Motivic Cohomology

1. Triangulated Category of Motives (Voevodsky)
2. Motivic Cohomology (Suslin-Voevodsky)
3. Higher Chow complexes
a. Arithmetic (Conjectures of Soulé and

Fontaine, Perrin-Riou)
b. Mixed Tate Motives (Relations with motives associated to $\pi_{1}\left(\mathbb{P}^{1}-S\right)$; Deligne, Goncharov...)
c. Limiting mixed motives.

Voevodsky's Construction Important

 Concepts (Mazza, Voevodsky, Weibel)1. Additive category of correspondences Cor $_{k}$. Objects smooth varieties over k.
Morphisms:

Here f_{i} finite surjective, and

$$
Z=\sum n_{i} Z_{i} \in \operatorname{Hom}_{C o r}(X, Y) .
$$

Example: $Z \subset X \times Y$ graph of $f: X \rightarrow Y$,

$$
S m_{k} \rightarrow \text { Cor }_{k}
$$

2. Presheaves with transfers PST:

$$
F: \mathrm{Cor}_{k}^{o p} \rightarrow A b
$$

Examples of presheaves with transfer

1. Representable $\mathbb{Z}_{t r}(X), X \in O b\left(S m_{k}\right)$.

$$
\mathbb{Z}_{t r}(X)(U):=\operatorname{Hom}_{C o r}(U, X)
$$

2. $\mathbb{Z}_{t r}\left(\left(X_{1}, x_{1}\right) \wedge \cdots \wedge\left(X_{n}, x_{n}\right)\right)$
$\operatorname{Coker}\left(\bigoplus \mathbb{Z}_{t r}\left(X_{1} \times \cdots \widehat{X_{i}} \times \cdots \times X_{n}\right) \rightarrow\right.$

$$
\left.\mathbb{Z}_{t r}\left(\prod X_{i}\right)\right)
$$

3. $\mathbb{Z}_{t r}\left(\bigwedge^{n} \mathbb{G}_{m}\right)$. Take $X_{i}=\mathbb{A}^{1}-\{0\}, x_{i}=1$.

Chains, Homotopy Invariance

$$
\begin{gathered}
\Delta^{n}=\operatorname{Spec} k\left[x_{0}, \ldots, x_{n}\right] /\left(\sum x_{i}-1\right) \\
\partial_{i}: \Delta^{n-1} \hookrightarrow \Delta^{n}
\end{gathered}
$$

For $F \in O b(\mathbf{P S T})$

$$
\begin{aligned}
& C_{*}(F)(U):= \\
& \quad \ldots \rightarrow F\left(U \times \Delta^{2}\right) \rightarrow F\left(U \times \Delta^{1}\right) \rightarrow F(U)
\end{aligned}
$$

F is homotopy invariant if

$$
i_{0}^{*}=i_{1}^{*}: F\left(U \times \mathbb{A}^{1}\right) \rightarrow F(U)
$$

Lemma 1 In general,
$i_{0}^{*}=i_{1}^{*}: C_{*} F\left(U \times \mathbb{A}^{1}\right) \rightarrow C_{*} F(U)$ are chain homotopic.

Corollary 2 The homology presheaves $H_{n}\left(C_{*} F\right)$ are homotopy invariant.

Motivic Cohomology

$$
\mathbb{Z}(q):=C_{*} \mathbb{Z}_{t r}\left(\bigwedge^{q} \mathbb{G}_{m}\right)[-q] ; \quad q \geq 0
$$

Complex of Zariski sheaves on X for any X.
Definition 4 The motivic cohomology groups

$$
H^{p, q}(X):=H_{Z a r}^{p}(X, \mathbb{Z}(q))
$$

Products: $\mathbb{Z}(q) \otimes \mathbb{Z}(s) \rightarrow \mathbb{Z}(q+s)$, $H^{p, q}(X) \otimes H^{r, s}(X) \rightarrow H^{p+r, q+s}(X)$.

Low degrees:
$H^{0,0}(X)=\mathbb{Z}\left(\pi_{0}(X)\right), \quad H^{p, 0}=0 ; p \geq 1$.
$\mathbb{Z}(1) \cong \mathcal{O}^{*}[-1]$.
Relation to Milnor K-theory:
Theorem $5 H^{n, n}(k) \cong K_{n}^{M i l n o r}(k)$.

Triangulated Category of Motives

Definition 6 A Nisnevich cover $U \rightarrow X$ is an étale cover such that for any field K, the induced map on K-points is surjective.

Tensor Products in PST:
$\mathbb{Z}_{t r}(X) \otimes \mathbb{Z}_{t r}(Y):=\mathbb{Z}_{t r}(X \times Y)$.
$\mathbb{Z}_{t r}(X)$ projective in PST; $\bigoplus_{\alpha} \mathbb{Z}_{t r}\left(X_{\alpha}\right) \rightarrow F$
$R_{F} \rightarrow F, R_{G} \rightarrow G$ resolutions by representable sheaves.
$F \otimes G:=\operatorname{Tot}\left(R_{F} \otimes R_{G}\right)=F \otimes^{£} G$.
\mathbb{A}^{1}-weak equivalence:

$$
\mathbf{D}^{-}:=\mathbf{D}^{-}\left(\mathbf{S h}_{\mathbf{N i s}}\left(\mathbf{C o r}_{\mathbf{k}}\right)\right)
$$

Quotient \mathbf{D}^{-}by smallest thick subcategory W containing cones of $\mathbb{Z}\left(X \times \mathbb{A}^{1}\right) \rightarrow \mathbb{Z}(X)$.

Definition 7
$\operatorname{DM}_{\mathrm{Nis}}^{\mathrm{eff}}(\mathbf{k}):=\mathbf{D}^{-} \mathbf{S h}_{\mathrm{Nis}}\left(\operatorname{Cor}_{\mathbf{k}}\right)\left[\mathbf{W}^{-\mathbf{1}}\right]$.

Motives (Continued)

Definition $8 M(X):=\mathbb{Z}_{t r}(X) \in \mathbf{D M}_{\mathbf{N i s}}^{\mathrm{eff}}(\mathbf{k})$. $\mathbf{D M}_{\text {geo }}^{\mathrm{eff}}(\mathbf{k}) \subset \mathbf{D M}_{\mathbf{N i s}}^{\mathrm{eff}}(\mathbf{k})$ is the thick subcategory generated by the $M(X)$.

Why the Nisnevich topology?
Proposition $9 U \rightarrow X$ Nisnevich cover. Then

$$
\cdots \rightarrow \mathbb{Z}_{t r}\left(U \times_{X} U\right) \rightarrow \mathbb{Z}_{t r}(U) \rightarrow \mathbb{Z}(X) \rightarrow 0
$$

exact sequence of Nisnevich sheaves.
Suffices to check for $X=\operatorname{Spec} A, A$ henselian local. Now use the fact that a Nisnevich cover of $\operatorname{Spec} A$ is split.

Properties of $\mathrm{DM}_{\mathrm{Nis}}^{\mathrm{eff}}(\mathbf{k})$

Mayer-Vietoris:

$M(U \cap V) \rightarrow M(U) \oplus M(V) \rightarrow M(X) \rightarrow$ $M(U \cap V)[1]$.
Kunneth: $M(X \times Y) \cong M(X) \otimes M(Y)$.
Vector Bundle: $M(X) \cong M(V)$ when $V \rightarrow X$
vector bundle.
Cancellation: Define $M(q)=M \otimes \mathbb{Z}(q)$. Assume varieties over k admit resolution of singularities.
Then $\operatorname{Hom}(M, N) \cong \operatorname{Hom}(M(q), N(q))$.
Projective Bundle:
$\bigoplus_{i=0}^{n} M(X)(i)[2 i] \cong M(\mathbb{P}(V))$.
Chow Motives: X, Y smooth projective. Then $\operatorname{Hom}(M(X), M(Y)) \cong C H^{\operatorname{dim} X}(X \times Y)$.

Relation with Motivic Cohomology

Theorem $10 X / k$ smooth. Then $H^{p, q}(X) \cong \operatorname{Hom}_{\mathbf{D M}_{\text {Nis }}^{\mathrm{eff}}(\mathbf{k})}\left(\mathbb{Z}_{t r}(X), \mathbb{Z}_{t r}(q)[p]\right)$.

Algebraic Cycles

Δ^{\bullet} cosimplicial variety. $\mathcal{Z}^{q}(X, n)=$ codim. q algebraic cycles on $X \times \Delta^{n}$ in good position for faces. $\mathcal{Z}^{q}(X, \bullet)$:
$\cdots \rightarrow \mathcal{Z}^{q}(X, 2) \rightarrow \mathcal{Z}^{q}(X, 1) \rightarrow \mathcal{Z}^{q}(X, 0)$. $C H^{q}(X, n):=H^{-n}\left(\mathcal{Z}^{q}(X, \bullet)\right)$.

Theorem 11 (Voevodsky) X smooth, k perfect. Then

$$
H^{p, q}(X) \cong C H^{q}(X, 2 q-p)
$$

Better to work with $\mathcal{Z}^{q}(X, \bullet)[-2 q]$.

$$
H^{p, q}(X)=H^{p}\left(\mathcal{Z}^{q}(X, \bullet)[-2 q]\right)
$$

Beilinson, Soulé conjecture that this shifted complex has cohomological support in degrees $[0,2 q]$.

Relation with K-Theory

$$
C H^{q}(X, n)_{\mathbb{Q}} \cong g r_{\gamma}^{q} K_{n}^{\prime}(X)_{\mathbb{Q}} .
$$

Relation with Étale Cohomology

Theorem 12 (Suslin) Let $k=\bar{k}$ and let X / k be smooth. Let $m \geq 1$ be relatively prime to char. k. Then

$$
\begin{aligned}
H_{e t}^{p}(X, \mathbb{Z} / m \mathbb{Z}(q)) & \cong \\
& H^{p}\left(\mathcal{Z}^{q}(X, \bullet)[-2 q] \otimes \mathbb{Z} / m \mathbb{Z}\right) .
\end{aligned}
$$

Arithmetic Conjectures

Conjecture 13 (Soulé) Let X be an arithmetic variety of dimension n. Define the scheme-theoretic zeta function

$$
\zeta_{X}(s):=\prod_{\substack{x \in X \\ x c l s d}} \frac{1}{1-N(x)^{-s}}
$$

Then the Euler-Poincaré characteristic of the complex $\chi(X, q)$ of $\mathcal{Z}^{q}(X, \bullet)[-2 q]$ is finite, and we have $\chi(X, q)=-$ ord $_{s=n-q} \zeta_{X}(s)$.

Example $14 X=\mathcal{O}_{k}$, ring of integers in a number field, $n=1$. By Borel
$r k H^{p, q}\left(\mathcal{O}_{k}\right)= \begin{cases}1 & p=q=0 \\ r_{1}+r_{2}-1 & q=p=1 \\ r_{1}+r_{2} & p=1 ; q=2 m+1 \\ r_{2} & p=1 ; q=2 m \\ 0 & \text { else. }\end{cases}$

Arithmetic Conjectures (Conjectures

 of Beilinson; Bloch, Kato; Fontaine, Perrin-Riou)Regulator map: $k \subset \mathbb{C}, X$ smooth projective. $r: H^{p, q}(X) \rightarrow H_{\mathcal{D}}^{p, q}(X)$. Assume $p<2 q$ (negative weight). Then

$$
\begin{aligned}
& 0 \rightarrow H^{p-1}(X, \mathbb{C}) /\left(F^{q}+H^{p-1}(X, \mathbb{Z}(q)) \rightarrow\right. \\
& H_{\mathcal{D}}^{p, q}(X) \rightarrow H^{p}(X, \mathbb{Z}(q))_{\text {tors }}
\end{aligned} \rightarrow 0 .
$$

Must also take invariants under real conjugation $F_{\infty}: H_{\mathcal{D}}^{p, q}(X)_{\mathbb{R}}$

Volume form given (upto \mathbb{Q}^{\times}) by rational structure on $H_{D R}^{p} / F^{q}$.

Take $p<2 q-1$ for simplicity. Let
$L\left(H^{p-1}\left(X, \mathbb{Q}_{\ell}\right), s\right)$ be the Hasse-Weil L-function. Let $L^{*}(s=p-q)$ be the first non-vanishing term in the Taylor series at $s=p-q$.

Arithmetic Conjectures (cont.)

Conjecture 15 (i) Image of r is cocompact in $H_{\mathcal{D}}^{p, q}(X)_{\mathbb{R}}$.
(ii) Rank of $H^{p, q}(X) \otimes \mathbb{Q}$ is the order of vanishing of $L\left(H^{p-1}\left(X, \mathbb{Q}_{\ell}\right), s\right)$ at $s=p-q$.
(iii) Volume of $H_{\mathcal{D}}^{p, q}(X)_{\mathbb{R}} / \operatorname{Image}(r) \in$ $L^{*}\left(H^{p-1}\left(X, \mathbb{Q}_{\ell}(q)\right), s=p-q\right) \cdot \mathbb{Q}^{\times}$.

Fontaine, Perrin-Riou: Reformulate in terms of (roughly) a metric on $\operatorname{det} H^{p, q}(X)$. (The metric depends on the trivialization of a certain
Betti-DR line.)
Problem: Construct this metric directly on $\mathcal{Z}^{q}(X, \bullet)[-2 q]$.

Mixed Tate Motives

k field. M motive over k. (Conjectural)
t-structure on $D M(k), M \in$ core. Again
conjecturally, M will have a weight filtration
$W_{\bullet} M$.
Definition $16 M$ is mixed Tate if
$g r^{W} M=\bigoplus_{i} \mathbb{Z}\left(n_{i}\right)$.
Problem: Give a synthetic construction of mixed Tate motives over k.

1. (Deligne, Goncharov,...) Look at subquotients of the groupring $\mathbb{Z}\left[\pi_{1}\left(\mathbb{P}_{k}^{1}-S, p_{0}\right)\right]$.
2. (Bloch, Kriz) (a) Construct a DG version
$\bigoplus_{q \geq 0} \mathfrak{N}^{*}(q)$ of $\bigoplus_{q} \mathcal{Z}^{q}($ Spec $k, \bullet)[-2 q] \otimes \mathbb{Q}$.
(b) Consider corepresentations of the the commutative Hopf algebra

$$
H=H^{0}\left(\operatorname{Bar}\left(\bigoplus_{q} \mathfrak{N}^{*}(q)\right)\right)
$$

$I \subset H$ augmentation ideal. Conjecturally,
$\mathcal{L}:=\left(I / I^{2}\right)^{\vee}$ is the pro-Lie algebra associated to the Tannaka group of mixed Tate motives $/ k$.

Limiting Mixed Motives

(Important work on this subject by Ayoub,
Bondarko, Vologodsky,... What follows is a modest attempt to interpret LMM in terms of cycle complexes.)
X / k smooth, $Y=\bigcup_{i=1}^{r} Y_{i} \subset X$ normal crossings divisor, $X^{*}=X-Y$. Write $\mathfrak{N}(X)=\mathfrak{N}^{*}(X, * *)$ (i.e. ignore gradings)

$$
0 \rightarrow \mathfrak{N}(Y) \rightarrow \mathfrak{N}(X) \rightarrow \mathfrak{N}\left(X^{*}\right) \rightarrow \mathcal{C} \rightarrow 0
$$

Here $\mathcal{C} \simeq 0$.

Weight filtration:

$Y_{I}:=\bigcup_{i \in I} Y_{i}, Y^{I}:=\bigcup_{j \notin I} Y_{j}$.
$\mathfrak{N}\left(X, Y_{I}\right):=\mathfrak{N}(X) / \mathfrak{N}\left(Y_{I}\right)$
$\mathfrak{N}(X)_{Y^{I}} \subset \mathfrak{N}(X)$ cycles meeting Y^{I} properly
(including faces).
$\mathfrak{N}\left(X, Y_{I}\right)_{Y^{I}}=\mathfrak{N}(X)_{Y^{I}} / \mathfrak{N}(X)_{Y^{I}} \cap \mathfrak{N}\left(Y_{I}\right)$
$W_{p} \mathfrak{N}(X, Y):=\sum_{|I|=p} \mathfrak{N}\left(X, Y_{I}\right)_{Y^{I}} \subset \mathfrak{N}(X, Y)$.
$W_{0}=\mathfrak{N}(X)_{Y} \simeq \mathfrak{N}(X)$.
$W_{r}=\mathfrak{N}(X, Y) \simeq \mathfrak{N}\left(X^{*}\right)$.

Limiting Mixed Motives (cont.)

Theorem $17 Y(I):=\bigcap_{i \in I} Y_{i}, Y(\emptyset):=X$. Then

$$
g r_{p}^{W} \mathfrak{N}(X, Y ; q) \simeq \oplus_{|I|=p} \mathfrak{N}(Y(I) ; q-p)[-p]
$$

Analogy: $W_{\bullet} \mathfrak{N}(X, Y) \leftrightarrow W_{\bullet} \Omega_{X}^{*}(\log Y)$.
Now assume $Y: t=0$ principal.
Steenbrink double complex:
$A^{p q}:=\Omega_{X}^{p+q+1}(\log Y) / W_{q}$.
$d^{\prime}=d: A^{p, q} \rightarrow A^{p+1, q}$;
$d^{\prime \prime}=\wedge d t / t: A^{p, q} \rightarrow A^{p, q+1}$
Motivic analog:
$\mathfrak{N}=\mathfrak{N}(X, Y), \mathfrak{M}=\bigoplus_{i=0}^{r-1} \mathfrak{N} / W_{i}$.
$W_{a} \mathfrak{M}:=\bigoplus_{b=0}^{r-1} W_{2 b+a+1} \mathfrak{N} / W_{b} \mathfrak{N}$.
$g r_{a}^{W} \mathfrak{M} \simeq$
$\bigoplus_{b=0}^{r-1} \bigoplus_{|I|=2 b+a+1} H^{*, *}(Y(I))[-2 b-a-1]$.

Motivic analog (cont.)

$A^{* *} \leftrightarrow \mathfrak{M}$. Construct
$B: \mathfrak{M} \rightarrow \mathfrak{M}, B^{2}=0, B\left(W_{a}\right) \subset W_{a}$. Then
$B \leftrightarrow d^{\prime}+d^{\prime \prime}$ in Steenbrink.
Definition 18 The limiting mixed motivic cohomology is $H^{*, *}(\mathfrak{M}, B)$.

Corollary 19 "Steenbrink spectral sequence":

$$
\begin{array}{r}
E_{1}=\bigoplus_{b=0}^{r-1} \bigoplus_{|I|=2 b+a+1} H^{*, *}(Y(I))[-2 b-a-1] \Rightarrow \\
H^{*, *}(\mathfrak{M}, B)
\end{array}
$$

Warning: B depends on a choice of homotopy. I have not yet checked the dependence of the complex (\mathfrak{M}, B) on this choice.

