Algebraic Cycles

Spencer Bloch

February 28, March 3,4, 2014 Albert Lectures, University of Chicago

Outline

(9) Introduction

- Algebraic varieties
- Vector Bundles and Coherent Sheaves
- Algebraic Cycles
(2) Great Themes
- Abel's Theorem
- The Riemann-Roch Theorem
- Enumerative Geometry
- Higher K-theory
- Motivic cohomology
- The Hodge conjecture

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
\star Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
* Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizonhrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
\star Beilinson conjectures; special values of L-functions
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
\star Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles f understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
\star Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Introductory Remarks

- Sheaves
- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
- Traditionally quite crude (moving lemmas and issues of functoriality)
- Work of Voevodsky (h-topology, \mathbb{A}^{1}-homotopy and methods from algebraic topology)
- Deep conjectures (cycles \leftrightarrow morphisms in the category of motives)
\star Beilinson conjectures; special values of L-functions
* Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, \mathbb{A}^{1}-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Proving theorems about cycles \neq understanding cycles.

Affine and Projective Varieties.

- k a field; \mathbb{A}_{k}^{n} is affine n-space over k.
- Affine variety V defined by polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0 ; V \subset \mathbb{A}_{k}^{n}$.
- Projective space $\mathbb{P}_{k}^{n}=$ Space of lines through 0 in \mathbb{A}_{k}^{n+1}
- Projective variety $X \subset \mathbb{P}_{k}^{n}$ defined by vanishing of homogeneous polynomials $F_{i}\left(T_{0}, \ldots, T_{n}\right)$.

Affine and Projective Varieties.

- k a field; \mathbb{A}_{k}^{n} is affine n-space over k.
- Affine variety V defined by polynomials $f_{i}\left(x_{1}, \ldots, x_{n}\right)=0 ; V \subset \mathbb{A}_{k}^{n}$.
- Projective space $\mathbb{P}_{k}^{n}=$ Space of lines through 0 in \mathbb{A}_{k}^{n+1}
- Projective variety $X \subset \mathbb{P}_{k}^{n}$ defined by vanishing of homogeneous polynomials $F_{i}\left(T_{0}, \ldots, T_{n}\right)$.

Vector Bundles and Coherent Sheaves

- \mathcal{O}_{X} sheaf of functions on X for the Zariski topology
- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F}.
- Example: Kähler differential forms
- If X is smooth then $\Omega_{X / k}^{r}$ is a vector bundle.
- $K_{0}(X)$ Grothendieck group of vector bundles generators $[\mathcal{V}], \mathcal{V}$ a vector bundle on X relations $[\mathcal{V}]=\left[\mathcal{V}^{\prime}\right]+\left[\mathcal{V}^{\prime \prime}\right]$ if

Vector Bundles and Coherent Sheaves

- \mathcal{O}_{X} sheaf of functions on X for the Zariski topology
- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F}.
- Example: Kähler differential forms $\Omega_{X / k}^{r}:=\Lambda^{r} \Omega_{X / k}^{1}$.
- If X is smooth then $\Omega_{X / k}^{r}$ is a vector bundle.
- $K_{0}(X)$ Grothendieck group of vector bundles generators $[\mathcal{V}], \mathcal{V}$ a vector bundle on X relations $[\mathcal{V}]=\left[\mathcal{V}^{\prime}\right]+\left[\mathcal{V}^{\prime \prime}\right]$ if

Vector Bundles and Coherent Sheaves

- \mathcal{O}_{X} sheaf of functions on X for the Zariski topology
- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F}.
- Example: Kähler differential forms

$$
\Omega_{X / k}^{r}:=\Lambda^{r} \Omega_{X / k}^{1} .
$$

- If X is smooth then $\Omega_{X / k}^{r}$ is a vector bundle.
- $K_{0}(X)$ Grothendieck group of vector bundles generators [\mathcal{V}], \mathcal{V} a vector bundle on X relations $[\mathcal{V}]=\left[\mathcal{V}^{\prime}\right]+\left[\mathcal{V}^{\prime \prime}\right]$ if

$$
0 \rightarrow \mathcal{V}^{\prime} \rightarrow \mathcal{V} \rightarrow \mathcal{V}^{\prime \prime} \rightarrow 0
$$

Algebraic cycles

- Algebraic cycles are finite formal linear combinations of closed subvarieties of X.

$$
Z=\sum_{i} n_{i} Z_{i} ; \quad Z_{i} \subset X
$$

- $\mathcal{Z}^{r}(X)$ cycles of codimension r (resp. $\mathcal{Z}_{r}(X)$ dimension r)

Algebraic cycles

- Algebraic cycles are finite formal linear combinations of closed subvarieties of X.

$$
Z=\sum_{i} n_{i} Z_{i} ; \quad Z_{i} \subset X
$$

- $\mathcal{Z}^{r}(X)$ cycles of codimension r (resp. $\mathcal{Z}_{r}(X)$ dimension r)

Chow groups

- Intersection product of cycles Z. W

$$
\mathcal{Z}^{r}(X) \otimes \mathcal{Z}^{s}(X) \longrightarrow \mathcal{Z}^{r+s}(X)
$$

- defined for X smooth and cycles Z, W in good position
- $Z \cdot W=$ sum over irreducible components of $Z_{i} \cap W_{j}$ with multiplicities

Chow groups II

- Functoriality; $f: X \rightarrow Y$

- Rational equivalence $\mathcal{Z}^{r}(X)^{\text {rat }} \subset \mathcal{Z}^{r}(X)$

$$
p r_{1 *}\left(Z \cdot p r_{2}^{*}((0)-(\infty))\right) \in \mathcal{Z}^{r}(X)^{\text {rat }}
$$

Chow groups II

- Functoriality; $f: X \rightarrow Y$
- $f_{*}: \mathcal{Z}^{r}(X) \rightarrow \mathcal{Z}^{r-\operatorname{dim} X / Y}(Y)$, f proper - Rational equivalence $\mathcal{Z}^{r}(X)^{\text {rat }} \subset \mathcal{Z}^{r}(X)$

$\operatorname{pr}_{1 *}\left(Z \cdot \operatorname{pr}_{2}^{*}((0)-(\infty))\right) \in \mathcal{Z}^{r}(X)^{\text {rat }}$

Chow groups II

- Functoriality; $f: X \rightarrow Y$
- $f_{*}: \mathcal{Z}^{r}(X) \rightarrow \mathcal{Z}^{r-\operatorname{dim} X / Y}(Y)$, f proper
- $f^{*}: \mathcal{Z}^{r}(Y) \rightarrow \mathcal{Z}^{r}(X), f$ flat
- Rational equivalence $\mathcal{Z}^{r}(X)^{\text {rat }} \subset \mathcal{Z}^{r}(X)$
$p r_{1_{*}}\left(Z \cdot p r_{2}^{*}((0)-(\infty))\right) \in \mathcal{Z}^{r}(X)^{\text {rat }}$

Chow groups II

- Functoriality; $f: X \rightarrow Y$
- $f_{*}: \mathcal{Z}^{r}(X) \rightarrow \mathcal{Z}^{r-\operatorname{dim} X / Y}(Y)$, f proper
- $f^{*}: \mathcal{Z}^{r}(Y) \rightarrow \mathcal{Z}^{r}(X), f$ flat
- Rational equivalence $\mathcal{Z}^{r}(X)^{\text {rat }} \subset \mathcal{Z}^{r}(X)$

$$
p r_{1 *}\left(Z \cdot p r_{2}^{*}((0)-(\infty))\right) \in \mathcal{Z}^{r}(X)^{\mathrm{rat}}
$$

Chow groups II

- Functoriality; $f: X \rightarrow Y$
- $f_{*}: \mathcal{Z}^{r}(X) \rightarrow \mathcal{Z}^{r-\operatorname{dim} X / Y}(Y)$, f proper
- $f^{*}: \mathcal{Z}^{r}(Y) \rightarrow \mathcal{Z}^{r}(X), f$ flat
- Rational equivalence $\mathcal{Z}^{r}(X)^{\text {rat }} \subset \mathcal{Z}^{r}(X)$

$$
\begin{aligned}
& X \stackrel{p r_{1}}{\stackrel{ }{\rightleftarrows}} X \times \mathbb{P}^{1} \xrightarrow{p r_{2}} \mathbb{P}^{1} \\
& p r_{1 *}\left(Z \cdot p r_{2}^{*}((0)-(\infty))\right) \in \mathcal{Z}^{r}(X)^{\text {rat }}
\end{aligned}
$$

Chow groups III

- Chow group

$$
C H^{r}(X):=\mathcal{Z}^{r}(X) / \mathcal{Z}^{r}(X)^{\text {rat }}
$$

- General reference:

Fulton, Intersection Theory (Springer Verlag).

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma\left(U, \mathcal{O}_{X}\right), D \cap U: f=0$.
- $\left\{U_{i}, f_{i}\right\}$ defining D; $\left\{U_{i} \cap U_{j}, f_{i} / f_{j}\right\}$ 1-cocycle with values in \mathcal{O}_{X}^{\times}, sheaf of units. - $\mathrm{CH}^{1}(X) \cong H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$; group of Line Bundles (Picard Group)

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma\left(U, \mathcal{O}_{X}\right), D \cap U: f=0$.
- $\left\{U_{i}, f_{i}\right\}$ defining D;
$\left\{U_{i} \cap U_{j}, f_{i} / f_{j}\right\}$ 1-cocycle with values in \mathcal{O}_{X}^{\times}, sheaf of units.
- $\mathrm{CH}^{1}(X) \cong H^{1}\left(X, \mathcal{O}_{x}^{\times}\right)$; group of Line Bundles (Picard Group)

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma\left(U, \mathcal{O}_{X}\right), D \cap U: f=0$.
- $\left\{U_{i}, f_{i}\right\}$ defining D;
$\left\{U_{i} \cap U_{j}, f_{i} / f_{j}\right\}$ 1-cocycle with values in \mathcal{O}_{X}^{\times}, sheaf of units.
- $\mathrm{CH}^{1}(X) \cong H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$; group of Line Bundles (Picard Group)

Function Theory for Riemann Surfaces

- X projective algebraic curve (Assume $X(k) \neq \emptyset$)
(compact Riemann surface for $k=\mathbb{C}$)
- 0 -cycles $\mathcal{Z}_{0}(X)\left(\right.$ Note $\mathcal{Z}_{0}(X)=\mathcal{Z}^{1}(X) ; 0$-cycles are divisors)
- Degree map

- Divisors of functions

Function Theory for Riemann Surfaces

- X projective algebraic curve (Assume $X(k) \neq \emptyset$) (compact Riemann surface for $k=\mathbb{C}$)
- 0-cycles $\mathcal{Z}_{0}(X)$ (Note $\mathcal{Z}_{0}(X)=\mathcal{Z}^{1}(X) ; 0$-cycles are divisors)
- Degree map
- Divisors of functions

Function Theory for Riemann Surfaces

- X projective algebraic curve (Assume $X(k) \neq \emptyset$) (compact Riemann surface for $k=\mathbb{C}$)
- 0-cycles $\mathcal{Z}_{0}(X)$ (Note $\mathcal{Z}_{0}(X)=\mathcal{Z}^{1}(X) ; 0$-cycles are divisors)
- Degree map

$$
\mathcal{Z}_{0}(X)^{0}:=\operatorname{ker}\left(\mathcal{Z}_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right) ; \quad \sum n_{i}\left(x_{i}\right) \mapsto \sum n_{i}
$$

- Divisors of functions

$$
C H_{0}(X)^{0}:=\mathcal{Z}_{0}(X)^{0} / \mathcal{Z}_{0}(X)^{\text {rat }} \subset C H_{0}(X)=C H^{1}(X)
$$

Function Theory for Riemann Surfaces

- X projective algebraic curve (Assume $X(k) \neq \emptyset$) (compact Riemann surface for $k=\mathbb{C}$)
- 0-cycles $\mathcal{Z}_{0}(X)$ (Note $\mathcal{Z}_{0}(X)=\mathcal{Z}^{1}(X) ;$ 0-cycles are divisors)
- Degree map

$$
\mathcal{Z}_{0}(X)^{0}:=\operatorname{ker}\left(\mathcal{Z}_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right) ; \quad \sum n_{i}\left(x_{i}\right) \mapsto \sum n_{i}
$$

- Divisors of functions

$$
\mathcal{Z}_{0}(X)^{\text {rat }}=\left\{(f) \mid f \in k(X)^{\times}\right\} \subset \mathcal{Z}(X)^{0}
$$

Function Theory for Riemann Surfaces

- X projective algebraic curve (Assume $X(k) \neq \emptyset$) (compact Riemann surface for $k=\mathbb{C}$)
- 0-cycles $\mathcal{Z}_{0}(X)$ (Note $\mathcal{Z}_{0}(X)=\mathcal{Z}^{1}(X) ;$ 0-cycles are divisors)
- Degree map

$$
\mathcal{Z}_{0}(X)^{0}:=\operatorname{ker}\left(\mathcal{Z}_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right) ; \quad \sum n_{i}\left(x_{i}\right) \mapsto \sum n_{i}
$$

- Divisors of functions

$$
\mathcal{Z}_{0}(X)^{\text {rat }}=\left\{(f) \mid f \in k(X)^{\times}\right\} \subset \mathcal{Z}(X)^{0}
$$

$$
C H_{0}(X)^{0}:=\mathcal{Z}_{0}(X)^{0} / \mathcal{Z}_{0}(X)^{\text {rat }} \subset C H_{0}(X)=C H^{1}(X)
$$

Abel's Theorem

- Abel's Theorem:

$$
C H_{0}(X)^{0} \cong J_{X}(k)
$$

- The 0-cycles of degree 0 modulo divisors of functions are the k-points of an Abelian Variety J_{X}.
- Case $k=\mathbb{C}$.

$$
J_{X}(\mathbb{C})=\Gamma\left(X, \Omega_{X / \mathbb{C}}^{1}\right)^{\vee} / H_{1}(X, \mathbb{Z})
$$

Abel's Theorem

- Abel's Theorem:

$$
C H_{0}(X)^{0} \cong J_{X}(k)
$$

- The 0-cycles of degree 0 modulo divisors of functions are the k-points of an Abelian Variety J_{X}.
- Case $k=\mathbb{C}$.

Abel's Theorem

- Abel's Theorem:

$$
C H_{0}(X)^{0} \cong J_{X}(k)
$$

- The 0-cycles of degree 0 modulo divisors of functions are the k-points of an Abelian Variety J_{X}.
- Case $k=\mathbb{C}$.

Abel's Theorem

- Abel's Theorem:

$$
C H_{0}(X)^{0} \cong J_{X}(k)
$$

- The 0-cycles of degree 0 modulo divisors of functions are the k-points of an Abelian Variety J_{X}.
- Case $k=\mathbb{C}$.

$$
J_{X}(\mathbb{C})=\Gamma\left(X, \Omega_{X / \mathbb{C}}^{1}\right)^{\vee} / H_{1}(X, \mathbb{Z})
$$

Abel's Theorem

- Abel's Theorem:

$$
C H_{0}(X)^{0} \cong J_{X}(k)
$$

- The 0-cycles of degree 0 modulo divisors of functions are the k-points of an Abelian Variety J_{X}.
- Case $k=\mathbb{C}$.

$$
\begin{gathered}
J_{X}(\mathbb{C})=\Gamma\left(X, \Omega_{X / \mathbb{C}}^{1}\right)^{\vee} / H_{1}(X, \mathbb{Z}) \\
\mathfrak{A} \in \mathcal{Z}_{0}(X)^{0} \mapsto \int_{c} \in \Gamma\left(X, \Omega^{1}\right)^{\vee} ; \quad \partial c=\mathfrak{A}
\end{gathered}
$$

Objectives

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_{X} and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

Objectives

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_{X} and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

Objectives

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_{X} and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

Objectives

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_{X} and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

Hodge Structures

- Free, f.g. \mathbb{Z}-module $H_{\mathbb{Z}}$ (or \mathbb{Q}-vector space $H_{\mathbb{Q}}$, or \mathbb{R}-vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^{*} H_{\mathbb{C}}$; conjugate filtration $\bar{F}^{*} H_{\mathbb{C}}$.
- H pure of weight n if $F^{p} \cap \bar{F}^{n-p+1}=(0), \forall p$.

- Mixed Hodge structure: $W_{*} H_{\mathbb{Q}}$ increasing weight filtration. F^{*} induces pure HS of weight n on $g r_{n}^{W} H$ for all n.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

Hodge Structures

- Free, f.g. \mathbb{Z}-module $H_{\mathbb{Z}}$ (or \mathbb{Q}-vector space $H_{\mathbb{Q}}$, or \mathbb{R}-vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^{*} H_{\mathbb{C}}$; conjugate filtration $\bar{F}^{*} H_{\mathbb{C}}$.
- H pure of weight n if $F^{P} \cap \bar{F}^{n-p+1}=(0), \forall p$.

- Mixed Hodge structure: $W_{*} H_{\mathbb{Q}}$ increasing weight filtration. F^{*} induces pure HS of weight n on $g r_{n}^{W} H$ for all n.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

Hodge Structures

- Free, f.g. \mathbb{Z}-module $H_{\mathbb{Z}}$ (or \mathbb{Q}-vector space $H_{\mathbb{Q}}$, or \mathbb{R}-vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^{*} H_{\mathbb{C}}$; conjugate filtration $\bar{F}^{*} H_{\mathbb{C}}$.
- H pure of weight n if $F^{p} \cap \bar{F}^{n-p+1}=(0), \forall p$.

$$
H_{\mathbb{C}}=\oplus H^{p, n-p} ; \quad H^{p, n-p}:=F^{p} \cap \bar{F}^{n-p}
$$

- Mixed Hodge structure: $W_{*} H_{\mathbb{Q}}$ increasing weight filtration. F^{*} induces pure HS of weight n on $g r_{n}^{W} H$ for all n.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

Hodge Structures

- Free, f.g. \mathbb{Z}-module $H_{\mathbb{Z}}$ (or \mathbb{Q}-vector space $H_{\mathbb{Q}}$, or \mathbb{R}-vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^{*} H_{\mathbb{C}}$; conjugate filtration $\bar{F}^{*} H_{\mathbb{C}}$.
- H pure of weight n if $F^{p} \cap \bar{F}^{n-p+1}=(0), \forall p$.

$$
H_{\mathbb{C}}=\oplus H^{p, n-p} ; \quad H^{p, n-p}:=F^{p} \cap \bar{F}^{n-p}
$$

- Mixed Hodge structure: $W_{*} H_{\mathbb{Q}}$ increasing weight filtration. F^{*} induces pure HS of weight n on $g r_{n}^{W} H$ for all n.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

Hodge Structures

- Free, f.g. \mathbb{Z}-module $H_{\mathbb{Z}}$ (or \mathbb{Q}-vector space $H_{\mathbb{Q}}$, or \mathbb{R}-vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^{*} H_{\mathbb{C}}$; conjugate filtration $\bar{F}^{*} H_{\mathbb{C}}$.
- H pure of weight n if $F^{p} \cap \bar{F}^{n-p+1}=(0), \forall p$.

$$
H_{\mathbb{C}}=\oplus H^{p, n-p} ; \quad H^{p, n-p}:=F^{p} \cap \bar{F}^{n-p}
$$

- Mixed Hodge structure: $W_{*} H_{\mathbb{Q}}$ increasing weight filtration. F^{*} induces pure HS of weight n on $g r_{n}^{W} H$ for all n.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Coniectures: The real numbers $p[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Heiaht pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\prime}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\mathrm{V}}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$
- Beilinson Coniectures: The real numbers $p[Z]($ resp. $p(Z, W))$ are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$
- Beilinson Conjectures: The real numbers $p[Z]$ (resp. $p(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Ext Groups in the Category of Hodge Structures

- J Non-compact.
- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^{N} / \Gamma ; \Gamma \cong \mathbb{Z}^{n}$ discretely embedded in \mathbb{R}^{N}.
- $0 \rightarrow$ compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
- \mathbb{G}_{m} bundle (biextension) $\mathcal{B} \rightarrow J \times J^{\vee}$
- Canonical metric $\rho: \mathcal{B} \rightarrow \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B}.
- $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers $\rho[Z]$ (resp. $\rho(Z, W)$) are related to values of Hasse-Weil L-functions $L(s)$ at integer points s. (To be discussed in Monday's talk.)

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$

```
conjectures were horses, mathematicians would ride..."
- }\Lambda(\mp@subsup{H}{}{r}(\overline{X}),s)=L(\mp@subsup{H}{}{r}(\overline{X}),s)\cdot\Gamma factor \cdot exponential ter
- Given }n\geq\frac{r}{2}+1,\exists\mathrm{ motivic cohomology group
    (group of algebraic cycles) HM(X)z, Ext group of Hodge structures
- J(X) has a volume form which is well-defined upto \mathbb{Q}
vol}(J/(HM\mp@subsup{)}{\mathbb{Z}}{})\in\mp@subsup{\mathbb{Q}}{}{\times}\cdotL(\mp@subsup{H}{}{r},s=n)
* Order of vanishing of L(S) at }s=n-r-1 conjecturally equal
    dim}\mp@subsup{H}{M}{}(X\mp@subsup{)}{\mathbb{Z}}{
```


Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."
- $\Lambda\left(H^{r}(\bar{X}), s\right)=L\left(H^{r}(\bar{X}), s\right) \cdot \Gamma$ factor \cdot exponential term

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."
- $\Lambda\left(H^{r}(\bar{X}), s\right)=L\left(H^{r}(\bar{X}), s\right) \cdot \Gamma$ factor \cdot exponential term
- Given $n \geq \frac{r}{2}+1, \exists$ motivic cohomology group (group of algebraic cycles) $H_{M}(X)_{\mathbb{Z}}$, Ext group of Hodge structures $J(X)$, and injective cycle map $H_{M}(X)_{\mathbb{Z}} \rightarrow J(X)$
- Order of vanishing of $L(s)$ at $s=n-r-1$ conjecturally equals

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."
- $\Lambda\left(H^{r}(\bar{X}), s\right)=L\left(H^{r}(\bar{X}), s\right) \cdot \Gamma$ factor \cdot exponential term
- Given $n \geq \frac{r}{2}+1, \exists$ motivic cohomology group (group of algebraic cycles) $H_{M}(X)_{\mathbb{Z}}$, Ext group of Hodge structures $J(X)$, and injective cycle map $H_{M}(X)_{\mathbb{Z}} \rightarrow J(X)$
- $J(X)$ has a volume form which is well-defined upto \mathbb{Q}^{\times}.
- Order of vanishing of $L(s)$ at $s=n-r-1$ conjecturally equals

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."
- $\Lambda\left(H^{r}(\bar{X}), s\right)=L\left(H^{r}(\bar{X}), s\right) \cdot \Gamma$ factor \cdot exponential term
- Given $n \geq \frac{r}{2}+1, \exists$ motivic cohomology group (group of algebraic cycles) $H_{M}(X)_{\mathbb{Z}}$, Ext group of Hodge structures $J(X)$, and injective cycle map $H_{M}(X)_{\mathbb{Z}} \rightarrow J(X)$
- $J(X)$ has a volume form which is well-defined upto \mathbb{Q}^{\times}.
$-\operatorname{vol}\left(J /\left(H_{M}\right)_{\mathbb{Z}}\right) \in \mathbb{Q}^{\times} \cdot L\left(H^{r}, s=n\right)$.

Beilinson Conjectures (Viewed from outer space)

- Smooth, projective variety X over number field \leftrightarrow collection of Hasse-Weil L-functions $L\left(H^{r}(\bar{X}), s\right)$
- "If conjectures were horses, mathematicians would ride..."
- $\Lambda\left(H^{r}(\bar{X}), s\right)=L\left(H^{r}(\bar{X}), s\right) \cdot \Gamma$ factor \cdot exponential term
- Given $n \geq \frac{r}{2}+1, \exists$ motivic cohomology group (group of algebraic cycles) $H_{M}(X)_{\mathbb{Z}}$, Ext group of Hodge structures $J(X)$, and injective cycle map $H_{M}(X)_{\mathbb{Z}} \rightarrow J(X)$
- $J(X)$ has a volume form which is well-defined upto \mathbb{Q}^{\times}.
- $\operatorname{vol}\left(J /\left(H_{M}\right)_{\mathbb{Z}}\right) \in \mathbb{Q}^{\times} \cdot L\left(H^{r}, s=n\right)$.
- Order of vanishing of $L(s)$ at $s=n-r-1$ conjecturally equals $\operatorname{dim} H_{M}(X)_{\mathbb{Z}}$.

Chern classes

－ \mathcal{V} rank r vector bundle on X
－Chern classes $c_{i}(\mathcal{V}) \in C H^{i}(X)$ defined for $1 \leq i \leq r$ ．
－Given $s_{1}, \ldots, s_{p} \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position．
－Locally， $\mathcal{V} \cong \mathcal{O}_{x}^{r}$ ；the s_{i} yield $r \times p$ matrix of functions．
－$c_{r-p+1}(\mathcal{V}) \in \mathrm{CH}^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors．

Chern classes

- \mathcal{V} rank r vector bundle on X
- Chern classes $c_{i}(\mathcal{V}) \in C H^{i}(X)$ defined for $1 \leq i \leq r$.
- Given $s_{1}, \ldots, s_{p} \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_{X}^{r}$; the s_{i} yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in \mathrm{CH}^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

Chern classes

- \mathcal{V} rank r vector bundle on X
- Chern classes $c_{i}(\mathcal{V}) \in C H^{i}(X)$ defined for $1 \leq i \leq r$.
- Given $s_{1}, \ldots, s_{p} \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_{X}^{r}$; the s_{i} yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in \mathrm{CH}^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

Chern classes

- \mathcal{V} rank r vector bundle on X
- Chern classes $c_{i}(\mathcal{V}) \in C H^{i}(X)$ defined for $1 \leq i \leq r$.
- Given $s_{1}, \ldots, s_{p} \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_{X}^{r}$; the s_{i} yield $r \times p$ matrix of functions. minors.

Chern classes

- \mathcal{V} rank r vector bundle on X
- Chern classes $c_{i}(\mathcal{V}) \in C H^{i}(X)$ defined for $1 \leq i \leq r$.
- Given $s_{1}, \ldots, s_{p} \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_{X}^{r}$; the s_{i} yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in C^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

Chern Character

- Chern Character (X smooth)

$$
(*) \quad c h: K_{0}(X)_{\mathbb{Q}} \cong \bigoplus_{i} c H^{i}(X)_{\mathbb{Q}} .
$$

Here $c h$ is a power series in the c_{i}.

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_{1}: K_{0}(X) \rightarrow K_{0}(Y)$
- Example, $Y=$ point.
- $f_{i}[\mathcal{\nu}]=\sum(-1)^{i}\left[H^{i}(X, \mathcal{V})\right]=\chi(\nu) \in K_{0}($ point $)=\mathbb{Z}$.

Chern Character

- Chern Character (X smooth)

$$
(*) \quad c h: K_{0}(X)_{\mathbb{Q}} \cong \bigoplus_{i} c H^{i}(X)_{\mathbb{Q}} .
$$

Here $c h$ is a power series in the c_{i}.

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.

```
- Example, }Y=\mathrm{ point.
- }\mp@subsup{f}{!}{[}[\mathcal{V}]=\sum(-1\mp@subsup{)}{}{i}[\mp@subsup{H}{}{i}(X,\mathcal{V})]=\chi(\mathcal{V})\in\mp@subsup{K}{0}{\prime}(\mathrm{ point })=\mathbb{Z}\mathrm{ .
```


Chern Character

- Chern Character (X smooth)

$$
(*) \quad c h: K_{0}(X)_{\mathbb{Q}} \cong \bigoplus_{i} c H^{i}(X)_{\mathbb{Q}} .
$$

Here $c h$ is a power series in the c_{i}.

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_{!}: K_{0}(X) \rightarrow K_{0}(Y)$

Chern Character

- Chern Character (X smooth)

$$
(*) \quad c h: K_{0}(X)_{\mathbb{Q}} \cong \bigoplus_{i} c H^{i}(X)_{\mathbb{Q}} .
$$

Here $c h$ is a power series in the c_{i}.

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_{!}: K_{0}(X) \rightarrow K_{0}(Y)$
- Example, $Y=$ point.

Chern Character

- Chern Character (X smooth)

$$
(*) \quad c h: K_{0}(X)_{\mathbb{Q}} \cong \bigoplus_{i} c H^{i}(X)_{\mathbb{Q}} .
$$

Here $c h$ is a power series in the c_{i}.

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_{!}: K_{0}(X) \rightarrow K_{0}(Y)$
- Example, $Y=$ point.
- $f_{!}[\mathcal{V}]=\sum(-1)^{i}\left[H^{i}(X, \mathcal{V})\right]=\chi(\mathcal{V}) \in K_{0}($ point $)=\mathbb{Z}$.

Riemann Roch

- Todd class $\operatorname{Td}(X) \in C H^{*}(X)$
- Riemann Roch

$$
f_{*}(\operatorname{Td}(X) \cdot \operatorname{ch}([\mathcal{V}]))=\operatorname{Td}(Y) \cdot \operatorname{ch}\left(f_{!}[\mathcal{V}]\right) .
$$

- On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Riemann Roch

- Todd class $\operatorname{Td}(X) \in \mathrm{CH}^{*}(X)$
- Riemann Roch

$$
f_{*}(\operatorname{Td}(X) \cdot \operatorname{ch}([\mathcal{V}]))=\operatorname{Td}(Y) \cdot \operatorname{ch}\left(f_{!}[\mathcal{V}]\right) .
$$

- On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Riemann Roch

- Todd class $\operatorname{Td}(X) \in \mathrm{CH}^{*}(X)$
- Riemann Roch

$$
f_{*}(\operatorname{Td}(X) \cdot \operatorname{ch}([\mathcal{V}]))=\operatorname{Td}(Y) \cdot \operatorname{ch}\left(f_{!}[\mathcal{V}]\right) .
$$

- On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Enumerative Geometry

- Deep and important problems involving intersection numbers of cycles.
> - Schubert calculus (intersection theory on Grassmannians) - Enumerative problems arising in physics (intersection theory on orbifolds)
> - The Weil conjectures (Lefschetz fixed point formula; counting \mathbb{F}_{q}-rational points by intersection the graph of frobenius with the diagonal)

Enumerative Geometry

- Deep and important problems involving intersection numbers of cycles.
- Schubert calculus (intersection theory on Grassmannians)
- Enumerative problems arising in physics (intersection theory on
orbifolds)
The Weil conjectures (Lefschetz fixed point formula; counting
\mathbb{F}_{q}-rational points by intersection the graph of frobenius with the
diagonal)

Enumerative Geometry

- Deep and important problems involving intersection numbers of cycles.
- Schubert calculus (intersection theory on Grassmannians)
- Enumerative problems arising in physics (intersection theory on orbifolds)
- The Weil conjectures (Lefschetz fixed point formula; counting
$\mathbb{F}_{q^{-}}$-rational points by intersection the graph of frobenius with the
diagonal)

Enumerative Geometry

- Deep and important problems involving intersection numbers of cycles.
- Schubert calculus (intersection theory on Grassmannians)
- Enumerative problems arising in physics (intersection theory on orbifolds)
- The Weil conjectures (Lefschetz fixed point formula; counting \mathbb{F}_{q}-rational points by intersection the graph of frobenius with the diagonal)

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series 「 (X, L).
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- $X \xrightarrow{\text { rational map }} \mathbb{P}\left(\Gamma(X, L)^{\vee}\right)$
- Linear Series yield classification for dim $X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- $X \xrightarrow{\text { rational map }} \mathbb{P}\left(\Gamma(X, L)^{\vee}\right)$
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- $X \xrightarrow{\text { rational map }} \mathbb{P}\left(\Gamma(X, L)^{\vee}\right)$
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- $X \xrightarrow{\text { rational map }} \mathbb{P}\left(\Gamma(X, L)^{\vee}\right)$
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Linear Series; Classification Problems

- Lline bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \operatorname{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell):=\ell(x) \in L(x) \cong k$.
- Problem: $L(x) \cong k$ not canonical: only get line in $\operatorname{Hom}(\Gamma(X, L), k)$
- Possibly $\ell(x)=0, \forall \ell, \theta(x)=0$. Don't even get a line!
- $X \xrightarrow{\text { rational map }} \mathbb{P}\left(\Gamma(X, L)^{\vee}\right)$
- Linear Series yield classification for $\operatorname{dim} X=2$ (Algebraic Surfaces).

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).

- Brown-Gersten Spectral sequence (X smooth)

$$
E_{2}^{p, q}=H^{p}\left(X, K_{-q, X}\right) \Rightarrow K_{-p-q}(X)
$$

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).
- Higher K-groups $K_{n}(X), n \geq 0$
- Zariski sheaves $\mathcal{K}_{n, X}$
- Brown-Gersten Spectral sequence (X smooth)

$$
E_{2}^{p . a}=H^{D}\left(X, \mathcal{K}_{-q, X}\right) \Rightarrow K_{p-q}(X)
$$

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).
- Higher K-groups $K_{n}(X), n \geq 0$
- $K_{n}(X)=(0), n<0$ if X smooth.
- Zariski sheaves $\mathcal{K}_{n, X}$
- Brown-Gersten Spectral sequence (X smooth)

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).
- Higher K-groups $K_{n}(X), n \geq 0$
- $K_{n}(X)=(0), n<0$ if X smooth.
- Zariski sheaves $\mathcal{K}_{n, X}$
- Brown-Gersten Spectral sequence (X smooth)

$$
E_{2}^{p, q}=H^{p}\left(X, \mathcal{K}_{-q, X}\right) \Rightarrow K_{-p-q}(X)
$$

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).
- Higher K-groups $K_{n}(X), n \geq 0$
- $K_{n}(X)=(0), n<0$ if X smooth.
- Zariski sheaves $\mathcal{K}_{n, X}$
- Brown-Gersten Spectral sequence (X smooth)

$$
E_{2}^{p, q}=H^{p}\left(X, \mathcal{K}_{-q, X}\right) \Rightarrow K_{-p-q}(X)
$$

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Higher K-theory

- K-theory spectrum $K(X)$ (Quillen).
- Higher K-groups $K_{n}(X), n \geq 0$
- $K_{n}(X)=(0), n<0$ if X smooth.
- Zariski sheaves $\mathcal{K}_{n, X}$
- Brown-Gersten Spectral sequence (X smooth)

$$
E_{2}^{p, q}=H^{p}\left(X, \mathcal{K}_{-q, X}\right) \Rightarrow K_{-p-q}(X)
$$

- We will need (Thm. of Thomason) Brown-Gersten holds for X possibly singular.

Gersten Resolution

- Resolution of $\mathcal{K}_{n, X}$ for X smooth

$$
\begin{aligned}
0 \rightarrow \mathcal{K}_{n} \rightarrow \coprod_{x \in X^{0}} i_{X *} K_{n}(k(x)) \rightarrow \coprod_{x \in X^{1}} i_{X *} & K_{n-1}(k(x)) \\
& \cdots \coprod_{x \in X^{n}} i_{x *} K_{0}(k(x)) \rightarrow 0
\end{aligned}
$$

- Corollary: $H^{n}\left(X, \mathcal{K}_{n}\right) \cong C H^{n}(X)$.
- $n=1 ; \operatorname{Pic}(X)=C H^{1}(X) \cong H^{1}\left(X, \mathcal{K}_{1}\right)=H^{1}\left(X, O_{X}^{X}\right)$.
- In general

Gersten Resolution

- Resolution of $\mathcal{K}_{n, X}$ for X smooth

$$
\begin{aligned}
0 \rightarrow \mathcal{K}_{n} \rightarrow \coprod_{x \in X^{0}} i_{x *} K_{n}(k(x)) \rightarrow \coprod_{x \in X^{1}} i_{x *} & K_{n-1}(k(x)) \\
& \cdots \coprod_{x \in X^{n}} i_{x *} K_{0}(k(x)) \rightarrow 0
\end{aligned}
$$

- Corollary: $H^{n}\left(X, \mathcal{K}_{n}\right) \cong C H^{n}(X)$.
- In general

Gersten Resolution

- Resolution of $\mathcal{K}_{n, X}$ for X smooth

$$
\begin{aligned}
0 \rightarrow \mathcal{K}_{n} \rightarrow \coprod_{x \in X^{0}} i_{x *} K_{n}(k(x)) \rightarrow \coprod_{x \in X^{1}} i_{X *} & K_{n-1}(k(x)) \\
& \cdots \coprod_{x \in X^{n}} i_{x *} K_{0}(k(x)) \rightarrow 0
\end{aligned}
$$

- Corollary: $H^{n}\left(X, \mathcal{K}_{n}\right) \cong C H^{n}(X)$.
- $n=1 ; \operatorname{Pic}(X)=C H^{1}(X) \cong H^{1}\left(X, \mathcal{K}_{1}\right)=H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$.
- In general

Gersten Resolution

- Resolution of $\mathcal{K}_{n, X}$ for X smooth

$$
\begin{aligned}
0 \rightarrow \mathcal{K}_{n} \rightarrow \coprod_{x \in X^{0}} i_{x *} K_{n}(k(x)) \rightarrow \coprod_{x \in X^{1}} i_{x *} & K_{n-1}(k(x)) \\
& \cdots \coprod_{x \in X^{n}} i_{X *} K_{0}(k(x)) \rightarrow 0
\end{aligned}
$$

- Corollary: $H^{n}\left(X, \mathcal{K}_{n}\right) \cong C H^{n}(X)$.
- $n=1 ; \operatorname{Pic}(X)=C H^{1}(X) \cong H^{1}\left(X, \mathcal{K}_{1}\right)=H^{1}\left(X, \mathcal{O}_{X}^{\times}\right)$.
- In general

$$
\begin{gathered}
\coprod_{x \in X^{n-1}} i_{X *} K_{1}(k(x)) \rightarrow \coprod_{x \in X^{n}} i_{x *} K_{0}(k(x)) ; \\
K_{1}(k(x))=k(x)^{\times}, K_{0}(k(x))=\mathbb{Z}
\end{gathered}
$$

Motivic Cohomology

- k a field. DM ${ }_{\text {Nis }}^{\text {eff,-- }}$ triangulated category of Nisnevich sheaves with transfers.
- References
- Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
v Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
- Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.
- For X smooth, have objects $M(X), \mathbb{Z}(q)$ in DM $_{\text {Nlis }}^{\text {eff,- }}$

$$
H_{M}^{p}(X, \mathbb{Z}(q)):=\operatorname{Hom}_{\mathbf{D M}_{N i s}^{e f f,-}}^{\text {eff }}(M(X), \mathbb{Z}(q)[p])
$$

Motivic Cohomology

- k a field. DM ${ }_{\text {Nis }}^{\text {eff,- }}$ triangulated category of Nisnevich sheaves with transfers.
- References
- Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
- Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
- Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.

Motivic Cohomology

- k a field. DM ${ }_{\text {Nis }}^{\text {eff,-- }}$ triangulated category of Nisnevich sheaves with transfers.
- References
- Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
- Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
- Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.
- For X smooth, have objects $M(X), \mathbb{Z}(q)$ in $\mathbf{D M}_{\text {Nis }}^{\text {eff,- }}$

$$
H_{M}^{p}(X, \mathbb{Z}(q)):=\operatorname{Hom}_{\mathbf{D M}_{N i s}^{e f f,-}}(M(X), \mathbb{Z}(q)[p])
$$

Motivic Cohomology and K-theory

- Beilinson definition

$$
H_{M}^{p}(X, \mathbb{Q}(q)):=g r_{\gamma}^{q} K_{2 q-p}(X)_{\mathbb{Q}} .
$$

- Example:

$$
H_{M}^{2 p}(X, \mathbb{Q}(p))=g r_{\gamma}^{p} K_{0}(X) \cong C H^{p}(X)_{\mathbb{Q}}
$$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.

- Complex $\mathcal{Z}^{p}(X, \cdot)$:

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{P}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{P}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.

- Complex $\mathcal{Z}^{p}(X, \cdot)$:

- $C H^{p}(X, n):=H^{-n}\left(\mathcal{Z}^{p}(X, \cdot)\right)$.

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

$$
\cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{1}\right)^{\prime} \xrightarrow{\delta} \mathcal{Z}^{p}(X)
$$

Higher Chow Groups

- $\Delta_{k}^{n}:=\operatorname{Spec} k\left[t_{0}, \ldots, t_{n}\right] /\left(\sum t_{i}-1\right)$ algebraic n-simplex.
- $\iota_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ locus $t_{i}=0$.
- $\mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \subset \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)$ cycles in good position w.r.t. faces.
- $\delta_{i}:=\iota_{i}^{*}: \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \rightarrow \mathcal{Z}^{p}\left(X \times \Delta^{n-1}\right)^{\prime} ; \delta=\sum(-1)^{i} \delta_{i}$
- Complex $\mathcal{Z}^{p}(X, \cdot)$:

$$
\cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{n}\right)^{\prime} \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}\left(X \times \Delta^{1}\right)^{\prime} \xrightarrow{\delta} \mathcal{Z}^{p}(X)
$$

- $C H^{p}(X, n):=H^{-n}\left(\mathcal{Z}^{p}(X, \cdot)\right)$.

Higher Chow Groups and Motivic Cohomology

- X smooth, $H_{M}^{p}(X, \mathbb{Z}(q)) \cong C H^{q}(X, 2 q-p)$.
- Variant: Cubical cycles: $\square:=\mathbb{P}^{1}-\{1\}$; Replace Δ^{n} with \square^{n}; factor out by degeneracies.
- Face maps $\iota_{i}^{j}: \square^{n-1} \hookrightarrow \square^{n}, j=0, \infty$

Examples

- Chow groups $C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.

Examples

- Chow groups $C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.
- Milnor classes: $f_{1}, \ldots, f_{n} \in \Gamma\left(X, \mathcal{O}_{X}^{\times}\right) .\left\{f_{1}, \ldots, f_{n}\right\}:=$ $\left[\left(x, f_{1}(x), \ldots, f_{n}(x)\right) \cap\left(X \times \square^{n}\right)\right] \in C H^{n}(X, n)=H_{M}^{n}(X, \mathbb{Z}(n))$.

Examples

- Chow groups $C H^{p}(X)=H_{M}^{2 p}(X, \mathbb{Z}(p))$.
- Milnor classes: $f_{1}, \ldots, f_{n} \in \Gamma\left(X, \mathcal{O}_{X}^{\times}\right) .\left\{f_{1}, \ldots, f_{n}\right\}:=$ $\left[\left(x, f_{1}(x), \ldots, f_{n}(x)\right) \cap\left(X \times \square^{n}\right)\right] \in C H^{n}(X, n)=H_{M}^{n}(X, \mathbb{Z}(n))$.
- $\operatorname{dim} X=2, C_{i} \subset X$ curves, $f_{i} \in k\left(C_{i}\right)^{\times}$rational functions. $\Gamma_{i}:=\left\{\left(c, f_{i}(c)\right) \mid c \in C_{i}\right\} \in \mathcal{Z}^{2}\left(X \times \square^{1}\right)$.

$$
\sum_{i}\left(f_{i}\right)=0 \in \mathcal{Z}_{0}(X) \Rightarrow \sum \Gamma_{i} \in C H^{2}(X, 1)=H_{M}^{3}(X, \mathbb{Z}(2))
$$

Higher Chow DGA

- $X=$ Spec k a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

Higher Chow DGA

- $X=$ Spec k a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

- $\mathfrak{N}^{p}(r):=\mathcal{Z}^{r}\left(\square_{k}^{2 r-p}\right)_{\mathbb{Q}, A l t}$

Higher Chow DGA

- $X=$ Spec k a point. Product

$$
\mathcal{Z}^{p}\left(\square^{n}\right) \otimes \mathcal{Z}^{q}\left(\square^{m}\right) \rightarrow \mathcal{Z}^{p+q}\left(\square^{m+n}\right)
$$

- $\mathfrak{N}^{p}(r):=\mathcal{Z}^{r}\left(\square_{k}^{2 r-p}\right)_{\mathbb{Q}, A l t}$
- $\mathfrak{N}^{*}(\bullet):=\bigoplus_{r, p \geq 0} \mathfrak{N}^{p}(r)$

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H:=H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- $G=\operatorname{Spec}(H)$ as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Example: Dilogarithm Motive

$$
\begin{array}{cc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} \\
\uparrow_{\partial} & \mathfrak{N}^{2}(2) \\
& \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \\
& \uparrow_{\partial} \\
\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \bigwedge^{2} k^{\times}$

Example: Dilogarithm Motive

$$
\begin{array}{cc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} \\
\uparrow_{\partial} & \mathfrak{N}^{2}(2) \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \uparrow_{\partial} \\
& \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \bigwedge^{2} k^{\times}$

Example: Dilogarithm Motive

$$
\begin{array}{ccc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} & \mathfrak{N}^{2}(2) \\
\uparrow_{\partial} & & \uparrow_{\partial} \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \longrightarrow & \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles

Example: Dilogarithm Motive

$$
\begin{array}{ccc}
\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(1) & \xrightarrow{\text { mult }} & \mathfrak{N}^{2}(2) \\
\uparrow_{\partial} & & \uparrow_{\partial} \\
\left(\mathfrak{N}^{1}(1) \otimes \mathfrak{N}^{1}(0)\right) \oplus\left(\mathfrak{N}^{1}(0) \otimes \mathfrak{N}^{1}(1)\right) & \longrightarrow & \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2)
\end{array}
$$

- $\mathfrak{N}^{1}(1) / \partial \mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \ni T_{x}, x \in k-\{0,1\}$ Totaro cycles
- $\mathfrak{N}^{2}(2) /$ mult $\circ \partial \cong \wedge^{2} k^{\times}$

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.

- Comodule generated is $\operatorname{Dilog}(x)$.

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is Dilog(x).

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.

Example: Dilogarithm Motive II

- $T_{x}=\left\{\left(t, 1-t, 1-x t^{-1}\right) \mid t \in \mathbb{P}^{1}\right\}$ parametrized curve in \square^{3}.
- $\partial T_{x}=(x, 1-x) \in \mathcal{Z}^{2}\left(\square^{2}\right)=\mathfrak{N}^{2}(2)$.
- $\left[(x) \otimes(1-x), T_{x}\right] \in H^{0}\left(\operatorname{Bar}\left(\mathfrak{N}^{*}(\bullet)\right)\right)$
- Comodule generated is $\operatorname{Dilog}(x)$.
- $0 \rightarrow H_{M}^{1}(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^{1}(2) / \partial \mathfrak{N}^{0}(2) \xrightarrow{\partial} \Lambda^{2} k^{\times} \otimes \mathbb{Q}$

The Hodge Conjecture

- $k=\mathbb{C}, X$ smooth, projective variety.
- $Z \in \mathcal{Z}^{r}(X),[Z]_{D R} \in F^{r} \mathbb{H}^{2 r}\left(X, \Omega_{X}^{*}\right),[Z]_{\text {Betti }} \in H_{\text {Betti }}^{2 r}(X, \mathbb{Z}(r))$.
- Hodge Conjecture: $F^{r} H_{B e t t i}^{2 r}(X, \mathbb{C}) \cap H^{2 r}(X, \mathbb{Q}(r))$ is generated by algebraic cycle classes.

The Hodge Conjecture

- $k=\mathbb{C}, X$ smooth, projective variety.
- $Z \in \mathcal{Z}^{r}(X),[Z]_{D R} \in F^{r} \mathbb{H}^{2 r}\left(X, \Omega_{X}^{*}\right),[Z]_{\text {Betti }} \in H_{\text {Betti }}^{2 r}(X, \mathbb{Z}(r))$.

Hodge Conjecture: $F^{r} H_{\text {Betti }}^{2 r}(X, \mathbb{C}) \cap H^{2 r}(X, \mathbb{Q}(r))$ is generated by algebraic cycle classes.

The Hodge Conjecture

- $k=\mathbb{C}, X$ smooth, projective variety.
- $Z \in \mathcal{Z}^{r}(X),[Z]_{D R} \in F^{r} \mathbb{H}^{2 r}\left(X, \Omega_{X}^{*}\right),[Z]_{\text {Betti }} \in H_{B e t t i}^{2 r}(X, \mathbb{Z}(r))$.
- Hodge Conjecture: $F^{r} H_{B e t t i}^{2 r}(X, \mathbb{C}) \cap H^{2 r}(X, \mathbb{Q}(r))$ is generated by algebraic cycle classes.

Infinitesimal and Variational Hodge Conjecture

- Variational Hodge Conjecture (Grothendieck): X / S family, σ_{s} horizontal family of cohomology classes. If σ_{0} is algebraic at one point $0 \in S$, then it is algebraic everywhere.
mixed characteristic $\Lambda=W(k)$). Then algebraic classes on the closed fibre lift to algebraic classes on all thickenings iff the horizontal lift (or crystalline lift in mixed char.) of the cohomology class is Hodge.

Infinitesimal and Variational Hodge Conjecture

- Variational Hodge Conjecture (Grothendieck): X / S family, σ_{s} horizontal family of cohomology classes. If σ_{0} is algebraic at one point $0 \in S$, then it is algebraic everywhere.
- Infinitesimal Hodge theorem: X / Λ formal family $(\Lambda=\overline{\mathbb{Q}}[[t]]$ or mixed characteristic $\Lambda=W(k))$. Then algebraic classes on the closed fibre lift to algebraic classes on all thickenings iff the horizontal lift (or crystalline lift in mixed char.) of the cohomology class is Hodge.

