Algebraic Cycles

Spencer Bloch

February 28, March 3,4, 2014 Albert Lectures, University of Chicago

Spencer Bloch ()

Outline

Introduction

- Algebraic varieties
- Vector Bundles and Coherent Sheaves
- Algebraic Cycles

Great Themes

- Abel's Theorem
- The Riemann-Roch Theorem
- Enumerative Geometry
- Higher K-theory
- Motivic cohomology
- The Hodge conjecture

Sheaves

- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.

Algebraic cycles

- Traditionally quite crude (moving lemmas and issues of functoriality)
- ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
- ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of *L*-functions
 - ★ Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Sheaves

- Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
- Deep conjectures (Geometric Langlands); viable programs of study.

Algebraic cycles

- Traditionally quite crude (moving lemmas and issues of functoriality)
- ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
- ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.

Algebraic cycles

- Traditionally quite crude (moving lemmas and issues of functoriality)
- ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
- ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of *L*-functions
 - ★ Hodge conjectures
- Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - * Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ► Deep conjectures (cycles ↔ morphisms in the category of motives)
 - Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ▶ Deep conjectures (cycles ↔ morphisms in the category of motives)
 - Beilinson conjectures; special values of L-functions
 - Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ► Deep conjectures (cycles ↔ morphisms in the category of motives)
 - Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

- Sheaves
 - Sophisticated; powerful tools (Grothendieck's 6 functors, homological methods)
 - Deep conjectures (Geometric Langlands); viable programs of study.
- Algebraic cycles
 - Traditionally quite crude (moving lemmas and issues of functoriality)
 - ► Work of Voevodsky (*h*-topology, A¹-homotopy and methods from algebraic topology)
 - ► Deep conjectures (cycles ↔ morphisms in the category of motives)
 - Beilinson conjectures; special values of L-functions
 - ★ Hodge conjectures
 - Cycle schizophrenia; tools used to study cycles (higher K-theory, A¹-homotopy, cyclic homology) are often quite removed from the cycles themselves.

Affine and Projective Varieties.

- k a field; \mathbb{A}_k^n is affine *n*-space over k.
- Affine variety V defined by polynomials $f_i(x_1, \ldots, x_n) = 0; V \subset \mathbb{A}_k^n$.
- Projective space $\mathbb{P}_k^n =$ Space of lines through 0 in \mathbb{A}_k^{n+1}
- Projective variety $X \subset \mathbb{P}_k^n$ defined by vanishing of homogeneous polynomials $F_i(T_0, \ldots, T_n)$.

Affine and Projective Varieties.

- *k* a field; \mathbb{A}_k^n is affine *n*-space over *k*.
- Affine variety V defined by polynomials $f_i(x_1, \ldots, x_n) = 0; V \subset \mathbb{A}_k^n$.
- Projective space $\mathbb{P}_k^n =$ Space of lines through 0 in \mathbb{A}_k^{n+1}
- Projective variety $X \subset \mathbb{P}_k^n$ defined by vanishing of homogeneous polynomials $F_i(T_0, \ldots, T_n)$.

Vector Bundles and Coherent Sheaves

• \mathcal{O}_X sheaf of functions on X for the Zariski topology

- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F} .
 - Example: Kähler differential forms

$$\Omega'_{X/k} := \bigwedge \Omega'_{X/k}.$$

- If X is *smooth* then $\Omega_{X/k}^r$ is a vector bundle.
- *K*₀(*X*) Grothendieck group of vector bundles generators [*V*], *V* a vector bundle on *X* relations [*V*] = [*V*'] + [*V*''] if

$$0 \to \mathcal{V}' \to \mathcal{V} \to \mathcal{V}'' \to 0.$$

Vector Bundles and Coherent Sheaves

- O_X sheaf of functions on X for the Zariski topology
- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F} .
 - Example: Kähler differential forms

$$\Omega_{X/k}^r := \bigwedge' \Omega_{X/k}^1.$$

- If X is smooth then $\Omega_{X/k}^r$ is a vector bundle.
- K₀(X) Grothendieck group of vector bundles generators [V], V a vector bundle on X relations [V] = [V'] + [V''] if

$$0 \to \mathcal{V}' \to \mathcal{V} \to \mathcal{V}'' \to 0.$$

Vector Bundles and Coherent Sheaves

- \mathcal{O}_X sheaf of functions on X for the Zariski topology
- Vector bundles \mathcal{V} and coherent sheaves \mathcal{F} .
 - Example: Kähler differential forms

$$\Omega_{X/k}^r := \bigwedge' \Omega_{X/k}^1.$$

- If X is *smooth* then $\Omega_{X/k}^r$ is a vector bundle.
- *K*₀(*X*) Grothendieck group of vector bundles generators [*V*], *V* a vector bundle on *X* relations [*V*] = [*V*'] + [*V*''] if

$$0 \rightarrow \mathcal{V}' \rightarrow \mathcal{V} \rightarrow \mathcal{V}'' \rightarrow 0.$$

• Algebraic cycles are finite formal linear combinations of closed subvarieties of *X*.

$$Z=\sum_i n_i Z_i; \quad Z_i\subset X.$$

• $\mathcal{Z}^r(X)$ cycles of codimension *r* (resp. $\mathcal{Z}_r(X)$ dimension *r*)

• Algebraic cycles are finite formal linear combinations of closed subvarieties of *X*.

$$Z=\sum_i n_i Z_i; \quad Z_i\subset X.$$

• $\mathcal{Z}^{r}(X)$ cycles of codimension *r* (resp. $\mathcal{Z}_{r}(X)$ dimension *r*)

Chow groups

• Intersection product of cycles $Z \cdot W$

$$\mathcal{Z}^{r}(X)\otimes \mathcal{Z}^{s}(X)\dashrightarrow \mathcal{Z}^{r+s}(X)$$

- defined for X smooth and cycles Z, W in good position
- $\blacktriangleright Z \cdot W =$

sum over irreducible components of $Z_i \cap W_j$ with multiplicities

• Functoriality; $f : X \to Y$

- $f_*: \mathcal{Z}^r(X) \to \mathcal{Z}^{r-\dim X/Y}(Y)$, f proper
- $f^* : \mathcal{Z}^r(Y) \to \mathcal{Z}^r(X)$, f flat

• Rational equivalence $\mathcal{Z}^r(X)^{rat} \subset \mathcal{Z}^r(X)$

$$\begin{array}{c} X \xleftarrow{pr_1} X \times \mathbb{P}^1 \xrightarrow{pr_2} \mathbb{P}^1 \\ pr_{1*}(Z \cdot pr_2^*((0) - (\infty))) \in \mathcal{Z}^r(X)^{rat} \end{array}$$

• Functoriality; $f : X \to Y$

- $f_*: \mathcal{Z}^r(X) \to \mathcal{Z}^{r-\dim X/Y}(Y), f \text{ proper}$
- $f^* : \mathcal{Z}^r(Y) \to \mathcal{Z}^r(X)$, f flat

• Rational equivalence $\mathcal{Z}^r(X)^{rat} \subset \mathcal{Z}^r(X)$

$$X \xleftarrow{pr_1} X \times \mathbb{P}^1 \xrightarrow{pr_2} \mathbb{P}^1$$

 $pr_{1*}(Z \cdot pr_2^*((0) - (\infty))) \in \mathcal{Z}^r(X)^{rat}$

Functoriality; f: X → Y f_{*}: Z^r(X) → Z^{r-dim X/Y}(Y), f proper f^{*}: Z^r(Y) → Z^r(X), f flat Rational equivalence Z^r(X)^{rat} ⊂ Z^r(X)

$$X \stackrel{pr_1}{\longleftarrow} X \times \mathbb{P}^1 \xrightarrow{pr_2} \mathbb{P}^1$$
$$pr_{1*}(Z \cdot pr_2^*((0) - (\infty))) \in \mathcal{Z}^r(X)^{\text{rat}}$$

• Functoriality; $f : X \rightarrow Y$

- $f_*: \mathcal{Z}^r(X) \to \mathcal{Z}^{r-\dim X/Y}(Y), f \text{ proper}$
- $f^* : \mathcal{Z}^r(Y) \to \mathcal{Z}^r(X)$, f flat
- Rational equivalence $\mathcal{Z}^{r}(X)^{rat} \subset \mathcal{Z}^{r}(X)$

$$X \xleftarrow{pr_1} X \times \mathbb{P}^1 \xrightarrow{pr_2} \mathbb{P}^1$$
$$pr_{1*}(Z \cdot pr_2^*((0) - (\infty))) \in \mathcal{Z}^r(X)^{rat}$$

• Functoriality; $f : X \rightarrow Y$

•
$$f_*: \mathcal{Z}^r(X) \to \mathcal{Z}^{r-\dim X/Y}(Y), f \text{ proper}$$

•
$$f^*: \mathcal{Z}^r(Y) \to \mathcal{Z}^r(X), f$$
 flat

• Rational equivalence $\mathcal{Z}^{r}(X)^{rat} \subset \mathcal{Z}^{r}(X)$

$$X \xleftarrow{
hormatrix} X imes \mathbb{P}^1 \xrightarrow{
hormatrix} \mathbb{P}^1$$

 $pr_{1*}(Z \cdot pr_2^*((0) - (\infty))) \in \mathcal{Z}^r(X)^{\operatorname{rat}}$

Chow group

$$CH^{r}(X) := \mathcal{Z}^{r}(X)/\mathcal{Z}^{r}(X)^{\operatorname{rat}}.$$

 General reference: Fulton, Intersection Theory (Springer Verlag).

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma(U, \mathcal{O}_X)$, $D \cap U : f = 0$.
- { U_i, f_i } defining D; { $U_i \cap U_j, f_i/f_j$ } 1-cocycle with values in \mathcal{O}_X^{\times} , sheaf of units.
- $CH^1(X) \cong H^1(X, \mathcal{O}_X^{\times})$; group of Line Bundles (Picard Group)

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma(U, \mathcal{O}_X)$, $D \cap U : f = 0$.
- { U_i, f_i } defining D; { $U_i \cap U_j, f_i/f_j$ } 1-cocycle with values in \mathcal{O}_X^{\times} , sheaf of units.
- $CH^1(X) \cong H^1(X, \mathcal{O}_X^{\times})$; group of Line Bundles (Picard Group)

Divisors and Line Bundles

- X smooth variety, $D \subset X$ effective divisor, $x \in X$ a point. $\exists x \in U \subset X$ open, $f \in \Gamma(U, \mathcal{O}_X)$, $D \cap U : f = 0$.
- { U_i, f_i } defining D; { $U_i \cap U_j, f_i/f_j$ } 1-cocycle with values in \mathcal{O}_X^{\times} , sheaf of units.
- $CH^1(X) \cong H^1(X, \mathcal{O}_X^{\times})$; group of Line Bundles (Picard Group)

- X projective algebraic curve (Assume X(k) ≠ Ø) (compact Riemann surface for k = C)
- O-cycles Z₀(X) (Note Z₀(X) = Z¹(X); O-cycles are divisors)
 ▶ Degree map

$$\mathcal{Z}_0(X)^0 := \ker(\mathcal{Z}_0(X) \xrightarrow{\text{deg}} \mathbb{Z}); \quad \sum n_i(x_i) \mapsto \sum n_i$$

Divisors of functions

$$\mathcal{Z}_0(X)^{\operatorname{rat}} = \{(f) | f \in k(X)^{\times}\} \subset \mathcal{Z}(X)^0$$

 $CH_0(X)^0 := \mathcal{Z}_0(X)^0 / \mathcal{Z}_0(X)^{rat} \subset CH_0(X) = CH^1(X)$

- X projective algebraic curve (Assume X(k) ≠ Ø) (compact Riemann surface for k = C)
- 0-cycles Z₀(X) (Note Z₀(X) = Z¹(X); 0-cycles are divisors)
 ▶ Degree map

$$\mathcal{Z}_0(X)^0 := \ker(\mathcal{Z}_0(X) \xrightarrow{\text{deg}} \mathbb{Z}); \quad \sum n_i(x_i) \mapsto \sum n_i$$

Divisors of functions

$$\mathcal{Z}_0(X)^{\operatorname{rat}} = \{(f) | f \in k(X)^{\times}\} \subset \mathcal{Z}(X)^0$$

 $CH_0(X)^0 := \mathcal{Z}_0(X)^0 / \mathcal{Z}_0(X)^{rat} \subset CH_0(X) = CH^1(X)$

- X projective algebraic curve (Assume X(k) ≠ Ø) (compact Riemann surface for k = C)
- 0-cycles $\mathcal{Z}_0(X)$ (Note $\mathcal{Z}_0(X) = \mathcal{Z}^1(X)$; 0-cycles are divisors)
 - Degree map

$$\mathcal{Z}_0(X)^0 := \ker(\mathcal{Z}_0(X) \xrightarrow{\text{deg}} \mathbb{Z}); \quad \sum n_i(x_i) \mapsto \sum n_i$$

Divisors of functions

$$\mathcal{Z}_0(X)^{\operatorname{rat}} = \{(f) | f \in k(X)^{\times}\} \subset \mathcal{Z}(X)^0$$

 $CH_0(X)^0 := \mathcal{Z}_0(X)^0 / \mathcal{Z}_0(X)^{rat} \subset CH_0(X) = CH^1(X)$

- X projective algebraic curve (Assume X(k) ≠ Ø) (compact Riemann surface for k = C)
- 0-cycles $\mathcal{Z}_0(X)$ (Note $\mathcal{Z}_0(X) = \mathcal{Z}^1(X)$; 0-cycles are divisors)
 - Degree map

$$\mathcal{Z}_0(X)^0 := \ker(\mathcal{Z}_0(X) \xrightarrow{\text{deg}} \mathbb{Z}); \quad \sum n_i(x_i) \mapsto \sum n_i$$

Divisors of functions

$$\mathcal{Z}_0(X)^{\operatorname{rat}} = \{(f) | f \in k(X)^{\times}\} \subset \mathcal{Z}(X)^0$$

 $CH_0(X)^0 := \mathcal{Z}_0(X)^0 / \mathcal{Z}_0(X)^{rat} \subset CH_0(X) = CH^1(X)$

February 28, March 3,4, 2014 Albert Lecture / 34

- X projective algebraic curve (Assume X(k) ≠ Ø) (compact Riemann surface for k = C)
- 0-cycles $\mathcal{Z}_0(X)$ (Note $\mathcal{Z}_0(X) = \mathcal{Z}^1(X)$; 0-cycles are divisors)
 - Degree map

$$\mathcal{Z}_0(X)^0 := \ker(\mathcal{Z}_0(X) \xrightarrow{\text{deg}} \mathbb{Z}); \quad \sum n_i(x_i) \mapsto \sum n_i$$

Divisors of functions

$$\mathcal{Z}_0(X)^{\mathrm{rat}} = \{(f) | f \in k(X)^{\times}\} \subset \mathcal{Z}(X)^0$$

 $CH_0(X)^0 := \mathcal{Z}_0(X)^0 / \mathcal{Z}_0(X)^{rat} \subset CH_0(X) = CH^1(X)$

٥

February 28, March 3,4, 2014 Albert Lectures / 34

Abel's Theorem

• Abel's Theorem:

$$CH_0(X)^0 \cong J_X(k).$$

- The 0-cycles of degree 0 modulo divisors of functions are the *k*-points of an *Abelian Variety J_X*.
- Case $k = \mathbb{C}$.

$$J_X(\mathbb{C}) = \Gamma(X, \Omega^1_{X/\mathbb{C}})^{\vee}/H_1(X, \mathbb{Z})$$

$$\mathfrak{A}\in\mathcal{Z}_0(X)^0\mapsto\int_{\mathcal{C}}\in\Gamma(X,\Omega^1)^ee;\quad\partial\mathcal{C}=\mathfrak{A}$$
• Abel's Theorem:

$$CH_0(X)^0 \cong J_X(k).$$

• The 0-cycles of degree 0 modulo divisors of functions are the *k*-points of an *Abelian Variety J_X*.

• Case $k = \mathbb{C}$.

$$J_X(\mathbb{C}) = \Gamma(X, \Omega^1_{X/\mathbb{C}})^{\vee}/H_1(X, \mathbb{Z})$$

$$\mathfrak{A}\in\mathcal{Z}_0(X)^0\mapsto\int_{\mathcal{C}}\in \mathsf{F}(X,\Omega^1)^ee;\quad\partial \mathcal{C}=\mathfrak{A}$$

• Abel's Theorem:

$$CH_0(X)^0 \cong J_X(k).$$

- The 0-cycles of degree 0 modulo divisors of functions are the *k*-points of an *Abelian Variety J_X*.
- Case $k = \mathbb{C}$.

$$J_X(\mathbb{C}) = \Gamma(X, \Omega^1_{X/\mathbb{C}})^{\vee} / H_1(X, \mathbb{Z})$$

$$\mathfrak{A}\in\mathcal{Z}_0(X)^0\mapsto\int_{\mathcal{C}}\in \mathsf{F}(X,\Omega^1)^ee;\quad\partial \mathcal{C}=\mathfrak{A}$$

• Abel's Theorem:

$$CH_0(X)^0 \cong J_X(k).$$

- The 0-cycles of degree 0 modulo divisors of functions are the *k*-points of an *Abelian Variety J_X*.
- Case $k = \mathbb{C}$.

$$J_X(\mathbb{C}) = \Gamma(X, \Omega^1_{X/\mathbb{C}})^{\vee}/H_1(X, \mathbb{Z})$$

$$\mathfrak{A}\in\mathcal{Z}_0(X)^0\mapsto\int_c\in\Gamma(X,\Omega^1)^ee;\quad\partial c=\mathfrak{A}$$

• Abel's Theorem:

$$CH_0(X)^0 \cong J_X(k).$$

- The 0-cycles of degree 0 modulo divisors of functions are the *k*-points of an *Abelian Variety J_X*.
- Case $k = \mathbb{C}$.

►

$$J_X(\mathbb{C}) = \Gamma(X, \Omega^1_{X/\mathbb{C}})^{\vee}/H_1(X, \mathbb{Z})$$

$$\mathfrak{A}\in\mathcal{Z}_0(X)^0\mapsto\int_{\mathcal{C}}\in\Gamma(X,\Omega^1)^ee;\quad\partial {\boldsymbol{c}}=\mathfrak{A}$$

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_X and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_X and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_X and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

- Define more general sorts of algebraic cycles (Motivic Cohomology)
- Interpret J_X and other similar abelian Lie groups J as Ext groups in the category of Hodge structures.
- Generalize Abel's construction to define more general cycle classes.

- Free, f.g. \mathbb{Z} -module $H_{\mathbb{Z}}$ (or \mathbb{Q} -vector space $H_{\mathbb{Q}}$, or \mathbb{R} -vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^*H_{\mathbb{C}}$; conjugate filtration $\overline{F}^*H_{\mathbb{C}}$.
- *H* pure of weight *n* if $F^{p} \cap \overline{F}^{n-p+1} = (0), \forall p$.

$$H_{\mathbb{C}} = \oplus H^{p,n-p}; \quad H^{p,n-p} := F^p \cap \overline{F}^{n-p}$$

- Mixed Hodge structure: $W_*H_{\mathbb{Q}}$ increasing weight filtration. F^* induces pure HS of weight *n* on $gr_n^W H$ for all *n*.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

- Free, f.g. \mathbb{Z} -module $H_{\mathbb{Z}}$ (or \mathbb{Q} -vector space $H_{\mathbb{Q}}$, or \mathbb{R} -vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^*H_{\mathbb{C}}$; conjugate filtration $\overline{F}^*H_{\mathbb{C}}$.
- *H* pure of weight *n* if $F^p \cap \overline{F}^{n-p+1} = (0), \forall p$.

$$H_{\mathbb{C}} = \oplus H^{p,n-p}; \quad H^{p,n-p} := F^p \cap \overline{F}^{n-p}$$

- Mixed Hodge structure: $W_*H_{\mathbb{Q}}$ increasing weight filtration. F^* induces pure HS of weight *n* on $gr_n^W H$ for all *n*.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

- Free, f.g. \mathbb{Z} -module $H_{\mathbb{Z}}$ (or \mathbb{Q} -vector space $H_{\mathbb{Q}}$, or \mathbb{R} -vector space $H_{\mathbb{R}}$)
- Decreasing filtration $F^*H_{\mathbb{C}}$; conjugate filtration $\overline{F}^*H_{\mathbb{C}}$.
- *H* pure of weight *n* if $F^{p} \cap \overline{F}^{n-p+1} = (0), \forall p$.

$$H_{\mathbb{C}} = \oplus H^{p,n-p}; \quad H^{p,n-p} := F^p \cap \overline{F}^{n-p}$$

- Mixed Hodge structure: $W_*H_{\mathbb{Q}}$ increasing weight filtration. F^* induces pure HS of weight *n* on $gr_n^W H$ for all *n*.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

- Free, f.g. Z-module H_Z (or Q-vector space H_Q, or R-vector space H_R)
- Decreasing filtration $F^*H_{\mathbb{C}}$; conjugate filtration $\overline{F}^*H_{\mathbb{C}}$.
- *H* pure of weight *n* if $F^{p} \cap \overline{F}^{n-p+1} = (0), \forall p$.

$$H_{\mathbb{C}} = \oplus H^{p,n-p}; \quad H^{p,n-p} := F^p \cap \overline{F}^{n-p}$$

- Mixed Hodge structure: $W_*H_{\mathbb{Q}}$ increasing weight filtration. F^* induces pure HS of weight *n* on $gr_n^W H$ for all *n*.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

- Free, f.g. Z-module H_Z (or Q-vector space H_Q, or R-vector space H_R)
- Decreasing filtration $F^*H_{\mathbb{C}}$; conjugate filtration $\overline{F}^*H_{\mathbb{C}}$.
- *H* pure of weight *n* if $F^{p} \cap \overline{F}^{n-p+1} = (0), \forall p$.

$$H_{\mathbb{C}} = \oplus H^{p,n-p}; \quad H^{p,n-p} := F^p \cap \overline{F}^{n-p}$$

- Mixed Hodge structure: $W_*H_{\mathbb{Q}}$ increasing weight filtration. F^* induces pure HS of weight *n* on $gr_n^W H$ for all *n*.
- Category of HS's is abelian. Weight and Hodge filtrations are exact functors.

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- *J* compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J \times J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - $\blacktriangleright \rho(Z, W) \in \mathbb{R}.$
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions L(s) at integer points s. (To be discussed in Monday's talk.)

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- *J* compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J \times J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - ▶ $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions *L*(*s*) at integer points *s*. (To be discussed in Monday's talk.)

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$

• J compact (Height pairings).

- \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J \times J^{\vee}$
- Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
- ▶ $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions L(s) at integer points s. (To be discussed in Monday's talk.)

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$

• J compact (Height pairings).

- \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J \times J^{\vee}$
- Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
- Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
- $\blacktriangleright \rho(Z, W) \in \mathbb{R}.$
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions L(s) at integer points s. (To be discussed in Monday's talk.)

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J \times J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - $\blacktriangleright \rho(Z, W) \in \mathbb{R}.$
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions L(s) at integer points s. (To be discussed in Monday's talk.)

• J Non-compact.

- Suitable algebraic cycles define cycle classes $[Z] \in J$.
- $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
- 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J imes J^{\vee}$
 - Canonical metric $\rho: \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - ▶ $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions L(s) at integer points s. (To be discussed in Monday's talk.)

- J Non-compact.
 - Suitable algebraic cycles define cycle classes $[Z] \in J$.
 - $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
 - 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J imes J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - ▶ $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions *L*(*s*) at integer points *s*. (To be discussed in Monday's talk.)

- J Non-compact.
 - Suitable algebraic cycles define cycle classes $[Z] \in J$.
 - $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
 - 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J imes J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions *L*(*s*) at integer points *s*. (To be discussed in Monday's talk.)

- J Non-compact.
 - Suitable algebraic cycles define cycle classes $[Z] \in J$.
 - $J \cong \mathbb{R}^N / \Gamma$; $\Gamma \cong \mathbb{Z}^n$ discretely embedded in \mathbb{R}^N .
 - 0 \rightarrow compact torus $\rightarrow J \xrightarrow{\rho} \mathbb{R}^{N-n} \rightarrow 0$
- J compact (Height pairings).
 - \mathbb{G}_m bundle (biextension) $\mathcal{B} \to J imes J^{\vee}$
 - Canonical metric $\rho : \mathcal{B} \to \mathbb{R}$
 - Suitable pairs of cycles (Z, W) carry classes in \mathcal{B} .
 - $\rho(Z, W) \in \mathbb{R}$.
- Beilinson Conjectures: The real numbers ρ[Z] (resp. ρ(Z, W)) are related to values of Hasse-Weil *L*-functions *L*(*s*) at integer points *s*. (To be discussed in Monday's talk.)

 Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)

- "If conjectures were horses, mathematicians would ride..."
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ ^r/₂ + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - ► J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - ▶ $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride..."
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ ^r/₂ + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - ► J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - ▶ $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride..."
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ ^r/₂ + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - ► J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - ▶ $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride ... "
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ r/2 + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - ► J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - ▶ $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride ... "
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ r/2 + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - ▶ $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride ... "
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ r/2 + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

- Smooth, projective variety X over number field ↔ collection of Hasse-Weil L-functions L(H^r(X), s)
- "If conjectures were horses, mathematicians would ride ... "
 - $\Lambda(H^r(\overline{X}), s) = L(H^r(\overline{X}), s) \cdot \Gamma$ factor \cdot exponential term
 - Given n ≥ r/2 + 1, ∃ motivic cohomology group (group of algebraic cycles) H_M(X)_Z, Ext group of Hodge structures J(X), and injective cycle map H_M(X)_Z → J(X)
 - J(X) has a volume form which is well-defined upto \mathbb{Q}^{\times} .
 - $\operatorname{vol}(J/(H_M)_{\mathbb{Z}}) \in \mathbb{Q}^{\times} \cdot L(H^r, s = n).$
 - Order of vanishing of L(s) at s = n − r − 1 conjecturally equals dim H_M(X)_Z.

• \mathcal{V} rank *r* vector bundle on *X*

- Chern classes $c_i(\mathcal{V}) \in CH^i(X)$ defined for $1 \leq i \leq r$.
- Given $s_1, \ldots, s_p \in \Gamma(X, V), p \le r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_X^r$; the s_i yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in CH^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

- V rank r vector bundle on X
- Chern classes $c_i(\mathcal{V}) \in CH^i(X)$ defined for $1 \leq i \leq r$.
- Given $s_1, \ldots, s_p \in \Gamma(X, V), p \le r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_X^r$; the s_i yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in CH^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

- \mathcal{V} rank *r* vector bundle on *X*
- Chern classes $c_i(\mathcal{V}) \in CH^i(X)$ defined for $1 \leq i \leq r$.
- Given $s_1, \ldots, s_p \in \Gamma(X, \mathcal{V}), p \leq r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_X^r$; the s_i yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in CH^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

- V rank r vector bundle on X
- Chern classes $c_i(\mathcal{V}) \in CH^i(X)$ defined for $1 \leq i \leq r$.
- Given $s_1, \ldots, s_p \in \Gamma(X, V), p \le r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_X^r$; the s_i yield $r \times p$ matrix of functions.
- *c*_{r-p+1}(V) ∈ *CH*^{r-p+1}(X) cycle defined by vanishing of all p × p minors.

- \mathcal{V} rank *r* vector bundle on *X*
- Chern classes $c_i(\mathcal{V}) \in CH^i(X)$ defined for $1 \leq i \leq r$.
- Given $s_1, \ldots, s_p \in \Gamma(X, V), p \le r$ sections in general position.
- Locally, $\mathcal{V} \cong \mathcal{O}_X^r$; the s_i yield $r \times p$ matrix of functions.
- $c_{r-p+1}(\mathcal{V}) \in CH^{r-p+1}(X)$ cycle defined by vanishing of all $p \times p$ minors.

Chern Character

• Chern Character (X smooth)

(*)
$$ch: K_0(X)_{\mathbb{Q}} \cong \bigoplus_i CH^i(X)_{\mathbb{Q}}.$$

Here *ch* is a power series in the c_i .

• Assume $f : X \rightarrow Y$ proper map, X, Y smooth.

- $f_!: K_0(X) \to K_0(Y)$
 - Example, Y =point.
 - $f_![\mathcal{V}] = \sum (-1)^i [H^i(X, \mathcal{V})] = \chi(\mathcal{V}) \in K_0(\text{point}) = \mathbb{Z}.$

Chern Character

• Chern Character (X smooth)

(*)
$$ch: K_0(X)_{\mathbb{Q}} \cong \bigoplus_i CH^i(X)_{\mathbb{Q}}.$$

Here *ch* is a power series in the c_i .

- Assume $f : X \to Y$ proper map, X, Y smooth.
- $f_!: K_0(X) \to K_0(Y)$
 - Example, Y =point.
 - $f_![\mathcal{V}] = \sum (-1)^i [H^i(X, \mathcal{V})] = \chi(\mathcal{V}) \in K_0(\text{point}) = \mathbb{Z}.$
Chern Character

• Chern Character (X smooth)

(*)
$$ch: K_0(X)_{\mathbb{Q}} \cong \bigoplus_i CH^i(X)_{\mathbb{Q}}.$$

Here *ch* is a power series in the c_i .

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_!: K_0(X) \to K_0(Y)$
 - Example, Y = point.
 - $f_{!}[\mathcal{V}] = \sum (-1)^{i} [H^{i}(X, \mathcal{V})] = \chi(\mathcal{V}) \in K_{0}(\text{point}) = \mathbb{Z}.$

Chern Character

• Chern Character (X smooth)

(*)
$$ch: K_0(X)_{\mathbb{Q}} \cong \bigoplus_i CH^i(X)_{\mathbb{Q}}.$$

Here *ch* is a power series in the c_i .

- Assume $f: X \rightarrow Y$ proper map, X, Y smooth.
- $f_!: K_0(X) \to K_0(Y)$
 - Example, Y = point.
 - $f_{!}[\mathcal{V}] = \sum (-1)^{i} [H^{i}(X, \mathcal{V})] = \chi(\mathcal{V}) \in K_{0}(\text{point}) = \mathbb{Z}.$

Chern Character

• Chern Character (X smooth)

(*)
$$ch: K_0(X)_{\mathbb{Q}} \cong \bigoplus_i CH^i(X)_{\mathbb{Q}}.$$

Here *ch* is a power series in the c_i .

- Assume $f : X \to Y$ proper map, X, Y smooth.
- $f_!: K_0(X) \to K_0(Y)$
 - Example, Y = point.
 - $f_{!}[\mathcal{V}] = \sum (-1)^{i} [H^{i}(X, \mathcal{V})] = \chi(\mathcal{V}) \in K_{0}(\text{point}) = \mathbb{Z}.$

Riemann Roch

- Todd class $Td(X) \in CH^*(X)$
- Riemann Roch

$f_*(Td(X) \cdot ch([\mathcal{V}])) = Td(Y) \cdot ch(f_![\mathcal{V}]).$

• On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Riemann Roch

- Todd class $Td(X) \in CH^*(X)$
- Riemann Roch

$f_*(Td(X) \cdot ch([\mathcal{V}])) = Td(Y) \cdot ch(f_![\mathcal{V}]).$

 On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Riemann Roch

- Todd class $Td(X) \in CH^*(X)$
- Riemann Roch

$$f_*(Td(X) \cdot ch([\mathcal{V}])) = Td(Y) \cdot ch(f_![\mathcal{V}]).$$

 On Tuesday, we will use (*) (but not RR) to study the Hodge conjecture.

Deep and important problems involving intersection numbers of cycles.

- Schubert calculus (intersection theory on Grassmannians)
- Enumerative problems arising in physics (intersection theory on orbifolds)
- The Weil conjectures (Lefschetz fixed point formula; counting *F_q*-rational points by intersection the graph of frobenius with the diagonal)

- Deep and important problems involving intersection numbers of cycles.
 - Schubert calculus (intersection theory on Grassmannians)
 - Enumerative problems arising in physics (intersection theory on orbifolds)
 - The Weil conjectures (Lefschetz fixed point formula; counting *P_q*-rational points by intersection the graph of frobenius with the diagonal)

- Deep and important problems involving intersection numbers of cycles.
 - Schubert calculus (intersection theory on Grassmannians)
 - Enumerative problems arising in physics (intersection theory on orbifolds)
 - The Weil conjectures (Lefschetz fixed point formula; counting *F_q*-rational points by intersection the graph of frobenius with the diagonal)

- Deep and important problems involving intersection numbers of cycles.
 - Schubert calculus (intersection theory on Grassmannians)
 - Enumerative problems arising in physics (intersection theory on orbifolds)
 - The Weil conjectures (Lefschetz fixed point formula; counting F_q-rational points by intersection the graph of frobenius with the diagonal)

• L line bundle on X projective variety.

- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$

• Linear Series yield classification for dim X = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$

• Linear Series yield classification for dim X = 2 (Algebraic Surfaces).

- *L* line bundle on *X* projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$

• Linear Series yield classification for dim *X* = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$
- Linear Series yield classification for dim X = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k$.
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$
- Linear Series yield classification for dim *X* = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $\blacktriangleright X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$
- Linear Series yield classification for dim *X* = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$
- Linear Series yield classification for dim X = 2 (Algebraic Surfaces).

- L line bundle on X projective variety.
- Complete linear series $\Gamma(X, L)$.
- $x \in X$ defines $\theta(x) \in \text{Hom}(\Gamma(X, L), k)(!?)$
- $\theta(x)(\ell) := \ell(x) \in L(x) \cong k.$
 - ▶ Problem: $L(x) \cong k$ not canonical: only get line in Hom($\Gamma(X, L), k$)
 - ▶ Possibly $\ell(x) = 0$, $\forall \ell$, $\theta(x) = 0$. Don't even get a line!
 - $X \xrightarrow{\text{rational map}} \mathbb{P}(\Gamma(X, L)^{\vee})$
- Linear Series yield classification for dim X = 2 (Algebraic Surfaces).

• *K*-theory spectrum K(X) (Quillen).

- Higher *K*-groups $K_n(X)$, $n \ge 0$
- $K_n(X) = (0), n < 0$ if X smooth.
- Zariski sheaves K_{n,X}
- Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow K_{-p-q}(X)$$

• *K*-theory spectrum K(X) (Quillen).

- Higher K-groups $K_n(X)$, $n \ge 0$
- $K_n(X) = (0), n < 0$ if X smooth.
- Zariski sheaves K_{n,X}
- Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow K_{-p-q}(X)$$

• *K*-theory spectrum K(X) (Quillen).

- Higher K-groups $K_n(X)$, $n \ge 0$
- $K_n(X) = (0), n < 0$ if X smooth.
- Zariski sheaves K_{n,X}
- Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow K_{-p-q}(X)$$

- *K*-theory spectrum K(X) (Quillen).
 - Higher K-groups $K_n(X)$, $n \ge 0$
 - $K_n(X) = (0), n < 0$ if X smooth.
 - Zariski sheaves K_{n,X}
 - Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow K_{-p-q}(X)$$

- *K*-theory spectrum K(X) (Quillen).
 - Higher K-groups $K_n(X)$, $n \ge 0$
 - $K_n(X) = (0), n < 0$ if X smooth.
 - Zariski sheaves K_{n,X}
 - Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow \mathcal{K}_{-p-q}(X)$$

- *K*-theory spectrum K(X) (Quillen).
 - Higher K-groups $K_n(X)$, $n \ge 0$
 - $K_n(X) = (0), n < 0$ if X smooth.
 - Zariski sheaves K_{n,X}
 - Brown-Gersten Spectral sequence (X smooth)

$$E_2^{p,q} = H^p(X, \mathcal{K}_{-q,X}) \Rightarrow \mathcal{K}_{-p-q}(X)$$

• Resolution of $\mathcal{K}_{n,X}$ for X smooth

$$0 \to \mathcal{K}_n \to \coprod_{x \in X^0} i_{x*} \mathcal{K}_n(k(x)) \to \coprod_{x \in X^1} i_{x*} \mathcal{K}_{n-1}(k(x))$$
$$\cdots \coprod_{x \in X^n} i_{x*} \mathcal{K}_0(k(x)) \to 0$$

Corollary: Hⁿ(X, K_n) ≅ CHⁿ(X).
n = 1; Pic(X) = CH¹(X) ≅ H¹(X, K₁) = H¹(X, O_X[×]).
In general

$$\prod_{x\in X^{n-1}}i_{x*}K_1(k(x))\to \prod_{x\in X^n}i_{x*}K_0(k(x));$$

$$K_1(k(x))=k(x)^{\times},\ K_0(k(x))=\mathbb{Z}.$$

• Resolution of $\mathcal{K}_{n,X}$ for X smooth

$$0 \to \mathcal{K}_n \to \coprod_{x \in X^0} i_{x*} \mathcal{K}_n(k(x)) \to \coprod_{x \in X^1} i_{x*} \mathcal{K}_{n-1}(k(x))$$
$$\cdots \coprod_{x \in X^n} i_{x*} \mathcal{K}_0(k(x)) \to 0$$

• Corollary: $H^n(X, \mathcal{K}_n) \cong CH^n(X)$.

• n = 1; $Pic(X) = CH^{1}(X) \cong H^{1}(X, \mathcal{K}_{1}) = H^{1}(X, \mathcal{O}_{X}^{\times}).$

In general

$$\prod_{x\in X^{n-1}}i_{x*}K_1(k(x))\to \prod_{x\in X^n}i_{x*}K_0(k(x));$$

$$K_1(k(x))=k(x)^{\times},\ K_0(k(x))=\mathbb{Z}.$$

• Resolution of $\mathcal{K}_{n,X}$ for X smooth

$$0 \to \mathcal{K}_n \to \coprod_{x \in X^0} i_{x*} \mathcal{K}_n(k(x)) \to \coprod_{x \in X^1} i_{x*} \mathcal{K}_{n-1}(k(x))$$
$$\cdots \coprod_{x \in X^n} i_{x*} \mathcal{K}_0(k(x)) \to 0$$

$$\prod_{x\in X^{n-1}}i_{x*}K_1(k(x))\to \prod_{x\in X^n}i_{x*}K_0(k(x));$$

$$K_1(k(x))=k(x)^{\times},\ K_0(k(x))=\mathbb{Z}.$$

• Resolution of $\mathcal{K}_{n,X}$ for X smooth

$$0 \to \mathcal{K}_n \to \coprod_{x \in X^0} i_{x*} \mathcal{K}_n(k(x)) \to \coprod_{x \in X^1} i_{x*} \mathcal{K}_{n-1}(k(x))$$
$$\cdots \coprod_{x \in X^n} i_{x*} \mathcal{K}_0(k(x)) \to 0$$

• Corollary: $H^n(X, \mathcal{K}_n) \cong CH^n(X)$. • n = 1; $Pic(X) = CH^1(X) \cong H^1(X, \mathcal{K}_1) = H^1(X, \mathcal{O}_Y^{\times})$.

In general

$$\begin{split} & \coprod_{x\in X^{n-1}} i_{x*} \mathcal{K}_1(k(x)) \rightarrow \coprod_{x\in X^n} i_{x*} \mathcal{K}_0(k(x)); \\ & \mathcal{K}_1(k(x)) = k(x)^{\times}, \ \mathcal{K}_0(k(x)) = \mathbb{Z}. \end{split}$$

Motivic Cohomology

• *k* a field. **DM**^{*eff,-*}_{*Nis*} triangulated category of Nisnevich sheaves with transfers.

- References
 - Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
 - Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
 - Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.
- For X smooth, have objects $M(X), \mathbb{Z}(q)$ in **DM**^{eff,-}_{Nis}

$$H^{p}_{M}(X,\mathbb{Z}(q)) := \operatorname{Hom}_{\mathsf{DM}^{\operatorname{eff},-}_{Nis}}(M(X),\mathbb{Z}(q)[p])$$

Motivic Cohomology

- *k* a field. **DM**^{*eff,-*} triangulated category of Nisnevich sheaves with transfers.
- References
 - Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
 - Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
 - Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.

• For X smooth, have objects $M(X), \mathbb{Z}(q)$ in **DM**^{eff,-}_{Nis}

 $H^p_M(X,\mathbb{Z}(q)) := \operatorname{Hom}_{\mathsf{DM}^{\operatorname{eff},-}_{\operatorname{Nis}}}(M(X),\mathbb{Z}(q)[p])$

Motivic Cohomology

- *k* a field. **DM**^{*eff,-*} triangulated category of Nisnevich sheaves with transfers.
- References
 - Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology, Clay Math. monographs vol. 2.
 - Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic Homology Theories, Annals of Math. Studies 143.
 - Beilinson, Vologodsky, a DG guide to Voevodsky's Motives.
- For X smooth, have objects M(X), $\mathbb{Z}(q)$ in **DM**^{eff,-}_{Nis}

$$H^p_M(X,\mathbb{Z}(q)) := \operatorname{Hom}_{\operatorname{\mathsf{DM}}^{eff,-}_{Nis}}(M(X),\mathbb{Z}(q)[p])$$

Motivic Cohomology and K-theory

Beilinson definition

$$H^p_M(X,\mathbb{Q}(q)) := gr^q_{\gamma} K_{2q-p}(X)_{\mathbb{Q}}.$$

Example:

$$H^{2p}_M(X,\mathbb{Q}(p))=gr^p_\gamma K_0(X)\cong CH^p(X)_\mathbb{Q}$$

• $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i - 1)$ algebraic *n*-simplex.

- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

$\cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{\rho}(X)$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

February 28, March 3,4, 2014 Albert Lecture

• $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i - 1)$ algebraic *n*-simplex.

- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

$\cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{\rho}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{\rho}(X)$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

February 28, March 3,4, 2014 Albert Lecture

- $\Delta_k^n := \operatorname{Spec} k[t_0, \ldots, t_n]/(\sum t_i 1)$ algebraic *n*-simplex.
- $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
- $\mathcal{Z}^{p}(X \times \Delta^{n})' \subset \mathcal{Z}^{p}(X \times \Delta^{n})$ cycles in good position w.r.t. faces.
- $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \, \delta = \sum (-1)^i \delta_i$
- Complex $\mathbb{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

February 28, March 3,4, 2014 Albert Lecture

•
$$\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$$

• Complex $\mathbb{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$
Higher Chow Groups

•
$$\Delta_k^n := \operatorname{Spec} k[t_0, \dots, t_n] / (\sum t_i - 1)$$
 algebraic *n*-simplex.
• $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
• $\mathcal{Z}^p(X \times \Delta^n)' \subset \mathcal{Z}^p(X \times \Delta^n)$ cycles in good position w.r.t. faces.
• $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
• Complex $\mathcal{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^p(X, n) := H^{-n}(\mathcal{Z}^p(X, \cdot)).$

February 28, March 3,4, 2014 Albert Lectures

Higher Chow Groups

n

•
$$\Delta_k^n := \operatorname{Spec} \kappa[t_0, \dots, t_n]/(\sum t_i - 1)$$
 algebraic *n*-simplex.
• $\iota_i : \Delta^{n-1} \hookrightarrow \Delta^n$ locus $t_i = 0$.
• $\mathcal{Z}^p(X \times \Delta^n)' \subset \mathcal{Z}^p(X \times \Delta^n)$ cycles in good position w.r.t. faces.
• $\delta_i := \iota_i^* : \mathcal{Z}^p(X \times \Delta^n)' \to \mathcal{Z}^p(X \times \Delta^{n-1})'; \delta = \sum (-1)^i \delta_i$
• Complex $\mathcal{Z}^p(X, \cdot)$:

$$\cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{n})' \xrightarrow{\delta} \cdots \xrightarrow{\delta} \mathcal{Z}^{p}(X \times \Delta^{1})' \xrightarrow{\delta} \mathcal{Z}^{p}(X)$$

• $CH^{p}(X, n) := H^{-n}(\mathcal{Z}^{p}(X, \cdot)).$

February 28, March 3,4, 2014 Albert Lectures

Higher Chow Groups and Motivic Cohomology

- X smooth, $H^p_M(X,\mathbb{Z}(q)) \cong CH^q(X,2q-p)$.
 - Variant: Cubical cycles: □ := ℙ¹ {1}; Replace Δⁿ with □ⁿ; factor out by degeneracies.
 - Face maps $\iota_i^j : \Box^{n-1} \hookrightarrow \Box^n, j = 0, \infty$

Examples

• Chow groups $CH^p(X) = H^{2p}_M(X, \mathbb{Z}(p)).$

 Milnor classes: f₁,..., f_n ∈ Γ(X, O[×]_X). {f₁,..., f_n} := [(x, f₁(x),..., f_n(x)) ∩ (X × □ⁿ)] ∈ CHⁿ(X, n) = Hⁿ_M(X, Z(n)).
 dim X = 2, C_i ⊂ X curves, f_i ∈ k(C_i)[×] rational functions. Γ_i := {(c, f_i(c))|c ∈ C_i} ∈ Z²(X × □¹).

 $\sum_{i} (f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$

Examples

- Chow groups $CH^{p}(X) = H^{2p}_{M}(X, \mathbb{Z}(p)).$
- Milnor classes: $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X^{\times})$. $\{f_1, \ldots, f_n\} := [(x, f_1(x), \ldots, f_n(x)) \cap (X \times \Box^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$.
- dim X = 2, $C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $\Gamma_i := \{(c, f_i(c)) | c \in C_i\} \in \mathbb{Z}^2(X \times \square^1).$

 $\sum_{i} (f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$

Examples

- Chow groups $CH^{p}(X) = H^{2p}_{M}(X, \mathbb{Z}(p)).$
- Milnor classes: $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X^{\times})$. $\{f_1, \ldots, f_n\} := [(x, f_1(x), \ldots, f_n(x)) \cap (X \times \Box^n)] \in CH^n(X, n) = H^n_M(X, \mathbb{Z}(n))$.
- dim X = 2, $C_i \subset X$ curves, $f_i \in k(C_i)^{\times}$ rational functions. $\Gamma_i := \{(c, f_i(c)) | c \in C_i\} \in \mathbb{Z}^2(X \times \square^1).$

$$\sum_{i}(f_i) = 0 \in \mathcal{Z}_0(X) \Rightarrow \sum \Gamma_i \in CH^2(X, 1) = H^3_M(X, \mathbb{Z}(2)).$$

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^p(\Box^n)\otimes\mathcal{Z}^q(\Box^m)\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^{p}(r) := \mathcal{Z}^{r}(\Box_{k}^{2r-p})_{\mathbb{Q},Ah}$$

• $\mathfrak{N}^{*}(\bullet) := \bigoplus_{r,p \ge 0} \mathfrak{N}^{p}(r)$

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^{p}(\Box^{n})\otimes\mathcal{Z}^{q}(\Box^{m})\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^{p}(r) := \mathcal{Z}^{r}(\Box_{k}^{2r-p})_{\mathbb{Q},Alt}$$

• $\mathfrak{N}^{*}(\bullet) := \bigoplus_{r,p\geq 0} \mathfrak{N}^{p}(r)$

Higher Chow DGA

• $X = \operatorname{Spec} k$ a point. Product

$$\mathcal{Z}^p(\Box^n)\otimes\mathcal{Z}^q(\Box^m)\to\mathcal{Z}^{p+q}(\Box^{m+n}).$$

•
$$\mathfrak{N}^p(r) := \mathcal{Z}^r(\Box_k^{2r-p})_{\mathbb{Q},Alt}$$

• $\mathfrak{N}^*(\bullet) := \bigoplus_{r,p \ge 0} \mathfrak{N}^p(r)$

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

Cycles and the Tannakian Category of Mixed Tate Motives

- Hopf algebra $H := H^0(Bar(\mathfrak{N}^*(\bullet)))$
- *G* = Spec (*H*) as Tannaka group of category of mixed Tate motives (?).
- Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).

$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\mathsf{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow^{\partial} & & \uparrow^{\partial} \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$

- $\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0) \cong k^{\times} \otimes \mathbb{Q}$
- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times}$

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \stackrel{\text{mult}}{\longrightarrow} & \mathfrak{N}^{2}(2) \\ & \uparrow^{\partial} & & \uparrow^{\partial} \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

• $\mathfrak{N}^{1}(1)/\partial\mathfrak{N}^{1}(0)\cong k^{\times}\otimes\mathbb{Q}$

- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times}$

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\text{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow \partial & & \uparrow \partial \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

•
$$\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0)\cong k^{\times}\otimes\mathbb{Q}$$

•
$$\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k - \{0, 1\}$$
 Totaro cycles

•
$$\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0)\cong k^{ imes}\otimes\mathbb{Q}$$

•
$$\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2)
i T_{x}, x \in k - \{0,1\}$$
 Totaro cycle

$$(1)/\partial\mathfrak{N}^{1}(0) \cong k^{\times} \otimes \mathbb{Q}$$
$$(2)/\partial\mathfrak{N}^{0}(2) \supset T \times \subset k$$

•
$$\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times}$$

$$\begin{array}{ccc} \mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(1) & \xrightarrow{\mathsf{mult}} & \mathfrak{N}^{2}(2) \\ & \uparrow \partial & & \uparrow \partial \\ (\mathfrak{N}^{1}(1)\otimes\mathfrak{N}^{1}(0)) \oplus (\mathfrak{N}^{1}(0)\otimes\mathfrak{N}^{1}(1)) & \longrightarrow & \mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \end{array}$$

•
$$\mathfrak{N}^1(1)/\partial\mathfrak{N}^1(0)\cong k^{ imes}\otimes\mathbb{Q}$$

- $\mathfrak{N}^{1}(2)/\partial\mathfrak{N}^{0}(2) \ni T_{x}, x \in k \{0, 1\}$ Totaro cycles
- $\mathfrak{N}^2(2)/\mathrm{mult} \circ \partial \cong \bigwedge^2 k^{\times}$

• $T_x = \{(t, 1 - t, 1 - xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .

- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- *T_x* = {(*t*, 1 − *t*, 1 − *xt*⁻¹) | *t* ∈ ℙ¹} parametrized curve in □³.
 ∂*T_x* = (*x*, 1 − *x*) ∈ Z²(□²) = N²(2).
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$

• Comodule generated is *Dilog*(*x*).

• 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- 0 $\rightarrow H^1_M(k, \mathbb{Q}(2)) \rightarrow \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

- $T_x = \{(t, 1 t, 1 xt^{-1}) \mid t \in \mathbb{P}^1\}$ parametrized curve in \square^3 .
- $\partial T_x = (x, 1-x) \in \mathbb{Z}^2(\square^2) = \mathfrak{N}^2(2).$
- $[(x) \otimes (1-x), T_x] \in H^0(Bar(\mathfrak{N}^*(\bullet)))$
- Comodule generated is *Dilog*(*x*).
- $0 \to H^1_M(k, \mathbb{Q}(2)) \to \mathfrak{N}^1(2)/\partial \mathfrak{N}^0(2) \xrightarrow{\partial} \bigwedge^2 k^{\times} \otimes \mathbb{Q}$

The Hodge Conjecture

• $k = \mathbb{C}$, X smooth, projective variety.

- $Z \in \mathcal{Z}^{r}(X), [Z]_{DR} \in F^{r} \mathbb{H}^{2r}(X, \Omega_{X}^{*}), [Z]_{Betti} \in H^{2r}_{Betti}(X, \mathbb{Z}(r)).$
- Hodge Conjecture: F^r H^{2r}_{Betti}(X, C) ∩ H^{2r}(X, Q(r)) is generated by algebraic cycle classes.

The Hodge Conjecture

- $k = \mathbb{C}$, X smooth, projective variety.
- $Z \in \mathcal{Z}^{r}(X), [Z]_{DR} \in F^{r} \mathbb{H}^{2r}(X, \Omega_{X}^{*}), [Z]_{Betti} \in H^{2r}_{Betti}(X, \mathbb{Z}(r)).$
- Hodge Conjecture: F^r H^{2r}_{Betti}(X, C) ∩ H^{2r}(X, Q(r)) is generated by algebraic cycle classes.

The Hodge Conjecture

- $k = \mathbb{C}$, X smooth, projective variety.
- $Z \in \mathcal{Z}^{r}(X), [Z]_{DR} \in F^{r} \mathbb{H}^{2r}(X, \Omega_{X}^{*}), [Z]_{Betti} \in H^{2r}_{Betti}(X, \mathbb{Z}(r)).$
- Hodge Conjecture: F^rH^{2r}_{Betti}(X, C) ∩ H^{2r}(X, Q(r)) is generated by algebraic cycle classes.

Infinitesimal and Variational Hodge Conjecture

- Variational Hodge Conjecture (Grothendieck): X/S family, σ_s horizontal family of cohomology classes. If σ₀ is algebraic at one point 0 ∈ S, then it is algebraic everywhere.
- Infinitesimal Hodge theorem: X/Λ formal family ($\Lambda = \overline{\mathbb{Q}}[[t]]$ or mixed characteristic $\Lambda = W(k)$). Then algebraic classes on the closed fibre lift to algebraic classes on all thickenings iff the horizontal lift (or crystalline lift in mixed char.) of the cohomology class is Hodge.

Infinitesimal and Variational Hodge Conjecture

- Variational Hodge Conjecture (Grothendieck): X/S family, σ_s horizontal family of cohomology classes. If σ₀ is algebraic at one point 0 ∈ S, then it is algebraic everywhere.
- Infinitesimal Hodge theorem: X/Λ formal family ($\Lambda = \overline{\mathbb{Q}}[[t]]$ or mixed characteristic $\Lambda = W(k)$). Then algebraic classes on the closed fibre lift to algebraic classes on all thickenings iff the horizontal lift (or crystalline lift in mixed char.) of the cohomology class is Hodge.