Thoughts on graph polynomials and related questions (A pot-pourri of partial results)

I. Quillen metrics for dummies
II. Singularities of graph hypersurfaces
A. Dual hypersurface interpretation;
the incidence correspondence
B. Transversality; Patterson's theorem
C. Stratified Morse functions
III. External momenta
A. Second Symanzik polynomial
B. One loop graphs.

Quillen metrics for dummies (with Carly Klivans)

Polynomials for metrized CW-complexes generalizing the Kirchhoff polynomial for metrized graphs.
$K^{\bullet}=\bigoplus K^{i}$ finite dim. graded \mathbb{R}-vector space.
$K^{i},\langle\bullet, \bullet\rangle$ symm. positive definite inner products

$$
\begin{gathered}
d: K^{i} \rightarrow K^{i+1}, d^{2}=0 ;\langle d x, y\rangle=\left\langle x, d^{*} y\right\rangle \\
\Delta^{i}=d d^{*}+d^{*} d ; K^{i} \rightarrow K^{i} ; \Delta^{\bullet}=\oplus \Delta^{i} \\
B^{\bullet}=\operatorname{Image}(d) ; C^{\bullet}=\operatorname{Image}\left(d^{*}\right) ; \\
K^{\bullet}=\operatorname{ker} \Delta^{\bullet} \oplus B^{\bullet} \oplus C^{\bullet} .
\end{gathered}
$$

Quillen metrics for dummies
 (bis)

Determinant line:

$$
\operatorname{det}\left(K^{\bullet}\right)=\bigotimes_{i}\left(\operatorname{det} H^{i}\right)^{(-1)^{i}} \stackrel{(*)}{=} \bigotimes_{i}\left(\operatorname{det} K^{i}\right)^{(-1)^{i}}
$$

$\operatorname{det} H^{i}$, det K^{i} have metrics.
(*) canonical, but not an isometry.

$$
\operatorname{det}\left(K^{\bullet}\right)_{L^{2}} ; \quad \operatorname{det}\left(K^{\bullet}\right)_{Q}
$$

Proposition $1\|x\|_{L^{2}}^{2} /\|x\|_{Q}^{2}=\operatorname{det}\left(\Delta^{\bullet} \mid C^{\bullet}\right)$.
Proposition 2

$$
\|x\|_{Q}^{2} /\|x\|_{L^{2}}^{2}=\prod_{i=0}^{n}\left(\operatorname{det}_{\neq 0} \Delta^{i}\right)^{i(-1)^{i}}
$$

Quillen metrics for dummies (Special Case)

Suppose $K^{\bullet}=K_{\mathbb{Z}}^{\bullet} \otimes_{\mathbb{Z}} \mathbb{R} ; d: K_{\mathbb{Z}}^{i} \rightarrow K_{\mathbb{Z}}^{i+1}$.

$$
K_{\mathbb{Z}}^{\bullet}=K_{\mathbb{Z}}^{e v} \oplus K_{\mathbb{Z}}^{o d d} ;
$$

basis $\left\{e_{j}^{x}\right\}, x=e v, o d d$.

$$
\begin{gathered}
\left\langle e_{i}^{x}, e_{j}^{x}\right\rangle=a_{i}^{x} \delta_{i j}, \quad x=e v, \text { odd } . \\
T, S^{\prime} \subset\left\{e_{j}^{e v}\right\} ; \quad T^{\prime}, S \subset\left\{e_{j}^{\text {odd }}\right\} \\
\widetilde{S}=\left\{e_{j}^{o d d}\right\}-S, \widetilde{T}=\left\{e_{j}^{e v}\right\}-T, \ldots
\end{gathered}
$$

Image and kernel of d

$$
B_{\mathbb{Z}}^{x} \subset Z_{\mathbb{Z}}^{x} \subset K_{\mathbb{Z}}^{x} ; x=e v, o d d .
$$

$\mathbb{Z} T \oplus Z_{Z}^{e v} \xrightarrow{\text { isog. }} K_{\mathbb{Z}}^{e v} ; \quad \mathbb{Z} \widetilde{S} \oplus B_{Z}^{\text {odd }} \xrightarrow{\text { isog. }} K_{\mathbb{Z}}^{\text {odd }}$
$\mathbb{Z} T^{\prime} \oplus Z_{Z}^{\text {odd }} \xrightarrow{\text { isog. }} K_{\mathbb{Z}}^{\text {odd }} ; \mathbb{Z} \widetilde{S}^{\prime} \oplus B_{Z}^{e v} \xrightarrow{\text { isog. }} K_{\mathbb{Z}}^{e v}$

Quillen metrics for dummies (Special Case (bis))

Define

$$
|T|=\#\left(B_{\mathbb{Z}}^{\text {odd }} / d \mathbb{Z} T\right) ; \quad|S|=\#\left(K_{\mathbb{Z}}^{\text {odd }} /\left(B_{\mathbb{Z}}^{\text {odd }} \oplus \widetilde{S}\right)\right.
$$

and similarly for S^{\prime}, T^{\prime}.
Theorem 3

$$
\begin{aligned}
& \quad\|x\|_{Q}^{2} /\|x\|_{L^{2}}= \\
& \frac{\left(\sum_{T^{\prime}}\left(\prod_{j \in T^{\prime}} a_{j}^{\text {odd }}\right)^{-1}\left|T^{\prime}\right|^{2}\right)\left(\sum_{S^{\prime}}\left(\prod_{j \in S^{\prime}} a_{j}^{e v}\right)\left|S^{\prime}\right|^{2}\right)}{\left(\sum_{T}\left(\prod_{j \in T} a_{j}^{e v}\right)^{-1}|T|^{2}\right)\left(\sum_{S}\left(\prod_{j \in S} a_{j}^{\text {odd }}\right)|S|^{2}\right)}
\end{aligned}
$$

Take $x=\left(\bigwedge e_{i}^{e v}\right) \otimes\left(\bigwedge e_{i}^{o d d}\right)^{-1}$. Then

$$
\begin{aligned}
& \|x\|_{L^{2}}= \\
& \frac{\left(\sum_{T}\left(\prod_{j \in T^{\prime}} a_{j}^{e v}\right)|T|^{2}\right)\left(\sum_{S}\left(\prod_{j \in S} a_{j}^{\text {odd }}\right)|S|^{2}\right)}{\left(\sum_{T^{\prime}}\left(\prod_{j \in T^{\prime}} a_{j}^{\text {odd }}\right)\left|T^{\prime}\right|^{2}\right)\left(\sum_{S^{\prime}}\left(\prod_{j \in S^{\prime}} a_{j}^{e v}\right)\left|S^{\prime}\right|^{2}\right)}
\end{aligned}
$$

Quillen metrics for dummies (graphs)

G connected graph; vertices v_{i}, edges e_{i}.

$$
\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j} ; \quad\left\langle v_{i}, v_{j}\right\rangle=a_{i} \delta_{i j}
$$

x as above

$$
\begin{aligned}
& \|x\|_{L^{2}}=\frac{1}{\left(\sum_{t=\text { span. tree }} \prod_{e_{i} \notin t} a_{i}\right)(\# \text { vertices })} \\
& \quad=\frac{1}{(\# \text { vertices }) \cdot \text { Kirchhoff polynomial of } G}
\end{aligned}
$$

Question: Is there some physical interpretation of this rational function for higher dimensional CW-complexes analogous to electrical flow through a graph.

Graph hypersurfaces as dual hypersurfaces (+results of Eric Patterson)

G a graph. E edges of $G . H=H_{1}(G, \mathbb{Q}) . e \in E$

$$
e^{\vee}: H \rightarrow \mathbb{Q} ; \quad \ell=\sum n_{e} e \mapsto n_{e} .
$$

Write $P=\mathbb{P}(H):=\operatorname{Proj}\left(\operatorname{Sym}\left(H^{\vee}\right)\right)$:

$$
\mathcal{L}=\sum_{E} \mathbb{Q} \cdot e^{\vee, 2} \subset \Gamma(P, \mathcal{O}(2)) .
$$

Assume the $e^{\vee, 2}$ linearly independent, $n=\# E$.

$$
|\mathcal{L}|: P \rightarrow \mathbb{P}^{n-1}
$$

Finite map, everywhere defined. Not an embedding (usually).

Graph hypersurface is the dual hypersurface

$$
X \subset \mathbb{P}^{n-1, \vee}
$$

$x \in X \leftrightarrow Q_{x} \subset P$ singular quadric.

Graph hypersurfaces as dual hypersurfaces (Duality)

$$
\begin{aligned}
\Lambda=\left\{(x, y) \mid x \in X, y \in Q_{x, \text { sing }}\right. & \subset \mathbb{P}(H)\} \\
& \subset X \times \mathbb{P}(H)
\end{aligned}
$$

X
$\mathbb{P}(H)$
p birational, fibres projective spaces. Unlike classical case, Λ may have singularities.

$$
\begin{gathered}
\Lambda_{\text {sing }} \leftrightarrow G=G_{1} \cup G_{2} \\
h_{1}\left(G_{i}\right)>0, \text { no common edges. }
\end{gathered}
$$

Theorem $4 H^{*}(\Lambda, \mathbb{Z})$ mixed Tate, uninteresting.
Problem: Use this picture to understand the topology of X.

The rank stratification

Stratify X by $\operatorname{dim} p^{-1}(x)$

$$
X=\coprod_{i \geq 0} X_{i} ; \quad X_{i}=\left\{x \mid \operatorname{dim} p^{-1}(x)=i\right\}
$$

$X: \Psi_{G}=0$ graph polynomial.
Theorem 5 (Patterson) $x \in X$. Then the multiplicity of Ψ_{G} at x equals $1+\operatorname{dim} p^{-1}(x)$.

Corollary 6 The smooth locus of X is the locus where p is an isomorphism.

The Universal Case

$r=\operatorname{dim} H$,
$\mathbb{P}^{r(r+1) / 2-1}=\mathbb{P}(\Gamma(\mathbb{P}(H), \mathcal{O}(2)))=$
universal family of $r \times r$ symmetric matrices. $\mathcal{X} \hookrightarrow \mathbb{P}^{r(r+1) / 2-1}$ hypersurface defined by universal determinant.

Diagram of embeddings.
Fix basis of $H . e^{\vee, 2}$ rk 1 symmetric matrix.
Image of ι equals span of the $e^{\vee, 2}$. Patterson's thm says X and \mathcal{X} have the same multiplicity at $x \in X$. It is not true, however, that ι is transverse to the higher rank strata of \mathcal{X}.

Example

$x \in X \leftrightarrow \sum_{e} x_{e} e^{\vee, 2}$ symmetric matrix with $V=\operatorname{ker} x \subset H$. Assume $\operatorname{dim} V=2$, i.e. $x \in X_{1}$.

Choose e_{1}, e_{2} so that $e_{1}^{\vee} \oplus e_{2}^{\vee}: V \cong \mathbb{Q}^{2}$.
$0 \neq v_{i} \in \operatorname{ker} e_{i}^{\vee}$.
Then ι transverse to \mathcal{X}_{1} iff $\left\{\left.e^{\vee, 2}\right|_{V}\right\}$ span 3 dim. space of quad. forms on V.
v_{1}, v_{2} loops on G with no common edges.
Every $\left.e^{\vee, 2}\right|_{V}$ zero or proportional to exactly one of $\left.e_{i}^{\vee, 2}\right|_{V}$.

Must find $\sum x_{e} e^{\vee, 2}$ with exactly V as null space. Two linear conditions on $\left\{x_{e}\right\}$.

Stratified Morse Theory

Universal case, $\mathcal{P}:=\mathbb{P}_{\mathbb{C}}^{r(r+1) / 2-1}$.

$$
\mathcal{X}_{\mathbb{C}} \subset \mathcal{P} \xrightarrow{f} \mathbb{R}
$$

Stratification $\mathcal{P}-\mathcal{X}_{\mathbb{C}}, \mathcal{X}_{0}, \mathcal{X}_{1}, \ldots p \in \mathcal{P}$.

$$
d f_{p} \in T_{\mathcal{P}, p, \mathbb{R}}^{*}=T_{\mathcal{P}, p}^{*} \oplus \bar{T}_{\mathcal{P}, p}^{*}
$$

Assume $p \in \mathcal{X}_{i}$

$$
0 \rightarrow N_{\mathcal{X}_{i} \subset \mathcal{P}, p, \mathbb{R}}^{*} \rightarrow T_{\mathcal{P}, p, \mathbb{R}}^{*} \rightarrow T_{\mathcal{X}_{i}, p, \mathbb{R}}^{*} \rightarrow 0
$$

Stratified critical point: $d f_{p} \in N_{\mathcal{X}_{i} \subset \mathcal{P}, p, \mathbb{R}}^{*}$
Problem: Construct a stratified Morse function for $X \hookrightarrow \mathbb{P}^{n-1, \vee}$ by restricting a Morse function from $\mathcal{X} \hookrightarrow \mathcal{P}$. Use it to get information about $H_{*}(X)$.

A First Step

$z_{i j}, 1 \leq i \leq j \leq r$ homogeneous coordinates on \mathcal{P}. Define

$$
\begin{aligned}
f & :=\sum c_{i} c_{j} \rho_{i j}\left|z_{i j}\right|^{2} / \sum \rho_{i j}\left|z_{i j}\right|^{2} \\
\rho_{i j} & =\left\{\begin{array}{ll}
2 & i<j \\
1 & i=j
\end{array} ; \quad c_{i}>0,\right. \text { generic }
\end{aligned}
$$

Computation: f has isolated critical points at symmetric matrices $1_{i i}$ and $1_{i j}+1_{j i}$; no other critical points on strata. Technically, f is not a stratified Morse function, but it is an interesting first step.

Problems: Many. How to understand the restriction to $X \subset \mathbb{P}^{n-1, \vee}$? How to understand the "links" for the strata.

External Momenta (with Dirk Kreimer)

Graph polynomials as functions of external momenta (aka 2nd Symanzik polynomial) G connected graph

$$
\begin{array}{ccc}
0 \rightarrow H_{1}(G, \mathbb{R}) & \rightarrow \mathbb{R}^{E} \xrightarrow{\partial} \mathbb{R}^{V, 0} \rightarrow 0 \\
\| & \uparrow & \uparrow_{q} \\
0 \rightarrow H_{1}(G, \mathbb{R}) \rightarrow V_{q} & \rightarrow & \mathbb{R} \rightarrow 0
\end{array}
$$

$V_{q}=\partial^{-1}(\mathbb{R} q) \subset \mathbb{R}^{E}$.
Theorem 7 (Patterson) "Configuration polynomial" for $V_{q} \subset \mathbb{R}^{E}$ is the second Symanzik polynomial for G with (scalar) external momentum q.

Basis h_{i} for $H_{1}(G) ; h_{q} \in V_{q}$ lifting $q(1) \in \mathbb{R}^{V, 0}$. $e \in E, e^{\vee}: V_{q} \rightarrow \mathbb{R}$.

$$
w_{e}=\left(e^{\vee}\left(h_{1}\right), e^{\vee}\left(h_{2}\right), \ldots, e^{\vee}\left(h_{q}\right)\right) .
$$

$$
\Psi_{G, q}^{(2)}(A)=\operatorname{det}\left(\sum_{e \in E} A_{e} w_{e}^{t} w_{e}\right) .
$$

4-vector external momenta

$\mathcal{A}=\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k$ quaternions. Conjugation $\bar{i}=-i, \bar{j}=-j, \bar{k}=-k$. Do construction from previous slide in \mathcal{A}.

$$
\begin{gathered}
0 \rightarrow H_{1}(G) \otimes \mathcal{A} \rightarrow \mathcal{A}^{E} \xrightarrow{\partial} \mathcal{A}^{V, 0} \rightarrow 0 \\
\|_{i} \uparrow_{H_{1}}(G) \otimes \mathcal{A} \rightarrow V_{q} \rightarrow \mathcal{A} \rightarrow 0
\end{gathered}
$$

Now take $x_{e}:=\bar{w}_{e}^{t} \cdot w_{e}$. Have
$\sum_{e} A_{e} x_{e}=r \times r$-quaternionic hermitian matrix.
Conjecture $8 \Psi_{G, q}^{(2)}(A)=\operatorname{Nrp}\left(\sum A_{e} x_{e}\right)$.
$N r p^{2}=N r d$ quaternionic Pfaffian (square root of reduced norm) (E.H. Moore).

Example: G one loop

G one loop, $H_{1}=\mathbb{R}\left(e_{1}+\cdots+e_{n}\right) . \sum \mu_{e} e \in \mathcal{A}^{E}$ lifting $q(1) \in \mathcal{A}^{V, 0}$.

$$
\begin{gather*}
\sum A_{e} x_{e}=\left(\begin{array}{cc}
\sum_{e} A_{e} & \sum_{e} A_{e} \mu_{e} \\
\sum A_{e} \bar{\mu}_{e} & \sum A_{e} \bar{\mu}_{e} \mu_{e}
\end{array}\right) \tag{1}\\
\Psi_{G, q}^{(2)}(A)= \\
\sum_{i<j} \overline{\left(q_{i}+\cdots+q_{j-1}\right)}\left(q_{i}+\cdots+q_{j-1}\right) A_{i} A_{j} . \\
Q_{G, q, m}(A)=\left(\sum A_{i}\right)\left(\sum m_{i}^{2} A_{i}\right)+\Psi_{G, q}^{(2)}(A)
\end{gather*}
$$

Feynman Amplitudes

One loop with external momenta (work of Davydychev and Delbourgo) Feynman period, 6 edges:

$$
\begin{align*}
& \left(\Omega_{5}=\sum \pm A_{i} d A_{1} \wedge \ldots \widehat{d A}_{i} \ldots \wedge d A_{6} .\right) \\
& \quad \int_{\sigma} \frac{\left(\sum A_{i}\right)^{2} \Omega_{5}}{Q_{G, q, m}(A)^{4}} ; \quad \sigma=\left\{A_{i} \geq 0\right\} \tag{2}
\end{align*}
$$

Goncharov construction of mixed Tate motives:
Z smooth quadric in good position.
$H=H^{2 n+1}\left(\mathbb{P}^{2 n+1}-Z, \Delta-\Delta \cap Z\right) ; \quad \Delta: \prod A_{i}=0$.
Case $n=2$

$$
g r^{W} H=\mathbb{Q} \oplus \mathbb{Q}(-1)^{15} \oplus \mathbb{Q}(-2)^{15} \oplus \mathbb{Q}(-3)
$$

Extraordinary fact: Feynman integrand (2) sits in $W_{4} H \subsetneq W_{6} H=H$.
$\mathrm{D}+\mathrm{D}$ interpretation: Feynman amplitude $=$ sum of dilogarithms.

Concretely

$$
d\left(\sum_{i} \frac{L_{i} \Xi_{i}}{Q^{3}}\right) \stackrel{?}{=} \frac{\left(\sum A_{i}\right)^{2} \Omega_{5}}{Q_{G, q, m}(A)^{4}}
$$

Ξ_{i} 4-forms analogous to Ω_{5}.
So what? Outstanding problems:
a. Gauß-Manin differential equation in q.
b. Monodromy about Landau singularities

Remark 9 Restriction to 6 edges probably not important. Recall 2×2 quaternionic hermitian matrix:

$$
\left(\begin{array}{cc}
\sum A_{e} & \sum_{e} A_{e} \mu_{e} \\
\sum A_{e} \bar{\mu}_{e} & \sum A_{e} \bar{\mu}_{e} \mu_{e}
\end{array}\right)
$$

Space of such has $\operatorname{dim}_{\mathbb{R}}=6$. Family parametrized by \mathbb{P}^{5} is universal.

