Hodge Classes and Deformation of Cycles

Spencer Bloch

March 4, 2014 Albert Lectures, University of Chicago

Spencer Bloch ()

Hodge Classes and Deformation of Cycles

March 4, 2014 Albert Lectures, University of C

/20

Spencer Bloch ()

March 4

Lectures, University of C / 20

Joint work with H. Esnault and M. Kerz.

- X/S smooth projective family.
 - Char. 0, $S = \overline{\mathbb{Q}}[[t]]$ or $S = \mathbb{C}[[t]]$.
 - Mixed Char., S = Spec W, W = W(k) ring of Witt Vectors. k perfect, char. p.
- $S = \overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

$$\nabla : H^*_{DR}(X/S) \to H^*_{DR}(X/S) \otimes \Omega^1_{\overline{\mathbb{Q}}[[t]]}$$
$$H^*_{DR}(X/S) \cong H^*_{DR}(X/S)^{\nabla=0} \otimes_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}[[t]]$$
$$H^*_{DR}(X/S)^{\nabla=0} \cong H^*_{DR}(Y/\overline{\mathbb{Q}}); \quad Y = X \times_S \operatorname{Spec} \overline{\mathbb{Q}}$$

March 4

ectures. University c

Joint work with H. Esnault and M. Kerz.

- X/S smooth projective family.
 - Char. 0, $S = \overline{\mathbb{Q}}[[t]]$ or $S = \mathbb{C}[[t]]$.
 - ► Mixed Char., S = Spec W, W = W(k) ring of Witt Vectors. k perfect, char. p.
- $S = \overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

 $\nabla : H^*_{DR}(X/S) \to H^*_{DR}(X/S) \otimes \Omega^1_{\overline{\mathbb{Q}}[[t]]}$ $H^*_{DR}(X/S) \cong H^*_{DR}(X/S)^{\nabla=0} \otimes_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}[[t]]$ $H^*_{DR}(X/S)^{\nabla=0} \cong H^*_{DR}(Y/\overline{\mathbb{Q}}); \quad Y = X \times_S \operatorname{Spec} \overline{\mathbb{Q}}$

Joint work with H. Esnault and M. Kerz.

- X/S smooth projective family.
 - Char. 0, $S = \overline{\mathbb{Q}}[[t]]$ or $S = \mathbb{C}[[t]]$.
 - Mixed Char., S = Spec W, W = W(k) ring of Witt Vectors. k perfect, char. p.
- $S = \overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

$$\nabla : H^*_{DR}(X/S) \to H^*_{DR}(X/S) \otimes \Omega^1_{\overline{\mathbb{Q}}[[t]]}$$
$$H^*_{DR}(X/S) \cong H^*_{DR}(X/S)^{\nabla=0} \otimes_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}[[t]]$$
$$H^*_{DR}(X/S)^{\nabla=0} \cong H^*_{DR}(Y/\overline{\mathbb{Q}}); \quad Y = X \times_S \operatorname{Spec} \overline{\mathbb{Q}}$$

March 4

ectures, University of

Joint work with H. Esnault and M. Kerz.

- X/S smooth projective family.
 - Char. 0, $S = \overline{\mathbb{Q}}[[t]]$ or $S = \mathbb{C}[[t]]$.
 - Mixed Char., S = Spec W, W = W(k) ring of Witt Vectors. k perfect, char. p.
- $S = \overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

$$\begin{array}{l} \nabla: H^*_{DR}(X/S) \to H^*_{DR}(X/S) \otimes \Omega^1_{\overline{\mathbb{Q}}[[t]]} \\ H^*_{DR}(X/S) \cong H^*_{DR}(X/S)^{\nabla=0} \otimes_{\overline{\mathbb{Q}}} \overline{\mathbb{Q}}[[t]] \\ H^*_{DR}(X/S)^{\nabla=0} \cong H^*_{DR}(Y/\overline{\mathbb{Q}}); \quad Y = X \times_S \operatorname{Spec} \overline{\mathbb{Q}} \end{array}$$

• $z = [Z] \in H^{2r}_{DR}(Y/\overline{\mathbb{Q}})$ class of an algebraic cycle.

- *z* extends uniquely to horizontal class $\tilde{z} \in H^{2r}_{DB}(X/S)^{\nabla=0}$.
- In general, $\tilde{z} \notin F^r H_{DR}^{2r}(X/S)$.
- Mixed Char. X/W,

$$z = [Z] \in H^{2r}_{crys}(Y/W) \cong H^{2r}_{DR}(X/W)$$

• Again $z \notin F^r H_{DR}^{2r}(X/W)$

14 Albert Lectures, University of

- $z = [Z] \in H^{2r}_{DR}(Y/\overline{\mathbb{Q}})$ class of an algebraic cycle.
- *z* extends uniquely to horizontal class $\tilde{z} \in H^{2r}_{DR}(X/S)^{\nabla=0}$.
- In general, $\tilde{z} \notin F^r H_{DR}^{2r}(X/S)$.
- Mixed Char. X/W,

$$z = [Z] \in H^{2r}_{crys}(Y/W) \cong H^{2r}_{DR}(X/W)$$

• Again $z \notin F^r H_{DR}^{2r}(X/W)$

4 Albert Lectures, University of

- $z = [Z] \in H^{2r}_{DR}(Y/\overline{\mathbb{Q}})$ class of an algebraic cycle.
- *z* extends uniquely to horizontal class $\tilde{z} \in H^{2r}_{DR}(X/S)^{\nabla=0}$.
- In general, $\tilde{z} \notin F^r H_{DR}^{2r}(X/S)$.
- Mixed Char. X/W,

 $z = [Z] \in H^{2r}_{crys}(Y/W) \cong H^{2r}_{DR}(X/W)$

• Again $z \notin F^r H_{DR}^{2r}(X/W)$

14 Albert Lectures, University of C

- $z = [Z] \in H^{2r}_{DR}(Y/\overline{\mathbb{Q}})$ class of an algebraic cycle.
- *z* extends uniquely to horizontal class $\tilde{z} \in H^{2r}_{DR}(X/S)^{\nabla=0}$.
- In general, $\tilde{z} \notin F^r H_{DR}^{2r}(X/S)$.
- Mixed Char. X/W,

$$z = [Z] \in H^{2r}_{crys}(Y/W) \cong H^{2r}_{DR}(X/W)$$

• Again $z \notin F^r H_{DR}^{2r}(X/W)$

- $z = [Z] \in H^{2r}_{DR}(Y/\overline{\mathbb{Q}})$ class of an algebraic cycle.
- *z* extends uniquely to horizontal class $\tilde{z} \in H^{2r}_{DR}(X/S)^{\nabla=0}$.
- In general, $\tilde{z} \notin F^r H_{DR}^{2r}(X/S)$.
- Mixed Char. X/W,

$$z = [Z] \in H^{2r}_{crys}(Y/W) \cong H^{2r}_{DR}(X/W)$$

• Again $z \notin F^r H_{DR}^{2r}(X/W)$

• X/S smooth projective formal scheme.

• S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$

- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

Continuous cohomology

$$CH^{r}_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_{1}, \mathbb{Z}_{X_{\bullet}}(r))$$

ectures Univers

- X/S smooth projective formal scheme.
- S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$
- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

Continuous cohomology

$$CH^r_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$$

ectures Univers

- X/S smooth projective formal scheme.
- S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$
- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

$$CH^r_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$$

- X/S smooth projective formal scheme.
- S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$
- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

$$CH^r_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$$

- X/S smooth projective formal scheme.
- S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$
- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

$$CH^r_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$$

- X/S smooth projective formal scheme.
- S = Spf R; $S_n = \text{Spec } R_n$; $X_n = X \times_R R_n$. $X_{\bullet} = \text{ind-system}$
- $R = \overline{\mathbb{Q}}[[t]]$ or R = W(k); k perfect char. p; $R_n = R/\mathfrak{m}_R^n$.
- Prosystem of Nisnevich sheaves $\{\mathbb{Z}_{X_{\bullet}}(r)\}$ (motivic complex)
- Continuous K-theory K_X, pro-system of simplicial presheaves (Quillen)

$$K_i^{cont}(X_{\bullet}) := [S_{X_1}^i, K_{X_{\bullet}}].$$

$$CH^r_{cont}(X_{\bullet}) := H^{2r}_{cont}(X_1, \mathbb{Z}_{X_{\bullet}}(r))$$

The Chern Character

$$\begin{array}{cccc} 0 & \to & \varprojlim_n^{1} K_1(X_n) & \to & K_0^{cont}(X_{\bullet}) & \to & \varprojlim_n K_0(X_n) & \to 0 \\ & & \cong \, \downarrow ch & & \cong \, \downarrow ch \\ 0 & \to (\bigoplus_r \varprojlim_n^{1} H^{2r-1}(X_1, \mathbb{Z}_{X_{\bullet}}(r)))_{\mathbb{Q}} & \to \bigoplus_r CH_{cont}^r(X_{\bullet})_{\mathbb{Q}} & \to (\bigoplus_r \varprojlim_n H^{2r}(X_1, \mathbb{Z}_{X_{\bullet}}(r)))_{\mathbb{Q}} & \to 0 \end{array}$$

• Crucial point: Thomason descent for *K*-theory of singular schemes. $K_0(X_n)$ is the Grothendieck group of vector bundles on X_n as explained in the first lecture.

Albert Lectures, University of

V_n on X_n rank r vector bundle generated by global sections

- s_1, \ldots, s_p general sections of \mathcal{V}_n . Concrete possibility to talk about algebraic cycle $c_{r-p+1}(\mathcal{V}_n)$.
- Lifting V_n to V_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_n$ can be algebrized.
- The bad news: We can only lift $[\mathcal{V}_n] \in K_0(X_n)$. $\varprojlim[\mathcal{V}_n]$ cannot be algebrized. Only get classes to all infinitesimal orders.

- V_n on X_n rank r vector bundle generated by global sections
- *s*₁,..., *s*_p general sections of *V*_n. Concrete possibility to talk about algebraic cycle *c*_{r-p+1}(*V*_n).
- Lifting \mathcal{V}_n to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_n$ can be algebrized.
- The bad news: We can only lift $[\mathcal{V}_n] \in K_0(X_n)$. $\varprojlim [\mathcal{V}_n]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Lectures, University of

- V_n on X_n rank r vector bundle generated by global sections
- s₁,..., s_p general sections of V_n. Concrete possibility to talk about algebraic cycle c_{r-p+1}(V_n).
- Lifting \mathcal{V}_n to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_n$ can be algebrized.
- The bad news: We can only lift $[\mathcal{V}_n] \in K_0(X_n)$. $\varprojlim [\mathcal{V}_n]$ cannot be algebrized. Only get classes to all infinitesimal orders.

- V_n on X_n rank r vector bundle generated by global sections
- *s*₁,..., *s*_p general sections of *V*_n. Concrete possibility to talk about algebraic cycle *c*_{r-p+1}(*V*_n).
- Lifting \mathcal{V}_n to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_n$ can be algebrized.
- The bad news: We can only lift [𝒱_n] ∈ 𝐾₀(𝑋_n). lim[𝒱_n] cannot be algebrized. Only get classes to all infinitesimal orders.

ectures. University (

- V_n on X_n rank r vector bundle generated by global sections
- *s*₁,..., *s*_p general sections of *V*_n. Concrete possibility to talk about algebraic cycle *c*_{r-p+1}(*V*_n).
- Lifting \mathcal{V}_n to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_n$ can be algebrized.
- The bad news: We can only lift [𝒱_n] ∈ 𝐾₀(𝑋_n). lim[𝒱_n] cannot be algebrized. Only get classes to all infinitesimal orders.

Hodge Classes in Families, the Main Theorem

Theorem

X/S smooth projective formal scheme; S = Spf(R). R complete dvr. (i) Assume $R = \overline{\mathbb{Q}}[[t]]$, and write $X_n = X \times_B \operatorname{Spec} R/t^n R$. Let $z = [Z]_{DB} \in H^{2r}_{DB}(X_1/\overline{\mathbb{Q}})$ be an algebraic cycle class. Then $\tilde{z} \in H^{2r}_{DR}(X/R)^{\nabla=0}$ lies in $F^r H^{2r}_{DR}(X/R)$ if and only if $[Z] \in CH^r(X_1)_{\mathbb{D}}$ lifts to $CH^r_{cont}(X)_{\mathbb{O}}$. (ii) Assume R = W(k). Assume further dim $X_1 . Let$ $z = [Z]_{crys} \in H^{2r}_{crys}(X_1/W) \cong H^{2r}_{DB}(X/W)$ be an algebraic cycle class. Then $z \in F^r H^{2r}_{DP}(X/R)_{\mathbb{Q}}$ if and only if $[Z] \in CH^r(X_1)_{\mathbb{Q}}$ lifts to $CH^{r}_{cont}(X)_{\mathbb{O}}.$ (iii) Assume $R = \mathbb{C}[[t]]$. Assume further that the Kunneth projectors are algebraic for $H^*_{DB}(X_n \times X_n)$ where $\eta \to \operatorname{Spec} \mathbb{C}[[t]]$ is the generic point. Then $\tilde{z} \in F^r H^{2r}_{DB}(X/S)$ iff there exists a class $\mathcal{Z} \in CH^r_{cont}(X_{\bullet})$ such that $\tilde{z} = [\mathcal{Z}]_{DB} \in F^r H^{2r}_{DB}(X/S).$

Discussion

- What the theorem says in case $R = \overline{\mathbb{Q}}[[t]]$: A cycle class $[Z] \in CH^r(X_1)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in (\varprojlim K_0(X_n))_{\mathbb{Q}}$ with $ch(\zeta)|X_1 = [Z]$ if and only if the horizontal lifting of $[Z]_{DR}$ lies in $F^r H_{DR}^{2r}(X/R)$.
- What the theorem *does not say* in case R = Q[[t]]:
 "Hodgeness" of the horizontal lifting of [Z]_{DR} implies existence of a lifting to X or to some algebrization of X.

Discussion

- What the theorem says in case $R = \overline{\mathbb{Q}}[[t]]$: A cycle class $[Z] \in CH^r(X_1)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in (\varprojlim K_0(X_n))_{\mathbb{Q}}$ with $ch(\zeta)|X_1 = [Z]$ if and only if the horizontal lifting of $[Z]_{DR}$ lies in $F^r H_{DR}^{2r}(X/R)$.
- What the theorem *does not say* in case R = Q[[t]]:
 "Hodgeness" of the horizontal lifting of [Z]_{DR} implies existence of a lifting to X or to some algebrization of X.

March 4, 2014 Albert Lectures, University of

Discussion

- What the theorem says in case $R = \overline{\mathbb{Q}}[[t]]$: A cycle class $[Z] \in CH^r(X_1)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in (\varprojlim K_0(X_n))_{\mathbb{Q}}$ with $ch(\zeta)|X_1 = [Z]$ if and only if the horizontal lifting of $[Z]_{DR}$ lies in $F^r H_{DR}^{2r}(X/R)$.
- What the theorem *does not say* in case R = Q[[t]]:
 "Hodgeness" of the horizontal lifting of [Z]_{DR} implies existence of a lifting to X or to some algebrization of X.

March 4, 2014 Albert Lectures, University of

Discussion (cont)

- What the theorem says in case R = W(k): Assume dim X₁ r</sup>(X₁)_Q lifts in the sense that there exists ζ ∈ (lim K₀(X_n))_Q with ch(ζ)|X₁ = [Z] if and only if the crystalline class [Z]_{crys} lies in F^rH^{2r}_{DR}(X/R) under the identification H^{*}(X₁/W)_{crys} ≅ H^{*}_{DR}(X/R).
- What the theorem does not say in case R = W(k):
 "Hodgeness" of the crystalline class [Z]_{crys} implies existence of a lifting to X or to some algebrization of X.
- What the theorem says in the case R = C[[t]]: If the Kunneth projectors are algebraic on X_η × X_η, then "Hodgeness" of the horizontal lifting of [Z]_{DR} implies that there exists a cycle Z' such that [Z]_{DR} = [Z']_{DR} and Z' lifts in the above sense.

Discussion (cont)

- What the theorem says in case R = W(k): Assume dim X₁ r</sup>(X₁)_Q lifts in the sense that there exists ζ ∈ (lim K₀(X_n))_Q with ch(ζ)|X₁ = [Z] if and only if the crystalline class [Z]_{crys} lies in F^rH^{2r}_{DR}(X/R) under the identification H^{*}(X₁/W)_{crys} ≅ H^{*}_{DR}(X/R).
- What the theorem does not say in case R = W(k):
 "Hodgeness" of the crystalline class [Z]_{crys} implies existence of a lifting to X or to some algebrization of X.
- What the theorem says in the case R = C[[t]]: If the Kunneth projectors are algebraic on X_η × X_η, then "Hodgeness" of the horizontal lifting of [Z]_{DR} implies that there exists a cycle Z' such that [Z]_{DR} = [Z']_{DR} and Z' lifts in the above sense.

Discussion (cont)

- What the theorem says in case R = W(k): Assume dim X₁ r</sup>(X₁)_Q lifts in the sense that there exists ζ ∈ (lim K₀(X_n))_Q with ch(ζ)|X₁ = [Z] if and only if the crystalline class [Z]_{crys} lies in F^rH^{2r}_{DR}(X/R) under the identification H^{*}(X₁/W)_{crys} ≅ H^{*}_{DR}(X/R).
- What the theorem does not say in case R = W(k):
 "Hodgeness" of the crystalline class [Z]_{crys} implies existence of a lifting to X or to some algebrization of X.
- What the theorem says in the case R = C[[t]]: If the Kunneth projectors are algebraic on X_η × X_η, then "Hodgeness" of the horizontal lifting of [Z]_{DR} implies that there exists a cycle Z' such that [Z]_{DR} = [Z']_{DR} and Z' lifts in the above sense.

- *R* = *k*[[*t*]], ℚ ⊂ *k*. ℤ(*r*)_{X1} complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- ℤ(r)_{X1} supported in [-∞, r] and ℋ^r(ℤ(r)_{X1}) = K^M_r (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{X_n}$ via the pullback

- *R* = *k*[[*t*]], Q ⊂ *k*. Z(*r*)_{X1} complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- ℤ(r)_{X1} supported in [-∞, r] and ℋ^r(ℤ(r)_{X1}) = K^M_r (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{X_n}$ via the pullback

- *R* = *k*[[*t*]], Q ⊂ *k*. Z(*r*)_{X1} complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- ℤ(r)_{X1} supported in [-∞, r] and ℋ^r(ℤ(r)_{X1}) = 𝐾^M_r (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{X_n}$ via the pullback

- *R* = *k*[[*t*]], Q ⊂ *k*. Z(*r*)_{X1} complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- ℤ(r)_{X1} supported in [-∞, r] and ℋ^r(ℤ(r)_{X1}) = 𝐾^M_r (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{X_n}$ via the pullback

• $A_{\bullet} = \Gamma(U, \mathcal{O}_{X_{\bullet}}).$

Pro-isomorphism

$$K_*(A_{ullet}, A_1) \cong \ker(K^M(A_{ullet}) o K^M(A_1)).$$

Goodwillie's theorem

$$K_{i+1}(A_n,A_1)\cong HC_i(A_n,A_1).$$

Cyclic homology is known

$$HC_i(A_n) \cong \Omega^i_{A_n}/B^i_{X_n} \oplus Z^{i-2}_{A_n}/B^{i-2}_{A_n} \oplus Z^{i-4}_{A_n}/B^{i-4}_{A_n} \cdots$$

Terms Z^{i-2k}/B^{i-2k} are independent of n (Poincaré lemma) and die in inverse limit

$$HC_i(A_{ullet}, A_1) \cong \ker[\Omega^i_{A_{ullet}}/B^i_{A_{ullet}} o Z^{i+1}_{A_{ullet}} \oplus \Omega^i_{A_1}/B^i_{A_1}]$$

- $A_{\bullet} = \Gamma(U, \mathcal{O}_{X_{\bullet}}).$
- Pro-isomorphism

$$\mathcal{K}_*(\mathcal{A}_{ullet},\mathcal{A}_1)\cong \ker(\mathcal{K}^M(\mathcal{A}_{ullet})
ightarrow \mathcal{K}^M(\mathcal{A}_1)).$$

Goodwillie's theorem

$$K_{i+1}(A_n,A_1)\cong HC_i(A_n,A_1).$$

Cyclic homology is known

$$HC_i(A_n) \cong \Omega^i_{A_n}/B^i_{X_n} \oplus Z^{i-2}_{A_n}/B^{i-2}_{A_n} \oplus Z^{i-4}_{A_n}/B^{i-4}_{A_n} \cdots$$

Terms Z^{i-2k}/B^{i-2k} are independent of n (Poincaré lemma) and die in inverse limit

$$HC_i(A_{ullet}, A_1) \cong \ker[\Omega^i_{A_{ullet}}/B^i_{A_{ullet}} o Z^{i+1}_{A_{ullet}} \oplus \Omega^i_{A_1}/B^i_{A_1}]$$

- $A_{\bullet} = \Gamma(U, \mathcal{O}_{X_{\bullet}}).$
- Pro-isomorphism

$$K_*(A_{ullet},A_1)\cong \ker(K^M(A_{ullet})
ightarrow K^M(A_1)).$$

$$K_{i+1}(A_n,A_1)\cong HC_i(A_n,A_1).$$

Cyclic homology is known

$$HC_i(A_n) \cong \Omega^i_{A_n}/B^i_{X_n} \oplus Z^{i-2}_{A_n}/B^{i-2}_{A_n} \oplus Z^{i-4}_{A_n}/B^{i-4}_{A_n} \cdots$$

Terms Z^{i-2k}/B^{i-2k} are independent of n (Poincaré lemma) and die in inverse limit

$$HC_i(A_{ullet}, A_1) \cong \ker[\Omega^i_{A_{ullet}}/B^i_{A_{ullet}} o Z^{i+1}_{A_{ullet}} \oplus \Omega^i_{A_1}/B^i_{A_1}]$$

- $A_{\bullet} = \Gamma(U, \mathcal{O}_{X_{\bullet}}).$
- Pro-isomorphism

$$K_*(A_{ullet},A_1)\cong \ker(K^M(A_{ullet})
ightarrow K^M(A_1)).$$

$$K_{i+1}(A_n,A_1)\cong HC_i(A_n,A_1).$$

Cyclic homology is known

$$\mathit{HC}_i(\mathit{A}_n) \cong \Omega^i_{\mathit{A}_n} / \mathit{B}^i_{\mathit{X}_n} \oplus \mathit{Z}^{i-2}_{\mathit{A}_n} / \mathit{B}^{i-2}_{\mathit{A}_n} \oplus \mathit{Z}^{i-4}_{\mathit{A}_n} / \mathit{B}^{i-4}_{\mathit{A}_n} \cdots$$

Terms Z^{i-2k}/B^{i-2k} are independent of n (Poincaré lemma) and die in inverse limit

$$HC_i(A_{ullet}, A_1) \cong \ker[\Omega^i_{A_{ullet}}/B^i_{A_{ullet}} o Z^{i+1}_{A_{ullet}} \oplus \Omega^i_{A_1}/B^i_{A_1}]$$

- $A_{\bullet} = \Gamma(U, \mathcal{O}_{X_{\bullet}}).$
- Pro-isomorphism

$$\mathcal{K}_*(\mathcal{A}_{ullet},\mathcal{A}_1)\cong \ker(\mathcal{K}^M(\mathcal{A}_{ullet})
ightarrow \mathcal{K}^M(\mathcal{A}_1)).$$

$$\mathcal{K}_{i+1}(\mathcal{A}_n,\mathcal{A}_1)\cong \mathcal{HC}_i(\mathcal{A}_n,\mathcal{A}_1).$$

Cyclic homology is known

$$HC_i(A_n) \cong \Omega^i_{A_n}/B^i_{X_n} \oplus Z^{i-2}_{A_n}/B^{i-2}_{A_n} \oplus Z^{i-4}_{A_n}/B^{i-4}_{A_n} \cdots$$

 Terms Z^{i-2k}/B^{i-2k} are independent of n (Poincaré lemma) and die in inverse limit

$$HC_i(A_{\bullet}, A_1) \cong \ker[\Omega^i_{A_{\bullet}}/B^i_{A_{\bullet}} \to Z^{i+1}_{A_{\bullet}} \oplus \Omega^i_{A_1}/B^i_{A_1}]$$

March 4

ectures. University o

 Idea: Codim. r cycle on X₁ defines class in H^{2r}_{DR}(X/W). Want to measure obstruction to this class lying in F^r.

$$\mathbb{Z}(r)_{X_{\bullet}} \stackrel{?}{=} \operatorname{Cone}(\mathbb{Z}_{X_{1}}(r) \stackrel{??}{\to} \Omega^{*}_{X_{\bullet}/W_{\bullet}}/F^{r})$$

• Will assume
$$r < p$$

 $p(r)\Omega_{X_{\bullet}}^{*} : p^{r}\mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1}\Omega_{X_{\bullet}}^{1} \to \cdots \to \Omega^{r} \to \Omega^{r+1} \to \cdots$

de Rham-Witt cohomology W_•Ω^{*}_{X1}

$$q(r)W_{\bullet}\Omega_{X_{1}}^{*}: p^{r-1}VW_{\bullet}\mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2}VW_{\bullet}\Omega_{X_{1}}^{1} \rightarrow \cdots \rightarrow VW_{\bullet}\Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet}\Omega^{r} \rightarrow W_{\bullet}\Omega^{r+1} \rightarrow \cdots$$

• PD – envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet} = \mathbb{P}_{\bullet}^{N}$). March 4, 2014 Albert Lectures, University of C

 Idea: Codim. r cycle on X₁ defines class in H^{2r}_{DR}(X/W). Want to measure obstruction to this class lying in F^r.

$$\mathbb{Z}(r)_{X_{\bullet}} \stackrel{?}{=} \operatorname{Cone}(\mathbb{Z}_{X_{1}}(r) \stackrel{??}{\to} \Omega^{*}_{X_{\bullet}/W_{\bullet}}/F^{r})$$

• Will assume
$$r < p$$

 $p(r)\Omega^*_{X_{\bullet}} : p^r \mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1}\Omega^1_{X_{\bullet}} \to \dots \to \Omega^r \to \Omega^{r+1} \to \dots$

de Rham-Witt cohomology W_•Ω^{*}_{X1}

$$q(r)W_{\bullet}\Omega_{X_{1}}^{*}: p^{r-1}VW_{\bullet}\mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2}VW_{\bullet}\Omega_{X_{1}}^{1} \rightarrow \cdots \rightarrow VW_{\bullet}\Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet}\Omega^{r} \rightarrow W_{\bullet}\Omega^{r+1} \rightarrow \cdots$$

• PD – envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet} = \mathbb{P}_{\bullet}^{N}$). March 4, 2014 Albert Lectures, University of C

 Idea: Codim. r cycle on X₁ defines class in H^{2r}_{DR}(X/W). Want to measure obstruction to this class lying in F^r.

$$\mathbb{Z}(r)_{X_{\bullet}} \stackrel{?}{=} \operatorname{Cone}(\mathbb{Z}_{X_{1}}(r) \stackrel{??}{\to} \Omega^{*}_{X_{\bullet}/W_{\bullet}}/F^{r})$$

• Will assume
$$r < p$$

 $p(r)\Omega^*_{X_{\bullet}} : p^r \mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1}\Omega^1_{X_{\bullet}} \to \dots \to \Omega^r \to \Omega^{r+1} \to \dots$

de Rham-Witt cohomology W_•Ω^{*}_{X1}

$$q(r)W_{\bullet}\Omega_{X_{1}}^{*}: p^{r-1}VW_{\bullet}\mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2}VW_{\bullet}\Omega_{X_{1}}^{1} \rightarrow \cdots \rightarrow VW_{\bullet}\Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet}\Omega^{r} \rightarrow W_{\bullet}\Omega^{r+1} \rightarrow \cdots$$

• PD - envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet} = \mathbb{P}_{\bullet}^{N}$).

 Idea: Codim. r cycle on X₁ defines class in H^{2r}_{DR}(X/W). Want to measure obstruction to this class lying in F^r.

$$\mathbb{Z}(r)_{X_{\bullet}} \stackrel{?}{=} \operatorname{Cone}(\mathbb{Z}_{X_{1}}(r) \stackrel{??}{\to} \Omega^{*}_{X_{\bullet}/W_{\bullet}}/F^{r})$$

• Will assume
$$r < p$$

 $p(r)\Omega^*_{X_{\bullet}} : p^r \mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1}\Omega^1_{X_{\bullet}} \to \dots \to \Omega^r \to \Omega^{r+1} \to \dots$

de Rham-Witt cohomology W_•Ω^{*}_{X1}

$$q(r)W_{\bullet}\Omega_{X_{1}}^{*}: p^{r-1}VW_{\bullet}\mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2}VW_{\bullet}\Omega_{X_{1}}^{1} \rightarrow \cdots \rightarrow VW_{\bullet}\Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet}\Omega^{r} \rightarrow W_{\bullet}\Omega^{r+1} \rightarrow \cdots$$

• PD – envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet} = \mathbb{P}^{N}_{\bullet}$).

 Idea: Codim. r cycle on X₁ defines class in H^{2r}_{DR}(X/W). Want to measure obstruction to this class lying in F^r.

$$\mathbb{Z}(r)_{X_{\bullet}} \stackrel{?}{=} \operatorname{Cone}(\mathbb{Z}_{X_{1}}(r) \stackrel{??}{\to} \Omega^{*}_{X_{\bullet}/W_{\bullet}}/F^{r})$$

• Will assume
$$r < p$$

 $p(r)\Omega^*_{X_{\bullet}} : p^r \mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1}\Omega^1_{X_{\bullet}} \to \dots \to \Omega^r \to \Omega^{r+1} \to \dots$

de Rham-Witt cohomology W_•Ω^{*}_{X1}

$$q(r)W_{\bullet}\Omega_{X_{1}}^{*}: p^{r-1}VW_{\bullet}\mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2}VW_{\bullet}\Omega_{X_{1}}^{1} \rightarrow \cdots \rightarrow VW_{\bullet}\Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet}\Omega^{r} \rightarrow W_{\bullet}\Omega^{r+1} \rightarrow \cdots$$

• PD – envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet} = \mathbb{P}_{\bullet}^{N}$).

The Motivic Complex in Mixed Characteristic, II • $\Omega_{D_{\bullet}}^{*} := \Omega_{Z_{\bullet}}^{*} \otimes \mathcal{O}_{D_{\bullet}}$. Special relation $d\gamma_{n}(x) = \gamma_{n-1}(x)dx$. $\Omega_{X_{\bullet}}^{*} \xleftarrow{\simeq} \Omega_{D_{\bullet}}^{*}$ $\downarrow \simeq$ $W_{\bullet}\Omega_{X_{1}}^{*}$

• $J_{\bullet} \subset \mathcal{O}_{D_{\bullet}}$ ideal of X_{\bullet} , $I_{\bullet} = (J_{\bullet}, p)$ ideal of X_{1} $J(r)\Omega_{D_{\bullet}}^{*}: J_{\bullet}^{r} \to J_{\bullet}^{r-1}\Omega_{D_{\bullet}}^{1} \to \cdots \to \Omega_{D_{\bullet}}^{r} \to \cdots$ $I(r)\Omega_{D_{\bullet}}^{*}: I_{\bullet}^{r} \to I_{\bullet}^{r-1}\Omega_{D_{\bullet}}^{1} \to \cdots \to \Omega_{D_{\bullet}}^{r} \to \cdots$

 $p(r)\Omega_{X_{\bullet}}^{*} \xleftarrow{\simeq}{a} l(r)\Omega_{D_{\bullet}}^{*}$ $b \downarrow \simeq$ $q(r)W_{\bullet}\Omega_{X_{\bullet}}^{*}$

Lectures, University of C

Hodge Classes and Deformation of Cycles

The Motivic Complex in Mixed Characteristic, II • $\Omega_{D_{\bullet}}^* := \Omega_{Z_{\bullet}}^* \otimes \mathcal{O}_{D_{\bullet}}$. Special relation $d\gamma_n(x) = \gamma_{n-1}(x)dx$. $\Omega^*_{X_*} \xleftarrow{\simeq} \Omega^*_{D_*}$ $|\simeq$ $W_{\bullet}\Omega_{X}^{*}$ • $J_{\bullet} \subset \mathcal{O}_{D_{\bullet}}$ ideal of X_{\bullet} , $I_{\bullet} = (J_{\bullet}, p)$ ideal of X_{1} $J(r)\Omega_{D_{1}}^{*}: J_{\bullet}^{r} \to J_{\bullet}^{r-1}\Omega_{D_{1}}^{1} \to \cdots \to \Omega_{D_{1}}^{r} \to \cdots$ $I(r)\Omega_D^* : I_{\bullet}^r \to I_{\bullet}^{r-1}\Omega_D^1 \to \cdots \to \Omega_D^r \to \cdots$

> $q(r) W_{\bullet} \Omega_{Y}^{*}$ March 4, 2014 Albert Lectures, University of C

Hodge Classes and Deformation of Cycles

The Motivic Complex in Mixed Characteristic, II • $\Omega_{D_{\bullet}}^* := \Omega_{Z_{\bullet}}^* \otimes \mathcal{O}_{D_{\bullet}}$. Special relation $d\gamma_n(x) = \gamma_{n-1}(x)dx$. $\Omega^*_{X_*} \xleftarrow{\simeq} \Omega^*_{D_*}$ $|\simeq$ $W_{\bullet}\Omega_{X}^{*}$ • $J_{\bullet} \subset \mathcal{O}_{D_{\bullet}}$ ideal of X_{\bullet} , $I_{\bullet} = (J_{\bullet}, p)$ ideal of X_{1} $J(r)\Omega_{D_{1}}^{*}: J_{\bullet}^{r} \to J_{\bullet}^{r-1}\Omega_{D_{1}}^{1} \to \cdots \to \Omega_{D_{1}}^{r} \to \cdots$ $I(r)\Omega_{D}^{*}: I_{\bullet}^{r} \to I_{\bullet}^{r-1}\Omega_{D}^{1} \to \cdots \to \Omega_{D_{\bullet}}^{r} \to \cdots$ $p(r)\Omega_{X_{\bullet}}^{*} \leftarrow I(r)\Omega_{D_{\bullet}}^{*}$ $b \simeq$

Spencer Bloch ()

Hodge Classes and Deformation of Cycles

 $q(r)W_{\bullet}\Omega_{X}^{*}$

Lectures, University of C

$$\mathbb{Z}_{X_{\bullet}}(r) := \mathsf{Cone}\Big(I(r)\Omega^*_{D_{\bullet}} \oplus \Omega^{\geq r}_{\overline{X_{\bullet}}} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r)\Omega^*_{X_{\bullet}} \oplus q(r)W\Omega^*_{X_{1}}\Big)$$

Natural inclusion of complexes

$$\phi_{12}: \Omega^{\geq r}_{X_{\bullet}} \to p(r)\Omega^*_{X_{\bullet}}$$

d log map for de Rham Witt:

$$\phi_{23}: \mathbb{Z}(r)_{X_1} \to \mathcal{K}_{r,X_1}[-r] \xrightarrow{d \log} W\Omega^r_{X_1,\log}[-r] \to q(r)W\Omega^*_{X_1}.$$

Teichmuller map $\mathcal{O}_{X_1}^{\times} \to (W\mathcal{O}_{X_1})^{\times}; x \mapsto [x].$

$$d \log\{x_1, \ldots, x_r\} = d[x_1][x_1]^{-1} \wedge \cdots \wedge d[x_r][x_r]^{-1}$$

March 4, 20

$$\mathbb{Z}_{X_{\bullet}}(r) := \operatorname{Cone}\left(I(r)\Omega_{D_{\bullet}}^{*} \oplus \Omega_{X_{\bullet}}^{\geq r} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r)\Omega_{X_{\bullet}}^{*} \oplus q(r)W\Omega_{X_{1}}^{*}\right)$$
$$\phi = \begin{pmatrix} a & \phi_{12} & 0 \\ b & 0 & \phi_{23} \end{pmatrix}$$

Natural inclusion of complexes

$$\phi_{12}: \Omega_{X_{\bullet}}^{\geq r} \to p(r)\Omega_{X_{\bullet}}^{*}$$

d log map for de Rham Witt:

$$\phi_{23}: \mathbb{Z}(r)_{X_1} \to \mathcal{K}_{r,X_1}[-r] \xrightarrow{d \log} W\Omega^r_{X_1,\log}[-r] \to q(r)W\Omega^*_{X_1}.$$

Teichmuller map $\mathcal{O}_{X_1}^{\times} \to (W\mathcal{O}_{X_1})^{\times}; x \mapsto [x].$

$$d \log\{x_1, \ldots, x_r\} = d[x_1][x_1]^{-1} \wedge \cdots \wedge d[x_r][x_r]^{-1}$$

$$\mathbb{Z}_{X_{\bullet}}(r) := \operatorname{Cone}\left(I(r)\Omega_{D_{\bullet}}^{*} \oplus \Omega_{X_{\bullet}}^{\geq r} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r)\Omega_{X_{\bullet}}^{*} \oplus q(r)W\Omega_{X_{1}}^{*}\right)$$
$$\phi = \begin{pmatrix} a & \phi_{12} & 0 \\ b & 0 & \phi_{23} \end{pmatrix}$$

Natural inclusion of complexes

$$\phi_{12}: \Omega_{X_{\bullet}}^{\geq r} \to p(r)\Omega_{X_{\bullet}}^{*}$$

d log map for de Rham Witt:

$$\phi_{23}: \mathbb{Z}(r)_{X_1} \to \mathcal{K}_{r,X_1}[-r] \xrightarrow{d \log} W\Omega^r_{X_1,\log}[-r] \to q(r)W\Omega^*_{X_1}.$$

Teichmuller map $\mathcal{O}_{X_1}^{\times} \to (W\mathcal{O}_{X_1})^{\times}; x \mapsto [x].$

$$d \log\{x_1, \ldots, x_r\} = d[x_1][x_1]^{-1} \wedge \cdots \wedge d[x_r][x_r]^{-1}$$

$$\mathbb{Z}_{X_{\bullet}}(r) := \operatorname{Cone}\left(I(r)\Omega_{D_{\bullet}}^{*} \oplus \Omega_{X_{\bullet}}^{\geq r} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r)\Omega_{X_{\bullet}}^{*} \oplus q(r)W\Omega_{X_{1}}^{*}\right)$$
$$\phi = \begin{pmatrix} a & \phi_{12} & 0 \\ b & 0 & \phi_{23} \end{pmatrix}$$

Natural inclusion of complexes

$$\phi_{12}: \Omega_{X_{\bullet}}^{\geq r} \to p(r)\Omega_{X_{\bullet}}^{*}$$

d log map for de Rham Witt:

$$\phi_{23}: \mathbb{Z}(r)_{X_1} \to \mathcal{K}_{r,X_1}[-r] \xrightarrow{d \log} W\Omega^r_{X_1,\log}[-r] \to q(r)W\Omega^*_{X_1}.$$

chmuller map $\mathcal{O}_{X_1}^{\times} \to (W\mathcal{O}_{X_1})^{\times}; x \mapsto [x].$

 $d \log\{x_1, \ldots, x_r\} = d[x_1][x_1]^{-1} \wedge \cdots \wedge d[x_r][x_r]^{-1}$

$$\mathbb{Z}_{X_{\bullet}}(r) := \operatorname{Cone}\left(I(r)\Omega_{D_{\bullet}}^{*} \oplus \Omega_{X_{\bullet}}^{\geq r} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r)\Omega_{X_{\bullet}}^{*} \oplus q(r)W\Omega_{X_{1}}^{*}\right)$$
$$\phi = \begin{pmatrix} a & \phi_{12} & 0 \\ b & 0 & \phi_{23} \end{pmatrix}$$

Natural inclusion of complexes

$$\phi_{12}: \Omega_{X_{\bullet}}^{\geq r} \to p(r)\Omega_{X_{\bullet}}^{*}$$

d log map for de Rham Witt:

$$\phi_{23}: \mathbb{Z}(r)_{X_1} \to \mathcal{K}_{r,X_1}[-r] \xrightarrow{d \log} W\Omega^r_{X_1,\log}[-r] \to q(r)W\Omega^*_{X_1}.$$

Teichmuller map $\mathcal{O}_{X_1}^{\times} \to (W\mathcal{O}_{X_1})^{\times}; x \mapsto [x].$

$$d \log\{x_1, \ldots, x_r\} = d[x_1][x_1]^{-1} \wedge \cdots \wedge d[x_r][x_r]^{-1}$$

March

ctures. University of C

- $(\mathcal{K}/p)_{X,s}$ étale sheaf of *K*-groups with $\mathbb{Z}/p\mathbb{Z}$ -coefficients.
- K = quotient field(W), j : X_K → X, i : X₁ → X (small cheat: must adjoin *p*-root of 1 to W)

$$\mathfrak{V}_X(r) = \operatorname{cone}\left(\tau_{\leq r} R j_* \mathbb{Z}/p\mathbb{Z}(r) \xrightarrow{\operatorname{res}} i_* \Omega_{X_0, \log}^{r-1}[-r]\right) [-1]$$

• For example $\mathfrak{V}_X(1) \cong \mathbb{G}_{m,X} \otimes^L \mathbb{Z}/p\mathbb{Z}[-1].$

Theorem

Unique isomorphism of étale sheaves on X₁

$$i^*(\mathcal{K}/p)_{X,s} \xrightarrow{\cong} \bigoplus_{r \leq s} i^*\mathcal{H}^{2r-s}(\mathfrak{V}_X(r)).$$

- $(\mathcal{K}/p)_{X,s}$ étale sheaf of *K*-groups with $\mathbb{Z}/p\mathbb{Z}$ -coefficients.
- K = quotient field(W), j : X_K → X, i : X₁ → X (small cheat: must adjoin *p*-root of 1 to W)

$$\mathfrak{V}_X(r) = \operatorname{cone}\left(\tau_{\leq r} R j_* \mathbb{Z}/p\mathbb{Z}(r) \xrightarrow{res} i_* \Omega_{X_0,\log}^{r-1}[-r]\right)[-1]$$

• For example $\mathfrak{V}_X(1) \cong \mathbb{G}_{m,X} \otimes^L \mathbb{Z}/p\mathbb{Z}[-1].$

Theorem

Unique isomorphism of étale sheaves on X₁

$$i^*(\mathcal{K}/p)_{X,s} \xrightarrow{\cong} \bigoplus_{r \leq s} i^*\mathcal{H}^{2r-s}(\mathfrak{V}_X(r)).$$

- $(\mathcal{K}/p)_{X,s}$ étale sheaf of *K*-groups with $\mathbb{Z}/p\mathbb{Z}$ -coefficients.
- K = quotient field(W), j : X_K → X, i : X₁ → X (small cheat: must adjoin *p*-root of 1 to W)

$$\mathfrak{V}_X(r) = \operatorname{cone}\left(\tau_{\leq r} R_{j_*}\mathbb{Z}/p\mathbb{Z}(r) \xrightarrow{\operatorname{res}} i_*\Omega_{X_0,\log}^{r-1}[-r]\right)[-1]$$

• For example
$$\mathfrak{V}_X(1) \cong \mathbb{G}_{m,X} \otimes^L \mathbb{Z}/p\mathbb{Z}[-1].$$

Theorem

Unique isomorphism of étale sheaves on X₁

$$i^*(\mathcal{K}/p)_{X,s} \xrightarrow{\cong} \bigoplus_{r \leq s} i^*\mathcal{H}^{2r-s}(\mathfrak{V}_X(r)).$$

- $(\mathcal{K}/p)_{X,s}$ étale sheaf of *K*-groups with $\mathbb{Z}/p\mathbb{Z}$ -coefficients.
- K = quotient field(W), j : X_K → X, i : X₁ → X (small cheat: must adjoin *p*-root of 1 to W)

$$\mathfrak{V}_X(r) = \operatorname{cone}\left(\tau_{\leq r} R j_* \mathbb{Z}/p\mathbb{Z}(r) \xrightarrow{\operatorname{res}} i_* \Omega_{X_0,\log}^{r-1}[-r]\right)[-1]$$

• For example
$$\mathfrak{V}_X(1) \cong \mathbb{G}_{m,X} \otimes^L \mathbb{Z}/p\mathbb{Z}[-1].$$

Theorem

Unique isomorphism of étale sheaves on X₁

$$i^*(\mathcal{K}/p)_{X,s} \xrightarrow{\cong} \bigoplus_{r \leq s} i^*\mathcal{H}^{2r-s}(\mathfrak{V}_X(r)).$$

- $(\mathcal{K}/p)_{X,s}$ étale sheaf of *K*-groups with $\mathbb{Z}/p\mathbb{Z}$ -coefficients.
- K = quotient field(W), j : X_K → X, i : X₁ → X (small cheat: must adjoin *p*-root of 1 to W)

$$\mathfrak{V}_X(r) = \operatorname{cone}\left(\tau_{\leq r} R j_* \mathbb{Z}/p\mathbb{Z}(r) \xrightarrow{\operatorname{res}} i_* \Omega_{X_0,\log}^{r-1}[-r]\right)[-1]$$

• For example
$$\mathfrak{V}_X(1) \cong \mathbb{G}_{m,X} \otimes^L \mathbb{Z}/p\mathbb{Z}[-1].$$

Theorem

Unique isomorphism of étale sheaves on X₁

$$i^*(\mathcal{K}/p)_{X,s} \xrightarrow{\cong} \bigoplus_{r \leq s} i^*\mathcal{H}^{2r-s}(\mathfrak{V}_X(r)).$$

compatible with symbols and cup product with the Bott map.

Spencer Bloch ()

March 4, 2014 Albert Lectures, University of C

Hodge-like conjectures in char. 0

Conjecture (Infinitesimal Hodge Conjecture)

 $x = [Z]_{DR}$. Assume horizontal lift $\tilde{x} \in F^r H_{DR}^{2r}$. Then there exists an algebraic cycle \mathcal{Z} on X such that $\tilde{x} = [\mathcal{Z}]_{DR}$.

Conjecture (Grothendieck Variational Hodge Conjecture)

$$X \xrightarrow{f} S o \operatorname{Spec} \mathbb{C}$$

f smooth, projective, *S* quasi-projective, smooth. $s \in S$ a point; $\sigma \in H_{DR}^{2r}(X)$. Assume $\sigma|_{X_s}$ is the class of an algebraic cycle on X_s . Then there exists a class $\xi \in K_0(X)_{\mathbb{Q}}$ such that $[ch(\xi)]_{DR}|_{X_s} = \sigma|_{X_s}$.

March 4, 2014 Albert Lectures, University of

Hodge-like conjectures in char. 0

Conjecture (Infinitesimal Hodge Conjecture)

 $x = [Z]_{DR}$. Assume horizontal lift $\tilde{x} \in F^r H_{DR}^{2r}$. Then there exists an algebraic cycle \mathcal{Z} on X such that $\tilde{x} = [\mathcal{Z}]_{DR}$.

Conjecture (Grothendieck Variational Hodge Conjecture)

$$X \xrightarrow{f} S \to \operatorname{Spec} \mathbb{C}$$

f smooth, projective, S quasi-projective, smooth. $s \in S$ a point; $\sigma \in H^{2r}_{DR}(X)$. Assume $\sigma|_{X_s}$ is the class of an algebraic cycle on X_s . Then there exists a class $\xi \in K_0(X)_{\mathbb{Q}}$ such that $[ch(\xi)]_{DR}|_{X_s} = \sigma|_{X_s}$.

March 4, 2014 Albert Lectures, University of

Hodge-like conjectures II

Theorem

The variational Hodge conjecture is equivalent to the infinitesimal Hodge conjecture.

March 4, 2014 Albert Lectures, University of (

/20

• $CH^r(?) = H^r(?, \mathcal{K}^M_r).$

- $X \to S = \text{Spf } \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r,X}^M$.
- Can prove (?)

$$K_{r,X}^M\cong \varprojlim_n K_{r,X_n}^M.$$

$$0 \to \Omega_{X_1}^{r-1} \xrightarrow{b} K_{r,X_n}^M \to K_{r,X_{n-1}}^M \to 0$$
$$b(x \frac{dy_1}{y_1} \wedge \dots \wedge \frac{dy_{r-1}}{y_{r-1}}) = \{1 + xt^{n-1}, y_1, \dots, y_{r-1}\}.$$

•
$$CH^{r}(?) = H^{r}(?, \mathcal{K}_{r}^{M}).$$

- $X \to S = \text{Spf } \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r,X}^M$.

$$K_{r,X}^M \cong \varprojlim_n K_{r,X_n}^M.$$

$$0 \to \Omega_{X_1}^{r-1} \xrightarrow{b} K_{r,X_n}^M \to K_{r,X_{n-1}}^M \to 0$$
$$b(x \frac{dy_1}{y_1} \wedge \dots \wedge \frac{dy_{r-1}}{y_{r-1}}) = \{1 + xt^{n-1}, y_1, \dots, y_{r-1}\}.$$

•
$$CH^r(?) = H^r(?, \mathcal{K}_r^M).$$

- $X \to S = \text{Spf } \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r,X}^M$.
- Can prove (?)

$$\mathcal{K}^{\mathcal{M}}_{r,X}\cong \varprojlim_{n}\mathcal{K}^{\mathcal{M}}_{r,X_{n}}.$$

$$0 \to \Omega_{X_1}^{r-1} \xrightarrow{b} K_{r,X_n}^M \to K_{r,X_{n-1}}^M \to 0$$
$$b(x \frac{dy_1}{y_1} \wedge \cdots \wedge \frac{dy_{r-1}}{y_{r-1}}) = \{1 + xt^{n-1}, y_1, \dots, y_{r-1}\}.$$

•
$$CH^r(?) = H^r(?, \mathcal{K}^M_r).$$

- $X \to S = \text{Spf } \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r,X}^M$.
- Can prove (?)

$$\mathcal{K}_{r,X}^{\mathcal{M}}\cong \underbrace{\lim_{n}}_{n}\mathcal{K}_{r,X_{n}}^{\mathcal{M}}.$$

$$0 \to \Omega_{X_1}^{r-1} \xrightarrow{b} K_{r,X_n}^M \to K_{r,X_{n-1}}^M \to 0$$
$$b(x \frac{dy_1}{y_1} \land \dots \land \frac{dy_{r-1}}{y_{r-1}}) = \{1 + xt^{n-1}, y_1, \dots, y_{r-1}\}.$$

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}^{M}_{r}) \to H^{r}(X, \mathcal{K}^{M}_{r}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on *X*. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N))$.
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}_{r}^{M}) \rightarrow H^{r}(X, \mathcal{K}_{r}^{M}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on *X*. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N))$.
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

X smooth projective formal scheme as above. Are elements in $H^r(X, \mathcal{K}_r^M)$ given by cycles?

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}_{r}^{M}) \to H^{r}(X, \mathcal{K}_{r}^{M}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

 $0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$

- $\mathcal{O}_X(1)$ ample line bundle on X. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N)).$
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}_{r}^{M}) \rightarrow H^{r}(X, \mathcal{K}_{r}^{M}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on X. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N)).$
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}_{r}^{M}) \rightarrow H^{r}(X, \mathcal{K}_{r}^{M}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on X. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N)).$
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}_{r}^{M}) \rightarrow H^{r}(X, \mathcal{K}_{r}^{M}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \lim_{n \to \infty} L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on X. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N)).$
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D)), D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!

- $\mathcal{O}_X \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not *t*-adically complete).
- $H^{r}(X, \mathcal{K}^{M}_{r}) \rightarrow H^{r}(X, \mathcal{K}^{M}_{r}(\mathcal{F}))$ should be 0?!
- case r = 1. $L = \varprojlim L_n$ line bundle.

$$0 \rightarrow L_1 \rightarrow L_n \rightarrow L_{n-1} \rightarrow 0.$$

- $\mathcal{O}_X(1)$ ample line bundle on X. $N >> 0 \Rightarrow H^1(L_1(N)) = (0)$ and $H^0(L_n(N)) \twoheadrightarrow H^0(L_{n-1}(N)).$
- Conclusion *L* has meromorphic sections, $H^1(X, \mathcal{K}_1^M) \xrightarrow{0} H^1(X, \mathcal{K}_1^M(\mathcal{F})).$
- r > 1 vanishing of $H^*(X_1, \mathcal{O}(D))$, $D \in \Gamma(X_1, \mathcal{O}(N))$ becomes vanishing of $H^*(X_1, \Omega^{r-1}(\log D))$. Not true!