Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

Elliptic Dilogarithm

۲

$$E_{\Theta}(q) = \frac{i}{2} \sum_{n \ge 0} (Li_2(q^n \zeta_6^5) + Li_2(q^n \zeta_6^4) - Li_2(q^n \zeta_6^2) - Li_2(q^n \zeta_6)) \\ - \frac{i}{4} (Li_2(\zeta_6^5) + Li_2(\zeta_6^4) - Li_2(\zeta_6^2) - Li_2(\zeta_6))$$

• $E_{\Theta}(q) = E_{\Theta}(q^{-1}).$

Relation with elliptic dilogarithm.
 Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.

March 3, 2014 Albert Lectures, University of C

/38

• Milnor symbol $\{X/Z, Y/Z\} \in H^2_M(E_t - S, \mathbb{Z}(2)).$

- Because $S := \mathfrak{h} \cap E_t \subset E_t(tors)$, symbol extends to $H^2_M(E_t, \mathbb{Z}(2))$.
- Amplitude ↔ regulator of this symbol.
- If m_1, m_2, m_3 distinct, $S \not\subset E_t(tors)$, calculating A seems to involve Gromov-Witten invariants: Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

- Milnor symbol $\{X/Z, Y/Z\} \in H^2_M(E_t S, \mathbb{Z}(2)).$
- Because $S := \mathfrak{h} \cap E_t \subset E_t(tors)$, symbol extends to $H^2_M(E_t, \mathbb{Z}(2))$.
- Amplitude ↔ regulator of this symbol.
- If m_1, m_2, m_3 distinct, $S \not\subset E_t(tors)$, calculating A seems to involve Gromov-Witten invariants: Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

- Milnor symbol $\{X/Z, Y/Z\} \in H^2_M(E_t S, \mathbb{Z}(2)).$
- Because $S := \mathfrak{h} \cap E_t \subset E_t(tors)$, symbol extends to $H^2_M(E_t, \mathbb{Z}(2))$.
- Amplitude \leftrightarrow regulator of this symbol.
- If m_1, m_2, m_3 distinct, $S \not\subset E_t(tors)$, calculating A seems to involve Gromov-Witten invariants: Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

- Milnor symbol $\{X/Z, Y/Z\} \in H^2_M(E_t S, \mathbb{Z}(2)).$
- Because $S := \mathfrak{h} \cap E_t \subset E_t(tors)$, symbol extends to $H^2_M(E_t, \mathbb{Z}(2))$.
- Amplitude ↔ regulator of this symbol.
- If m₁, m₂, m₃ distinct, S ∉ E_t(tors), calculating A seems to involve Gromov-Witten invariants: Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5 (2011), no. 2, 397-600.

- $X/\operatorname{Spec} \mathbb{Q}$ projective, smooth.
- ℓ -adic cohomology group $H^q_{et}(\overline{X}, \mathbb{Q}_\ell)$.
- Hasse-Weil *L*-function (*I_p* ⊂ Gal(Q/Q) = inertia subgroup at *p*;
 F_p = geo. frobenius; ℓ ≠ *p*)

$$L(H^q,s) := \prod_p L_p(H^q,s); \quad L_p = \det\left(1 - F_p p^{-s} | H^q_{et}(\overline{X},\mathbb{Q}_\ell)^{l_p}
ight)^{-1}$$

Ex: X = Spec Q, L(H⁰, s) = ζ(s)
 Ex. X elliptic curve,

$$L(H^{1}, s) = \prod_{p \text{ good}} (1 - a_{p}p^{-s} + p^{1-2s})^{-1} \times \text{ bad factors}$$
$$a_{p} = p + 1 - \#X(\mathbb{F}_{p})$$

14 Albert Lectures, University of

- $X/\operatorname{Spec} \mathbb{Q}$ projective, smooth.
- ℓ -adic cohomology group $H^q_{et}(\overline{X}, \mathbb{Q}_{\ell})$.
- Hasse-Weil *L*-function (*I_p* ⊂ Gal(<u></u>Q) = inertia subgroup at *p*;
 F_p = geo. frobenius; ℓ ≠ *p*)

$$L(H^q,s) := \prod_{
ho} L_{
ho}(H^q,s); \quad L_{
ho} = \det \left(1 - F_{
ho}
ho^{-s} |H^q_{et}(\overline{X},\mathbb{Q}_\ell)^{l_{
ho}}
ight)^{-1}$$

$$L(H^{1}, s) = \prod_{p \text{ good}} (1 - a_{p}p^{-s} + p^{1-2s})^{-1} \times \text{ bad factors}$$
$$a_{p} = p + 1 - \#X(\mathbb{F}_{p})$$

March 3

Albert Lectures, University of

- X/Spec Q projective, smooth.
- ℓ -adic cohomology group $H^q_{et}(\overline{X}, \mathbb{Q}_{\ell})$.
- Hasse-Weil *L*-function (*I_p* ⊂ Gal(<u></u>Q) = inertia subgroup at *p*;
 F_p = geo. frobenius; ℓ ≠ *p*)

$$L(H^q,s) := \prod_{
ho} L_{
ho}(H^q,s); \quad L_{
ho} = \det \left(1 - F_{
ho}
ho^{-s} |H^q_{et}(\overline{X},\mathbb{Q}_\ell)^{l_{
ho}}
ight)^{-1}$$

Ex: X = Spec Q, L(H⁰, s) = ζ(s)
 Ex. X elliptic curve,

$$L(H^{1},s) = \prod_{p \text{ good}} (1 - a_{p}p^{-s} + p^{1-2s})^{-1} \times \text{ bad factors}$$
$$a_{r} = p + 1 - \#X(\mathbb{F}_{-})$$

- X/Spec Q projective, smooth.
- ℓ -adic cohomology group $H^q_{et}(\overline{X}, \mathbb{Q}_{\ell})$.
- Hasse-Weil *L*-function (*I_p* ⊂ Gal(<u></u>Q) = inertia subgroup at *p*;
 F_p = geo. frobenius; ℓ ≠ *p*)

$$L(H^q,s) := \prod_{
ho} L_{
ho}(H^q,s); \quad L_{
ho} = \det \left(1 - F_{
ho}
ho^{-s} |H^q_{et}(\overline{X},\mathbb{Q}_\ell)^{l_{
ho}}
ight)^{-1}$$

- Ex: $X = \operatorname{Spec} \mathbb{Q}, L(H^0, s) = \zeta(s)$
- Ex. X elliptic curve,

$$L(H^{1}, s) = \prod_{p \text{ good}} (1 - a_{p}p^{-s} + p^{1-2s})^{-1} \times \text{ bad factors}$$

$$a_{p} = n + 1 - \# Y(\mathbb{F})$$

$$a_p = p + 1 - \# X(\mathbb{F}_p)$$

• X/\mathbb{R} .

3 involutions:

- $\blacktriangleright \ F_{\infty}: X(\mathbb{C}) \to X(\mathbb{C}).$
- $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
- $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ conj = conj \circ F_{\infty}.$

• de Rham conjugation (H_{DR}^* defined algebraically)

 $conj_{DR}: H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) = H^*_{DR}(X/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \to H^*_{DR}(X_{\mathbb{C}}/\mathbb{C})$

Compatibility with period isomorphism

- X/\mathbb{R} .
- 3 involutions:
 - $F_{\infty}: X(\mathbb{C}) \to X(\mathbb{C}).$
 - $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
 - $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ conj = conj \circ F_{\infty}.$

• de Rham conjugation (H_{DR}^* defined algebraically)

 $conj_{DR}: H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) = H^*_{DR}(X/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \to H^*_{DR}(X_{\mathbb{C}}/\mathbb{C})$

Compatibility with period isomorphism

$$\begin{array}{ccc} H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & \downarrow^{conj_{DR}} \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & &$$

- X/\mathbb{R} .
- 3 involutions:

Spencer Bloch ()

- ► F_{∞} : $X(\mathbb{C}) \to X(\mathbb{C})$.
- $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
- $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ \operatorname{conj} = \operatorname{conj} \circ F_{\infty}.$
- de Rham conjugation (H_{DR}^* defined algebraically)

 $conj_{DR}: H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) = H^*_{DR}(X/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \to H^*_{DR}(X_{\mathbb{C}}/\mathbb{C})$

• Compatibility with period isomorphism

$$\begin{array}{ccc} H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & \downarrow^{\mathcal{C}onj_{DR}} \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & &$$

- X/\mathbb{R} .
- 3 involutions:

Spencer Bloch ()

- ► F_{∞} : $X(\mathbb{C}) \to X(\mathbb{C})$.
- $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
- $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ \textit{conj} = \textit{conj} \circ F_{\infty}.$

• de Rham conjugation (H_{DR}^* defined algebraically)

 $\operatorname{conj}_{DR}: H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) = H^*_{DR}(X/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \to H^*_{DR}(X_{\mathbb{C}}/\mathbb{C})$

• Compatibility with period isomorphism

$$\begin{array}{ccc} H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & \downarrow^{conj_{DR}} \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & &$$

The Real Involution(s)

- X/\mathbb{R} .
- 3 involutions:
 - ► F_{∞} : $X(\mathbb{C}) \to X(\mathbb{C})$.
 - $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
 - $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ \textit{conj} = \textit{conj} \circ F_{\infty}.$
- de Rham conjugation (H_{DR}^* defined algebraically)

 $\mathit{conj}_{\mathit{DR}}: \mathit{H}^*_{\mathit{DR}}(\mathit{X}_{\mathbb{C}}/\mathbb{C}) = \mathit{H}^*_{\mathit{DR}}(\mathit{X}/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \to \mathit{H}^*_{\mathit{DR}}(\mathit{X}_{\mathbb{C}}/\mathbb{C})$

Compatibility with period isomorphism

$$\begin{array}{cccc} H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & \downarrow^{Conj_{DR}} \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & & \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & \\ H^*_{DR}(X_{\mathbb{C}},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & \\ H^*_{DR}(X_{\mathbb{C},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & & & \\ H^*_{DR}(X_{\mathbb{C},\mathbb{C},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C},\mathbb{C},\mathbb{C}) \\ & & & & & \\ H^*_{DR}(X_{\mathbb{C},\mathbb{C},\mathbb{C}) & \stackrel{\text{period iso.}}{\longrightarrow} & H^*_{DR}(X_{\mathbb{C},\mathbb{C},\mathbb{C}) \\ & & & & & & \\ H^*_{DR}(X_{\mathbb{C},\mathbb{C},\mathbb{C},\mathbb{C}) \\ & & & & & \\ H^*_{DR}(X_{\mathbb{$$

The Real Involution(s)

- X/\mathbb{R} .
- 3 involutions:

Spencer Bloch

- ► F_{∞} : $X(\mathbb{C}) \to X(\mathbb{C})$.
- $conj: H^*_{Betti}(X, \mathbb{C}) \to H^*_{Betti}(X, \mathbb{C})$
- $\bullet \ \overline{F}_{\infty} := F_{\infty} \circ \textit{conj} = \textit{conj} \circ F_{\infty}.$
- de Rham conjugation (H_{DR}^* defined algebraically)

$$\mathit{conj}_{\mathit{DR}}: \mathit{H}^*_{\mathit{DR}}(\mathit{X}_{\mathbb{C}}/\mathbb{C}) = \mathit{H}^*_{\mathit{DR}}(\mathit{X}/\mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} o \mathit{H}^*_{\mathit{DR}}(\mathit{X}_{\mathbb{C}}/\mathbb{C})$$

• Compatibility with period isomorphism

$$\begin{array}{cccc} H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \xrightarrow{\text{period iso.}} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ & & & \downarrow conj_{DR} \\ H^*_{Betti}(X_{\mathbb{C}},\mathbb{C}) & \xrightarrow{\text{period iso.}} & H^*_{DR}(X_{\mathbb{C}}/\mathbb{C}) \\ \end{array}$$

X/Spec Q smooth, projective, geometrically connected.
 n > ^q/₂ + 1, H_Z := H^q_{Betti}(X_C, Z(n)) Hodge structure with F_∞ action.

$$G := \left(H_{\mathbb{C}} / (F^0 H_{\mathbb{C}} + H_{\mathbb{Z}}) \right)^{F_{\infty} = +1}$$

• G is abelian Lie group with tangent space

 $T_{G,\mathbb{R}} := H_{DR}(X/\mathbb{R})(n)/F^0H_{DR}(X/\mathbb{R})(n) =$ $\left(H_{DR}(X/\mathbb{Q})(n)/F^0H_{DR}(X/\mathbb{Q})(n)\right) \otimes \mathbb{R} =: T_{G,\mathbb{Q}} \otimes \mathbb{R}$

• det $T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times} on *G*.

- X/Spec Q smooth, projective, geometrically connected.
- $n > \frac{q}{2} + 1$, $H_{\mathbb{Z}} := H^q_{Betti}(X_{\mathbb{C}}, \mathbb{Z}(n))$ Hodge structure with \overline{F}_{∞} action.

$$G := \left(H_{\mathbb{C}} / (F^0 H_{\mathbb{C}} + H_{\mathbb{Z}}) \right)^{F_{\infty} = +1}$$

• G is abelian Lie group with tangent space

 $T_{G,\mathbb{R}} := H_{DR}(X/\mathbb{R})(n)/F^0H_{DR}(X/\mathbb{R})(n) =$ $\left(H_{DR}(X/\mathbb{Q})(n)/F^0H_{DR}(X/\mathbb{Q})(n)\right)\otimes\mathbb{R} =: T_{G,\mathbb{Q}}\otimes\mathbb{R}$

• det $T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times} on *G*.

- $X/\operatorname{Spec} \mathbb{Q}$ smooth, projective, geometrically connected.
- $n > \frac{q}{2} + 1$, $H_{\mathbb{Z}} := H^q_{Betti}(X_{\mathbb{C}}, \mathbb{Z}(n))$ Hodge structure with \overline{F}_{∞} action.

$$G := \left(H_{\mathbb{C}}/(F^{0}H_{\mathbb{C}}+H_{\mathbb{Z}})\right)^{\overline{F}_{\infty}=+1}$$

• G is abelian Lie group with tangent space

 $T_{G,\mathbb{R}} := H_{DR}(X/\mathbb{R})(n)/F^0H_{DR}(X/\mathbb{R})(n) =$ $\left(H_{DR}(X/\mathbb{Q})(n)/F^0H_{DR}(X/\mathbb{Q})(n)\right)\otimes\mathbb{R} =: T_{G,\mathbb{Q}}\otimes\mathbb{R}$

• det $T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times} on *G*.

- X/Spec Q smooth, projective, geometrically connected.
- $n > \frac{q}{2} + 1$, $H_{\mathbb{Z}} := H^q_{Betti}(X_{\mathbb{C}}, \mathbb{Z}(n))$ Hodge structure with \overline{F}_{∞} action.

$$G := \left(H_{\mathbb{C}}/(F^0H_{\mathbb{C}}+H_{\mathbb{Z}})
ight)^{F_{\infty}=+1}$$

• G is abelian Lie group with tangent space

$$egin{aligned} T_{G,\mathbb{R}} &:= H_{DR}(X/\mathbb{R})(n)/F^0H_{DR}(X/\mathbb{R})(n) = \ & \left(H_{DR}(X/\mathbb{Q})(n)/F^0H_{DR}(X/\mathbb{Q})(n)
ight)\otimes\mathbb{R} =: T_{G,\mathbb{Q}}\otimes\mathbb{R} \end{aligned}$$

• det $T_{\mathbb{Q}}$ defines a volume form upto \mathbb{Q}^{\times} on *G*.

H^{q+1}_M(X, ℤ(n))_ℤ ⊂ *H*^{q+1}_M(X, ℤ(n)); classes with everywhere good reduction.

$$H^{q+1}_M(X,\mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{Ext.cl.} G$$

Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in *G*.
(ii) The rank of H^{q+1}_M(X, ℤ(n))_ℤ equals the order of zero of L(H^q, s) at q + 1 − n.
(iii) The volume of G/H^{q+1}_M(X, ℤ(n))_ℤ is a non-zero rational multiple of L(H^q, s = n).

H^{q+1}_M(X, ℤ(n))_ℤ ⊂ *H*^{q+1}_M(X, ℤ(n)); classes with everywhere good reduction.

$$H^{q+1}_M(X,\mathbb{Z}(n))_{\mathbb{Z}} \xrightarrow{Ext.cl.} G$$

Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in *G*.
(ii) The rank of H^{q+1}_M(X, ℤ(n))_ℤ equals the order of zero of L(H^q, s) at q + 1 − n.
(iii) The volume of G/H^{q+1}_M(X, ℤ(n))_ℤ is a non-zero rational multiple of L(H^q, s = n).

H^{q+1}_M(X, ℤ(n))_ℤ ⊂ *H*^{q+1}_M(X, ℤ(n)); classes with everywhere good reduction.

$$H^{q+1}_M(X,\mathbb{Z}(n))_{\mathbb{Z}}\xrightarrow{Ext.cl.} G$$

• Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in *G*.

(ii) The rank of $H_M^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ equals the order of zero of $L(H^q, s)$ at q + 1 - n. (iii) The volume of $G/H_M^{q+1}(X, \mathbb{Z}(n))_{\mathbb{Z}}$ is a non-zero rational multiple of $L(H^q, s = n)$.

H^{q+1}_M(X, ℤ(n))_ℤ ⊂ *H*^{q+1}_M(X, ℤ(n)); classes with everywhere good reduction.

$$H^{q+1}_M(X,\mathbb{Z}(n))_{\mathbb{Z}}\xrightarrow{Ext.cl.} G$$

Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in *G*.
 (ii) The rank of H^{q+1}_M(X, ℤ(n))_ℤ equals the order of zero of L(H^q, s) at q + 1 − n.
 (iii) The volume of G/H^{q+1}_M(X, ℤ(n))_ℤ is a non-zero rational multiple of L(H^q, s = n).

H^{q+1}_M(X, ℤ(n))_ℤ ⊂ *H*^{q+1}_M(X, ℤ(n)); classes with everywhere good reduction.

$$H^{q+1}_M(X,\mathbb{Z}(n))_{\mathbb{Z}}\xrightarrow{Ext.cl.} G$$

Conjecture(Beilinson) (i) The extension class map is injective modulo torsion with image discrete in *G*.
(ii) The rank of H^{q+1}_M(X, ℤ(n))_ℤ equals the order of zero of L(H^q, s) at q + 1 − n.
(iii) The volume of G/H^{q+1}_M(X, ℤ(n))_ℤ is a non-zero rational multiple of L(H^q, s = n).

- For X/F, F numberfield, the conjecture is formulated by taking G_σ for the various ℝ- and ℂ-embeddings of F.
- Beilinson conjecture is true for X = Spec F a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for H²_M(X_K, ℤ(2));
 K ⊂ GL₂(A_f) compact open, X_K modular curve.

- For X/F, F numberfield, the conjecture is formulated by taking G_σ for the various ℝ- and ℂ-embeddings of F.
- Beilinson conjecture is true for X = Spec F a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for H²_M(X_K, ℤ(2));
 K ⊂ GL₂(A_f) compact open, X_K modular curve.

- For X/F, F numberfield, the conjecture is formulated by taking G_σ for the various ℝ- and ℂ-embeddings of F.
- Beilinson conjecture is true for X = Spec F a number field. (Borel).
- Thm. (Beilinson) "Weak" conjecture true for H²_M(X_K, ℤ(2));
 K ⊂ GL₂(A_f) compact open, X_K modular curve.

Nahm's Conjecture

$$\mathcal{F}_{A,B,C}(q) = \sum_{n \in \mathbb{Z}_{\geq 0}^r} rac{q^{rac{1}{2}n^tAn + n^tB + C}}{(q)_{n_1}\cdots(q)_{n_r}}$$

- $A \in M_r(\mathbb{Q})$ symmetric, > 0, $B \in \mathbb{Q}^r$, $C \in \mathbb{Q}$. $(q)_n := (1 - q) \cdots (1 - q^n).$
- Question (Nahm): For which A do there exist B, C such that $F_{A,B,C}(q)$ is a modular function?

Nahm's Conjecture

$F_{A,B,C}(q) = \sum_{n \in \mathbb{Z}'_{\geq 0}} rac{q^{rac{1}{2}n^tAn + n^tB + C}}{(q)_{n_1}\cdots(q)_{n_r}}$

• $A \in M_r(\mathbb{Q})$ symmetric, $> 0, B \in \mathbb{Q}^r, C \in \mathbb{Q}$. $(q)_n := (1 - q) \cdots (1 - q^n).$

• Question (Nahm): For which A do there exist B, C such that $F_{A,B,C}(q)$ is a modular function?

2014 Albert Lectures, University of

March 3.

Nahm's Conjecture

$F_{A,B,C}(q) = \sum_{n \in \mathbb{Z}_{\geq 0}^r} \frac{q^{\frac{1}{2}n^t A n + n^t B + C}}{(q)_{n_1} \cdots (q)_{n_r}}$

- $A \in M_r(\mathbb{Q})$ symmetric, > 0, $B \in \mathbb{Q}^r$, $C \in \mathbb{Q}$. $(q)_n := (1 - q) \cdots (1 - q^n).$
- Question (Nahm): For which A do there exist B, C such that $F_{A,B,C}(q)$ is a modular function?

Nahm's Conjecture II

Lemma

 $A \in M_r(\mathbb{Q})$ symmetric, > 0. \exists unique $0 < Q_i < 1, 1 \le i \le r$ such that

$$1-Q_i=\prod_{j=1}^r Q_j^{A_{ij}}.$$

• T_{Q_i} Totaro cycle

$$\partial(\sum_{i=1}^r T_{\mathcal{Q}_i}) = \prod_i (\mathcal{Q}_i \otimes \prod_j \mathcal{Q}_j^{\mathcal{A}_{ij}}) = 1 \in \bigwedge^2 \mathbb{C}^{ imes} \otimes \mathbb{Q}$$

$$K = \mathbb{Q}(Q_1, \ldots, Q_r); \quad \sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2)).$$

Nahm's Conjecture II

Lemma

 $A \in M_r(\mathbb{Q})$ symmetric, > 0. \exists unique $0 < Q_i < 1, 1 \le i \le r$ such that

$$1-Q_i=\prod_{j=1}^r Q_j^{A_{ij}}.$$

• T_{Q_i} Totaro cycle

$$\partial(\sum_{i=1}^r T_{\mathcal{Q}_i}) = \prod_i (\mathcal{Q}_i \otimes \prod_j \mathcal{Q}_j^{\mathcal{A}_{ij}}) = 1 \in \bigwedge^2 \mathbb{C}^{\times} \otimes \mathbb{Q}$$

$$K = \mathbb{Q}(Q_1, \ldots, Q_r); \quad \sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2)).$$

Nahm's Conjecture II

Lemma

 $A \in M_r(\mathbb{Q})$ symmetric, > 0. \exists unique $0 < Q_i < 1, 1 \le i \le r$ such that

$$1-Q_i=\prod_{j=1}^r Q_j^{A_{ij}}.$$

• T_{Q_i} Totaro cycle

$$\partial(\sum_{i=1}^r T_{\mathcal{Q}_i}) = \prod_i (\mathcal{Q}_i \otimes \prod_j \mathcal{Q}_j^{\mathcal{A}_{ij}}) = 1 \in \bigwedge^2 \mathbb{C}^{\times} \otimes \mathbb{Q}$$

$$K = \mathbb{Q}(Q_1, \ldots, Q_r); \quad \sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2)).$$

Regulator Computation

$$0 \to \mathbb{C}_{\mathbb{O}}^{\times} \xrightarrow{a \mapsto 2\pi i \otimes a} \mathbb{C} \otimes \mathbb{C}^{\times} \xrightarrow{exp \otimes id} \mathbb{C}^{\times} \otimes \mathbb{C}^{\times} \to 0$$

Lemma

Expression

$$\varepsilon(a) := [\log(1-a) \otimes a] + \left[2\pi i \otimes \exp\left(\frac{-1}{2\pi i} \int_0^a \log(1-t) \frac{dt}{t}\right)\right] \in \mathbb{C} \otimes \mathbb{C}^{\times}$$

is well-defined independent of the choice of a path from 0 to a. We have $(\exp \otimes id)\varepsilon(a) = (1 - a) \otimes a$.

March 3, 2014 Albert Lectures, University of C

38

Regulator Computation

$$0 \to \mathbb{C}_{\mathbb{O}}^{\times} \xrightarrow{a \mapsto 2\pi i \otimes a} \mathbb{C} \otimes \mathbb{C}^{\times} \xrightarrow{exp \otimes id} \mathbb{C}^{\times} \otimes \mathbb{C}^{\times} \to 0$$

Lemma

Expression

$$\varepsilon(a) := [\log(1-a) \otimes a] + \left[2\pi i \otimes \exp\left(\frac{-1}{2\pi i} \int_0^a \log(1-t) \frac{dt}{t}\right)\right] \in \mathbb{C} \otimes \mathbb{C}^{\times}$$

is well-defined independent of the choice of a path from 0 to a. We have $(\exp \otimes id)\varepsilon(a) = (1 - a) \otimes a$.

March 3, 2014 Albert Lectures, University of C

/38

Regulator and Nahm's Conjecture

Example

$$\sum_{i=1}^{r} (\varepsilon(Q_i) - \varepsilon(1 - Q_i)) \in \mathbb{C}_{\mathbb{O}}^{\times} \subset \mathbb{C} \otimes \mathbb{C}^{\times}$$

Definition

Rogers dilogarithm $L(x) := Li_2(x) + \frac{1}{2}\log(x)\log(1-x), 0 < x < 1.$ $L(1) = \pi^2/6.$ Here $Li_2(x) = \sum x^n/n^2.$ Note $L(x) + L(1-x) = \pi^2/6$

Regulator and Nahm's Conjecture

Example

$$\sum_{i=1}^{r} (\varepsilon(Q_i) - \varepsilon(1 - Q_i)) \in \mathbb{C}_{\mathbb{O}}^{\times} \subset \mathbb{C} \otimes \mathbb{C}^{\times}$$

Definition

Rogers dilogarithm $L(x) := Li_2(x) + \frac{1}{2}\log(x)\log(1-x), 0 < x < 1.$ $L(1) = \pi^2/6.$ Here $Li_2(x) = \sum x^n/n^2.$ Note $L(x) + L(1-x) = \pi^2/6$

Regulator and Nahm's Conjecture II

Proposition

Consider the compact piece of the regulator

$$H^1_M(K, \mathbb{Q}(2)) \xrightarrow{\operatorname{reg}} \mathbb{C}^{\times}_{\mathbb{Q}} = \mathbb{R} \oplus S^1_{\mathbb{Q}} o S^1_{\mathbb{Q}}$$

If we identify $\mathbb{R}/\pi^2 \mathbb{Q} = S^1_{\mathbb{Q}}$ by $x \mapsto \exp(x/2\pi i)$, then $reg(\sum T_{Q_i}) \equiv \sum L(Q_i) \mod \mathbb{Q}\pi^2$

Proposition

Given $A \in M_r(\mathbb{Q})$ with A symmetric, > 0, a necessary condition for there to exist $B \in \mathbb{Q}^r$, $C \in \mathbb{Q}$ such that $F_{A,B,C}(q)$ is modular is $\sum L(Q_i) \in \mathbb{Q}\pi^2$.

Regulator and Nahm's Conjecture II

Proposition

Consider the compact piece of the regulator

$$H^1_M(K, \mathbb{Q}(2)) \xrightarrow{\operatorname{reg}} \mathbb{C}^{\times}_{\mathbb{Q}} = \mathbb{R} \oplus S^1_{\mathbb{Q}} o S^1_{\mathbb{Q}}$$

If we identify $\mathbb{R}/\pi^2 \mathbb{Q} = S^1_{\mathbb{Q}}$ by $x \mapsto \exp(x/2\pi i)$, then $reg(\sum T_{Q_i}) \equiv \sum L(Q_i) \mod \mathbb{Q}\pi^2$

Proposition

Given $A \in M_r(\mathbb{Q})$ with A symmetric, > 0, a necessary condition for there to exist $B \in \mathbb{Q}^r$, $C \in \mathbb{Q}$ such that $F_{A,B,C}(q)$ is modular is $\sum L(Q_i) \in \mathbb{Q}\pi^2$.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^r, C \in \mathbb{Q}$, $F_{A,B,C}(q)$ has the correct asymptotics as $q \to 1$ to be a modular function.

(ii) The Q_i are algebraic and real. If they are totally real, then (i) holds.

- Jacobian matrix for system $1 x_i = \prod_{j=1}^r x_j^{A_{ij}}$ is invertible at $x_i = Q_i$ so Q_i algebraic.
- One has examples where *Q_i* not totally real and ∑ *T_{Q_i}* is not torsion.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^r, C \in \mathbb{Q}$, $F_{A,B,C}(q)$ has the correct asymptotics as $q \to 1$ to be a modular function.

(ii) The Q_i are algebraic and real. If they are totally real, then (i) holds.

- Jacobian matrix for system $1 x_i = \prod_{j=1}^r x_j^{A_{ij}}$ is invertible at $x_i = Q_i$ so Q_i algebraic.
- One has examples where *Q_i* not totally real and ∑ *T_{Q_i}* is not torsion.

Regulator and Nahm's Conjecture III

Corollary

(i) If $\sum T_{Q_i} \in H^1_M(K, \mathbb{Q}(2))$ vanishes, then for any $B \in \mathbb{Q}^r, C \in \mathbb{Q}$, $F_{A,B,C}(q)$ has the correct asymptotics as $q \to 1$ to be a modular function.

(ii) The Q_i are algebraic and real. If they are totally real, then (i) holds.

- Jacobian matrix for system $1 x_i = \prod_{j=1}^r x_j^{A_{ij}}$ is invertible at $x_i = Q_i$ so Q_i algebraic.
- One has examples where *Q_i* not totally real and ∑ *T_{Q_i}* is not torsion.