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Abstract

We show that every computable relation on a computable Boolean algebra B

is either definable by a quantifier-free formula with constants from B (in which
case it is obviously intrinsically computable) or has infinite degree spectrum.

Computable mathematics has been the focus of a large amount of research in the

past few decades. Computable model theory in particular has seen vigorous and varied

activity, leading to the discovery and intensive investigation of a number of central

recurring themes. Among these is the study of the computability-theoretic properties of

the images of a relation on a structure in different computable copies of the structure.

In this paper, we investigate computable relations on Boolean algebras from this

point of view. Boolean algebras are very interesting to computable model theorists

because, like linear orderings, they are a natural, nontrivial, and well-studied class of

structures that exhibits much more structure than is present in the general case. Thus,

studying computable Boolean algebras can give us insight into the nature of computation

under constraints.

We will define the relevant concepts from computable model theory below. A valu-

able recent reference covering a wide range of topics in computable mathematics is
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the handbook [4]. For basic notions of computability theory, model theory, and (com-

putable) Boolean algebras, the reader is referred to [14], [10], and [5], respectively.

When doing computable mathematics, we must abandon the idea that isomorphic

structures are essentially identical. For example, under the standard ordering of the

natural numbers, the successor relation is computable, but it is not hard to construct a

computable linear ordering of type ω in which the successor relation is not computable.

From a computability-theoretic point of view, these two computable copies of the same

structure are very different. This leads us to study structures up to computable isomor-

phism, and gives rise to the notion of a computable presentation. (We always assume

we are working with computable languages.)

1 Definition. A structure A is computable if both its domain |A| and the atomic dia-

gram of 〈A, a〉a∈|A| are computable. (In other words, the domain, constants, functions,

and relations of A are uniformly computable.)

An isomorphism from a structureM to a computable structure is called a computable

presentation ofM. (We often abuse terminology and refer to the image of a computable

presentation as a computable presentation.)

One way in which we may hope to understand the differences between computable

presentations of the same structure is to look at the images in these presentations of a

relation on the domain of the structure. The study of relations on computable structures

began with the work of Ash and Nerode [1], and has proved to be not only a useful way

to study the differences between the various computable presentations of a structure, but

also a fruitful independent area of research with ties to several other parts of computable

model theory, as well as with other branches of logic and computer science.

In [1], Ash and Nerode were concerned with relations that maintain some degree of

effectiveness in different computable presentations of a structure.

2 Definition. Let U be a relation on the domain of a computable structure A and let

C be a class of relations. U is intrinsically C on A if the image of U in any computable

presentation of A is in C.

Ash and Nerode gave syntactic characterizations of the intrinsically c.e. and intrin-

sically computable relations under an extra decidability condition (which cannot be

dropped in general), and there has been a large amount of research following this ap-

proach. For instance, in [12], Moses gave a syntactic characterization of the intrinsically

computable relations on computable linear orderings.
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3 Theorem (Moses). Let R be a computable relation on the domain of a computable

linear ordering L. Then R is either definable by a quantifier-free formula with constants

from L (in which case it is intrinsically computable) or not intrinsically computable.

Another approach to the study of relations on computable structures is to examine

their degree spectra, a concept which was first defined in Harizanov’s dissertation [6],

although its study dates back at least to the work of Remmel [13].

4 Definition. Let U be a relation on the domain of a computable structure A. The

degree spectrum of U on A, DgSpA(U), is the set of (Turing) degrees of the images of

U in all computable presentations of A.

In the general case, there are no known restrictions on the sets of degrees that

can be realized as degree spectra of relations on computable structures, other than the

ones that follow from the fact that the set of images of a relation on the domain of

a computable structure in different computable presentations of the structure is (by

definition) Σ1
1. Furthermore, there are many natural special cases that turn out to be

no less restrictive than the general case. Hirschfeldt, Khoussainov, Shore, and Slinko [9]

showed that the sets of degrees that can be realized as degree spectra of relations on

computable structures do not change if we restrict ourselves to structures in any of the

following classes: symmetric, irreflexive graphs; partial orderings; lattices; rings (with

zero-divisors); integral domains of arbitrary characteristic; commutative semigroups;

and 2-step nilpotent groups.

On the other hand, the class of possible degree spectra of “natural” relations appears

much more restricted. Thus it becomes quite interesting to look for natural families of

structures that give rise to more restricted classes of possible degree spectra of relations

than in the general case. Research in this direction not only clarifies the computability-

theoretic structure of these classes of structures, but also provides insight into the nature

of computation under constraints.

One particularly interesting “pathological” phenomenon that can happen in general

but not in certain particular cases is that of computable relations whose degree spectra

are finite but not singletons. Such relations have been known to exist since the work of

Harizanov [7], but seem to require complicated computability-theoretic constructions.

In [8], Hirschfeldt proved the following theorem.

5 Theorem (Hirschfeldt). Let R be a computable relation on the domain of a com-

putable structure A. If there exists a ∆0
2 function f such that f(A) is a computable

structure and f(R) is not computable then DgSpA(R) is infinite.
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Combining this result with the proof of Theorem 3 yields the following theorem.

6 Theorem (Hirschfeldt). Let R be a computable relation on the domain of a com-

putable linear ordering. Then R either is intrinsically computable or has infinite degree

spectrum.

In this paper, we prove the analog of Theorems 3 and 6 in the case of Boolean

algebras. Our main tools will be Theorem 5 and a modification of a result of Moses,

which we now explain.

Before proceeding, we need some notation to talk about finite portions of a com-

putable structure A of (possibly infinite) signature L.

7 Definition. Let A be a computable structure of signature L and let m ∈ ω. Let

Lm be the language obtained by restricting L to its first m symbols, substituting all

j-ary function symbols by (j+1)-ary relation symbols in the obvious way, and dropping

any constant whose interpretation in A is not in [0,m]. Define A � m to be the finite

structure obtained from A by restricting the domain to |A| ∩ [0,m] and restricting the

language to Lm.

In the proof of Theorem 3, Moses used the following earlier result from [11].

8 Theorem (Moses). Let A be a computable structure and let R be a k-ary computable

relation on A. Suppose there is a computable binary function f such that for every

m ∈ ω there is a tuple ~a ∈ R for which there are infinitely many s ∈ ω with embeddings

ϕ : A � s → A � f(m, s) with ϕ the identity on A � m and ϕ(~a) /∈ R. Then R is not

intrinsically c.e..

The original statement of Theorem 8 assumed that A is a structure in a finite rela-

tional language, but the original proof works in general, using the notion of “substruc-

ture” given in Definition 7. Furthermore, the proof of Theorem 8 builds a ∆0
2 function

g such that g(A) is a computable structure and g(R) is not computable, and hence

Theorem 5 implies that a relation satisfying the hypotheses of Theorem 8 has infinite

degree spectrum. It is easy to modify the proof of Theorem 8 to establish the following

result. We include a proof sketch for completeness.

9 Theorem. Let R be a k-ary computable relation on a computable structure A. Suppose

there is a computable binary function f such that for every m ∈ ω there is a tuple ~a ∈
|A|k for which there are infinitely many s ∈ ω with embeddings ϕ : A � s→ A � f(m, s)

with ϕ the identity on A � m and R(ϕ(~a)) 6= R(~a). Then DgSpA(R) is infinite.
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Proof sketch. By Theorem 5, it is enough to build a ∆0
2 function g such that g−1(A) is

a computable structure and g−1(R) is not computable. For ease of notation, we assume

that R is unary and |A| = ω.

We want to satisfy the following requirement for each e ∈ ω:

Qe : g−1(R) 6= Φe.

At stage 0 we define g0 to be the empty map. At stage s+ 1 we begin with a finite map

gs and extend it to a map gs+1.

Let n = max(rng(gs)). For each e 6 s, define me to be the maximum of e, {gs(i) | i 6
e}, and the last stage at which a requirement Qi, i < e, acted (defined below). Say that

b ∈ dom(gs) may be used to attack Qe if Φe(b)↓= R(gs(b)) and there is an embedding

ϕ : A � n→ A � f(me, n) with ϕ the identity on A � me and R(ϕ ◦ gs(b)) 6= R(gs(b)).

Look for the least e 6 s such that Qe is not currently satisfied (defined below) and

there is an a ∈ dom(gs) that may be used to attack Qe. If no such number exists then

define gs+1 so that it extends gs and gs+1(x) = y, where x and y are the least numbers

not in dom(gs) and rng(gs), respectively. Otherwise, let ϕ be as above and define gs+1

so that it extends ϕ ◦ gs and gs+1(x) = y, where x and y are the least numbers not in

dom(gs) and rng(ϕ ◦ gs), respectively. We say that Qe is satisfied and every Qi, i > e,

is unsatisfied.

This completes the construction. It is straightforward to check that g = lims gs is a

well-defined bijection from ω to ω, that g−1(A) is a computable structure, and that the

hypotheses of the theorem imply that each Qe is met. For further details, see the proof

of Theorem 1 in [11].

The following sufficient condition for a structure to have infinite degree spectrum

follows easily from Theorem 9, but will be more convenient for our application to Boolean

algebras.

10 Corollary. Let R be a computable k-ary relation on the domain of a computable

structure A. Suppose there exists a ∆0
2 function h such that for each m ∈ ω there is a

pair of elements ~x0, ~x1 ∈ (A � h(m))k satisfying the following conditions.

1. R(~x0) 6= R(~x1).

2. For all s > h(m) there exist embeddings gi : A � s→ A, i = 0, 1, such that

(a) g0(~x0) = g1(~x1) and
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(b) g0(j) = g1(j) = j for all j ∈ A � m.

Then DgSpA(R) is infinite.

Proof. Given m, s ∈ ω, look for a t ∈ ω such that either h(m)[t] > s or there exist

~x0, ~x1 ∈ (A � h(m))k and embeddings gi : A � s→ A � t satisfying 1, 2.a, and 2.b above.

By the hypotheses, such a t will be found. Define f(m, s) = t.

Fix m ∈ ω. By the hypotheses and the fact that there are only finitely many pairs

~x0, ~x1 ∈ (A � h(m))k, there exists such a pair for which there are infinitely many s ∈ ω
and embeddings gsi : A � s→ A � f(m, s) satisfying 1, 2.a, and 2.b. For each such s we

have R(gsi (~xi)) 6= R(~xi) for some i = 0, 1. So for some i = 0, 1 it must be the case that

R(gsi (~xi)) 6= R(~xi) for infinitely many s ∈ ω. Taking ~a = ~xi we see that the hypotheses

of Theorem 9 are satisfied.

We are now ready to prove the analog of Theorems 3 and 6 in the case of Boolean

algebras.

11 Theorem. Let R be a computable relation on the domain of a computable Boolean

algebra B. Then R either is definable by a quantifier-free formula with constants from

B (in which case it is intrinsically computable) or has infinite degree spectrum.

Proof. We assume that R is not definable by a quantifier-free formula with constants

from B and show that it satisfies the hypotheses of Corollary 10.

Givenm ∈ ω, let b0, b1, . . . , bk ∈ B be such that bi∩bj = 0B for i 6= j, b0∪b1∪· · ·∪bk =

1B, and the subalgebra generated by b0, b1, . . . , bk contains the elements of B � m. (Here

we are using the notation of Definition 7.) Let Bi be the subalgebra of B consisting of

those elements that are less than or equal to bi (in the Boolean algebra sense).

Let r+1 be the arity of R. For a tuple 〈x0, . . . , xr〉, we think of each xi as an element

of B0 × · · · ×Bk and denote its jth coordinate by xji . We say that two tuples ~x and ~y

of elements of Bj are compatible if there is an isomorphism f between the subalgebra

of Bj generated by ~x and the subalgebra of Bj generated by ~y such that f(~x) = ~y (in

other words, ~x and ~y have the same atomic type).

For each F ⊆ [0, k] (representing a guess as to which Bi are finite), let PF be the set

of all pairs (〈x0, . . . , xr〉, 〈y0, . . . , yr〉) such that for each j 6 k, the tuples 〈xj0, . . . , xjr〉
and 〈yj0, . . . , yjr〉 are compatible and are actually equal if j ∈ F . Let S be the set

of all pairs (~x, ~y) such that, for some F ⊆ [0, k], (~x, ~y) is the least pair in PF with

R(~x) 6= R(~y) (in some fixed effective ordering of pairs of r + 1-tuples of elements of B).

Define h(m) = max{~x ∪ ~y | (~x, ~y) ∈ S}.
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Clearly, h is ∆0
2, so all we need to show to conclude that R satisfies the hypotheses

of Corollary 10 is that, for each m ∈ ω, there is a pair ~x, ~y ∈ (B � h(m))r+1 such that

R(~x) 6= R(~y) and for all s > h(m) there exist embeddings gj : B � s → B, j = 0, 1,

such that g0(~x) = g1(~y) and g0(l) = g1(l) = l for all l ∈ B � m.

Fix m ∈ ω and let PF , S, and Bi be as above. Let F be the set of all i such that Bi

is finite. We claim that PF ∩ S 6= ∅. Suppose otherwise. It is easy to see that PF is an

equivalence relation which splits Br+1 into finitely many equivalence classes, and that

for each equivalence class there is a quantifier-free formula with parameters b0, . . . , bk

and the elements of the finite Bi that is satisfied exactly by the elements of that class.

The assumption that PF ∩ S = ∅ implies that any two PF -equivalent tuples are either

both in R or both not in R. Thus we can define R by a quantifier-free formula with

constants b0, . . . , bk and the elements of the finite Bi. This contradicts our hypothesis,

and hence establishes our claim.

So there is a pair (〈x0, . . . , xk〉, 〈y0, . . . , yk〉) ∈ PF ∩S. Let s > h(m) and let n be such

that every element of B � s can be represented as an element of B0 � n× · · · ×Bk � n.

Let i /∈ F , so that Bi is infinite. Recall that 〈xi0, . . . , xir〉 and 〈yi0, . . . , yir〉 are

compatible. Furthermore, the class of all finite Boolean algebras has the amalga-

mation property, and any finite Boolean algebra can be embedded into any infinite

Boolean algebra. So there exist embeddings f ji : Bi � n → Bi, j = 0, 1, such that

f 0
i (〈xi0, . . . , xir〉) = f 1

i (〈yi0, . . . , yir〉).
For i ∈ F , let f ji : Bi � n → Bi � n be the identity embedding. Now we can define

our required embeddings g0 and g1 by letting gj(a0 ∪ · · · ∪ ak) = f j0 (a0)∪ · · · ∪ f jk(ak) for

ai ∈ Bi � n.

It is interesting to consider how far results such as Theorems 6 and 11 may be

extended by weakening the hypothesis that the relation is computable.

12 Question. Is there any intrinsically arithmetical relation on a Boolean algebra that

is not intrinsically computable but has finite degree spectrum (of cardinality greater

than one)? If so, then what if the relation is intrinsically ∆0
2 or intrinsically c.e.?

In the case of linear orderings, we do know a little more. As pointed out in [8], the

existence of a maximal d.c.e. degree, proved by Cooper, Harrington, Lachlan, Lempp,

and Soare [2], can be used to show that there exists an intrinsically d.c.e. invariant

relation on the domain of a ∆0
2-categorical structure with a two-element degree spectrum.

We can give a similar example in the case of linear orderings, but we need to go one

jump higher. It will also be convenient to note that, as shown in [2], there is a d.c.e.
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degree that is maximal not only in the d.c.e. degrees, but also in the 3-c.e. (or even the

ω-c.e.) degrees. Relativizing the proof in [2], we see that there exists a 0′-d.c.e. degree

that is maximal among the 0′-3-c.e. degrees, that is, a degree d such that d is d.c.e.

relative to 0′ and there are no 0′-3-c.e. degrees in (d,0′′).

13 Proposition. There exists a relation U on the domain of a computable linear or-

dering such that U has a two-element degree spectrum.

Proof. Let d be a 0′-d.c.e. degree maximal among the 0′-3-c.e. degrees, and let D ∈ d be

0′-d.c.e.. Let 〈· , ·〉 be a standard pairing function on ω. Define the binary relation R on

the standard presentation of the linear ordering ω as follows. R(〈n, i〉, 〈n, i+1〉) holds for

all i < 2n ∈ ω. If n ∈ D then R(〈n, 2n〉, 〈n, 0〉) holds; otherwise, R(〈n, 2n〉, 〈n, 2n+ 1〉)
and R(〈n, 2n + 1〉, 〈n, 0〉) hold. So, thinking of R as defining a directed graph, there is

a (2n+ 1)-cycle for each n ∈ D, a (2n+ 2)-cycle for each n /∈ D, and no other cycles.

Clearly, R is 0′-3-c.e. and deg(R) = d. Now let L be a computable presentation of

ω. It is easy to check that there is a ∆0
2 isomorphism f from the standard presentation

of ω to L, and that this implies that RL = f(R) is 0′-3-c.e. and 0′′-computable. But

D is computable in RL, and thus deg(RL) ∈ [d,0′′]. From this we conclude that the

degree spectrum of R is either {d} or {d,0′′}.
Now let η be the order type of the rationals and let R′ be the binary relation on

(2 + η) · ω that holds of x and y if and only if x and y are elements of consecutive

adjacencies. It is easy to check that the degree spectrum of R′ consists of all 0′-c.e.

degrees. Thus the relation on (2 + η) · ω + ω consisting of R′ on (2 + η) · ω and R on ω

has degree spectrum

{c | c = a ∨ b, a ∈ DgSpω(R), b ∈ DgSp(2+η)·ω(R′)} =

{c | c = d ∨ a, a is 0′-c.e.} = {d,0′′}.

In light of this example, we ask the following question.

14 Question. Is the degree spectrum of an intrinsically ∆0
2 relation on a linear ordering

always either a singleton or infinite? If not, then what if the relation is intrinsically c.e.?

While on the subject of linear orderings, we mention the question of the possible

degree spectrum of the adjacency relation on a linear ordering. Downey and Moses [3]
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showed that there is a computable linear ordering whose adjacency relation is intrinsi-

cally complete, that is, has degree spectrum {0′}. Surprisingly little else is known about

this question.

15 Question. Is there a computable linear ordering whose adjacency relation is in-

trinsically incomplete? Can the degree spectrum of an adjacency relation have finite

cardinality greater than 2? Can it consist of a single degree other than 0 and 0′?

We conclude with the following question, which seems to be a natural next step after

Theorems 6 and 11.

16 Question. Is the degree spectrum of a computable relation on an Abelian group

always either a singleton or infinite?
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