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Introductory Remarks

Sheaves
I Sophisticated; powerful tools (Grothendieck’s 6 functors,

homological methods)
I Deep conjectures (Geometric Langlands); viable programs of study.

Algebraic cycles
I Traditionally quite crude (moving lemmas and issues of functoriality)
I Work of Voevodsky (h-topology, A1-homotopy and methods from

algebraic topology)
I Deep conjectures (cycles↔ morphisms in the category of motives)

F Beilinson conjectures; special values of L-functions
F Hodge conjectures

I Cycle schizophrenia; tools used to study cycles (higher K -theory,
A1-homotopy, cyclic homology) are often quite removed from the
cycles themselves.

Proving theorems about cycles 6= understanding cycles.
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Affine and Projective Varieties.

k a field; An
k is affine n-space over k .

Affine variety V defined by polynomials
fi(x1, . . . , xn) = 0; V ⊂ An

k .

Projective space Pn
k = Space of lines through 0 in An+1

k

Projective variety X ⊂ Pn
k defined by vanishing of homogeneous

polynomials Fi(T0, . . . ,Tn).
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Vector Bundles and Coherent Sheaves

OX sheaf of functions on X for the Zariski topology
Vector bundles V and coherent sheaves F .

I Example: Kähler differential forms
Ωr

X/k :=
∧r Ω1

X/k .
I If X is smooth then Ωr

X/k is a vector bundle.

K0(X ) Grothendieck group of vector bundles
generators [V], V a vector bundle on X
relations [V] = [V ′] + [V ′′] if

0→ V ′ → V → V ′′ → 0.
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Algebraic cycles

Algebraic cycles are finite formal linear combinations of closed
subvarieties of X .

Z =
∑

i

niZi ; Zi ⊂ X .

Z r (X ) cycles of codimension r (resp. Zr (X ) dimension r )
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Chow groups

Intersection product of cycles Z ·W

Z r (X )⊗Zs(X ) 99K Z r+s(X )

I defined for X smooth and cycles Z ,W in good position
I Z ·W =

sum over irreducible components of Zi ∩Wj with multiplicities

Spencer Bloch () Algebraic Cycles
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Chow groups II

Functoriality; f : X → Y
I f∗ : Z r (X )→ Z r−dim X/Y (Y ), f proper
I f ∗ : Z r (Y )→ Z r (X ), f flat

Rational equivalence Z r (X )rat ⊂ Z r (X )
I

X
pr1←−− X × P1 pr2−−→ P1

pr1∗(Z · pr∗2 ((0)− (∞))) ∈ Z r (X )rat
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Chow groups III

Chow group
CH r (X ) := Z r (X )/Z r (X )rat.

General reference:
Fulton, Intersection Theory (Springer Verlag).
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Divisors and Line Bundles

X smooth variety, D ⊂ X effective divisor, x ∈ X a point.
∃ x ∈ U ⊂ X open, f ∈ Γ(U,OX ), D ∩ U : f = 0.
{Ui , fi} defining D;
{Ui ∩ Uj , fi/fj} 1-cocycle with values in O×X , sheaf of units.
CH1(X ) ∼= H1(X ,O×X ); group of Line Bundles (Picard Group)
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Function Theory for Riemann Surfaces

X projective algebraic curve (Assume X (k) 6= ∅)
(compact Riemann surface for k = C)
0-cycles Z0(X ) (Note Z0(X ) = Z1(X ); 0-cycles are divisors)

I Degree map

Z0(X )0 := ker(Z0(X )
deg−−→ Z);

∑
ni (xi ) 7→

∑
ni

I Divisors of functions

Z0(X )rat = {(f )| f ∈ k(X )×} ⊂ Z(X )0

CH0(X )0 := Z0(X )0/Z0(X )rat ⊂ CH0(X ) = CH1(X )
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Abel’s Theorem

Abel’s Theorem:
CH0(X )0 ∼= JX (k).

The 0-cycles of degree 0 modulo divisors of functions are the
k -points of an Abelian Variety JX .
Case k = C.

I

JX (C) = Γ(X ,Ω1
X/C)∨/H1(X ,Z)

I

A ∈ Z0(X )0 7→
∫

c
∈ Γ(X ,Ω1)∨; ∂c = A
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Objectives

Define more general sorts of algebraic cycles (Motivic
Cohomology)
Interpret JX and other similar abelian Lie groups J as Ext groups
in the category of Hodge structures.
Generalize Abel’s construction to define more general cycle
classes.
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Hodge Structures

Free, f.g. Z-module HZ (or Q-vector space HQ, or R-vector space
HR)
Decreasing filtration F ∗HC; conjugate filtration F

∗
HC.

H pure of weight n if F p ∩ F
n−p+1

= (0), ∀p.

HC = ⊕Hp,n−p; Hp,n−p := F p ∩ F
n−p

Mixed Hodge structure: W∗HQ increasing weight filtration.
F ∗ induces pure HS of weight n on grW

n H for all n.
Category of HS’s is abelian. Weight and Hodge filtrations are
exact functors.
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n H for all n.
Category of HS’s is abelian. Weight and Hodge filtrations are
exact functors.
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Ext Groups in the Category of Hodge Structures

J Non-compact.
I Suitable algebraic cycles define cycle classes [Z ] ∈ J.
I J ∼= RN/Γ; Γ ∼= Zn discretely embedded in RN .
I 0→ compact torus→ J ρ−→ RN−n → 0

J compact (Height pairings).
I Gm bundle (biextension) B → J × J∨
I Canonical metric ρ : B → R
I Suitable pairs of cycles (Z ,W ) carry classes in B.
I ρ(Z ,W ) ∈ R.

Beilinson Conjectures: The real numbers ρ[Z ] (resp. ρ(Z ,W )) are
related to values of Hasse-Weil L-functions L(s) at integer points
s. (To be discussed in Monday’s talk.)
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Beilinson Conjectures (Viewed from outer space)

Smooth, projective variety X over number field↔ collection of
Hasse-Weil L-functions L(H r (X ), s)

“If conjectures were horses, mathematicians would ride...”
I Λ(H r (X ), s) = L(H r (X ), s) · Γ factor · exponential term
I Given n ≥ r

2 + 1, ∃ motivic cohomology group
(group of algebraic cycles) HM(X )Z, Ext group of Hodge structures
J(X ), and injective cycle map HM(X )Z → J(X )

I J(X ) has a volume form which is well-defined upto Q×.
I vol(J/(HM)Z) ∈ Q× · L(H r , s = n).
I Order of vanishing of L(s) at s = n − r − 1 conjecturally equals

dim HM(X )Z.
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Chern classes

V rank r vector bundle on X
Chern classes ci(V) ∈ CH i(X ) defined for 1 ≤ i ≤ r .
Given s1, . . . , sp ∈ Γ(X ,V),p ≤ r sections in general position.
Locally, V ∼= Or

X ; the si yield r × p matrix of functions.
cr−p+1(V) ∈ CH r−p+1(X ) cycle defined by vanishing of all p × p
minors.
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Chern Character

Chern Character (X smooth)

(∗) ch : K0(X )Q ∼=
⊕

i

CH i(X )Q.

Here ch is a power series in the ci .
Assume f : X → Y proper map, X ,Y smooth.
f! : K0(X )→ K0(Y )

I Example, Y = point.
I f![V] =

∑
(−1)i [H i (X ,V)] = χ(V) ∈ K0(point) = Z.
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Riemann Roch

Todd class Td(X ) ∈ CH∗(X )

Riemann Roch

f∗(Td(X ) · ch([V])) = Td(Y ) · ch(f![V]).

On Tuesday, we will use (*) (but not RR) to study the Hodge
conjecture.
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Enumerative Geometry

Deep and important problems involving intersection numbers of
cycles.

I Schubert calculus (intersection theory on Grassmannians)
I Enumerative problems arising in physics (intersection theory on

orbifolds)
I The Weil conjectures (Lefschetz fixed point formula; counting

Fq-rational points by intersection the graph of frobenius with the
diagonal)
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Linear Series; Classification Problems

L line bundle on X projective variety.
Complete linear series Γ(X ,L).
x ∈ X defines θ(x) ∈ Hom(Γ(X ,L), k)(!?)
θ(x)(`) := `(x) ∈ L(x) ∼= k .

I Problem: L(x) ∼= k not canonical: only get line in Hom(Γ(X ,L), k)
I Possibly `(x) = 0, ∀`, θ(x) = 0. Don’t even get a line!
I X

rational map−−−−−−−→ P(Γ(X ,L)∨)

Linear Series yield classification for dim X = 2 (Algebraic
Surfaces).
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Higher K -theory

K -theory spectrum K (X ) (Quillen).
I Higher K -groups Kn(X ), n ≥ 0
I Kn(X ) = (0),n < 0 if X smooth.
I Zariski sheaves Kn,X
I Brown-Gersten Spectral sequence (X smooth)

Ep,q
2 = Hp(X ,K−q,X )⇒ K−p−q(X )

I We will need (Thm. of Thomason) Brown-Gersten holds for X
possibly singular.
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Gersten Resolution

Resolution of Kn,X for X smooth

0→ Kn →
∐

x∈X 0

ix∗Kn(k(x))→
∐

x∈X 1

ix∗Kn−1(k(x))

· · ·
∐

x∈X n

ix∗K0(k(x))→ 0

Corollary: Hn(X ,Kn) ∼= CHn(X ).
I n = 1; Pic(X ) = CH1(X ) ∼= H1(X ,K1) = H1(X ,O×X ).
I In general ∐

x∈X n−1

ix∗K1(k(x))→
∐

x∈X n

ix∗K0(k(x));

K1(k(x)) = k(x)×, K0(k(x)) = Z.
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Motivic Cohomology

k a field. DMeff ,−
Nis triangulated category of Nisnevich sheaves with

transfers.
References

I Mazza, Voevodsky, Weibel, Lecture Notes on Motivic Cohomology,
Clay Math. monographs vol. 2.

I Voevodsky, Suslin, Friedlander (sic), Cycles, Transfers, and Motivic
Homology Theories, Annals of Math. Studies 143.

I Beilinson, Vologodsky, a DG guide to Voevodsky’s Motives.

For X smooth, have objects M(X ),Z(q) in DMeff ,−
Nis

Hp
M(X ,Z(q)) := HomDMeff ,−

Nis
(M(X ),Z(q)[p])
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Motivic Cohomology and K -theory

Beilinson definition

Hp
M(X ,Q(q)) := grq

γ K2q−p(X )Q.

I Example:
H2p

M (X ,Q(p)) = grp
γK0(X ) ∼= CHp(X )Q
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Higher Chow Groups

∆n
k := Spec k [t0, . . . , tn]/(

∑
ti − 1) algebraic n-simplex.

ιi : ∆n−1 ↪→ ∆n locus ti = 0.
Zp(X ×∆n)′ ⊂ Zp(X ×∆n) cycles in good position w.r.t. faces.
δi := ι∗i : Zp(X ×∆n)′ → Zp(X ×∆n−1)′; δ =

∑
(−1)iδi

Complex Zp(X , ·):

· · · δ−→ Zp(X ×∆n)′
δ−→ · · · δ−→ Zp(X ×∆1)′

δ−→ Zp(X )

CHp(X ,n) := H−n(Zp(X , ·)).
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Higher Chow Groups and Motivic Cohomology

X smooth, Hp
M(X ,Z(q)) ∼= CHq(X ,2q − p).

I Variant: Cubical cycles: � := P1 − {1}; Replace ∆n with �n; factor
out by degeneracies.

I Face maps ιji : �n−1 ↪→ �n, j = 0,∞
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Examples

Chow groups CHp(X ) = H2p
M (X ,Z(p)).

Milnor classes: f1, . . . , fn ∈ Γ(X ,O×X ). {f1, . . . , fn} :=
[(x , f1(x), . . . , fn(x)) ∩ (X ×�n)] ∈ CHn(X ,n) = Hn

M(X ,Z(n)).
dim X = 2, Ci ⊂ X curves, fi ∈ k(Ci)

× rational functions.
Γi := {(c, fi(c))|c ∈ Ci} ∈ Z2(X ×�1).∑

i

(fi) = 0 ∈ Z0(X )⇒
∑

Γi ∈ CH2(X ,1) = H3
M(X ,Z(2)).
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Higher Chow DGA

X = Spec k a point. Product

Zp(�n)⊗Zq(�m)→ Zp+q(�m+n).

Np(r) := Z r (�2r−p
k )Q,Alt

N∗(•) :=
⊕

r ,p≥0 N
p(r)
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Cycles and the Tannakian Category of Mixed Tate
Motives

Hopf algebra H := H0(Bar(N∗(•)))

G = Spec (H) as Tannaka group of category of mixed Tate motives
(?).
Bloch, Kriz, Mixed Tate Motives, Annals of Math. 140 (1994).
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Example: Dilogarithm Motive

N1(1)⊗N1(1)
mult−−−−→ N2(2)x∂ x∂

(N1(1)⊗N1(0))⊕ (N1(0)⊗N1(1)) −−−−→ N1(2)/∂N0(2)

N1(1)/∂N1(0) ∼= k× ⊗Q
N1(2)/∂N0(2) 3 Tx , x ∈ k − {0,1} Totaro cycles
N2(2)/mult ◦ ∂ ∼=

∧2 k×
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Example: Dilogarithm Motive II

Tx = {(t ,1− t ,1− xt−1) | t ∈ P1} parametrized curve in �3.
∂Tx = (x ,1− x) ∈ Z2(�2) = N2(2).
[(x)⊗ (1− x),Tx ] ∈ H0(Bar(N∗(•)))

Comodule generated is Dilog(x).

0→ H1
M(k ,Q(2))→ N1(2)/∂N0(2)

∂−→
∧2 k× ⊗Q
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The Hodge Conjecture

k = C, X smooth, projective variety.
Z ∈ Z r (X ), [Z ]DR ∈ F rH2r (X ,Ω∗X ), [Z ]Betti ∈ H2r

Betti(X ,Z(r)).
Hodge Conjecture: F r H2r

Betti(X ,C) ∩ H2r (X ,Q(r)) is generated by
algebraic cycle classes.
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Infinitesimal and Variational Hodge Conjecture

Variational Hodge Conjecture (Grothendieck): X/S family, σs
horizontal family of cohomology classes. If σ0 is algebraic at one
point 0 ∈ S, then it is algebraic everywhere.
Infinitesimal Hodge theorem: X/Λ formal family (Λ = Q[[t ]] or
mixed characteristic Λ = W (k)). Then algebraic classes on the
closed fibre lift to algebraic classes on all thickenings iff the
horizontal lift (or crystalline lift in mixed char.) of the cohomology
class is Hodge.
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