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1. Introduction

Feynman amplitudes, which play a central role in perturbative quan-
tum field theory, are algebro-geometric periods associated to graphs.
These periods have been investigated by Broadhurst and Kreimer (see
[4] and the references cited there) and shown for many special graphs
to be sums of multiple zeta values. On the other hand, Belkale and
Brosnan have shown [2] that the related graph motives are not in gen-
eral mixed Tate. The motive associated to a graph Γ is the motive of
the graph hypersurface XΓ [3]. If the cohomology of XΓ were mixed
Tate, the function p 7→ #X(Fp) would be a polynomial in p. In [2] it
is shown that this function can be quite general. In particular it is not
always a polynomial in p (not even if one omits a finite set of p).

The purpose of this note is to consider the Hodge structure associated
to the Betti cohomology of XΓ. Our main tool is another variety ΛΓ

which sits as a birational cover f : ΛΓ → XΓ. The variety ΛΓ has mixed
Tate cohomology. As a consequence we show

Theorem 1.1. Let XΓ be the graph hypersurface associated to a graph
Γ. Let p ≥ 0 be an integer. Let W·H

p(XΓ,Q) be the weight filtra-
tion on the Hodge structure. Because XΓ is proper, it is known that
Hp(XΓ,Q) = WpH

p(XΓ,Q), i.e. the Hodge structure on Hphas weights
≤ p. Then

Hp(XΓ,Q)/Wp−1 =

{
0 p = 2s+ 1⊕

Q(s) p = 2s.

I.e. the quotient of Hp of weight p is (pure) Tate.

Corollary 1.2. Let XΓ,smooth ⊂ XΓ be the open subvariety of smooth
points. Then the image of the restriction map

Hp(XΓ,Q)→ Hp(XΓ,smooth,Q)

is a pure Tate Hodge structure of weight p.
1
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Because ΛΓ is mixed Tate, the function p 7→ #Λ(Fp) is a polynomial
in p for almost all p. We can formulate this as follows. Recall [3] that
XΓ : ΨΓ = 0 where ΨΓ = detMΓ is the determinant of a symmetric
matrix. To a point x ∈ XΓ(Fp) we associate a weight w(x) := 1 + p +
. . .+ pa−1 where a is the corank of MΓ(x). For x general, the corank is
1 and w(x) = 1.

Theorem 1.3. The function

p 7→
∑

x∈XΓ(Fp)

w(x)

is a polynomial in p outside of a finite set of p.

The crucial point in the proof of theorem 1.1 is the fact that the graph
hypersurface XΓ : det(

∑
AeQe) where the Qe are rank 1 symmetric

matrices. Using the topology of the links associated to the stratification
of XΓ according to the rank of

∑
AeQe, it should be possible to get

further information about the spectral sequence for fΓ : ΛΓ → XΓ. In
particular, one may hope to better understand ker f ∗Γ.

This work grew out of an attempt to understand a construction of
H. Esnault. Unfortunately, time did not permit us to work together
on this, but I am endebted to her and to D. Kreimer for many helpful
conversations.

2. ΛΓ

Let Γ be a graph. Write H = H1(Γ,Q) and fix an identification
H ∼= Qr. I assume the loop number r ≥ 1. Let E = E(Γ) (resp.
V = V (Γ)) be the edges (resp. vertices) of Γ, and write n = #E.
We have H ⊂ QE. We identify an edge e with a functional e∨ on QE

which we can restrict to H. The collection {e∨|H} (or, more correctly,
the zeroes of these functionals) define a configuration of hyperplanes in
Pr−1 = P(H). The square (e∨|H)2 defines a rank 1 quadratic form on
H. Concretely, e∨|H (resp. (e∨|H)2) corresponds to a row vector (resp.
symmetric matrix)

(2.1) we = (we,1, . . . , we,r); Qe = twe · we = (we,iwe,j).

The linear transformation Qr → Qr associated to Qe is β 7→ (we ·β) twe.
To a vector a =

∑
aee ∈ QE we can associate the symmetric matrix

Qa :=
∑

E aeQe. We define

(2.2) Pn−1 × Pr−1 ⊃ Λ := {(a, β) | Qa(β) = 0}.
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Concretely, Λ is cut out by r equations (the zeroes of r sections of
OPn−1(1) �OPr−1(1))

(2.3) 0 =
r∑
j=1

∑
E

aewe,jβjwe,i; i = 1, . . . , r.

In vectors, this becomes

(2.4) Λ :
∑
E

ae(we · β)we = 0.

Definition 2.1. The graph polynomial ΨΓ ∈ Γ(Pn−1,O(r)) is defined
by the determinant det(Qa).

Because the we span H, ΨΓ is not identically zero. Also, the def-
inition of Ψ uses only the configuration H ⊂ Qn. We do not need a
graph to define it. We write X = XΓ : ΨΓ = 0. Note that by (2.2),
Λ ⊂ X × Pr−1.

Proposition 2.2. (i) There exist coherent sheaves E on X and F on
Pr−1 such that Λ ∼= Proj(Sym(E)) ∼= Proj(Sym(F)).
(ii) Λ is a reduced, irreducible variety of dimension n − 2 which is
a complete intersection of codim. r in Pn−1 × Pr−1. The projection
p : Λ→ XΓ is birational.

Proof. Define E by the presentation

(2.5) H ⊗Q OX
Q−→ H∨ ⊗Q OX(1)→ E → 0.

Here Q acts on the fibre over a point a ∈ X via Qa.
For F , the map a 7→

∑
E ae(we · β)we dualizes to a presentation

(2.6) OrPr−1 → OnPr−1(1)→ F → 0.

The fibre Fβ is the quotient of Qn,∨ modulo the space of functionals of
the form a 7→

∑
e ae(β ·we)(γ ·we) for γ ∈ Qr. We have dimFβ = n−

r+ε, where ε is the codimension in Qr of the span of {we | (we ·β) 6= 0}.
Since the we span Qr, it follows that for β general, we have ε = 0 so
Λ = Proj(Sym(F)) has dimension r − 1 + n− r − 1 = n− 2. Finally,
since the support of E is all of XΓ, it follows from dim Proj(Sym(E)) =
n − 2 = dimX that the fibre of E over a general point of X is a line,
so Λ→ X is birational. �

Lemma 2.3. Let V be a variety. Let H∗c denote betti cohomology with
compact supports. Assume V admits a finite stratification V =

∐
Vi

by locally closed sets such that H∗c (Vi) is mixed Tate for all i. Then
H∗(V ) is mixed Tate.
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Proof. We have a well-defined weight filtration, and the functorHbetti 7→
grWHbetti is exact on the category of Hodge structures. We apply this
functor to the spectral sequence which relates H∗c (Vi) to H∗c (V ) and
deduce a spectral sequence converging to grWH∗c (V ) with initial terms
direct sums of Tate Hodge structures Q(p). Since extensions of Q(p) by
Q(p) are all split, it follows that grWH∗c (V ) =

⊕
Q(pi) so by definition

H∗c (V ) is mixed Tate. �

Proposition 2.4. The betti cohomology H∗(Λ) is mixed Tate.

Proof. Let ε be as in the proof of proposition 2.2. We write ε(β) to
indicate the dependence on β ∈ Pr−1. It is clear that Tm := {β | ε(β) ≥
m} is closed in Pr−1 and Tm+1 ⊂ Tm. The sets Sm := Tm−Tm+1 form
a stratification of Pr−1 by locally closed sets. The fibres of F over Sm

have constant rank, so F|Sm is a vector bundle and Λ|Sm is a projective
bundle. It will suffice by the lemma to show H∗c (Λ|Sm) is mixed Tate,
and by the projective bundle formula this will follow if we show H∗c (Sm)
is mixed Tate.

The set Tm can be described as follows. Let Z ⊂ 2E be the set of all
subsets z ⊂ E such that the span of we, e ∈ z has codimension < m
in Qr. Then Tm is the set of β such that for each z ∈ Z, (β · we) = 0
for at least one e ∈ z. Said another way, for any subset W of edges
containing at least one edge from each z ∈ Z let LW ⊂ Pr−1 be the
set of those β such that (β · we) = 0 for all e ∈ W . It follows that
Tm =

⋃
LW is the union of the Lw. Since the cohomology of a union

of linear spaces is mixed Tate, we see that H∗(Tm) is mixed Tate.
From the long exact sequence relating the cohomologies of Tm, Tm+1

to the compactly supported cohomology of Sm we deduce that H∗c (Sm)
is mixed Tate as well. �

Although we do not need it to prove our result, it is interesting
to look more closely at the geometry of Λ and how it relates to the
combinatorics of the graph. We consider partitions E(Γ) = E ′ q E ′′.
Let Γ′,Γ′′ ⊂ Γ be the unions of the corresponding sets of edges. We say
that our partition is non-trivial on loops if both h1(Γ′), h1(Γ′′) ≥ 1. It
is easy to check that a partition is non-trivial on loops if and only if
neither {we}e∈E′ nor {we}e∈E′′ span Qr.

Proposition 2.5. The fibre of Λ over a point β ∈ Pr−1 has dimension
> n − r − 1 if and only if there exists a partition E = E ′ q E ′′ which
is non-trivial on loops such that β ⊥ we for all e ∈ E ′.
Proof. Given β, we may take E ′′ = {e | (we · β) 6= 0}. The assertion is
now straightforward from the definition of ε in the proof of proposition
2.2. �
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Remark 2.6. (i)Given a partition E = E ′ q E ′′ which is non-trivial
on loops, we may define linear spaces L′ = {β | β ⊥ we, ∀e ∈ E ′} and
(analogously) L′′. Then L′, L′′ are non-empty and disjoint. The fibre
dimension of Λ is > n− r − 1 for β ∈ L′ q L′′.
(ii) If the graph Γ admits partitions E = E ′qE ′′ which are non-trivial
on loops, the variety Λ will be singular. Indeed, if we differentiate the
vector equation

∑
ae(β · we)we with respect to ae (resp. βi) we obtain

(β · we)we (resp.
∑

E aewe,iwe). Suppose β ⊥ we, ∀e ∈ E ′, and take
ae = 0, e ∈ E ′. Then the span of these vectors is the span of we, e ∈ E ′′
and is strictly contained in Qr. But the value of the equation itself does
not depend on ae for e ∈ E ′, so we get points on Λ in this way where
the jacobian matrix has less than maximal rank.

In fact, the structure of the singularities of Λ is more complicated
because it may happen that there is a subset F ⊂ E ′ such that {we | e ∈
E ′′ q F} still does not span Qr. In this case, it suffices to take ae = 0
for e ∈ E ′ − F .

Example 2.7 (Wheel and spoke graphs with 3 and 4 edges). (i) The
wheel with 3 spokes graph Γ3 has 4 vertices 1, 2, 3, 4 and 6 edges

{1, 2}, {2, 3}, {3, 1}, {1, 4}, {2, 4}, {3, 4}.
It has 3 loops, but it is easy to check that there are no partitions of the
edges which are non-trivial on loops. It follows from proposition 2.5
that in this case Λ is a P2-bundle over P2. In particular it is smooth.
(ii) The wheel with 4 spokes Γ4 has 5 vertices, 4 loops, and 8 edges:

{1, 2}, {2, 3}, {3, 4}, {4, 1}, {1, 5}, {2, 5}, {3, 5}, {4, 5}.
With the aid of a computer, one can show That Λ→ P3 is a P3-bundle
over P3 − 4 points. Over the 4 missing points, the fibre jumps to P4.

We return to the case of a general graph Γ. It is probably possible to
calculate grWH∗(ΛΓ) completely. The key point is the following easy
lemma:

Lemma 2.8. Let f : Λ→ Pr−1 be the projection. The sheaves Raf∗QΛ

are zero for a odd. For a = 2b even, we have

(2.7) Raf∗QΛ
∼= Q(−b)|Sb

where Sb ⊂ Pr−1 is the closed set where the fibre dimension is ≥ b. In
particular, Sb = Pr−1 for b ≤ n− r − 1.

proof of lemma. Let g : Λ → Pn−1 be the other projection. Pullback
g∗ induces a map of sheaves on Pr−1

(2.8) g∗ : Ha(Pn−1,Q)Pr−1 → Raf∗QΛ.
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The lemma follows from the fact that g∗ is surjective with support on
Sb. (Both assertions are checked fibrewise.) �

Consider the Leray spectral sequence

(2.9) Epq
2 = Hp(Pr−1, Rqf∗QΛ)⇒ Hp+q(Λ,Q).

It follows from the lemma that Epq
2 = Hp(Sq/2,Q(−q/2)) (zero for q

odd) has weights ≤ p+q with equality if either p = 0 or q ≤ 2(n−r−1).
Since Er is a subquotient of E2, we get the same assertion for Er. From
the complex (computing Epq

s+1.)

(2.10) Ep−s,q+s−1
s → Ep,q

s → Ep+s,q−s+1
s

we deduce

Proposition 2.9. For the spectral sequence (2.9) we have in the range
q ≤ 2(n−r−1) or p = 0, q ≤ 2(n−r) that Epq

∞ = Q(−(p+q)/2) if both
p and q are even, and Epq

∞ = (0) otherwise. In particular, The pullback
Hs(Pn−1 × Pr−1,Q)→ Hs(Λ,Q) is an isomorphism for s ≤ 2(n− r).

Corollary 2.10. Suppose n = 2r. Then Wn−3H
n−2(XΓ,Q) dies in

Hn−2(Γ,Q).

3. Proof of Theorem 1.1

Let Γ be a graph with n edges, and let f : ΛΓ → XΓ be the birational

map constructed in the previous section. Let g : Λ̃→ Λ be a resolution

of singularities. By [5], proposition (8.2.5), the image of Hp(X,Q)
g∗f∗−−→

Hp(Λ̃,Q) is identified with Hp(X,Q)/Wp−1 = grWp H
p(X,Q). This

image is a subquotient of Hp(Λ,Q) which is mixed Tate by proposition
2.4. Hence it is (pure) Tate, proving theorem 1.1. To prove corollary
1.2, it suffices to remark that Hp(Xsmooth,Q) has weights ≥ p so the
restriction map factors through Hp(X,Q)/Wp−1 which we know to be
Tate.

Concerning the proof of theorem 1.3, w(x) is the number of points
in the fibre of ΛΓ over x, so the assertion amounts to saying that
p 7→ #Λ(Fp) is a polynomial. The necessity of excluding a finite set of
primes arises because, viewing Λ as a scheme over SpecZ with structure
map α : Λ→ SpecZ, the cohomology sheaves Riα∗Q` are constructible
sheaves away from ` so the specialization map from the closed fibre at
p to the generic fibre is an isomorphism for almost all p. One might
ask whether it is an isomorphism for all p. To investigate this one
might try to show that the topology of the fibre over SpecFp of the
sets Sm ⊂ Pr−1 arising in the proof of proposition 2.4 did not depend
in any essential way on the prime p.
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Remark 3.1. As suggested by results of [4], the piece of the cohomology
of XΓ of “physical interest”, i.e. related to the Feynman amplitude
period, may be mixed Tate. Is it possible that this piece maps injectively
to H∗(ΛΓ)? In the case of the wheel with m ≥ 3 spokes (example 2.7
above) one knows from results in [3] that H2m−2(X,Q)prim ∼= Q(−2).
(Here the subscript ”prim” means to kill the Lefschetz class Q(−m−1)
coming via pullback from H2m−2(P2m−1,Q). Note Q(−2) is independent
of m.) This primitive class has weight 4. For m = 3 we have that
4 = 2m − 2, so by theorem 1.1, this class survives in H4(Λ,Q). For
m ≥ 4, however, it follows from corollary 2.10 that Q(−2) dies in
H2m−2(Λ,Q).
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