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Hodge Classes in Families

Joint work with H. Esnault and M. Kerz.
X/S smooth projective family.

I Char. 0, S = Q[[t ]] or S = C[[t ]].
I Mixed Char., S = Spec W , W = W (k) ring of Witt Vectors.

k perfect, char. p.

S = Q[[t ]]; Gauß-Manin connection

∇ : H∗DR(X/S)→ H∗DR(X/S)⊗ Ω1
Q[[t]]

H∗DR(X/S) ∼= H∗DR(X/S)∇=0 ⊗Q Q[[t ]]

H∗DR(X/S)∇=0 ∼= H∗DR(Y/Q); Y = X ×S SpecQ
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Hodge Classes in Families, II

z = [Z ] ∈ H2r
DR(Y/Q) class of an algebraic cycle.

z extends uniquely to horizontal class z̃ ∈ H2r
DR(X/S)∇=0.

�

In general, z̃ 6∈ F r H2r
DR(X/S).

Mixed Char. X/W ,

z = [Z ] ∈ H2r
crys(Y/W ) ∼= H2r

DR(X/W )

Again z 6∈ F r H2r
DR(X/W )
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Continuous Cohomology and K -theory

X/S smooth projective formal scheme.
S = Spf R; Sn = Spec Rn; Xn = X ×R Rn. X• = ind-system
R = Q[[t ]] or R = W (k); k perfect char. p; Rn = R/mn

R.
Prosystem of Nisnevich sheaves {ZX•(r)} (motivic complex)
Continuous K -theory KX• pro-system of simplicial presheaves
(Quillen)

K cont
i (X•) := [Si

X1
,KX• ].

Continuous cohomology

CH r
cont (X•) := H2r

cont (X1,ZX•(r))
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The Chern Character

0 −→ lim←−
1
n

K1(Xn) −→ K cont
0 (X•) −→ lim←−n

K0(Xn) −→ 0

∼=
ych ∼=

ych ∼=
ych

0 −→ (
⊕

r lim←−
1
n

H2r−1(X1, ZX• (r)))Q −→
⊕

r CHr
cont (X•)Q −→ (

⊕
r lim←−n

H2r (X1, ZX• (r)))Q −→ 0

Crucial point: Thomason descent for K -theory of singular
schemes. K0(Xn) is the Grothendieck group of vector bundles on
Xn as explained in the first lecture.
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Chern Classes (Recall)

Vn on Xn rank r vector bundle generated by global sections
s1, . . . , sp general sections of Vn. Concrete possibility to talk about
algebraic cycle cr−p+1(Vn).
Lifting Vn to Vn+1 on Xn+1 would yield lifted chern class.
In the limit, lim←−Vn can be algebrized.
The bad news: We can only lift [Vn] ∈ K0(Xn). lim←−[Vn] cannot be
algebrized. Only get classes to all infinitesimal orders.
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Hodge Classes in Families, the Main Theorem

Theorem
X/S smooth projective formal scheme; S = Spf(R). R complete dvr.
(i) Assume R = Q[[t ]], and write Xn = X ×R Spec R/tnR. Let
z = [Z ]DR ∈ H2r

DR(X1/Q) be an algebraic cycle class. Then
z̃ ∈ H2r

DR(X/R)∇=0 lies in F r H2r
DR(X/R) if and only if [Z ] ∈ CH r (X1)Q

lifts to CH r
cont (X )Q.

(ii) Assume R = W (k). Assume further dim X1 < p − 6. Let
z = [Z ]crys ∈ H2r

crys(X1/W ) ∼= H2r
DR(X/W ) be an algebraic cycle class.

Then z ∈ F r H2r
DR(X/R)Q if and only if [Z ] ∈ CH r (X1)Q lifts to

CH r
cont (X )Q.

(iii) Assume R = C[[t ]]. Assume further that the Kunneth projectors are
algebraic for H∗DR(Xη × Xη) where η → SpecC[[t ]] is the generic point.
Then z̃ ∈ F r H2r

DR(X/S) iff there exists a class Z ∈ CH r
cont (X•) such that

z̃ = [Z]DR ∈ F r H2r
DR(X/S).
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Discussion

What the theorem says in case R = Q[[t ]]:
A cycle class [Z ] ∈ CH r (X1)Q lifts in the sense that there exists
ζ ∈ (lim←−K0(Xn))Q with ch(ζ)|X1 = [Z ] if and only if the horizontal
lifting of [Z ]DR lies in F r H2r

DR(X/R).
What the theorem does not say in case R = Q[[t ]]:
“Hodgeness” of the horizontal lifting of [Z ]DR implies existence of
a lifting to X or to some algebrization of X .

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 9

/ 20



Discussion

What the theorem says in case R = Q[[t ]]:
A cycle class [Z ] ∈ CH r (X1)Q lifts in the sense that there exists
ζ ∈ (lim←−K0(Xn))Q with ch(ζ)|X1 = [Z ] if and only if the horizontal
lifting of [Z ]DR lies in F r H2r

DR(X/R).
What the theorem does not say in case R = Q[[t ]]:
“Hodgeness” of the horizontal lifting of [Z ]DR implies existence of
a lifting to X or to some algebrization of X .

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 9

/ 20



Discussion

What the theorem says in case R = Q[[t ]]:
A cycle class [Z ] ∈ CH r (X1)Q lifts in the sense that there exists
ζ ∈ (lim←−K0(Xn))Q with ch(ζ)|X1 = [Z ] if and only if the horizontal
lifting of [Z ]DR lies in F r H2r

DR(X/R).
What the theorem does not say in case R = Q[[t ]]:
“Hodgeness” of the horizontal lifting of [Z ]DR implies existence of
a lifting to X or to some algebrization of X .

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 9

/ 20



Discussion (cont)

What the theorem says in case R = W (k):
Assume dim X1 < p − 6. A cycle class [Z ] ∈ CH r (X1)Q lifts in the
sense that there exists ζ ∈ (lim←−K0(Xn))Q with ch(ζ)|X1 = [Z ] if and
only if the crystalline class [Z ]crys lies in F r H2r

DR(X/R) under the
identification H∗(X1/W )crys ∼= H∗DR(X/R).
What the theorem does not say in case R = W (k):
“Hodgeness” of the crystalline class [Z ]crys implies existence of a
lifting to X or to some algebrization of X .
What the theorem says in the case R = C[[t ]]:
If the Kunneth projectors are algebraic on Xη × Xη, then
“Hodgeness” of the horizontal lifting of [Z ]DR implies that there
exists a cycle Z ′ such that [Z ]DR = [Z ′]DR and Z ′ lifts in the above
sense.
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The Motivic Complex in char. 0

R = k [[t ]], Q ⊂ k . Z(r)X1 complex of Zariski sheaves calculating
motivic cohomology. (e.g. shifted higher chow complex)
Z(r)X1 supported in [−∞, r ] and Hr (Z(r)X1) = KM

r (Milnor K -sheaf
generated by symbols).
We define Z(r)Xn via the pullback

Z(r)Xn −−−−→ Z(r)X1y y
KM

r ,Xn
[−r ] −−−−→ KM

r ,X1
[−r ]

�

This is not correct?! However, the resulting pro-complex Z(r)X•
is correct.
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The Motivic Complex in char. 0 (cont)
A• = Γ(U,OX•).
Pro-isomorphism

K∗(A•,A1) ∼= ker(K M(A•)→ K M(A1)).

I Goodwillie’s theorem

Ki+1(An,A1) ∼= HCi (An,A1).

I Cyclic homology is known

HCi (An) ∼= Ωi
An
/Bi

Xn
⊕ Z i−2

An
/Bi−2

An
⊕ Z i−4

An
/Bi−4

An
· · ·

I Terms Z i−2k/Bi−2k are independent of n (Poincaré lemma) and die
in inverse limit

HCi (A•,A1) ∼= ker[Ωi
A•
/Bi

A•
→ Z i+1

A•
⊕ Ωi

A1
/Bi

A1
]
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The Motivic Complex in Mixed Characteristic
Idea: Codim. r cycle on X1 defines class in H2r

DR(X/W ). Want to
measure obstruction to this class lying in F r .

Z(r)X•
?
= Cone(ZX1(r)

??−→ Ω∗X•/W•/F
r )

Will assume r < p

p(r)Ω∗X• : prOX•
d−→ pr−1Ω1

X• → · · · → Ωr → Ωr+1 → · · ·

de Rham-Witt cohomology W•Ω∗X1

q(r)W•Ω∗X1
: pr−1VW•OX1

d−→ pr−2VW•Ω1
X1
→

· · · → VW•Ωr−1
X1
→W•Ωr →W•Ωr+1 → · · ·

PD − envelope. X• ↪→ Z• such that Z• admits a lifting of frobenius
(e.g. Z• = PN

• ).
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The Motivic Complex in Mixed Characteristic, II
Ω∗D• := Ω∗Z• ⊗OD• . Special relation dγn(x) = γn−1(x)dx .

Ω∗X•
'←−−−− Ω∗D•y'

W•Ω∗X1

J• ⊂ OD• ideal of X•, I• = (J•,p) ideal of X1

J(r)Ω∗D• : J r
• → J r−1

• Ω1
D• → · · · → Ωr

D• → · · ·
I(r)Ω∗D• : Ir

• → Ir−1
• Ω1

D• → · · · → Ωr
D• → · · ·

p(r)Ω∗X•
'←−−−−
a

I(r)Ω∗D•

b

y'
q(r)W•Ω∗X1
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The p-adic Motivic Complex; Beilinson’s definition

ZX•(r) := Cone
(

I(r)Ω∗D• ⊕ Ω≥r
X• ⊕ ZX1(r)

φ−→ p(r)Ω∗X• ⊕ q(r)W Ω∗X1

)

φ =

(
a φ12 0
b 0 φ23

)
Natural inclusion of complexes

φ12 : Ω≥r
X• → p(r)Ω∗X•

d log map for de Rham Witt:

φ23 : Z(r)X1 → Kr ,X1 [−r ]
d log−−−→W Ωr

X1,log[−r ]→ q(r)W Ω∗X1
.

Teichmuller map O×X1
→ (WOX1)×; x 7→ [x ].

d log{x1, . . . , xr} = d [x1][x1]−1 ∧ · · · ∧ d [xr ][xr ]−1
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Comments on the proof; mixed characteristic case

(K/p)X ,s étale sheaf of K -groups with Z/pZ-coefficients.
K = quotient field(W ), j : XK ↪→ X , i : X1 ↪→ X (small cheat: must
adjoin p-root of 1 to W )

VX (r) = cone
(
τ≤r Rj∗Z/pZ(r)

res−−→ i∗Ωr−1
X0,log[−r ]

)
[−1]

For example VX (1) ∼= Gm,X ⊗L Z/pZ[−1].

Theorem
Unique isomorphism of étale sheaves on X1

i∗(K/p)X ,s
∼=−→
⊕
r≤s

i∗H2r−s(VX (r)).

compatible with symbols and cup product with the Bott map.

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 16

/ 20



Comments on the proof; mixed characteristic case

(K/p)X ,s étale sheaf of K -groups with Z/pZ-coefficients.
K = quotient field(W ), j : XK ↪→ X , i : X1 ↪→ X (small cheat: must
adjoin p-root of 1 to W )

VX (r) = cone
(
τ≤r Rj∗Z/pZ(r)

res−−→ i∗Ωr−1
X0,log[−r ]

)
[−1]

For example VX (1) ∼= Gm,X ⊗L Z/pZ[−1].

Theorem
Unique isomorphism of étale sheaves on X1

i∗(K/p)X ,s
∼=−→
⊕
r≤s

i∗H2r−s(VX (r)).

compatible with symbols and cup product with the Bott map.

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 16

/ 20



Comments on the proof; mixed characteristic case

(K/p)X ,s étale sheaf of K -groups with Z/pZ-coefficients.
K = quotient field(W ), j : XK ↪→ X , i : X1 ↪→ X (small cheat: must
adjoin p-root of 1 to W )

VX (r) = cone
(
τ≤r Rj∗Z/pZ(r)

res−−→ i∗Ωr−1
X0,log[−r ]

)
[−1]

For example VX (1) ∼= Gm,X ⊗L Z/pZ[−1].

Theorem
Unique isomorphism of étale sheaves on X1

i∗(K/p)X ,s
∼=−→
⊕
r≤s

i∗H2r−s(VX (r)).

compatible with symbols and cup product with the Bott map.

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 16

/ 20



Comments on the proof; mixed characteristic case

(K/p)X ,s étale sheaf of K -groups with Z/pZ-coefficients.
K = quotient field(W ), j : XK ↪→ X , i : X1 ↪→ X (small cheat: must
adjoin p-root of 1 to W )

VX (r) = cone
(
τ≤r Rj∗Z/pZ(r)

res−−→ i∗Ωr−1
X0,log[−r ]

)
[−1]

For example VX (1) ∼= Gm,X ⊗L Z/pZ[−1].

Theorem
Unique isomorphism of étale sheaves on X1

i∗(K/p)X ,s
∼=−→
⊕
r≤s

i∗H2r−s(VX (r)).

compatible with symbols and cup product with the Bott map.

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 16

/ 20



Comments on the proof; mixed characteristic case

(K/p)X ,s étale sheaf of K -groups with Z/pZ-coefficients.
K = quotient field(W ), j : XK ↪→ X , i : X1 ↪→ X (small cheat: must
adjoin p-root of 1 to W )

VX (r) = cone
(
τ≤r Rj∗Z/pZ(r)

res−−→ i∗Ωr−1
X0,log[−r ]

)
[−1]

For example VX (1) ∼= Gm,X ⊗L Z/pZ[−1].

Theorem
Unique isomorphism of étale sheaves on X1

i∗(K/p)X ,s
∼=−→
⊕
r≤s

i∗H2r−s(VX (r)).

compatible with symbols and cup product with the Bott map.

Spencer Bloch () Hodge Classes and Deformation of Cycles
March 4, 2014 Albert Lectures, University of Chicago 16

/ 20



Hodge-like conjectures in char. 0

Conjecture (Infinitesimal Hodge Conjecture)

x = [Z ]DR. Assume horizontal lift x̃ ∈ F r H2r
DR. Then there exists an

algebraic cycle Z on X such that x̃ = [Z]DR.

Conjecture (Grothendieck Variational Hodge Conjecture)

X f−→ S → SpecC

f smooth, projective, S quasi-projective, smooth. s ∈ S a point;
σ ∈ H2r

DR(X ). Assume σ|Xs is the class of an algebraic cycle on Xs.
Then there exists a class ξ ∈ K0(X )Q such that [ch(ξ)]DR|Xs = σ|Xs .
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Hodge-like conjectures II

Theorem
The variational Hodge conjecture is equivalent to the infinitesimal
Hodge conjecture.
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K -cohomology in char. 0

CH r (?) = H r (?,KM
r ).

X → S = Spf Q[[t ]] smooth projective, X a formal scheme.
X local ringed space; can define Milnor K -sheaves K M

r ,X .
Can prove (?)

K M
r ,X
∼= lim←−

n
K M

r ,Xn
.

Infinitesimal structure of Milnor K -sheaves:

0→ Ωr−1
X1

b−→ K M
r ,Xn
→ K M

r ,Xn−1
→ 0

b(x
dy1

y1
∧ · · · ∧ dyr−1

yr−1
) = {1 + xtn−1, y1, . . . , yr−1}.
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K -cohomology in char. 0; II
X smooth projective formal scheme as above. Are elements in
H r (X ,KM

r ) given by cycles?
OX ⊂ F sheaf of quotients (F not t-adically complete).
H r (X ,KM

r )→ H r (X ,KM
r (F)) should be 0?!

case r = 1. L = lim←− Ln line bundle.

0→ L1 → Ln → Ln−1 → 0.

OX (1) ample line bundle on X . N >> 0⇒ H1(L1(N)) = (0) and
H0(Ln(N)) � H0(Ln−1(N)).
Conclusion L has meromorphic sections,
H1(X ,KM

1 )
0−→ H1(X ,KM

1 (F)).
r > 1 vanishing of H∗(X1,O(D)), D ∈ Γ(X1,O(N)) becomes
vanishing of H∗(X1,Ω

r−1(log D)). Not true!
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0→ L1 → Ln → Ln−1 → 0.

OX (1) ample line bundle on X . N >> 0⇒ H1(L1(N)) = (0) and
H0(Ln(N)) � H0(Ln−1(N)).
Conclusion L has meromorphic sections,
H1(X ,KM

1 )
0−→ H1(X ,KM

1 (F)).
r > 1 vanishing of H∗(X1,O(D)), D ∈ Γ(X1,O(N)) becomes
vanishing of H∗(X1,Ω

r−1(log D)). Not true!
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