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Motivic Cohomology and K -theory

Beilinson definition

Hp
M(X ,Q(q)) := grq

γ K2q−p(X )Q.

I Example:
H2p

M (X ,Q(p)) = grp
γK0(X ) ∼= CHp(X )Q
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Higher Chow Groups

∆n
k := Spec k [t0, . . . , tn]/(

∑
ti − 1) algebraic n-simplex.

ιi : ∆n−1 ↪→ ∆n locus ti = 0.
Zp(X ×∆n)′ ⊂ Zp(X ×∆n) cycles in good position w.r.t. faces.
δi := ι∗i : Zp(X ×∆n)′ → Zp(X ×∆n−1)′; δ =

∑
(−1)iδi

Complex Zp(X , ·):

· · · δ−→ Zp(X ×∆n)′
δ−→ · · · δ−→ Zp(X ×∆1)′

δ−→ Zp(X )

CHp(X ,n) := H−n(Zp(X , ·)).
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Higher Chow Groups and Motivic Cohomology

X smooth, Hp
M(X ,Z(q)) ∼= CHq(X ,2q − p).

I Variant: Cubical cycles: � := P1 − {1}; Replace ∆n with �n; factor
out by degeneracies.

I Face maps ιji : �n−1 ↪→ �n, j = 0,∞
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Examples

Chow groups: CHp(X ,0) = CHp(X ) = H2p
M (X ,Z(p)).

Units: CH1(X ,1) = H1
M(X ,Z(1)) = Γ(X ,O×X ).

Milnor classes: f1, . . . , fn ∈ Γ(X ,O×X ). {f1, . . . , fn} :=
[(x , f1(x), . . . , fn(x)) ∩ (X ×�n)] ∈ CHn(X ,n) = Hn

M(X ,Z(n)).
dim X = 2, Ci ⊂ X curves, fi ∈ k(Ci)

× rational functions.
Γi := {(c, fi(c))|c ∈ Ci} ∈ Z2(X ×�1).∑

i

(fi) = 0 ∈ Z0(X )⇒
∑

Γi ∈ CH2(X ,1) = H3
M(X ,Z(2)).
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Higher Chow DGA

X = Spec k a point. Product

Zp(�n)⊗Zq(�m)→ Zp+q(�m+n).

Np(r) := Z r (�2r−p
k )Q,Alt

N∗(•) :=
⊕

r ,p≥0 N
p(r)
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Cycles and the Tannakian Category of Mixed Tate
Motives

Hopf algebra H := H0(Bar(N∗(•)))

G = Spec (H) as Tannaka group of category of mixed Tate motives
(?).
Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).
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Example: Dilogarithm Motive

N1(1)⊗N1(1)
mult−−−−→ N2(2)x∂ x∂

(N1(1)⊗N1(0))⊕ (N1(0)⊗N1(1)) −−−−→ N1(2)/∂N0(2)

N1(1)/∂N1(0) ∼= k× ⊗Q
N1(2)/∂N0(2) 3 Tx , x ∈ k − {0,1} Totaro cycles
N2(2)/mult ◦ ∂ ∼=

∧2 k× ⊗Q
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Example: Dilogarithm Motive II

Tx = {(t ,1− t ,1− xt−1) | t ∈ P1} parametrized curve in �3.
∂Tx = (x ,1− x) ∈ Z2(�2) = N2(2).
[(x)⊗ (1− x),Tx ] ∈ H0(Bar(N∗(•)))

Comodule generated is Dilog(x).

0→ H1
M(k ,Q(2))→ N1(2)/∂N0(2)

∂−→
∧2 k× ⊗Q
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Extensions associated to Cycles

X smooth variety dim. d over C. Z =
∑

niZi ∈ Zp(X ) algebraic
cycle. Write |Z | =

⋃
i Zi .

Betti cohomology sequence

0→ H2p−1(X ,Q(p))→ H2p−1(X − |Z |,Q(p))

∂−→ H2d−2p(|Z |,Q(p − d))
cl−→ H2p(X ,Q(p))
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Extensions associated to Cycles II

H2d−2p(|Z |,Q(p − d)) ∼=
⊕

i Q · [Zi ].
Assume cl(Z ) =

∑
nicl[Zi ] = 0 ∈ H2p(X ,Q(p)).

Extension of Hodge structures

0→ H2p−1(X ,Q(p))→ ∂−1(Q · Z )→ Z→ 0

Extension class 〈Z 〉 ∈ Ext1MHS(Z,H2p−1(X ,Q(p)))
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Extensions associated to Cycles III

Z ∈ Zp(X ×∆q) meeting faces properly. Assume
∂iZ = 0 ∈ Zp(X ×∆q−1),∀i .
[Z ] ∈ H2p−q(X ,Z(p)). Example:

Z = {(x , x)} ⊂ (P1 − {0,∞})×�1, [Z ] ∈ H1(Gm,Z(1))

If X is projective and q ≥ 1, or if q ≥ p, then [Z ] is torsion.
when [Z ] torsion, same construction, working with
(X ×∆q − |Z |,X × ∂∆q − |Z | ∩ X × ∂∆q) yields

0→ H2p−1(X ×∆q,X × ∂∆q;Q(p))→ MZ → Q→ 0

Get class in Ext1MHS(Q(0),H2p−q−1(X ,Q(p)))
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Extensions associated to Cycles IV

Ext1MHS(Z(0),H) ∼= HC/(F 0HC + HZ)

H a pure Hodge structure; F ∗HC Hodge filtration.
0→ H → M → Z(0)→ 0;
s(1) ∈ MZ, sF ∈ F 0MC lifting 1 ∈ Z(0).
extension class s(1)− sF ∈ HC/(F 0HC + HZ).
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extension class s(1)− sF ∈ HC/(F 0HC + HZ).
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Examples; Chow groups

(Intermediate Jacobians) Z ∈ Zp(X ), [Z ] = 0 ∈ H2p(X ,Z(p)) ;

0→ H2p−1(X ,Z(p))→ MZ → Z(0)→ 0

(Biextensions) dim X = d , p + q = d + 1, Z ∈ Zp(X ), V ∈
Zq(X ), [Z ] = 0 = [V ], |Z | ∩ |V | = ∅
Construct MZ ,V subquotient of H2p−1(X − |Z |, |V |;Q(p))

W2MZ ,V = Q(1); grW
−1MZ ,V pure weight −1; grW

0 MZ ,V = Q(0).
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Examples: Higher Chow groups

X = Spec K a point.
I H1

M(Spec K ,Z(p)) = CHp(Spec K ,2p − 1)
I Classes represented by codim. p cycles on ∆2p−1 or �2p−1.
I [K : Q] = d = r1 + 2r2, p ≥ 2.

dim H1
M(K ,Q(p)) =

{
r2 p even
r1 + r2 p odd

X a curve
I H2

M(X ,Z(2)) Milnor symbols {f ,g}, K2(X ).
I H2

M(X ,Z(3)); Work of Rob deJeu.
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Rigidity

Rigidity; degenerating families of cycles.
I Xt degenerating family of elliptic curves.
I Zt ∈ H2

M(Xt ,Z(2))→ Z0 ∈ H1
M(Spec K ,Z(2)).

I H2
M(Xt ,Z(3)) is rigid.

I Zt ; degenerating family of extensions of Hodge structures Mt .
I Work of Kato, Nakayama, Usui on compactifying the period space

of mixed Hodge structures.
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A Final Example: Mahler Measure Extension

P ∈ C[z1, z−1
1 , . . . , zn, z−1

n ], Gn
m ⊃ V : P = 0.

ΓP = {(z1, . . . , zn; z1, . . . , zn,P(z)) ∈ (Gn
m − V )×�n+1}.

0→ Hn(Gn
m − V ,Z(n + 1))→ MP → Z(0)→ 0

MP = H2n+1
(

(Gn
m −V )×�n+1− ΓP , (Gn

m −V )× ∂�n+1;Z(n + 1)
)

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 18

/ 38



A Final Example: Mahler Measure Extension

P ∈ C[z1, z−1
1 , . . . , zn, z−1

n ], Gn
m ⊃ V : P = 0.

ΓP = {(z1, . . . , zn; z1, . . . , zn,P(z)) ∈ (Gn
m − V )×�n+1}.

0→ Hn(Gn
m − V ,Z(n + 1))→ MP → Z(0)→ 0

MP = H2n+1
(

(Gn
m −V )×�n+1− ΓP , (Gn

m −V )× ∂�n+1;Z(n + 1)
)

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 18

/ 38



A Final Example: Mahler Measure Extension

P ∈ C[z1, z−1
1 , . . . , zn, z−1

n ], Gn
m ⊃ V : P = 0.

ΓP = {(z1, . . . , zn; z1, . . . , zn,P(z)) ∈ (Gn
m − V )×�n+1}.

0→ Hn(Gn
m − V ,Z(n + 1))→ MP → Z(0)→ 0

MP = H2n+1
(

(Gn
m −V )×�n+1− ΓP , (Gn

m −V )× ∂�n+1;Z(n + 1)
)

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 18

/ 38



A Final Example: Mahler Measure Extension

P ∈ C[z1, z−1
1 , . . . , zn, z−1

n ], Gn
m ⊃ V : P = 0.

ΓP = {(z1, . . . , zn; z1, . . . , zn,P(z)) ∈ (Gn
m − V )×�n+1}.

0→ Hn(Gn
m − V ,Z(n + 1))→ MP → Z(0)→ 0

MP = H2n+1
(

(Gn
m −V )×�n+1− ΓP , (Gn

m −V )× ∂�n+1;Z(n + 1)
)

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 18

/ 38



Real regulators and Amplitudes Associated to
Extensions

(∗) 0→ H → M → Q(0)→ 0

extension of Hodge structures.
s(1) ∈ MQ, sF ∈ F 0MC lifting 1 ∈ Q(0).
Regulator: Extension class s(1)− sF ∈ HC/(F 0HC + HQ)

I conj : HC → HC, C antilinear, identity on HR.

regR(∗) = (s(1)− sF )conj=−1 ∈ HC/(F 0HC + F
0
HC).

Amplitude: Assume given ω ∈ F 1H∨C .

Amp(∗) := 〈ω, s(1)− sF 〉 ∈ C/〈ω,HQ〉
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Comments

〈F 1H∨C ,F
0HC〉 = (0)

⇒ Amplitude independent of sF .
Amplitude as a multiple-valued function.

Family of cycles parametrized by t ;
multi-valued function amp(∗t ) with variation ∈ 〈ω,HZ〉.

F 0HC = (0)⇒ 〈ω, reg(∗)〉 defined.
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Feynman Amplitudes in Physics; joint work with P.
Vanhove

Sunset (or sunrise) graph; 2 vertices and 3 edges.
p = (p1, . . . ,p4) external momentum; p2 :=

∑
p2

i .
mj mass associated to j-th edge.

A := Amplitude =

∫ ∞2

02

dx ∧ dy
(m2

1x + m2
2y + m3)(x + y + xy)− p2xy

Equal mass case: m = m1 = m2 = m3. t = p2/m2.
Homogeneous coordinates X ,Y ,Z ; ∆ : XYZ = 0.
Et : (X + Y + Z )(XY + XZ + YZ )− tXYZ = 0.
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Feynman Amplitudes in Physics II

Et ∩∆ = {(1,0,0), (0,1,0), (0,0,1)} plus 3 other points.
P := P2 blown up at {(1,0,0), (0,1,0), (0,0,1)}.
Et ↪→ P π−→ P2.
h := π−1(∆) = hexagon; h ∩ Et = cyclic group of order 6.
Localization sequence splits as Hodge structures (because h ∩ Et
torsion)

0→ H2(P,Q(1))/Q · [Et ]→ H2(P − Et ,Q(1))
←−→ H1(E ,Q)→ 0

H1(h− Et ∩ h,Q) = H1(
⋃
6

A1,Q) = Q(0).
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P := P2 blown up at {(1,0,0), (0,1,0), (0,0,1)}.
Et ↪→ P π−→ P2.
h := π−1(∆) = hexagon; h ∩ Et = cyclic group of order 6.
Localization sequence splits as Hodge structures (because h ∩ Et
torsion)

0→ H2(P,Q(1))/Q · [Et ]→ H2(P − Et ,Q(1))
←−→ H1(E ,Q)→ 0

H1(h− Et ∩ h,Q) = H1(
⋃
6

A1,Q) = Q(0).

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 22

/ 38



Feynman Amplitudes in Physics II

Et ∩∆ = {(1,0,0), (0,1,0), (0,0,1)} plus 3 other points.
P := P2 blown up at {(1,0,0), (0,1,0), (0,0,1)}.
Et ↪→ P π−→ P2.
h := π−1(∆) = hexagon; h ∩ Et = cyclic group of order 6.
Localization sequence splits as Hodge structures (because h ∩ Et
torsion)

0→ H2(P,Q(1))/Q · [Et ]→ H2(P − Et ,Q(1))
←−→ H1(E ,Q)→ 0

H1(h− Et ∩ h,Q) = H1(
⋃
6

A1,Q) = Q(0).

Spencer Bloch () Periods Associated to Algebraic Cycles
March 3, 2014 Albert Lectures, University of Chicago 22

/ 38



Feynman Amplitudes in Physics III

0 −→H1(h− h ∩ Et ,Q) −→H2(P − Et , h− h ∩ Et ,Q) −→ H2(P − Et ,Q) −→ 0∥∥∥ x xsplitting

0 −→ Q(0) −→ Mt −→H1(Et ,Q(−1)) −→ 0

(∗) 0→ H1(Et ,Q(2))→ M∨t → Q(0)→ 0
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Feynman Amplitudes in Physics III

ω = dx∧dy
(x+y+1)(x+y+xy)−txy ∈ F 2Mt ⊗ C.

Chain of integration [0,∞]2 ∈ M∨t lifting 1 ∈ Q(0).
Hodge lifting sF ∈ F 0M∨t ⊗ C.
Mt ⊗M∨t → Q(0); F 2Mt ⊗ C⊗ F 0M∨t ⊗ C→ F 2C(0) = (0)

〈ω, s(1)− sF 〉 = 〈ω, s(1)〉 =
∫∞2

02 ω = A
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Sunset Amplitude

Li2(x) :=
∑

xn/n2 dilogarithm.

A = 2πi(rational multiple of periods of Et ) +
6$r (t)
π

EΘ(q)

q = exp(2πiτ); τ = $c(t)/$r (t)
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Elliptic Dilogarithm

EΘ(q) =
i
2

∑
n≥0

(Li2(qnζ5
6 ) + Li2(qnζ4

6 )− Li2(qnζ2
6 )− Li2(qnζ6))

− i
4

(Li2(ζ5
6 ) + Li2(ζ4

6 )− Li2(ζ2
6 )− Li2(ζ6))

EΘ(q) = EΘ(q−1).
Relation with elliptic dilogarithm.
Beilinson, Levin, Elliptic Polylogarithms, Proc. Symp. AMS 55.
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Where did the cycle go?

Milnor symbol {X/Z ,Y/Z} ∈ H2
M(Et − S,Z(2)).

Because S := h ∩ Et ⊂ Et (tors), symbol extends to H2
M(Et ,Z(2)).

Amplitude↔ regulator of this symbol.
If m1,m2,m3 distinct, S 6⊂ Et (tors), calculating A seems to involve
Gromov-Witten invariants:
Doran, Kerr, Algebraic K-theory of toric hypersurfaces, CNTP 5
(2011), no. 2, 397-600.
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Hasse-Weil L-functions

X/SpecQ projective, smooth.
`-adic cohomology group Hq

et (X ,Q`).
Hasse-Weil L-function (Ip ⊂ Gal(Q/Q) = inertia subgroup at p;
Fp = geo. frobenius; ` 6= p)

L(Hq, s) :=
∏

p

Lp(Hq, s); Lp = det
(

1− Fpp−s|Hq
et (X ,Q`)

Ip
)−1

I Ex: X = SpecQ, L(H0, s) = ζ(s)
I Ex. X elliptic curve,

L(H1, s) =
∏

p good

(1− app−s + p1−2s)−1 × bad factors

ap = p + 1−#X (Fp)
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The Real Involution(s)
X/R.
3 involutions:

I F∞ : X (C)→ X (C).
I conj : H∗Betti (X ,C)→ H∗Betti (X ,C)
I F∞ := F∞ ◦ conj = conj ◦ F∞.

de Rham conjugation (H∗DR defined algebraically)

conjDR : H∗DR(XC/C) = H∗DR(X/R)⊗R C→ H∗DR(XC/C)

Compatibility with period isomorphism

H∗Betti(XC,C)
period iso.−−−−−−→ H∗DR(XC/C)yF∞

yconjDR

H∗Betti(XC,C)
period iso.−−−−−−→ H∗DR(XC/C)
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Volume Form

X/SpecQ smooth, projective, geometrically connected.
n > q

2 + 1, HZ := Hq
Betti(XC,Z(n)) Hodge structure with F∞ action.

G :=
(

HC/(F 0HC + HZ)
)F∞=+1

G is abelian Lie group with tangent space

TG,R := HDR(X/R)(n)/F 0HDR(X/R)(n) =(
HDR(X/Q)(n)/F 0HDR(X/Q)(n)

)
⊗ R =: TG,Q ⊗ R

det TQ defines a volume form upto Q× on G.
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Beilinson Conjecture

Hq+1
M (X ,Z(n))Z ⊂ Hq+1

M (X ,Z(n)); classes with everywhere good
reduction.

Hq+1
M (X ,Z(n))Z

Ext .cl.−−−−→ G

Conjecture(Beilinson) (i) The extension class map is injective
modulo torsion with image discrete in G.
(ii) The rank of Hq+1

M (X ,Z(n))Z equals the order of zero of L(Hq, s)
at q + 1− n.
(iii) The volume of G/Hq+1

M (X ,Z(n))Z is a non-zero rational
multiple of L(Hq, s = n).
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Beilinson Conjecture II

For X/F , F numberfield, the conjecture is formulated by taking Gσ

for the various R- and C-embeddings of F .
Beilinson conjecture is true for X = Spec F a number field. (Borel).
Thm. (Beilinson) “Weak” conjecture true for H2

M(XK ,Z(2));
K ⊂ GL2(Af ) compact open, XK modular curve.
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Nahm’s Conjecture

FA,B,C(q) =
∑

n∈Zr
≥0

q
1
2 nt An+nt B+C

(q)n1 · · · (q)nr

A ∈ Mr (Q) symmetric, > 0, B ∈ Qr ,C ∈ Q.
(q)n := (1− q) · · · (1− qn).
Question (Nahm): For which A do there exist B,C such that
FA,B,C(q) is a modular function?
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Nahm’s Conjecture II

Lemma
A ∈ Mr (Q) symmetric, > 0. ∃ unique 0 < Qi < 1,1 ≤ i ≤ r such that

1−Qi =
r∏

j=1

QAij
j .

TQi Totaro cycle

∂(
r∑

i=1

TQi ) =
∏

i

(Qi ⊗
∏

j

QAij
j ) = 1 ∈

2∧
C× ⊗Q

K = Q(Q1, . . . ,Qr );
∑

TQi ∈ H1
M(K ,Q(2)).
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Regulator Computation

0→ C×Q
a 7→2πi⊗a−−−−−−→ C⊗ C× exp⊗id−−−−→ C× ⊗ C× → 0

Lemma
Expression

ε(a) := [log(1− a)⊗ a]+[
2πi ⊗ exp

(−1
2πi

∫ a

0
log(1− t)

dt
t

)]
∈ C⊗ C×

is well-defined independent of the choice of a path from 0 to a. We
have (exp⊗id)ε(a) = (1− a)⊗ a.
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Regulator and Nahm’s Conjecture

Example∑r
i=1(ε(Qi)− ε(1−Qi)) ∈ C×Q ⊂ C⊗ C×

Definition
Rogers dilogarithm L(x) := Li2(x) + 1

2 log(x) log(1− x),0 < x < 1.
L(1) = π2/6. Here Li2(x) =

∑
xn/n2. Note L(x) + L(1− x) = π2/6
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Regulator and Nahm’s Conjecture II

Proposition
Consider the compact piece of the regulator

H1
M(K ,Q(2))

reg−−→ C×Q = R⊕ S1
Q → S1

Q.

If we identify R/π2Q = S1
Q by x 7→ exp(x/2πi), then

reg(
∑

TQi ) ≡
∑

L(Qi) mod Qπ2

Proposition
Given A ∈ Mr (Q) with A symmetric, > 0, a necessary condition for
there to exist B ∈ Qr ,C ∈ Q such that FA,B,C(q) is modular is∑

L(Qi) ∈ Qπ2.
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Regulator and Nahm’s Conjecture III

Corollary

(i) If
∑

TQi ∈ H1
M(K ,Q(2)) vanishes, then for any B ∈ Qr ,C ∈ Q,

FA,B,C(q) has the correct asymptotics as q → 1 to be a modular
function.
(ii) The Qi are algebraic and real. If they are totally real, then (i) holds.

Jacobian matrix for system 1− xi =
∏r

j=1 xAij
j is invertible at

xi = Qi so Qi algebraic.
One has examples where Qi not totally real and

∑
TQi is not

torsion.
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