Hodge Classes and Deformation of Cycles

Spencer Bloch

March 4, 2014 Albert Lectures, University of Chicago

Outline

(1) Hodge Classes and Deformation of Cycles
(2) The Main Theorem
(3) The Motivic Complexes
(4) Comments

March 4, 2014 Albert Lectures, University of C

Hodge Classes in Families

Joint work with H. Esnault and M. Kerz.

- X / S smooth projective family.

Hodge Classes in Families

Joint work with H. Esnault and M. Kerz.

- X / S smooth projective family.
- Char. $0, S=\overline{\mathbb{Q}}[[t]]$ or $S=\mathbb{C}[[t]]$.
- Mixed Char., $S=\operatorname{Spec} W, W=W(k)$ ring of Witt Vectors. k perfect, char. p.
- $S=\overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

Hodge Classes in Families

Joint work with H. Esnault and M. Kerz.

- X / S smooth projective family.
- Char. $0, S=\overline{\mathbb{Q}}[[t]]$ or $S=\mathbb{C}[[t]]$.
- Mixed Char., $S=\operatorname{Spec} W, W=W(k)$ ring of Witt Vectors. k perfect, char. p.
- $S=\overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

Hodge Classes in Families

Joint work with H. Esnault and M. Kerz.

- X / S smooth projective family.
- Char. $0, S=\overline{\mathbb{Q}}[[t]]$ or $S=\mathbb{C}[[t]]$.
- Mixed Char., $S=\operatorname{Spec} W, W=W(k)$ ring of Witt Vectors. k perfect, char. p.
- $S=\overline{\mathbb{Q}}[[t]]$; Gauß-Manin connection

$$
\begin{gathered}
\nabla: H_{D R}^{*}(X / S) \rightarrow H_{D R}^{*}(X / S) \otimes \Omega_{\overline{\mathbb{Q}}[[t]]}^{1} \\
H_{D R}^{*}(X / S) \cong H_{D R}^{*}(X / S)^{\nabla=0} \otimes_{\overline{\mathbb{Q}}}^{\overline{\mathbb{Q}}[[t]]} \\
H_{D R}^{*}(X / S)^{\nabla=0} \cong H_{D R}^{*}(Y / \overline{\mathbb{Q}}) ; \quad Y=X \times_{S} \operatorname{Spec} \overline{\mathbb{Q}}
\end{gathered}
$$

Hodge Classes in Families, II

- $z=[Z] \in H_{D R}^{2 r}(Y / \overline{\mathbb{Q}})$ class of an algebraic cycle.

- (2) In general, $\tilde{z} \notin F^{r} H_{D R}^{2 r}(X / S)$.
- Mixed Char. X/W,

$$
z=[Z] \in H_{\text {crys }}^{2 r}(Y / W) \cong H_{D R}^{2 r}(X / W)
$$

- Again $z \notin F^{r} H_{D R}^{2 r}(X / W)$

Hodge Classes in Families, II

- $z=[Z] \in H_{D R}^{2 r}(Y / \overline{\mathbb{Q}})$ class of an algebraic cycle.
- z extends uniquely to horizontal class $\tilde{z} \in H_{D R}^{2 r}(X / S)^{\nabla=0}$.
- (2) In general, $\tilde{z} \notin F^{r} H_{D R}^{2 r}(X / S)$.
- Mixed Char. X/W,

$$
z=[Z] \in H_{\text {crys }}^{2 r}(Y / W) \cong H_{D R}^{2 r}(X / W)
$$

- Again $z \notin F^{r} H_{D R}^{2 r}(X / W)$

Hodge Classes in Families, II

- $z=[Z] \in H_{D R}^{2 r}(Y / \overline{\mathbb{Q}})$ class of an algebraic cycle.
- z extends uniquely to horizontal class $\tilde{z} \in H_{D R}^{2 r}(X / S)^{\nabla=0}$.
- 2 In general, $\tilde{z} \notin F^{r} H_{D R}^{2 r}(X / S)$.
- Mixed Char. X/W,

$$
z=[Z] \in H_{c r y s}^{2 r}(Y / W) \cong H_{D R}^{2 r}(X / W)
$$

- Again $z \notin F^{r} H_{D R}^{2 r}(X / W)$

Hodge Classes in Families, II

- $z=[Z] \in H_{D R}^{2 r}(Y / \overline{\mathbb{Q}})$ class of an algebraic cycle.
- z extends uniquely to horizontal class $\tilde{z} \in H_{D R}^{2 r}(X / S)^{\nabla=0}$.
- ㄹ In general, $\tilde{z} \notin F^{r} H_{D R}^{2 r}(X / S)$.
- Mixed Char. X / W,

$$
z=[Z] \in H_{c r y s}^{2 r}(Y / W) \cong H_{D R}^{2 r}(X / W)
$$

- Again $z \notin F^{r} H_{D R}^{2 r}(X / W)$

Hodge Classes in Families, II

- $z=[Z] \in H_{D R}^{2 r}(Y / \overline{\mathbb{Q}})$ class of an algebraic cycle.
- z extends uniquely to horizontal class $\tilde{z} \in H_{D R}^{2 r}(X / S)^{\nabla=0}$.
- ㄹ In general, $\tilde{z} \notin F^{r} H_{D R}^{2 r}(X / S)$.
- Mixed Char. X / W,

$$
z=[Z] \in H_{c r y s}^{2 r}(Y / W) \cong H_{D R}^{2 r}(X / W)
$$

- Again $z \notin F^{r} H_{D R}^{2 r}(X / W)$

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k) ; k$ perfect char. $p ; R_{n}=R / \mathfrak{m}_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{\bullet}}(r)\right\}$ (motivic complex)
- Continuous K-theory K_{X}. pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{\text {cont }}\left(X_{\bullet}\right):=\left[S_{X_{1}}^{i}, K_{X_{\bullet}}\right] .
$$

- Continuous cohomology

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k) ; k$ perfect char. $p ; R_{n}=R / m_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{\bullet}}(r)\right\}$ (motivic complex)
- Continuous K-theory K_{X}, pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{c o n t}\left(X_{\bullet}\right):=\left[S_{X_{1}}^{i}, K_{X_{\bullet}}\right]
$$

- Continuous cohomology

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k) ; k$ perfect char. $p ; R_{n}=R / \mathfrak{m}_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{0}}(r)\right\}$ (motivic complex)
- Continuous K-theory $K_{X_{\bullet}}$ pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{\text {cont }}\left(X_{0}\right):=\left[S_{X_{1}}^{i}, K_{X_{0}}\right]
$$

- Continuous cohomology

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k)$; k perfect char. $p ; R_{n}=R / \mathfrak{m}_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{\bullet}}(r)\right\}$ (motivic complex)
- Continuous K-theory $K_{X_{0}}$ pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{\text {cont }}\left(X_{\bullet}\right):=\left[S_{X_{1}}^{i}, K_{X_{\bullet}}\right]
$$

- Continuous cohomology

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k) ; k$ perfect char. $p ; R_{n}=R / \mathfrak{m}_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{\bullet}}(r)\right\}$ (motivic complex)
- Continuous K-theory $K_{X_{0}}$ pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{c o n t}\left(X_{\bullet}\right):=\left[S_{X_{1}}^{i}, K_{X_{0}}\right]
$$

- Continuous cohomology

Continuous Cohomology and K-theory

- X / S smooth projective formal scheme.
- $S=\operatorname{Spf} R ; S_{n}=\operatorname{Spec} R_{n} ; X_{n}=X \times_{R} R_{n} . X_{\bullet}=$ ind-system
- $R=\overline{\mathbb{Q}}[[t]]$ or $R=W(k) ; k$ perfect char. $p ; R_{n}=R / \mathfrak{m}_{R}^{n}$.
- Prosystem of Nisnevich sheaves $\left\{\mathbb{Z}_{X_{\bullet}}(r)\right\}$ (motivic complex)
- Continuous K-theory $K_{X_{\bullet}}$ pro-system of simplicial presheaves (Quillen)

$$
K_{i}^{c o n t}\left(X_{\bullet}\right):=\left[S_{X_{1}}^{i}, K_{X_{\bullet}}\right]
$$

- Continuous cohomology

$$
C H_{c o n t}^{r}\left(X_{\bullet}\right):=H_{c o n t}^{2 r}\left(X_{1}, \mathbb{Z}_{X_{\bullet}}(r)\right)
$$

The Chern Character

$$
\begin{aligned}
& \left.0 \rightarrow\left(\oplus_{r} \lim _{n}^{1} H^{2 r-1}\left(X_{1}, \mathbb{Z}_{X_{\bullet}}(r)\right)\right)_{\mathbb{Q}} \rightarrow \oplus_{r} C H_{c o n t}^{r}\left(X_{\bullet}\right)\right)_{\mathbb{Q}} \rightarrow\left(\oplus_{r} \lim _{n} H^{2 r}\left(X_{1}, \mathbb{Z}_{X_{\bullet}}(r)\right)\right)_{\mathbb{Q}} \rightarrow 0
\end{aligned}
$$

- Crucial point: Thomason descent for K-theory of singular schemes. $K_{0}\left(X_{n}\right)$ is the Grothendieck group of vector bundles on X_{n} as explained in the first lecture.

Chern Classes (Recall)

- \mathcal{V}_{n} on X_{n} rank r vector bundle generated by global sections
- s_{1}, \ldots, s_{p} general sections of \mathcal{V}_{n}. Concrete possibility to talk about algebraic cycle $c_{r-p+1}\left(\mathcal{V}_{n}\right)$.
- Lifting \mathcal{V}_{n} to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, lim ν_{n} can be algebrized.
- The bad news: We can only lift $\left[\mathcal{V}_{n}\right] \in K_{0}\left(X_{n}\right)$. lim $\left[\mathcal{V}_{n}\right]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Chern Classes (Recall)

- \mathcal{V}_{n} on X_{n} rank r vector bundle generated by global sections
- s_{1}, \ldots, s_{p} general sections of \mathcal{V}_{n}. Concrete possibility to talk about algebraic cycle $c_{r-p+1}\left(\mathcal{V}_{n}\right)$.
- Lifting \mathcal{V}_{n} to ν_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_{n}$ can be algebrized.
- The bad news: We can only lift $\left[\mathcal{V}_{n}\right] \in K_{0}\left(X_{n}\right) \cdot \lim \left[\mathcal{V}_{n}\right]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Chern Classes (Recall)

- \mathcal{V}_{n} on X_{n} rank r vector bundle generated by global sections
- s_{1}, \ldots, s_{p} general sections of \mathcal{V}_{n}. Concrete possibility to talk about algebraic cycle $c_{r-p+1}\left(\mathcal{V}_{n}\right)$.
- Lifting \mathcal{V}_{n} to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, lim \mathcal{V}_{n} can be algebrized.
- The bad news: We can only lift $\left[\mathcal{V}_{n}\right] \in K_{0}\left(X_{n}\right)$. lim $\left[\mathcal{V}_{n}\right]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Chern Classes (Recall)

- \mathcal{V}_{n} on X_{n} rank r vector bundle generated by global sections
- s_{1}, \ldots, s_{p} general sections of \mathcal{V}_{n}. Concrete possibility to talk about algebraic cycle $c_{r-p+1}\left(\mathcal{V}_{n}\right)$.
- Lifting \mathcal{V}_{n} to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, $\lim \mathcal{V}_{n}$ can be algebrized.
- The bad news: We can only lift $\left[\mathcal{V}_{n}\right] \in K_{0}\left(X_{n}\right)$. lim $\left[\mathcal{V}_{n}\right]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Chern Classes (Recall)

- \mathcal{V}_{n} on X_{n} rank r vector bundle generated by global sections
- s_{1}, \ldots, s_{p} general sections of \mathcal{V}_{n}. Concrete possibility to talk about algebraic cycle $c_{r-p+1}\left(\mathcal{V}_{n}\right)$.
- Lifting \mathcal{V}_{n} to \mathcal{V}_{n+1} on X_{n+1} would yield lifted chern class.
- In the limit, lim \mathcal{V}_{n} can be algebrized.
- The bad news: We can only lift $\left[\mathcal{V}_{n}\right] \in K_{0}\left(X_{n}\right)$. lim $\left[\mathcal{V}_{n}\right]$ cannot be algebrized. Only get classes to all infinitesimal orders.

Hodge Classes in Families, the Main Theorem

Theorem

X / S smooth projective formal scheme; $S=\operatorname{Spf}(R)$. R complete dvr.
(i) Assume $R=\overline{\mathbb{Q}}[[t]]$, and write $X_{n}=X \times{ }_{R} \operatorname{Spec} R / t^{n} R$. Let $z=[Z]_{D R} \in H_{D R}^{2 r}\left(X_{1} / \overline{\mathbb{Q}}\right)$ be an algebraic cycle class. Then $\tilde{z} \in H_{D R}^{2 r}(X / R)^{\nabla=0}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$ if and only if $[Z] \in C H^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts to $\mathrm{CH}_{\text {cont }}^{r}(X)_{\mathbb{Q}}$.
(ii) Assume $R=W(k)$. Assume further $\operatorname{dim} X_{1}<p-6$. Let $z=[Z]_{\text {crys }} \in H_{\text {crys }}^{2 r}\left(X_{1} / W\right) \cong H_{D R}^{2 r}(X / W)$ be an algebraic cycle class.
Then $z \in F^{r} H_{D R}^{2 r}(X / R)_{\mathbb{Q}}$ if and only if $[Z] \in C H^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts to $C H_{\text {cont }}^{r}(X)_{\mathbb{Q}}$.
(iii) Assume $R=\mathbb{C}[[t]]$. Assume further that the Kunneth projectors are algebraic for $H_{D R}^{*}\left(X_{\eta} \times X_{\eta}\right)$ where $\eta \rightarrow$ Spec $\mathbb{C}[[t]]$ is the generic point. Then $\tilde{z} \in F^{r} H_{D R}^{2 r}(X / S)$ iff there exists a class $\mathcal{Z} \in C H_{\text {cont }}^{r}\left(X_{\bullet}\right)$ such that $\tilde{z}=[\mathcal{Z}]_{D R} \in F^{r} H_{D R}^{2 r}(X / S)$.

Discussion

- What the theorem says in case $R=\overline{\mathbb{Q}}[[t]]$:

A cycle class $[Z] \in \mathrm{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the horizontal lifting of $[Z]_{D R}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$.
What the theorem does not say in case $R=\overline{\mathbb{Q}}[[t]]$:
"Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies existence of
a lifting to X or to some algebrization of X.

Discussion

- What the theorem says in case $R=\overline{\mathbb{Q}}[[t]]$:

A cycle class $[Z] \in \mathrm{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the horizontal lifting of $[Z]_{D R}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$.

- What the theorem does not say in case $R=\overline{\mathbb{Q}}[[t]]$: "Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies existence of a lifting to X or to some algebrization of X.

Discussion

- What the theorem says in case $R=\overline{\mathbb{Q}}[[t]]$:

A cycle class $[Z] \in \mathrm{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the horizontal lifting of $[Z]_{D R}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$.

- What the theorem does not say in case $R=\overline{\mathbb{Q}}[[t]]$: "Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies existence of a lifting to X or to some algebrization of X.

Discussion (cont)

- What the theorem says in case $R=W(k)$:

Assume $\operatorname{dim} X_{1}<p-6$. A cycle class $[Z] \in \operatorname{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the crystalline class $[Z]_{\text {crys }}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$ under the identification $H^{*}\left(X_{1} / W\right)_{\text {crys }} \cong H_{D R}^{*}(X / R)$.

- What the theorem says in the case $R=\mathbb{C}[[t]]$:

If the Kunneth projectors are algebraic on $X_{\eta} \times X_{\eta}$, then
"Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies that there exists a cycle Z^{\prime} such that $[Z]_{D R}=\left[Z^{\prime}\right]_{D R}$ and Z^{\prime} lifts in the above sense.

Discussion (cont)

- What the theorem says in case $R=W(k)$:

Assume $\operatorname{dim} X_{1}<p-6$. A cycle class $[Z] \in \operatorname{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the crystalline class $[Z]_{\text {crys }}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$ under the identification $H^{*}\left(X_{1} / W\right)_{\text {crys }} \cong H_{D R}^{*}(X / R)$.

- What the theorem does not say in case $R=W(k)$: "Hodgeness" of the crystalline class $[Z]_{\text {crys }}$ implies existence of a lifting to X or to some algebrization of X.

If the Kunneth projectors are algebraic on $X_{\eta} \times X_{\eta}$, then "Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies that there exists a cycle Z^{\prime} such that $[Z]_{D R}=\left[Z^{\prime}\right]_{D R}$ and Z^{\prime} lifts in the above sense.

Discussion (cont)

- What the theorem says in case $R=W(k)$:

Assume $\operatorname{dim} X_{1}<p-6$. A cycle class $[Z] \in \operatorname{CH}^{r}\left(X_{1}\right)_{\mathbb{Q}}$ lifts in the sense that there exists $\zeta \in\left(\lim K_{0}\left(X_{n}\right)\right)_{\mathbb{Q}}$ with $\operatorname{ch}(\zeta) \mid X_{1}=[Z]$ if and only if the crystalline class $[Z]_{\text {crys }}$ lies in $F^{r} H_{D R}^{2 r}(X / R)$ under the identification $H^{*}\left(X_{1} / W\right)_{\text {crys }} \cong H_{D R}^{*}(X / R)$.

- What the theorem does not say in case $R=W(k)$: "Hodgeness" of the crystalline class $[Z]_{c r y s}$ implies existence of a lifting to X or to some algebrization of X.
- What the theorem says in the case $R=\mathbb{C}[[t]]$:

If the Kunneth projectors are algebraic on $X_{\eta} \times X_{\eta}$, then "Hodgeness" of the horizontal lifting of $[Z]_{D R}$ implies that there exists a cycle Z^{\prime} such that $[Z]_{D R}=\left[Z^{\prime}\right]_{D R}$ and Z^{\prime} lifts in the above sense.

The Motivic Complex in char. 0

- $R=k[[t]], \mathbb{Q} \subset k . \mathbb{Z}(r)_{X_{1}}$ complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)

- $\mathbb{Z}(r)_{X_{1}}$ supported in $[-\infty, r]$ and $\mathcal{H}^{r}\left(\mathbb{Z}(r)_{X_{1}}\right)=\mathcal{K}_{r}^{M}$ (Milnor K-sheaf generated by symbols).

- We define $\mathcal{Z}(r)_{x_{n}}$ via the pullback

ㄹ. This is not correct?! However, the resulting pro-complex $\mathcal{Z}(r)_{X_{0}}$ is correct.

The Motivic Complex in char. 0

- $R=k[[t]], \mathbb{Q} \subset k . \mathbb{Z}(r)_{X_{1}}$ complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- $\mathbb{Z}(r)_{X_{1}}$ supported in $[-\infty, r]$ and $\mathcal{H}^{r}\left(\mathbb{Z}(r)_{X_{1}}\right)=\mathcal{K}_{r}^{M}$ (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{x_{n}}$ via the pullback

The Motivic Complex in char. 0

- $R=k[[t]], \mathbb{Q} \subset k . \mathbb{Z}(r)_{X_{1}}$ complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- $\mathbb{Z}(r)_{X_{1}}$ supported in $[-\infty, r]$ and $\mathcal{H}^{r}\left(\mathbb{Z}(r)_{X_{1}}\right)=\mathcal{K}_{r}^{M}$ (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{x_{n}}$ via the pullback

$$
\begin{aligned}
\mathbb{Z}(r)_{X_{n}} & \longrightarrow \mathbb{Z}(r)_{X_{1}} \\
\downarrow & \downarrow \\
\mathcal{K}_{r, X_{n}}^{M}[-r] & \longrightarrow \mathcal{K}_{r, X_{1}}^{M}[-r]
\end{aligned}
$$

1) This is
is correct.

The Motivic Complex in char. 0

- $R=k[[t]], \mathbb{Q} \subset k . \mathbb{Z}(r)_{X_{1}}$ complex of Zariski sheaves calculating motivic cohomology. (e.g. shifted higher chow complex)
- $\mathbb{Z}(r)_{X_{1}}$ supported in $[-\infty, r]$ and $\mathcal{H}^{r}\left(\mathbb{Z}(r)_{X_{1}}\right)=\mathcal{K}_{r}^{M}$ (Milnor K-sheaf generated by symbols).
- We define $\mathcal{Z}(r)_{x_{n}}$ via the pullback

$$
\begin{aligned}
\mathbb{Z}(r)_{X_{n}} & \longrightarrow \mathbb{Z}(r)_{X_{1}} \\
\downarrow & \downarrow \\
\mathcal{K}_{r, X_{n}}^{M}[-r] & \longrightarrow \mathcal{K}_{r, X_{1}}^{M}[-r]
\end{aligned}
$$

- IThis is not correct?! However, the resulting pro-complex $\mathcal{Z}(r)_{X_{0}}$ is correct.

The Motivic Complex in char. 0 (cont)

- $A_{\bullet}=\Gamma\left(U, \mathcal{O}_{X_{\mathbf{\bullet}}}\right)$.
- Pro-isomorphism

$$
K_{*}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left(K^{M}\left(A_{\bullet}\right) \rightarrow K^{M}\left(A_{1}\right)\right)
$$

- Goodwillie's theorem

$$
K_{i+1}\left(A_{n}, A_{1}\right) \cong H C_{i}\left(A_{n}, A_{1}\right)
$$

- Cyclic homology is known

$$
H C_{i}\left(A_{n}\right) \cong \Omega_{A_{n}}^{i} / B_{X_{n}}^{i} \oplus Z_{A_{n}}^{i-2} / B_{A_{n}}^{i-2} \oplus Z_{A_{n}}^{i-4} / B_{A_{n}}^{i-4}
$$

- Terms $Z^{i-2 k} / B^{i-2 k}$ are independent of n (Poincaré lemma) and die in inverse limit

$$
H C_{i}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left[\Omega_{A_{\bullet}}^{i} / B_{A_{\bullet}}^{i} \rightarrow Z_{A_{\bullet}}^{i+1} \oplus \Omega_{A_{1}}^{i} / B_{A_{1}}^{i}\right]
$$

March 4, 2014 Albert Lectures, University of

The Motivic Complex in char. 0 (cont)

- $A_{\bullet}=\Gamma\left(U, \mathcal{O}_{X_{\bullet}}\right)$.
- Pro-isomorphism

$$
K_{*}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left(K^{M}\left(A_{\bullet}\right) \rightarrow K^{M}\left(A_{1}\right)\right)
$$

- Goodwillie's theorem

$$
K_{i+1}\left(A_{n}, A_{1}\right) \cong H C_{i}\left(A_{n}, A_{1}\right) .
$$

- Cyclic homology is known

$$
H C\left(A_{n}\right) \simeq \Omega_{A_{n}}^{i} / B_{X_{n}}^{i} \oplus Z_{A_{n}}^{i-2} / B_{A_{n}}^{i-2} \oplus Z_{A_{n}}^{i-4} / B_{A_{n}}^{i-4}
$$

- Terms $Z^{i-2 k} / B^{i-2 k}$ are independent of n (Poincaré lemma) and die in inverse limit

The Motivic Complex in char. 0 (cont)

- $A_{\bullet}=\Gamma\left(U, \mathcal{O}_{X_{\bullet}}\right)$.
- Pro-isomorphism

$$
K_{*}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left(K^{M}\left(A_{\bullet}\right) \rightarrow K^{M}\left(A_{1}\right)\right)
$$

- Goodwillie's theorem

$$
K_{i+1}\left(A_{n}, A_{1}\right) \cong H C_{i}\left(A_{n}, A_{1}\right)
$$

- Cyclic homology is known

$$
H C_{(}\left(A_{n}\right) \simeq \Omega_{A_{n}}^{i} / B_{X_{n}}^{i} \oplus Z_{A_{n}}^{i-2} / B_{A_{n}}^{i-2} \oplus Z_{A_{n}}^{i-4} / B_{A_{n}}^{i-4}
$$

- Terms $Z^{i-2 k} / B^{i-2 k}$ are independent of n (Poincaré lemma) and die in inverse limit

The Motivic Complex in char. 0 (cont)

- $A_{\bullet}=\Gamma\left(U, \mathcal{O}_{X_{\bullet}}\right)$.
- Pro-isomorphism

$$
K_{*}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left(K^{M}\left(A_{\bullet}\right) \rightarrow K^{M}\left(A_{1}\right)\right)
$$

- Goodwillie's theorem

$$
K_{i+1}\left(A_{n}, A_{1}\right) \cong H C_{i}\left(A_{n}, A_{1}\right)
$$

- Cyclic homology is known

$$
H C_{i}\left(A_{n}\right) \cong \Omega_{A_{n}}^{i} / B_{X_{n}}^{i} \oplus Z_{A_{n}}^{i-2} / B_{A_{n}}^{i-2} \oplus Z_{A_{n}}^{i-4} / B_{A_{n}}^{i-4} \ldots
$$

- Terms $Z^{i-2 k} / B^{i-2 k}$ are independent of n (Poincaré lemma) and die in inverse limit
$H C_{i}\left(A_{0}, A_{1}\right) \cong \operatorname{ker}\left[\Omega_{A_{0}}^{i} / B_{A_{0}}^{i} \rightarrow Z_{A_{0}}^{i+1} \oplus \Omega_{A_{1}}^{i} / B_{A_{1}}^{i}\right]$

The Motivic Complex in char. 0 (cont)

- $A_{\bullet}=\Gamma\left(U, \mathcal{O}_{X_{\bullet}}\right)$.
- Pro-isomorphism

$$
K_{*}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left(K^{M}\left(A_{\bullet}\right) \rightarrow K^{M}\left(A_{1}\right)\right)
$$

- Goodwillie's theorem

$$
K_{i+1}\left(A_{n}, A_{1}\right) \cong H C_{i}\left(A_{n}, A_{1}\right)
$$

- Cyclic homology is known

$$
H C_{i}\left(A_{n}\right) \cong \Omega_{A_{n}}^{i} / B_{X_{n}}^{i} \oplus Z_{A_{n}}^{i-2} / B_{A_{n}}^{i-2} \oplus Z_{A_{n}}^{i-4} / B_{A_{n}}^{i-4} \ldots
$$

- Terms $Z^{i-2 k} / B^{i-2 k}$ are independent of n (Poincaré lemma) and die in inverse limit

$$
H C_{i}\left(A_{\bullet}, A_{1}\right) \cong \operatorname{ker}\left[\Omega_{A_{\bullet}}^{i} / B_{A_{\bullet}}^{i} \rightarrow Z_{A_{\bullet}}^{i+1} \oplus \Omega_{A_{1}}^{i} / B_{A_{1}}^{i}\right]
$$

The Motivic Complex in Mixed Characteristic

- Idea: Codim. r cycle on X_{1} defines class in $H_{D R}^{2 r}(X / W)$. Want to measure obstruction to this class lying in F^{r}.

- Will assume $r<p$
- de Rham-Witt cohomology $W_{\bullet} \Omega_{X_{1}}^{*}$

- PD - envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet}=\mathbb{P}_{\bullet}^{N}$).

The Motivic Complex in Mixed Characteristic

- Idea: Codim. r cycle on X_{1} defines class in $H_{D R}^{2 r}(X / W)$. Want to measure obstruction to this class lying in F^{r}.

$$
\mathbb{Z}(r)_{X_{0}} \stackrel{?}{=} \operatorname{Cone}\left(\mathbb{Z}_{X_{1}}(r) \xrightarrow{? ?} \Omega_{X_{0} / W_{0}}^{*} / F^{r}\right)
$$

- Will assume $r<p$
- de Rham-Witt cohomology $W_{\bullet} \Omega_{X_{1}}^{*}$
- PD - envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius

The Motivic Complex in Mixed Characteristic

- Idea: Codim. r cycle on X_{1} defines class in $H_{D R}^{2 r}(X / W)$. Want to measure obstruction to this class lying in F^{r}.

$$
\mathbb{Z}(r)_{X_{0}} \stackrel{?}{=} \operatorname{Cone}\left(\mathbb{Z}_{X_{1}}(r) \xrightarrow{? ?} \Omega_{X_{0} / W_{0}}^{*} / F^{r}\right)
$$

- Will assume $r<p$

$$
p(r) \Omega_{X_{0}}^{*}: p^{r} \mathcal{O}_{X_{\bullet}} \xrightarrow{d} p^{r-1} \Omega_{X_{\bullet}}^{1} \rightarrow \cdots \rightarrow \Omega^{r} \rightarrow \Omega^{r+1} \rightarrow \cdots
$$

- de Rham-Witt cohomology $W_{\bullet} \Omega_{X_{1}}^{*}$

The Motivic Complex in Mixed Characteristic

- Idea: Codim. r cycle on X_{1} defines class in $H_{D R}^{2 r}(X / W)$. Want to measure obstruction to this class lying in F^{r}.

$$
\mathbb{Z}(r)_{X_{0}} \stackrel{?}{=} \operatorname{Cone}\left(\mathbb{Z}_{X_{1}}(r) \xrightarrow{? ?} \Omega_{X_{0} / W_{0}}^{*} / F^{r}\right)
$$

- Will assume $r<p$

$$
p(r) \Omega_{X_{0}}^{*}: p^{r} \mathcal{O}_{X_{0}} \xrightarrow{d} p^{r-1} \Omega_{X_{0}}^{1} \rightarrow \cdots \rightarrow \Omega^{r} \rightarrow \Omega^{r+1} \rightarrow \cdots
$$

- de Rham-Witt cohomology $W_{\bullet} \Omega_{X_{1}}^{*}$

$$
\begin{aligned}
& q(r) W_{\bullet} \Omega_{X_{1}}^{*}: p^{r-1} V W_{\bullet} \mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2} V W_{\bullet} \Omega_{X_{1}}^{1} \rightarrow \\
& \cdots \rightarrow V W_{\bullet} \Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet} \Omega^{r} \rightarrow W_{\mathbf{\bullet}} \Omega^{r+1} \rightarrow \cdots
\end{aligned}
$$

- PD - envelope. $X_{\bullet} \hookrightarrow Z_{0}$ such that Z_{\bullet} admits a lifting of frobenius

The Motivic Complex in Mixed Characteristic

- Idea: Codim. r cycle on X_{1} defines class in $H_{D R}^{2 r}(X / W)$. Want to measure obstruction to this class lying in F^{r}.

$$
\mathbb{Z}(r)_{X_{0}} \stackrel{?}{=} \operatorname{Cone}\left(\mathbb{Z}_{X_{1}}(r) \xrightarrow{? ?} \Omega_{X_{0} / W_{0}}^{*} / F^{r}\right)
$$

- Will assume $r<p$

$$
p(r) \Omega_{X_{0}}^{*}: p^{r} \mathcal{O}_{X_{0}} \xrightarrow{d} p^{r-1} \Omega_{X_{0}}^{1} \rightarrow \cdots \rightarrow \Omega^{r} \rightarrow \Omega^{r+1} \rightarrow \cdots
$$

- de Rham-Witt cohomology $W_{\bullet} \Omega_{X_{1}}^{*}$

$$
\begin{aligned}
& q(r) W_{\bullet} \Omega_{X_{1}}^{*}: p^{r-1} V W_{\bullet} \mathcal{O}_{X_{1}} \xrightarrow{d} p^{r-2} V W_{\bullet} \Omega_{X_{1}}^{1} \rightarrow \\
& \cdots \rightarrow W_{\bullet} \Omega_{X_{1}}^{r-1} \rightarrow W_{\bullet} \Omega^{r} \rightarrow W_{\bullet} \Omega^{r+1} \rightarrow \cdots
\end{aligned}
$$

- $P D$ - envelope. $X_{\bullet} \hookrightarrow Z_{\bullet}$ such that Z_{\bullet} admits a lifting of frobenius (e.g. $Z_{\bullet}=\mathbb{P}_{\bullet}^{N}$).

The Motivic Complex in Mixed Characteristic, II

- $\Omega_{D_{\bullet}}^{*}:=\Omega_{Z_{\mathbf{\bullet}}}^{*} \otimes \mathcal{O}_{D_{\bullet}}$. Special relation $d \gamma_{n}(x)=\gamma_{n-1}(x) d x$.

$$
\begin{aligned}
\Omega_{X_{0}}^{*} \longleftarrow \simeq & \Omega_{D_{0}}^{*} \\
& \\
& \\
& \\
& W_{0} \Omega_{X_{1}}^{*}
\end{aligned}
$$

- $J_{0} \subset \mathcal{O}_{D_{0}}$ ideal of $X_{0}, \quad I_{0}=\left(J_{0}, p\right)$ ideal of X_{1}

The Motivic Complex in Mixed Characteristic, II

- $\Omega_{D_{0}}^{*}:=\Omega_{Z_{\mathbf{0}}}^{*} \otimes \mathcal{O}_{D_{0}}$. Special relation $d \gamma_{n}(x)=\gamma_{n-1}(x) d x$.

$$
\begin{aligned}
\Omega_{X_{0}}^{*} & \simeq \\
& \Omega_{D_{0}}^{*} \\
& \\
& \\
& W_{0} \Omega_{X_{1}}^{*}
\end{aligned}
$$

- $J_{\bullet} \subset \mathcal{O}_{D_{\mathbf{0}}}$ ideal of $X_{\boldsymbol{0}}, \quad I_{\bullet}=\left(J_{\mathbf{0}}, p\right)$ ideal of X_{1}

$$
\begin{gathered}
J(r) \Omega_{D_{0}}^{*}: J_{\bullet}^{r} \rightarrow J_{\bullet}^{r-1} \Omega_{D_{\bullet}}^{1} \rightarrow \cdots \rightarrow \Omega_{D_{\bullet}}^{r} \rightarrow \cdots \\
I(r) \Omega_{D_{0}}^{*}: I_{\bullet}^{r} \rightarrow I_{0}^{r-1} \Omega_{D_{0}}^{1} \rightarrow \cdots \rightarrow \Omega_{D_{0}}^{r} \rightarrow \cdots
\end{gathered}
$$

The Motivic Complex in Mixed Characteristic, II

- $\Omega_{D_{0}}^{*}:=\Omega_{Z_{\mathbf{0}}}^{*} \otimes \mathcal{O}_{D_{0}}$. Special relation $d \gamma_{n}(x)=\gamma_{n-1}(x) d x$.

$$
\begin{aligned}
\Omega_{X_{0}}^{*} \longleftarrow & \Omega_{D_{.}}^{*} \\
& \\
& \simeq \\
& W_{0} \Omega_{X_{1}}^{*}
\end{aligned}
$$

- $J_{\bullet} \subset \mathcal{O}_{D_{\mathbf{0}}}$ ideal of $X_{\boldsymbol{0}}, \quad I_{\bullet}=\left(J_{\mathbf{0}}, p\right)$ ideal of X_{1}

$$
\begin{gathered}
J(r) \Omega_{D_{\mathbf{0}}^{*}}: J_{\bullet}^{r} \rightarrow J_{\bullet}^{r-1} \Omega_{D_{.}}^{1} \rightarrow \cdots \rightarrow \Omega_{D_{\bullet}}^{r} \rightarrow \cdots \\
I(r) \Omega_{D_{\mathbf{0}}}^{*}: I_{\bullet}^{r} \rightarrow I_{-}^{r-1} \Omega_{D_{\mathbf{0}}}^{1} \rightarrow \cdots \rightarrow \Omega_{D_{0}}^{r} \rightarrow \cdots
\end{gathered}
$$

$$
\begin{array}{cc}
p(r) \Omega_{X_{0}}^{*} \stackrel{\simeq}{a} \quad l(r) \Omega_{D_{\bullet}}^{*} \\
& b \downarrow \simeq \\
& q(r) W_{0} \Omega_{X_{1}}^{*}
\end{array}
$$

The p-adic Motivic Complex; Beilinson's definition

$$
\mathbb{Z}_{X_{0}}(r):=\operatorname{Cone}\left(I(r) \Omega_{D_{0}}^{*} \oplus \Omega_{X_{0}}^{\frac{X_{0}}{0}} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r) \Omega_{X_{0}}^{*} \oplus q(r) W \Omega_{X_{1}}^{*}\right)
$$

Natural inclusion of complexes

d log map for de Rham Witt:

Teichmuller map $\mathcal{O}_{X_{1}}^{\times} \rightarrow\left(W \mathcal{O}_{X_{1}}\right)^{x} ; x \mapsto[x]$.

The p-adic Motivic Complex; Beilinson's definition

$$
\begin{gathered}
\mathbb{Z}_{X_{0}}(r):=\operatorname{Cone}\left(I(r) \Omega_{D_{0}}^{*} \oplus \Omega_{X_{0}}^{\frac{2}{0}} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r) \Omega_{X_{\mathbf{0}}}^{*} \oplus q(r) W \Omega_{X_{1}}^{*}\right) \\
\phi=\left(\begin{array}{ccc}
a & \phi_{12} & 0 \\
b & 0 & \phi_{23}
\end{array}\right)
\end{gathered}
$$

Natural inclusion of complexes

d log map for de Rham Witt:

Teichmuller map $\mathcal{O}_{X_{1}}^{\times} \rightarrow\left(W \mathcal{O}_{X_{1}}\right)^{x} ; x \mapsto[x]$.

The p-adic Motivic Complex; Beilinson's definition

$$
\begin{gathered}
\mathbb{Z}_{x_{0}}(r):=\operatorname{Cone}\left(l(r) \Omega_{0 .}^{*} \oplus \Omega_{\chi_{0}}^{z r} \oplus \mathbb{Z}_{x_{1}}(r) \xrightarrow{\left.\xrightarrow{c} p(r) \Omega_{\chi_{0}}^{*} \oplus q(r) W \Omega_{x_{1}}^{*}\right)}\right. \\
\phi=\left(\begin{array}{ccc}
a & \phi_{12} & 0 \\
b & 0 & \phi_{23}
\end{array}\right)
\end{gathered}
$$

Natural inclusion of complexes

$$
\phi_{12}: \Omega_{X_{\bullet}}^{\geq r} \rightarrow p(r) \Omega_{X_{\bullet}}^{*}
$$

d log map for de Rham Witt:

Teichmuller map $\mathcal{O}_{X_{1}}^{\times} \rightarrow\left(W \mathcal{O}_{X_{1}}\right)^{\times} ; x \mapsto[x]$.

The p-adic Motivic Complex; Beilinson's definition

$$
\begin{gathered}
\mathbb{Z}_{X_{\mathbf{0}}}(r):=\operatorname{Cone}\left(I(r) \Omega_{D_{\mathbf{0}}}^{*} \oplus \Omega_{\bar{X}_{\boldsymbol{0}}}^{\geq r} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r) \Omega_{X_{\mathbf{0}}}^{*} \oplus q(r) W \Omega_{X_{1}}^{*}\right) \\
\phi=\left(\begin{array}{ccc}
a & \phi_{12} & 0 \\
b & 0 & \phi_{23}
\end{array}\right)
\end{gathered}
$$

Natural inclusion of complexes

$$
\phi_{12}: \Omega_{\chi_{0}}^{\geq r} \rightarrow p(r) \Omega_{\chi_{0}}^{*}
$$

d log map for de Rham Witt:

$$
\phi_{23}: \mathbb{Z}(r)_{X_{1}} \rightarrow \mathcal{K}_{r, X_{1}}[-r] \xrightarrow{d \log } W \Omega_{X_{1}, \log }^{r}[-r] \rightarrow q(r) W \Omega_{X_{1}}^{*} .
$$

Teichmuller map $\mathcal{O}_{X_{1}}^{\times} \rightarrow\left(W \mathcal{O}_{x_{1}}\right)^{x} ; x \mapsto[x]$.

The p-adic Motivic Complex; Beilinson's definition

$$
\begin{gathered}
\mathbb{Z}_{X_{\mathbf{0}}}(r):=\operatorname{Cone}\left(I(r) \Omega_{D_{\mathbf{0}}}^{*} \oplus \Omega_{\bar{X}_{\boldsymbol{0}}}^{\frac{>}{r}} \oplus \mathbb{Z}_{X_{1}}(r) \xrightarrow{\phi} p(r) \Omega_{X_{\boldsymbol{0}}}^{*} \oplus q(r) W \Omega_{X_{1}}^{*}\right) \\
\phi=\left(\begin{array}{ccc}
a & \phi_{12} & 0 \\
b & 0 & \phi_{23}
\end{array}\right)
\end{gathered}
$$

Natural inclusion of complexes

$$
\phi_{12}: \Omega_{X_{0}}^{\geq r} \rightarrow p(r) \Omega_{X_{0}}^{*}
$$

d log map for de Rham Witt:

$$
\phi_{23}: \mathbb{Z}(r)_{X_{1}} \rightarrow \mathcal{K}_{r, X_{1}}[-r] \xrightarrow{d \log } W \Omega_{X_{1}, \log }^{r}[-r] \rightarrow q(r) W \Omega_{X_{1}}^{*}
$$

Teichmuller map $\mathcal{O}_{X_{1}}^{\times} \rightarrow\left(W \mathcal{O}_{X_{1}}\right)^{\times} ; x \mapsto[x]$.

$$
d \log \left\{x_{1}, \ldots, x_{r}\right\}=d\left[x_{1}\right]\left[x_{1}\right]^{-1} \wedge \cdots \wedge d\left[x_{r}\right]\left[x_{r}\right]^{-1}
$$

Comments on the proof; mixed characteristic case

- $(\mathcal{K} / p)_{X, s}$ étale sheaf of K-groups with $\mathbb{Z} / p \mathbb{Z}$-coefficients.
- $K=$ quotient field $(W), j: X_{K} \hookrightarrow X, i: X_{1} \hookrightarrow X$ (small cheat: must adjoin p-root of 1 to W)

- For example $\mathfrak{V}_{X}(1) \cong \mathbb{G}_{m, X} \otimes^{L} \mathbb{Z} / p \mathbb{Z}[-1]$.

```
Theorom
Unique isomorphism of étale sheaves on X X
```


compatible with symbols and cup product with the Bott map.

Comments on the proof; mixed characteristic case

- $(\mathcal{K} / p)_{X, s}$ étale sheaf of K-groups with $\mathbb{Z} / p \mathbb{Z}$-coefficients.
$K=$ quotient field $(W), j: X_{K} \hookrightarrow X, i: X_{1} \hookrightarrow X$ (small cheat: must
adjoin p-root of 1 to W)

- For example $\mathfrak{V}_{X}(1) \cong \mathbb{G}_{m, x} \otimes^{L} \mathbb{Z} / p \mathbb{Z}[-1]$.

Theorem
Unique isomorphism of étale sheaves on X_{1}

compatible with symbols and cup product with the Bott map.

Comments on the proof; mixed characteristic case

- $(\mathcal{K} / p)_{X, s}$ étale sheaf of K-groups with $\mathbb{Z} / p \mathbb{Z}$-coefficients.
- $K=$ quotient field $(W), j: X_{K} \hookrightarrow X, i: X_{1} \hookrightarrow X$ (small cheat: must adjoin p-root of 1 to W)

$$
\mathfrak{V}_{X}(r)=\operatorname{cone}\left(\tau_{\leq r} R j_{*} \mathbb{Z} / p \mathbb{Z}(r) \xrightarrow{r e s} i_{*} \Omega_{x_{0}, \log }^{r-1}[-r]\right)[-1]
$$

- For example $\mathfrak{V}_{X}(1) \cong \mathbb{G}_{m, x} \otimes^{L} \mathbb{Z} / p \mathbb{Z}[-1]$.

Comments on the proof; mixed characteristic case

- $(\mathcal{K} / p)_{X, s}$ étale sheaf of K-groups with $\mathbb{Z} / p \mathbb{Z}$-coefficients.
- $K=$ quotient field $(W), j: X_{K} \hookrightarrow X, i: X_{1} \hookrightarrow X$ (small cheat: must adjoin p-root of 1 to W)

$$
\mathfrak{V}_{X}(r)=\operatorname{cone}\left(\tau_{\leq r} R j_{*} \mathbb{Z} / p \mathbb{Z}(r) \xrightarrow{r e s} i_{*} \Omega_{x_{0}, \log }^{r-1}[-r]\right)[-1]
$$

- For example $\mathfrak{V}_{X}(1) \cong \mathbb{G}_{m, X} \otimes^{L} \mathbb{Z} / p \mathbb{Z}[-1]$.
\square
Unique isomorphism of étale sheaves on X_{1}

compatible with symbols and cup product with the Bott map.

Comments on the proof; mixed characteristic case

- $(\mathcal{K} / p)_{X, s}$ étale sheaf of K-groups with $\mathbb{Z} / p \mathbb{Z}$-coefficients.
- $K=$ quotient field $(W), j: X_{K} \hookrightarrow X, i: X_{1} \hookrightarrow X$ (small cheat: must adjoin p-root of 1 to W)

$$
\mathfrak{V}_{X}(r)=\operatorname{cone}\left(\tau_{\leq r} R j_{*} \mathbb{Z} / p \mathbb{Z}(r) \xrightarrow{r e s} i_{*} \Omega_{x_{0}, \log }^{r-1}[-r]\right)[-1]
$$

- For example $\mathfrak{V}_{X}(1) \cong \mathbb{G}_{m, X} \otimes^{L} \mathbb{Z} / p \mathbb{Z}[-1]$.

Theorem

Unique isomorphism of étale sheaves on X_{1}

$$
i^{*}(\mathcal{K} / p)_{X, s} \cong \bigoplus_{r \leq s} i^{*} \mathcal{H}^{2 r-s}\left(\mathfrak{V}_{X}(r)\right)
$$

compatible with symbols and cup product with the Bott map.

Hodge-like conjectures in char. 0

Conjecture (Infinitesimal Hodge Conjecture)
$x=[Z]_{D R}$. Assume horizontal lift $\tilde{x} \in F^{r} H_{D R}^{2 r}$. Then there exists an algebraic cycle \mathcal{Z} on X such that $\tilde{x}=[\mathcal{Z}]_{D R}$.

Hodge-like conjectures in char. 0

Conjecture (Infinitesimal Hodge Conjecture)

$x=[Z]_{D R}$. Assume horizontal lift $\tilde{x} \in F^{r} H_{D R}^{2 r}$. Then there exists an algebraic cycle \mathcal{Z} on X such that $\tilde{x}=[\mathcal{Z}]_{D R}$.

Conjecture (Grothendieck Variational Hodge Conjecture)

$$
X \xrightarrow{f} S \rightarrow \operatorname{Spec} \mathbb{C}
$$

f smooth, projective, S quasi-projective, smooth. $s \in S$ a point; $\sigma \in H_{D R}^{2 r}(X)$. Assume $\left.\sigma\right|_{X_{s}}$ is the class of an algebraic cycle on X_{s}. Then there exists a class $\xi \in K_{0}(X)_{\mathbb{Q}}$ such that $[c h(\xi)]_{D R}\left|X_{s}=\sigma\right| X_{s}$.

Hodge-like conjectures II

Theorem

The variational Hodge conjecture is equivalent to the infinitesimal Hodge conjecture.

K-cohomology in char. 0

- $C H^{r}(?)=H^{r}\left(?, \mathcal{K}_{r}^{M}\right)$.
- $X \rightarrow S=\operatorname{Spf} \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r, X}^{M}$.
- Can prove (?)

- Infinitesimal structure of Milnor K-sheaves:

K-cohomology in char. 0

- $C H^{r}(?)=H^{r}\left(?, \mathcal{K}_{r}^{M}\right)$.
- $X \rightarrow S=\operatorname{Spf} \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r, X}^{M}$.
- Can prove (?)

- Infinitesimal structure of Milnor K-sheaves:

K-cohomology in char. 0

- $C H^{r}(?)=H^{r}\left(?, \mathcal{K}_{r}^{M}\right)$.
- $X \rightarrow S=\operatorname{Spf} \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r, X}^{M}$.
- Can prove (?)

$$
K_{r, X}^{M} \cong{\underset{\check{m}}{n}}^{\lim _{r, X_{n}}^{M}}
$$

- Infinitesimal structure of Milnor K-sheaves:

K-cohomology in char. 0

- $C H^{r}(?)=H^{r}\left(?, \mathcal{K}_{r}^{M}\right)$.
- $X \rightarrow S=\operatorname{Spf} \overline{\mathbb{Q}}[[t]]$ smooth projective, X a formal scheme.
- X local ringed space; can define Milnor K-sheaves $K_{r, X}^{M}$.
- Can prove (?)

$$
K_{r, X}^{M} \cong{\underset{\mathrm{lim}}{n}} K_{r, X_{n}}^{M}
$$

- Infinitesimal structure of Milnor K-sheaves:

$$
\begin{gathered}
0 \rightarrow \Omega_{X_{1}}^{r-1} \xrightarrow[\rightarrow]{b} K_{r, X_{n}}^{M} \rightarrow K_{r, X_{n-1}}^{M} \rightarrow 0 \\
b\left(x \frac{d y_{1}}{y_{1}} \wedge \cdots \wedge \frac{d y_{r-1}}{y_{r-1}}\right)=\left\{1+x t^{n-1}, y_{1}, \ldots, y_{r-1}\right\} .
\end{gathered}
$$

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and $H^{0}\left(L_{n}(N)\right) \rightarrow H^{0}\left(L_{n-1}(N)\right)$.
- Conclusion L has meromorphic sections, $H^{1}\left(X, \mathcal{K}_{1}^{M}\right) \xrightarrow{0} H^{1}\left(X, \mathcal{K}_{1}^{M}(\mathcal{F})\right)$.
 vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and $H^{0}\left(L_{n}(N)\right) \rightarrow H^{0}\left(L_{n-1}(N)\right)$.
- Conclusion L has meromorphic sections, $H^{1}\left(X, \mathcal{K}_{1}^{M}\right) \xrightarrow{0} H^{1}\left(X, \mathcal{K}_{1}^{M}(\mathcal{F})\right)$.
- $r>1$ vanishing of $H^{*}\left(X_{1}, \mathcal{O}(D)\right), D \in \Gamma\left(X_{1}, \mathcal{O}(N)\right)$ becomes vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1 . L=\lim L_{n}$ line bundle.

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and
- Conclusion L has meromorphic sections,

- $r>1$ vanishing of $H^{*}\left(X_{1}, \mathcal{O}(D)\right), D \in \Gamma\left(X_{1}, \mathcal{O}(N)\right)$ becomes vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

$$
0 \rightarrow L_{1} \rightarrow L_{n} \rightarrow L_{n-1} \rightarrow 0
$$

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and
- Conclusion L has meromorphic sections,

- $r>1$ vanishing of $H^{*}\left(X_{1}, \mathcal{O}(D)\right), D \in \Gamma\left(X_{1}, \mathcal{O}(N)\right)$ becomes vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

$$
0 \rightarrow L_{1} \rightarrow L_{n} \rightarrow L_{n-1} \rightarrow 0
$$

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and $H^{0}\left(L_{n}(N)\right) \rightarrow H^{0}\left(L_{n-1}(N)\right)$.
- Conclusion L has meromorphic sections,
\square
- $r>1$ vanishing of $H^{*}\left(X_{1}, \mathcal{O}(D)\right), D \in \Gamma\left(X_{1}, \mathcal{O}(N)\right)$ becomes vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

$$
0 \rightarrow L_{1} \rightarrow L_{n} \rightarrow L_{n-1} \rightarrow 0
$$

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and $H^{0}\left(L_{n}(N)\right) \rightarrow H^{0}\left(L_{n-1}(N)\right)$.
- Conclusion L has meromorphic sections, $H^{1}\left(X, \mathcal{K}_{1}^{M}\right) \xrightarrow{0} H^{1}\left(X, \mathcal{K}_{1}^{M}(\mathcal{F})\right)$.

K-cohomology in char. 0; II

X smooth projective formal scheme as above. Are elements in $H^{r}\left(X, \mathcal{K}_{r}^{M}\right)$ given by cycles?

- $\mathcal{O}_{X} \subset \mathcal{F}$ sheaf of quotients (\mathcal{F} not t-adically complete).
- $H^{r}\left(X, \mathcal{K}_{r}^{M}\right) \rightarrow H^{r}\left(X, \mathcal{K}_{r}^{M}(\mathcal{F})\right)$ should be 0 ?!
- case $r=1$. $L=\lim L_{n}$ line bundle.

$$
0 \rightarrow L_{1} \rightarrow L_{n} \rightarrow L_{n-1} \rightarrow 0
$$

- $\mathcal{O}_{X}(1)$ ample line bundle on $X . N \gg 0 \Rightarrow H^{1}\left(L_{1}(N)\right)=(0)$ and $H^{0}\left(L_{n}(N)\right) \rightarrow H^{0}\left(L_{n-1}(N)\right)$.
- Conclusion L has meromorphic sections, $H^{1}\left(X, \mathcal{K}_{1}^{M}\right) \xrightarrow{0} H^{1}\left(X, \mathcal{K}_{1}^{M}(\mathcal{F})\right)$.
- $r>1$ vanishing of $H^{*}\left(X_{1}, \mathcal{O}(D)\right), D \in \Gamma\left(X_{1}, \mathcal{O}(N)\right)$ becomes vanishing of $H^{*}\left(X_{1}, \Omega^{r-1}(\log D)\right)$. Not true!

