Motivic Cohomology

1. Triangulated Category of Motives (Voevodsky)

2. Motivic Cohomology (Suslin-Voevodsky)

3. Higher Chow complexes

a. Arithmetic (Conjectures of Soulé and Fontaine, Perrin-Riou)

b. Mixed Tate Motives (Relations with motives associated to $\pi_1(\mathbb{P}^1 - S)$; Deligne, Goncharov...)

c. Limiting mixed motives.

Voevodsky's Construction Important Concepts (Mazza, Voevodsky, Weibel)

1. Additive category of correspondences Cor_k . Objects smooth varieties over k.

Morphisms:

$$Z_i$$

$$f_i \swarrow \qquad \searrow$$

$$X \qquad Y$$

Here f_i finite surjective, and

$$Z = \sum n_i Z_i \in Hom_{Cor}(X, Y).$$

Example: $Z \subset X \times Y$ graph of $f : X \to Y$,

$$Sm_k \to Cor_k.$$

2. Presheaves with transfers **PST**:

$$F: Cor_k^{op} \to Ab$$

Examples of presheaves with transfer 1. Representable $\mathbb{Z}_{tr}(X), X \in Ob(Sm_k)$. $\mathbb{Z}_{tr}(X)(U) := Hom_{Cor}(U, X)$. 2. $\mathbb{Z}_{tr}((X_1, x_1) \land \dots \land (X_n, x_n))$ $\operatorname{Coker}\left(\bigoplus \mathbb{Z}_{tr}(X_1 \times \dots \widehat{X}_i \times \dots \times X_n) \rightarrow \mathbb{Z}_{tr}(\prod X_i)\right)$ 3. $\mathbb{Z}_{tr}(\bigwedge^n \mathbb{G}_m)$. Take $X_i = \mathbb{A}^1 - \{0\}, x_i = 1$.

Chains, Homotopy Invariance

$$\Delta^{n} = \operatorname{Spec} k[x_{0}, \dots, x_{n}] / (\sum x_{i} - 1)$$
$$\partial_{i} : \Delta^{n-1} \hookrightarrow \Delta^{n}$$

For $F \in Ob(\mathbf{PST})$

$$C_*(F)(U) := \dots \to F(U \times \Delta^2) \to F(U \times \Delta^1) \to F(U).$$

F is homotopy invariant if

 $i_0^* = i_1^* : F(U \times \mathbb{A}^1) \to F(U).$

Lemma 1 In general, $i_0^* = i_1^* : C_*F(U \times \mathbb{A}^1) \to C_*F(U)$ are chain homotopic.

Corollary 2 The homology presheaves $H_n(C_*F)$ are homotopy invariant.

\mathbb{A}^1 -Homotopy

 $f, g: X \to Y$ in Cor_k . $H: X \times \mathbb{A}^1 \to Y$.

 $H|X \times 0 = f; \quad H|X \times 1 = g$

Equivalence relation in Cor. $f \simeq g$.

Proposition 3 $f \simeq g$ Then f_*, g_* chain homotopy maps $C_*\mathbb{Z}_{tr}(X) \to C_*\mathbb{Z}_{tr}(Y)$.

Motivic Cohomology

 $\mathbb{Z}(q) := C_* \mathbb{Z}_{tr}(\bigwedge^q \mathbb{G}_m)[-q]; \quad q \ge 0.$

Complex of Zariski sheaves on X for any X.

Definition 4 The motivic cohomology groups

 $H^{p,q}(X) := H^p_{Zar}(X, \mathbb{Z}(q)).$

Products: $\mathbb{Z}(q) \otimes \mathbb{Z}(s) \to \mathbb{Z}(q+s),$ $H^{p,q}(X) \otimes H^{r,s}(X) \to H^{p+r,q+s}(X).$

Low degrees: $H^{0,0}(X) = \mathbb{Z}(\pi_0(X)), \ H^{p,0} = 0; \ p \ge 1.$ $\mathbb{Z}(1) \cong \mathcal{O}^*[-1].$

Relation to Milnor *K***-theory:**

Theorem 5 $H^{n,n}(k) \cong K_n^{Milnor}(k)$.

Triangulated Category of Motives

Definition 6 A Nisnevich cover $U \to X$ is an étale cover such that for any field K, the induced map on K-points is surjective.

Tensor Products in PST:

 $\mathbb{Z}_{tr}(X) \otimes \mathbb{Z}_{tr}(Y) := \mathbb{Z}_{tr}(X \times Y).$ $\mathbb{Z}_{tr}(X)$ projective in **PST**; $\bigoplus_{\alpha} \mathbb{Z}_{tr}(X_{\alpha}) \twoheadrightarrow F$ $R_F \to F, R_G \to G$ resolutions by representable sheaves.

$$F \otimes G := Tot(R_F \otimes R_G) = F \otimes^{\mathbf{L}} G.$$

 \mathbb{A}^1 -weak equivalence:

 $\mathbf{D}^{-} := \mathbf{D}^{-}(\mathbf{Sh}_{\mathbf{Nis}}(\mathbf{Cor}_{\mathbf{k}}))$

Quotient \mathbf{D}^- by smallest thick subcategory Wcontaining cones of $\mathbb{Z}(X \times \mathbb{A}^1) \to \mathbb{Z}(X)$.

 $\begin{array}{l} \mathbf{Definition} \ \mathbf{7} \\ \mathbf{DM}^{\mathbf{eff}}_{\mathbf{Nis}}(\mathbf{k}) := \mathbf{D}^{-} \mathbf{Sh}_{\mathbf{Nis}}(\mathbf{Cor}_{\mathbf{k}})[\mathbf{W}^{-1}]. \end{array}$

Motives (Continued)

Definition 8 $M(X) := \mathbb{Z}_{tr}(X) \in \mathbf{DM}_{\mathbf{Nis}}^{\mathbf{eff}}(\mathbf{k}).$ $\mathbf{DM}_{\mathbf{geo}}^{\mathbf{eff}}(\mathbf{k}) \subset \mathbf{DM}_{\mathbf{Nis}}^{\mathbf{eff}}(\mathbf{k})$ is the thick subcategory generated by the M(X).

Why the Nisnevich topology?

Proposition 9 $U \rightarrow X$ Nisnevich cover. Then

 $\cdots \to \mathbb{Z}_{tr}(U \times_X U) \to \mathbb{Z}_{tr}(U) \to \mathbb{Z}(X) \to 0$

exact sequence of Nisnevich sheaves.

Suffices to check for $X = \operatorname{Spec} A$, A henselian local. Now use the fact that a Nisnevich cover of $\operatorname{Spec} A$ is split.

Properties of $DM_{Nis}^{eff}(k)$

Mayer-Vietoris: $M(U \cap V) \rightarrow M(U) \oplus M(V) \rightarrow M(X) \rightarrow$ $M(U \cap V)[1].$

Kunneth: $M(X \times Y) \cong M(X) \otimes M(Y)$.

Vector Bundle: $M(X) \cong M(V)$ when $V \to X$ vector bundle.

Cancellation: Define $M(q) = M \otimes \mathbb{Z}(q)$. Assume varieties over k admit resolution of singularities. Then $Hom(M, N) \cong Hom(M(q), N(q))$.

Projective Bundle: $\bigoplus_{i=0}^{n} M(X)(i)[2i] \cong M(\mathbb{P}(V)).$

Chow Motives: X, Y smooth projective. Then $Hom(M(X), M(Y)) \cong CH^{\dim X}(X \times Y).$

Relation with Motivic Cohomology

Theorem 10 X/k smooth. Then $H^{p,q}(X) \cong Hom_{\mathbf{DM}_{\mathbf{Nis}}^{\mathbf{eff}}(\mathbf{k})}(\mathbb{Z}_{tr}(X), \mathbb{Z}_{tr}(q)[p]).$

Algebraic Cycles

 Δ^{\bullet} cosimplicial variety. $\mathcal{Z}^{q}(X, n) = \text{codim. } q$ algebraic cycles on $X \times \Delta^{n}$ in good position for faces. $\mathcal{Z}^{q}(X, \bullet)$:

 $\cdots \to \mathcal{Z}^q(X,2) \to \mathcal{Z}^q(X,1) \to \mathcal{Z}^q(X,0).$

 $CH^q(X,n) := H^{-n}(\mathcal{Z}^q(X,\bullet)).$

Theorem 11 (Voevodsky) X smooth, k perfect. Then

 $H^{p,q}(X) \cong CH^q(X, 2q-p).$

Better to work with $\mathcal{Z}^q(X, \bullet)[-2q]$.

$$H^{p,q}(X) = H^p(\mathcal{Z}^q(X, \bullet)[-2q]).$$

Beilinson, Soulé conjecture that this shifted complex has cohomological support in degrees [0, 2q].

Relation with K-Theory $CH^q(X,n)_{\mathbb{Q}} \cong gr_{\gamma}^q K'_n(X)_{\mathbb{Q}}.$ Relation with Étale Cohomology Theorem 12 (Suslin) Let $k = \bar{k}$ and let X/k be smooth. Let $m \ge 1$ be relatively prime to char. k. Then $H^p_{et}(X, \mathbb{Z}/m\mathbb{Z}(q)) \cong$

$$H^p\Big(\mathcal{Z}^q(X,ullet)[-2q]\otimes\mathbb{Z}/m\mathbb{Z}\Big)$$

Arithmetic Conjectures

Conjecture 13 (Soulé) Let X be an arithmetic variety of dimension n. Define the scheme-theoretic zeta function

$$\zeta_X(s) := \prod_{\substack{x \in X \\ x \, clsd.}} \frac{1}{1 - N(x)^{-s}}.$$

Then the Euler-Poincaré characteristic of the complex $\chi(X,q)$ of $\mathcal{Z}^q(X,\bullet)[-2q]$ is finite, and we have $\chi(X,q) = -ord_{s=n-q}\zeta_X(s)$.

Example 14 $X = \mathcal{O}_k$, ring of integers in a number field, n = 1. By Borel

$$rkH^{p,q}(\mathcal{O}_k) = \begin{cases} 1 & p = q = 0\\ r_1 + r_2 - 1 & q = p = 1\\ r_1 + r_2 & p = 1; \ q = 2m + 1\\ r_2 & p = 1; \ q = 2m\\ 0 & else. \end{cases}$$

Arithmetic Conjectures (Conjectures of Beilinson; Bloch, Kato; Fontaine, Perrin-Riou)

Regulator map: $k \in \mathbb{C}$, X smooth projective. $r: H^{p,q}(X) \to H^{p,q}_{\mathcal{D}}(X)$. Assume p < 2q (negative weight). Then

$$0 \to H^{p-1}(X, \mathbb{C})/(F^q + H^{p-1}(X, \mathbb{Z}(q))) \to$$
$$H^{p,q}_{\mathcal{D}}(X) \to H^p(X, \mathbb{Z}(q))_{tors} \to 0.$$

Must also take invariants under real conjugation $F_{\infty}: H^{p,q}_{\mathcal{D}}(X)_{\mathbb{R}}$

Volume form given (upto \mathbb{Q}^{\times}) by rational structure on H^p_{DR}/F^q .

Take p < 2q - 1 for simplicity. Let $L(H^{p-1}(X, \mathbb{Q}_{\ell}), s)$ be the Hasse-Weil *L*-function. Let $L^*(s = p - q)$ be the first non-vanishing term in the Taylor series at s = p - q.

Arithmetic Conjectures (cont.)

Conjecture 15 (i) Image of r is cocompact in $H^{p,q}_{\mathcal{D}}(X)_{\mathbb{R}}$.

(ii) Rank of $H^{p,q}(X) \otimes \mathbb{Q}$ is the order of vanishing of $L(H^{p-1}(X, \mathbb{Q}_{\ell}), s)$ at s = p - q. (iii) Volume of $H^{p,q}_{\mathcal{D}}(X)_{\mathbb{R}}/Image(r) \in$ $L^*(H^{p-1}(X, \mathbb{Q}_{\ell}(q)), s = p - q) \cdot \mathbb{Q}^{\times}$.

Fontaine, Perrin-Riou: Reformulate in terms of (roughly) a metric on det $H^{p,q}(X)$. (The metric depends on the trivialization of a certain Betti-DR line.)

Problem: Construct this metric directly on $\mathcal{Z}^q(X, \bullet)[-2q].$

Mixed Tate Motives

k field. M motive over k. (Conjectural) t-structure on DM(k), $M \in \text{core. Again}$ conjecturally, M will have a weight filtration $W_{\bullet}M$.

Definition 16 M is mixed Tate if $gr^W M = \bigoplus_i \mathbb{Z}(n_i).$

Problem: Give a *synthetic* construction of mixed Tate motives over k.

1. (Deligne, Goncharov,...) Look at subquotients of the groupring $\mathbb{Z}[\pi_1(\mathbb{P}^1_k - S, p_0)].$

2. (Bloch, Kriz) (a) Construct a DG version $\bigoplus_{q\geq 0} \mathfrak{N}^*(q)$ of $\bigoplus_q \mathbb{Z}^q(\operatorname{Spec} k, \bullet)[-2q] \otimes \mathbb{Q}$. (b) Consider corepresentations of the the commutative Hopf algebra

$$H = H^0(Bar(\bigoplus_q \mathfrak{N}^*(q))).$$

 $I \subset H$ augmentation ideal. Conjecturally, $\mathcal{L} := (I/I^2)^{\vee}$ is the pro-Lie algebra associated to the Tannaka group of mixed Tate motives/k.

Limiting Mixed Motives

(Important work on this subject by Ayoub, Bondarko,Vologodsky,... What follows is a modest attempt to interpret LMM in terms of cycle complexes.)

X/k smooth, $Y = \bigcup_{i=1}^{r} Y_i \subset X$ normal crossings divisor, $X^* = X - Y$. Write $\mathfrak{N}(X) = \mathfrak{N}^*(X, **)$ (i.e. ignore gradings)

$$0 \to \mathfrak{N}(Y) \to \mathfrak{N}(X) \to \mathfrak{N}(X^*) \to \mathcal{C} \to 0$$

Here $\mathcal{C} \simeq 0$.

Weight filtration:

$$Y_{I} := \bigcup_{i \in I} Y_{i}, \ Y^{I} := \bigcup_{j \notin I} Y_{j}.$$

$$\mathfrak{N}(X, Y_{I}) := \mathfrak{N}(X)/\mathfrak{N}(Y_{I})$$

$$\mathfrak{N}(X)_{Y^{I}} \subset \mathfrak{N}(X) \text{ cycles meeting } Y^{I} \text{ properly}$$

(including faces).

$$\mathfrak{N}(X, Y_{I})_{Y^{I}} = \mathfrak{N}(X)_{Y^{I}}/\mathfrak{N}(X)_{Y^{I}} \cap \mathfrak{N}(Y_{I})$$

$$W_{p}\mathfrak{N}(X, Y) := \sum_{|I|=p} \mathfrak{N}(X, Y_{I})_{Y^{I}} \subset \mathfrak{N}(X, Y).$$

$$W_{0} = \mathfrak{N}(X)_{Y} \simeq \mathfrak{N}(X).$$

$$W_{r} = \mathfrak{N}(X, Y) \simeq \mathfrak{N}(X^{*}).$$

Limiting Mixed Motives (cont.) Theorem 17 $Y(I) := \bigcap_{i \in I} Y_i, Y(\emptyset) := X$. Then $gr_p^W \mathfrak{N}(X, Y; q) \simeq \bigoplus_{|I|=p} \mathfrak{N}(Y(I); q-p)[-p].$ Analogy: $W_{\bullet}\mathfrak{N}(X, Y) \leftrightarrow W_{\bullet}\mathfrak{O}_X^*(\log Y).$ Now assume Y : t = 0 principal. Steenbrink double complex: $A^{pq} := \mathfrak{O}_X^{p+q+1}(\log Y)/W_q.$ $d' = d : A^{p,q} \to A^{p+1,q};$ $d'' = \wedge dt/t : A^{p,q} \to A^{p,q+1}$ Motivic analog: $\mathfrak{N} = \mathfrak{N}(X, Y), \mathfrak{M} = \bigoplus_{i=0}^{r-1} \mathfrak{N}/W_i.$ $W_a \mathfrak{M} := \bigoplus_{b=0}^{r-1} W_{2b+a+1} \mathfrak{N}/W_b \mathfrak{N}.$ $gr_a^W \mathfrak{M} \simeq$ $\bigoplus_{b=0}^{r-1} \bigoplus_{|I|=2b+a+1} H^{*,*}(Y(I))[-2b-a-1].$

Motivic analog (cont.)

 $A^{**} \leftrightarrow \mathfrak{M}$. Construct $B: \mathfrak{M} \to \mathfrak{M}, B^2 = 0, B(W_a) \subset W_a$. Then $B \leftrightarrow d' + d''$ in Steenbrink.

Definition 18 The limiting mixed motivic cohomology is $H^{*,*}(\mathfrak{M}, B)$.

Corollary 19 "Steenbrink spectral sequence":

$$E_1 = \bigoplus_{b=0}^{r-1} \bigoplus_{|I|=2b+a+1} H^{*,*}(Y(I))[-2b-a-1] \Rightarrow$$
$$H^{*,*}(\mathfrak{M},B)$$

Warning: B depends on a choice of homotopy. I have not yet checked the dependence of the complex (\mathfrak{M}, B) on this choice.