Comments on Deligne-Goncharov

In my last lecture on the paper of Deligne-Goncharov, "Groupes fondamentaux motiviques de Tate mixte", I got stuck on the final counting argument, and I promised a correction.

Recall one has a grouplike element

$$
\begin{equation*}
d c h \in \mathbb{C}\left\langle\left\langle e_{0}, e_{1}\right\rangle\right\rangle \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
d c h=1-\zeta(2)\left[e_{0}, e_{1}\right]+O(\text { deg } . \geq 3) \tag{2}
\end{equation*}
$$

and the coefficients c_{I} of monomials e_{I} in $d c h$ are the multiple zeta values. We are interested in polynomial relations between these multiple zeta values. Because $d c h$ is grouplike, any product of two coefficients is a linear combination of coefficients. It follows that polynomial relations $P\left(c_{I_{1}}, \ldots, c_{I_{N}}\right)=0$ can be reduced to linear relations $\sum a_{J} c_{J}=0$.

The Tannaka group for the category $M T(\mathbb{Z})$ of mixed Tate motives over $\operatorname{Spec}(\mathbb{Z})$ with the fibre functor $M \mapsto \bigoplus_{n} \operatorname{Hom}\left(\mathbb{Q}(n), g r_{-2 n}^{W} M\right)$ was a semi-direct product $U \cdot \mathbb{G}_{m}$ where U was a pro-unipotent algebraic group. $\operatorname{Lie}(U)$ was graded and free, with generators in degree $3,5,7, \ldots$. The motive associated to the nilpotent completion of $F\left(e_{0}, e_{1}\right):=\pi_{1}\left(\mathbb{P}^{1}-\{0,1, \infty\}\right)$ gave us a representation $\iota: U \rightarrow V$ where V was a pro-unipotent group associated (in a somewhat complicated way) to $F\left(e_{0}, e_{1}\right)$. The grouplike element $d c h$ gave a homomorphism $d c h: A \rightarrow \mathbb{C}$ where A was the affine algebra of $\iota(U) \times \operatorname{Spec} \mathbb{Q}[T]$. A is a graded \mathbb{Q}-algebra $A=\oplus_{d \geq 0} A_{d}$, and all the coefficients c_{I} of monomials e_{I} in $d c h$ of degree d (i.e. all the multiple zeta values at that level) lie in the vector space $d c h\left(A_{d}\right)$.

Where I had difficulty was in bounding $\operatorname{dim} A_{d}$. Because of the known structure of $\operatorname{Lie}(U)$, it follows that the affine algebra B for U (note of course that $B[T] \rightarrow A$) is a symmetric algebra with generators in degrees $3,5,7, \ldots$ Writing $f(t)=t^{3} /\left(1-t^{2}\right)$, the Poincaré series for B is

$$
\begin{equation*}
1+f(t)+f(t)^{2}+f(t)^{3}+\ldots=\frac{1}{1-f(t)}=\frac{1-t^{2}}{1-t^{2}-t^{3}} \tag{3}
\end{equation*}
$$

Finally, T has graded degree $2\left(d c h(T)=\pi^{2}\right)$ so the Poincaré series for $B[T]$ is $1 /\left(1-t^{2}-t^{3}\right)$. This gives an upper bound for the linear span
(and hence, as argued above, the transcendence degree) of the multiple zeta elements at any given level.

