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Abstract

A set X is prime bounding if for every complete atomic decidable
(CAD) theory T there is a prime model 2 of T" decidable in X. It is
easy to see that X = 0/ is prime bounding. Denisov claimed that every
X < 0 is not prime bounding, but we discovered this to be incorrect.
Here we give the correct characterization that the prime bounding sets
X <7 0/ are exactly the sets which are not lows. Recall that X is lows
if X" <r 0”. To prove that a lowy set X is not prime bounding we
use a 0'-computable listing of the array of sets {Y : Y <1 X} to build
a CAD theory T which diagonalizes against all potential X-decidable
prime models 2 of T. To prove that any nonlows X is indeed prime
bounding, we fix a function f <t X that is not dominated by a certain
0’-computable function that picks out generators of principal types.
Given a CAD theory T, we use f to eventually find, for every formula
©(T) consistent with 7', a principal type which contains it, and hence to
build an X-decidable prime model of T'. We prove the prime bounding
property equivalent to several other combinatorial properties, including
some related to the limitwise monotonic functions which have been
introduced elsewhere in computable model theory.

1 Introduction

All of our languages are computable, and all of our structures are countable
with universe w. Given a set X C w a structure 2 is X -decidable if its
elementary diagram is computable in X (D¢(A) <t X) and is X -computable
if its atomic diagram is X-computable (D(2) <t X). We write decidable
and computable for 0O-decidable and 0-computable, respectively. A countable
complete theory T is atomic if, for each formula ¢(T) consistent with 7', there
is a principal type containing ¢(Z), or equivalently if the isolated points of
the Stone space Sy, (1) are dense. (See §4.1.) A model A is prime if it
can be elementarily embedded in every model of Th(2(). It is well known
that a countable complete theory T has a prime model iff T" is atomic. Our
main result concerns theories T' which are complete, atomic, and decidable
(CAD).

It is clear that any complete decidable theory 71" has a decidable model.
(The Henkin construction can be carried out effectively.) However, that
model is not always prime. Goncharov and Nurtazin [1973] and indepen-
dently Harrington [1974] gave an elegant criterion (Theorem 4.2 below) for a
complete decidable theory T to have a decidable prime model. Millar [1978]
constructed a CAD theory T" which has no computable (much less decidable)
prime model, and furthermore, such that the types of T" are all computable.



The degree spectrum of 2, written DgSp(21) (elementary degree spectrum
of A, written DgSp®(2l)) is the set of degrees of atomic diagrams (elementary
diagrams) of isomorphic copies B of 2, i.e.,

DgSp(2l) = {deg(D(B)) : B =22}, and
DeSp(2) = {dea(D*(B)) : B = ).

Knight [1986] showed that these two degree spectra are closed upwards for
structures 2 which are automorphically nontrivial, where 2 is automorphi-
cally trivial if there is a finite set F' such that all permutations of the universe
which fix F' pointwise are automorphisms of 2. See Knight [1998] for more
on degrees of models.

Our present results on degrees below which CAD theories always have
prime models grew out of results on degree spectra of prime models such as
the following.

Theorem 1.1 (Drobotun (1978), Millar (1978), Denisov (1989)). Any CAD
theory T has a prime model A with D(2) <1 0.

This result was improved by Csima [2004] as follows.

Theorem 1.2 (Prime Low Basis Theorem, Csima (2004)). If T is a CAD
theory, then T has a prime model A with D¢(2) low.

In addition, if the CAD theory T has its types all computable, then the
prime model degree spectrum of T includes all nonzero AY degrees.

Theorem 1.3 (Csima (2004)). If T is a CAD theory with types all com-
putable, then for every degree d with 0 < d < 0/, there is a prime model A
of T" with D¢(A) of degree d.

See Harizanov [2002] for further discussion of these and related results.

A natural question is whether the stronger conclusion of Theorem 1.3
can be proved with the weaker hypotheses of Theorem 1.2, i.e., without
assuming the types are all computable. An effort to answer this question
led us to the results presented in this paper.

Researchers had previously studied not only the degree spectrum of
prime models for a single theory but also the degrees which bound prime
models for every CAD theory T.

Definition 1.4. A set X is prime bounding if every CAD theory has an
X-decidable prime model 2. For example, Theorem 1.1 asserts that X = (0’
is prime bounding. As we will see, it would not matter for our results if we
replaced X -decidable by X -computable in this definition.



Denisov [1989] claimed that no X <t 0’ is prime bounding. He incor-
rectly assumed that for every X <p 0’ there is a 0’-computable listing of
the array of sets {Y : Y <t X}. This is what led us to focus on lows
and nonlows AY sets. Our main theorem says that the A sets which are
prime bounding are exactly those which are nonlowsy. (There is a further
discussion of Denisov’s paper in Section 11.)

Theorem 1.5 (Main Theorem). Let X be a AY set (i.e., X <1 0'). Then
X is nonlows (ie., X" >10") iff X is prime bounding.

One consequence of this result is that the Prime Low Basis Theorem
(Theorem 1.2 above) does not follow immediately from the Low Basis The-
orem of Jockusch and Soare [1972]. Indeed, suppose that one could always
build a 1Y class of prime models of a complete decidable theory. By a result
of Jockusch and Soare [1972], given any degree of a completion of Peano
arithmetic and any II{ class, there is a path in the class computable in the
degree. Since there are low degrees of completions of Peano arithmetic, it
would follow that each theory has a prime model computable in the same
low degree. So there would exist a low prime bounding set, contradicting
Theorem 1.5.

In §3 we derive key consequences of sets being lowy (Corollary 3.6), or
nonlows (Corollary 3.3) which will be used in proving the Main Theorem 1.5.

In addition to the two properties in the main theorem we consider a
number of other properties equivalent to these two. For quick reference we
shall list them in §2 before proceeding with the exposition and proofs.

Some of the properties we consider are related to limitwise mono-
tonic functions. A function f is X-limitwise monotonic if there is an
X-computable binary function g such that for every z, g(z,y) is nondecreas-
ing in y and f(z) = limy g(x,y) > . A function is limitwise monotonic if it
is O-limitwise monotonic.

Limitwise monotonic functions were introduced into computable model
theory by N. G. Khisamiev [1981], [1986], [1998] in characterizing in a math-
ematical way (in terms of the Ulm sequence) the reduced Abelian p-groups
with computable copies, at least for length < w?, using a family of limit-
wise computable functions of increasing complexity. (For groups of length
w, there was a single computable function, for groups of length w x 2, there
were two functions, one computable and one A}, etc.) Coles, Downey, and
Khoussainov [1998] used 0’-limitwise monotonic functions. Khoussainov,
Nies, and Shore [1997] and Nies [1999] used limitwise computable functions
in connection with R;-categorical theories, and Hirschfeldt [2001] used them
in connection with linear orderings.



We use standard notation, definitions, and results in computability the-
ory from Soare [1987] and in model theory from Chang and Keisler [1990].
We also let 0 and 0’ denote a computable set and the complete c.e. set
K = {e:e € W.}, respectively. A set X is A iff X <t 0/, and we use the
two terms interchangeably:.

2 The properties: (P0)—(P8), and (UO)

We consider the following properties, which will be shown to be equivalent
for sets X which are A (i.e., X <t 0'). We group them by similarity and
order of presentation. Every property is really a predicate of X. The reader
is not expected to master or remember all these properties. Rather, we list
them here as a handy index.

2.1 Definitions and notations for the properties

Notation. Every tree 7 will be a subtree of 2<%. Fix an effective num-
bering {o. : e € w} of all nodes of 2<“. We may identify a node o, with its
Godel number e. We write  C y (z C f) to denote that o, C 0y (0, C f).
Let [T] denote the set of all (infinite) paths through 7, and [7;] the set of
paths f € [T] such that z C f.

Definition 2.1. (i) For f(e,y) a binary function, f. denotes Ay [ f(e,y)].

(ii) If f(z,y) is a binary function, then f(z) = lim, f(x,y), if the limit
exists.

(iii) For C a class of (unary) functions and X a set, C is X-uniform if there
is an X-computable binary function f(e,y) with C = {f : e € w}.

2.1.1 Properties in the Main Theorem: (P1), (P2), and (P3)

The equivalence of the first two properties (P1) and (P2) for X <p 0
constitutes the Main Theorem (Theorem 1.5).

(P1) The nonlows property. The set X is not lowy (i.e., X" >1 0").

(P2) The prime bounding property. The set X is prime bounding. That
is, every CAD theory has an X-decidable prime model.

(P3) The isolated path property. For every computable tree T C 2<% with
no terminal nodes and with isolated paths dense,



(Fg <t X)(Vz €T)|gs €[Tz] & g is isolated].

Property (P3) is the abstract tree equivalent of the prime bounding property
(P2), and is often more convenient to use. It will be shown equivalent to
(P2) in §4.4. The prototype for the equivalence of (P2) and (P3) for the
case of X computable is the well-known Theorem 4.2 of Goncharov and
Nurtazin [1973] and independently Harrington [1974] on decidable prime
models, which helped to launch the area of research of which this paper is
a part, and which is described in §4.2.

2.1.2 Helping properties: (P0) and (UO0)

For the Main Theorem 1.5, the degree theoretic property we want is (P1),
but (P0) and (UO) are often the key tools which we shall use when proving
an implication about (P1).

(PO) The escape property. (Vg <t 0')(3f <1 X) (3®xz)[ g(z) < f(z) ],
where “(3°°)” denotes “there exist infinitely many”.
(U0) The O'-uniform property. (3g <t 0)[{Y :Y <1t X } ={ e }ecw |,

where g. = Ay [g(e,y)], and is viewed as the e row of g(e, y). We informally
refer to (P0) as the escape property because it asserts that for every g < 0’
there exists f <t X which “escapes” domination by ¢ at least infinitely
often. The 0/-uniform property (U0) asserts that the X-computable sets are
0’-uniform.

In §3 we shall use well-known theorems of Martin [1966] and Jockusch
[1972] to recall the proofs that

(VX <p 0)[ (P1) <= (P0) += —(U0)].

Then to prove an implication of the form (P1) = (Q) we shall prove
(P0) = (Q). Similarly, to prove that (Q) = (P1), or equivalently
-(P1) = —(Q), we shall make use of (U0), although we will usually also
need a bit more. Thus, all implications to or from (P1) will use the hypoth-
esis that X <7 (/. In §10 we discuss the case where X &1 0'.



2.1.3 Tree and omitting types properties: (P4) and (P5)

(P4) The tree property. For every computable tree 7 C 2<% with no
terminal nodes, and for every uniformly AJ sequence of subsets {S; }icw
all dense in 7, there exists an X-computable function g(z,y) such that
for every x € T, g = A\y[g(x,y)] is a path extending x and entering
each S;, that is,

(3g <2 X) (Vo € T)(Vi)Ez € S)a Cgo & 2Cg & go€[T]):

It would make no difference if we required that g, enter each .S; above =z,
that is, that

Fg<r X)(VzeeT)Vi)3z€ S)[xC2Cg9. & g €[T]],

since we could replace the sequence {S;}c., by the sequence {@‘,m}z’@a,m%
where 5’\”; ={z€S;:z¢ z}.

Property (P4) has a topological interpretation in the Cantor Space 2,
where the basic open sets for z € 2<% are given by

U:={f:fe 2¥ & x Cf}.

Definition 2.2. The basic open (indeed clopen) set defined by S C 2<% is
Us = U{Ux:xES}.

Property (P4) asserts, for 7 as above, that if {S;};c. is a uniformly A9
sequence of AJ sets, then

(Fg<r X)(Vz € T) (Vi) [ 9= € Us; N [T] .

Hence, (P4) says that for every « € T, the path g, € [T] extends x and lies
in every dense open set Us,. This says for the A family G = {S;}ic. that
X can compute a G-generic path g. A special case is that X computes a
1-generic set. For a more detailed discussion of the Cantor space, the clopen
basis Uy, and the Stone space S, (7") of a theory see §4.1.

Definition 2.3. Fix a language L. Let I' = I'(Z) C F,(L) be a set of
L-formulas with free variables Z. Let 2 be an L-structure.

(i) We say that a tuple @ in 2 realizes I if A E (@) for all v € T.
(ii) We say that 2 omits I' if I' is not realized by any tuple in 2.



(iii) Let T be a consistent L-theory, not necessarily complete. We say that
I'(Z) is principal with respect to T if there is a generating formula ¢(T),
consistent with 7', such that

(VyeD)[T = (Vo) [¢(@) — (@) ]]-

(iv) We say that I' is nonprincipal with respect to T if there is no such
generating formula.

(P5) The omitting types property. For any complete decidable theory T
and any uniformly A3 family of sets of formulas {T';(Z;)} e, all non-
principal with respect to T, there is an X-decidable model of T" omit-
ting all I';(Z;).

2.1.4 Algebraic properties: (P6), (P7), and (P8)

Definition 2.4. A set S C w is X-monotonic if there is a function
g <r X such that for every z, g(x,y) is nondecreasing in y, with limit
g(x) =limy g(z,y), g(z) >z, and g(z) € S. A set S is X-nonmonotonic
if there is no such g.

The following property (P6) asserts that every infinite A9 set S is X-
monotonic.

(P6) The monotonic property. For any infinite AY set S,
(Fg <t X) (Vz) (Vy) [2 < go(y) < gu(y +1) & limy g(z,y)le S].

An equivalence structure is a structure of the form A = (A, E), where F is
an equivalence relation on A.

(P7) The equivalence structure property. For any AY set S Cw — {0},
there is an X-computable equivalence structure with one class of size
n for each n € S, and no other classes.

A reduced Abelian p-group G is determined, up to isomorphism, by its
Ulm sequence {uq(G)}a<r(g), Wwhere A(G) is the length of G. (See Kaplansky
[1954, p. 27].) Here we restrict our attention to reduced Abelian p-groups G
of length w such that for all n € w, u,(G) < 1. Define S(G) = {n : u,(G) #

0}.

(P8) The Abelian p-group property.  For any infinite A9 set S C w — {0},
there is an X-computable reduced Abelian p-group G, of length w, and
with u,(G) <1 for all n, such that S(G) = S.



2.2 The implications and equivalences among the properties

In §10, we consider the case X %1 0’. We shall use throughout the paper
the notation (P) — (Q) for an implication which is proved using the
hypothesis X <1 0/, and (P) = (Q) for an implication whose proof does
not assume X <7 0’. The implications denoted by — are exactly those
to or from (P1), because these proofs all use the characterizations of lows
and nonlows in §3, which are proved under the assumption that X <t ('.
We shall prove the equivalences and implications as written in the lines
numbered (1), (2), and (3) below.

(1) =(U0) +— (P1) «— (P0) +— = (P3) <= (P2).

(2) (P4) = (P3), (P4) < (P5), and (P6) < (P7) <= (P8).
To connect line (1) with line (2) we prove
(3) (P0) = (P4) and (P0) = (P6) — (P1).

These three lines (1), (2), and (3) establish the equivalence of all the prop-
erties (P1)-(P8) for AJ sets.

2.3 The plan of the paper

In §3, we develop the computability theoretic properties (P0) and —(UO0)
which are equivalent to (P1) if X <t 0’. In §4 we review some basic model
theory about the Lindenbaum algebra, the Stone Space, the tree of n-types
of a theory, and connections with Henkin models. We also prove the equiva-
lence of the prime bounding property (P2) with its abstract tree equivalent
(P3) for isolated paths, and we use (P3) thereafter. In §5, we use all these
results to prove (P1) <— (P3), thereby establishing the Main Theorem 1.5
that (P1) <+— (P2). In §6 and §7, we prove the implications in line (2). In
§8, we prove the first two implications in line (3), that is, (P0) = (P4)
and (P0) = (P6). In §9, we finish connecting the last part of line (2) to
line (1) by proving (P6) — (P1). This establishes the equivalence of all
the properties (P0)—(P8) and —(U0) for X <t 0/, which we state in Theo-
rem 9.2.

2.4 Summary of the properties

For the convenience and later reference of the reader we now summarize the
properties.

10



(P4)

(P5)

The O’ -uniform property. (g <1t 0)[{Y :Y <1 X } ={ ge }ecw |-
The escape property. (Vg <1 0") (3f <1 X) (3F%z)[ g(z) < f(z) ].
The nonlowy property. The set X is not lows (i.e., X" >1 07).

The prime bounding property. The set X is prime bounding. That
is, every CAD theory has an X-decidable prime model.

The isolated path property. For every computable tree T C 2<% with
no terminal nodes and with isolated paths dense,

(Fg <1 X)(Vx €T)[g: € [Tz] & g, is isolated ].

The tree property.  For every computable tree 7 C 2<% with no
terminal nodes, and for every uniformly A9 sequence of subsets {S; }icw
all dense in 7, there exists an X-computable function g(z,y) such that
for every z € T, g, = Ay [g(x,y)] is a path extending = and entering
all S;, that is,

(Fg<r X) (Ve e T)(Vi)(Fz € Si)[r Cge & 2C g & go €[T]]

The omitting types property. For any complete decidable theory T
and any uniformly A family of sets of formulas {I';(Z;)}jew, all non-
principal with respect to T, there is an X-decidable model of T" omit-
ting all I';(Z;).

The monotonic property. For any infinite AY set S,

(g <1 X) (Vo) (Vy) [ < 92(y) < g2(y +1) & limy g(z,y)le S].

The equivalence structure property. For any Ag set there is an X-
computable equivalence structure with one class of size n for each
n € S, and no other classes.

The Abelian p-group property. — For any infinite A9 set S C w — {0},
there is an X-computable reduced Abelian p-group G, of length w, and
with u,(G) <1 for all n, such that S(G) = S.

3 Properties (P1), (P0), and (U0), for X <t ('

In this section we derive some useful computability theoretic characteri-
zations of lows and nonlows sets X <7 0. In §10 we discuss the fact

that
(PO)

the hypothesis X <1 0" is necessary because (P1) =~ (P0) and
== (P1) without it.

11



3.1 (P1) «+— (P0) for X <rp0': Martin’s theorem

We say that a function f dominates a function g if f(z) > g(x) for all
but finitely many x € w. A function is X-dominant if it dominates every
(total) X-computable function, and dominant if it is 0-dominant. In his
investigation of the degrees of maximal (c.e.) sets Martin [1966] proved the
following characterization, which is also presented in Soare [1987, p. 208].

Theorem 3.1 (Martin). A set A satisfies 0" <1 A’ if and only if there is
a dominant function f <t A.

Martin’s theorem can be relativized to any X <t 0’. If we do this and
take A = 0 we get:

Corollary 3.2. If X <1 0/, then X" <1 0" (i.e., X is lows) if and only if
there is an X -dominant function f <t (/.

Note that both directions of the X-relativization in Corollary 3.2, as
proved in Soare [1987, pp. 208-209], use the assumption that X <t 0’. This
is necessary, as we discuss in §10.

Corollary 3.3. Assume X <1 (/. Then (P1) +— (P0), i.e., X is nonlows
iff X satisfies:

(4) The escape property. (Vg <t 0') 3f <t X) (3%z)[g(z) < f(z)].

Proof. By Corollary 3.2, X is nonlowy iff there is no 0’-computable
X-dominant function. But this is precisely the escape property. ]

The “escape property” (4) of Corollary 3.3 will allow us to produce a
prime model 2 with D¢() <t X. Note that Theorem 1.1 (the case X = ()
is easily proved by observing that the set A of atoms of the Lindenbaum
algebra B, (T) (defined in §4.1), or equivalently the set of generators of
the principal types, is IT{, and hence is 0/-computable. Thus, the standard
effective omitting types theorem (relativized to 0') produces a (0'-decidable
model which omits all the nonprincipal types and therefore is prime. In
Theorem 5.1, where we show the general case for X nonlows, we can no
longer X-compute the set A of atoms. However, using f in the escape
property (4) we can approximate A often enough to build an X-decidable
atomic model.

12



3.2 (P1) +— —(U0) for X <t (': Jockusch’s theorem

The earlier Definition 2.1 and the following theorem are due to Jockusch
[1972] and are presented in Soare [1987, pp. 254-255].

Theorem 3.4 (Jockusch). For any set A the following statements are equiv-
alent:

(i) A" >7 0" (i.e., A is high);
(ii) the computable functions are A-uniform;
(iii) the computable sets are A-uniform.

Theorem 3.5. —(P1) — (U0). If a set X <t 0" is lowy then the
X -computable functions (and hence also sets) are 0'-uniform.

Proof. Let X <1 0’ be lows. Then 0” >1 X”. That is, 0 is high over X. So
to see that the X-computable functions (sets) are 0/-uniform, it suffices to
relativize Theorem 3.4 to X, replacing 0 by X and A by 0’. By Corollary 3.2
we may choose a (/-computable function g which dominates every total
X-computable function pX. Since X <t 0’ we can 0’-computably define
f((e,i),z) = @§¢+g(x)(x) if ¢§i+g(y)(y) } for all y <z and f({e,i),r) = 0
otherwise. Now either f ; = X is a total function, or Jie,iy is finitely
nonzero. In either case f; is X-computable. If X is total then g(x)
dominates c(z) = (us) [pX,(x) 1], s0 @F = f; for some i. O
Corollary 3.6. If X <t 0 is lows, there is a computable function f(e,y,s)

~

such that f(e,y) = limg f(e,y, s) exists for all e and y, and
(5) (V.Y <r X}={f.:ecw}

where we identify a set Y with its characteristic function xy as in Soare
[1987].

~

Proof. Use Theorem 3.5 to see that f(e,y) exists, and then the Limit Lemma
in Soare [1987, p. 57| to derive f(e,y,s) from f(e,y). O

~

For a fixed lows set X, we can think of f(e,y) as a 0'-matriz with rows
{fe(y) }ecw, which is approximated at every stage s in our computable con-
struction by Aey|[ f(e,y, s) |, and which in the limit correctly gives (5). In
85 we shall use this dynamic matriz approximation,

{)‘ey[f(eayvs)] }sew

13



to produce a CAD theory with no X-decidable prime model, thereby proving
one half of Theorem 1.5. Millar [1978] constructed a CAD theory with no
decidable prime model, and our construction is based on his. The next
proposition says that the assumption X <t 0’ is necessary in order to apply
Corollary 3.6.

Proposition 3.7. A set X satisfies (U0) iff X <7 0" and X is lows.
Proof. (<=). Apply Corollary 3.6.

(=). If fis a computable function satisfying (5) then Y = X itself is one
of the rows f. for some e, but f <7 0/, so X <71 0'. Using f <1 0" we can
define a (0'-function which dominates every X-computable function. Now by
Corollary 3.2, X" <t 0”. O

4 Prime models and trees: (P2) < (P3)

The abstract isolated path tree property (P3) was designed to capture what
is needed to construct a prime model. Now we show the equivalence of
properties (P3) and (P2). To accomplish this, we review in §4.1 certain
basic model-theoretic definitions and facts, most of which can be found
in Chang and Keisler [1990]. Most of the results proved and quoted here
will use this terminology and background implicitly or explicitly. Then we
examine some lemmas in §4.3 which enable us to pass from a theory to a
tree, and vice-versa.

4.1 Review of model theory, types, and the Stone space

We review and expand on some notions of model theory found in Chang and
Keisler [1990] and Sacks [1972]. Let T" be a (consistent) decidable theory
in a decidable language L. We replace L if necessary by L., a computable
expansion obtained by adding an infinite set of new (Henkin) constants
C = {c¢j}jew, and let T, be the theory in L. consisting of T together with
Henkin axioms of the form (3z)p(z) — ¢(c) with ¢ € C for every formula
(3x) p(z) € T, added in the usual way so that T is a conservative extension
of T and is decidable if T" is. From now on we shall assume that 7" has been
so Henkinized, and we shall write T for T, and L for L..

Let F,,(L) be all the formulas (%) in the n free variables xg, ..., x,—1 in
L. Let {0,(T) }new be an effective listing of F,,(L). For every string o € 2<%
define

(6) b = N1/ :i< o)},
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where 1h(o) denotes the length of o, and where we let §' = 0 and 6° = —0.
Define

F(T) = {0(z) : 6(z) € Fo(L) & T U {(37)0(z)} is consistent }.
Now define the equivalence class of (%) € Fy(T) under T-provability, 7.
[0@) ] = {~+@) : br (v2)[0(@) < 7(@)]}

For each n define the Lindenbaum algebra,
Bu(T) = {[60@)] : 0= e Fu(T) }.

If T is decidable, then these equivalence classes [6] are decidable, uniformly
in 6, so B, (T) is a decidable Boolean algebra, and we can identify a formula
0(z) with its equivalence class [ 0(Z) ].

Naturally associated with 7', under our fixed numbering {6,,(Z)}ncw, is
the following subtree of 2<%,

(7) To(T) = {0 : 0, € F,(T) }.

Every string o € T,(T) is associated with the formula 6, € F,(T) (but
really with the equivalence class [0,] € B,(T)). We identify a formula
0, € F,(T) (and its equivalence class [0, ] € B, (7)) with the correspond-
ing string o € T,(T'), and generally carry out any computability theoretic
analysis in the more abstract tree setting 7, (7). Let [T] denote the set of
(infinite) paths through a tree 7 C 2<%.

Definition 4.1. (i) An n-type T' of a theory T is a maximal consistent
subset of F,(T). Let S,(T') denote the set of n-types of T. An n-type T’
corresponds to a path f € [T,(T')] where 6, € I' iff o C f. We shall make
this identification, and also identify .S,,(T") with [7,(T")]. We sometimes write
complete type to distinguish a type from a partial type defined as follows.

(ii) A partial type I' is a subset of a (complete) type, i.e., a consistent subset
I'(z) C F,(T).

(For n-types see Chang and Keisler [1990, p. 77], and for the Lindenbaum
algebra see p. 47. Note that F,,(T'), B,(T), Sn(T'), and n-types are here as
defined in Sacks [1972, pp. 71-72]. For more on types and omitting types
see §6.2 below.)

The Cantor space is 2¥ with the discrete topology on {0,1} and with
the product topology on the whole space. Hence, the class of clopen sets is
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generated by these clopen sets, U, = {f : 0 C [}, for every o € 2<%,
The Stone space S, (T') is the set of n-types, i.e., the set of maximal filters
in the Boolean algebra B, (T), endowed with the Cantor set topology. The
well-known theorem by M. H. Stone gives the duality between the Boolean
algebra B, (T') and its Stone space Sy, (7).

A path (type) f € Sp(T) = [To(T)] is isolated (principal) if there is
some formula 6, C f such that f is the unique path in S, (T') containing 6,
and we say that 6, is an atom of B, (T), and that ¢ is an atom of the tree
Tn[T), because there are no two extensions 6,, 0 of , (i.e., extensions p,
7 of o on T,[T]) which are incomparable with respect to provability in T
(i.e., incomparable as strings on 7,[T]). Hence, f is an isolated point in the
Cantor space topology on S, (T) since it is the unique point in the open set
U,. A generator of a principal type f is an atom o C f. We say a theory is
atomic if for every element o € T,(T) there is an atom 7 O o. This is the
same as saying that every ¢ has an isolated path f D o, or that the isolated
points of S,,(T) are dense in S, (T) for all n.!

For n = 0, the paths f € Sy(T") are just the complete extensions of
T. If T is complete, then there is just one such completion, but when we
Henkinize and pass to T, there will likely be many complete extensions.
Every path f € Sy(T:) produces not only a complete extension but a model
of T.

For a theory which is not decidable, but merely computably enumerable
(c.e.), such as Peano arithmetic, the tree To(T") of complete extensions,
or more generally the trees 7,(7"), might have terminal nodes, because we
cannot computably decide whether a sentence is consistent with T'. However,
in this paper we study only decidable theories T. Hence, we do not put ¢ into
Tn(T) unless (37) 0,() is consistent with 7. Thus, every node o € T, (T)
will be effectively extendible to a (computable) path f € [T,(T)], e.g., the
lexicographically least extension. (The property of a tree T that every node
is extendible has sometimes been written in the literature as 7 = 7%, where
Te denotes the set of extendible nodes.)

4.2 A prototype by Goncharov-Nurtazin and Harrington

Many theorems in the literature are stated in terms of the concepts in §4.1
above. For example, the following theorem of Goncharov and Nurtazin
and independently Harrington is the prototype for some of our properties,
theorems, and proofs. (See Harizanov [1998, Theorem 7.4].)

'In the setting of complete types, the definitions of “principal” and “generator” given
in this paragraph are the same as those in Definition 2.3.

16



Theorem 4.2 (Goncharov and Nurtazin (1973), Harrington (1974)). If T
s a complete, atomic, decidable theory, then the following are equivalent:

(8) T has a decidable prime model 2.

9) There is a computable listing of the principal types of T'.
Note that an equivalent condition to (9) is the following.
(10) (3g <1 0) (Vn) (Vo € To(T)) [ C go € [Ta(T)] & go is isolated ],

where g, = Ay[g(z,v)], and is interpreted as a path in [7,(T)], which is
equivalent to Sy, (7).

Equation (10) asserts that there is a uniformly computable procedure
g(z,y) for finding, for every 6, a principal type g, extending it (but not
necessarily for finding effectively a generator v 2 6, of that type). Note
that (P2) and (P3) are the relativized versions of (8) and (10). Also note
that the proof of Theorem 4.2 relativizes.

4.3 Lemmas on theories and trees

Lemma 4.3. If T is a complete atomic decidable theory then the trees T, (T)
defined in line (7) are uniformly computable, and each has all nodes ex-
tendible and isolated paths dense.

Proof. The trees T,(T') are uniformly computable because T is decidable.
Each 7,(T') has all nodes extendible because T is consistent. If 7" is atomic,
then for every n and every 6 € B,,(T) there is an atom p € B, (T) extending
6. Hence, the isolated paths of 7,(T') are dense in 7, (7). O

Definition 4.4. Let L be the language with an infinite family of unary pred-
icates {Up }new. Given a tree T C 2<% define the corresponding L-theory
T(T) given by the following axioms.

{(3F"2)[Us(z)] : 0€T & mew }, and

{ =) [Us(2)] : o €T },

where U, is defined as in (6) but with U; in place of ;. (This is essentially the
same conversion of tree to theory used by Millar as presented in Harizanov
[1998, p. 31].)
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Lemma 4.5. Let T C 2<% be a tree with T(T) as in Definition 4.4.

(i) If T is a computable tree with no terminal nodes, then T(T) is a complete
decidable theory and admits elimination of quantifiers.

(ii) If the isolated paths are dense in T, then T(T) has a prime model.

(iii) If A is a prime model of T(T), then there is an enumeration g(x,y) of
the isolated paths g, € [T] such that g <t D(2).

Proof. (i) This follows easily from the properties of 7 and the construction
of T(T). For a formal treatment see Harizanov [1998, p. 31].

(i) Let 2 be such that |A| = {af, : n € w, f € [T], f isolated}.
Say af, € UM iff f(i) = 1. Then since the isolated paths are dense, 2 is
certainly a model of T'(7). It is also clearly prime.

(iii) If A is a prime model of T', then for every a € |2| choose the 1-type
pa(y) € S1(T) which a realizes. Let g(a,y) = pa(y). Then g <t D(2), and
g(a,y) is an enumeration of all principal types of T, i.e., all isolated paths
of T (where we identify formulas 6, with their strings o). O

44 (P2) < (P3): Prime bounding and isolated paths

Theorem 4.6. (P2) < (P3). A set X is prime bounding iff X has the
1solated path property.

Proof. (P3) = (P2). Suppose that X has the isolated path property
(P3) and T is a CAD theory. Then for every n the tree 7,(T) of (7) is a
computable tree with no terminal nodes and with the isolated paths dense
by Lemma 4.3. Let a,, = 1"70. Construct a computable tree U by putting
an, o onU iff o € T,(T). So U is a tree gluing together the trees T, (7).
Applying (P3) to U, choose g <t X such that for all x € U, g, € [Uy], and
gy is isolated. Since R = {(z, g;) : * € U} is an X-computable enumeration
of all principal types of T, T has an X-decidable prime model 2 by the
relativization to X of Theorem 4.2.

(P2) = (P3). Assume X has the prime bounding property (P2). Let U
be a computable tree with no terminal nodes and with isolated paths dense
as in (P3). Let T'(U) be the theory in Definition 4.4 above. Hence, T'(U) is
a CAD theory and has an X-decidable prime model 2 by (P2). For every
x € U, let the formula U, be as in Definition 4.4 and find some a; € ||
such that the 1-type p,(y) of a, contains U,. Define g(x,y) = p,(y). Then
g witnesses the fact that X satisfies (P3). O
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Note that in the proof of (P2) = (P3), it would suffice to have 2 be
X-computable. Hence, if we had X-computable instead of X-decidable in
the definition of prime bounding, the prime bounding property would still
be equivalent to the isolated path property.

5 The Main Theorem: (P1) «— (P2)

We now prove the Main Theorem that (P1) <— (P2). We shall actually
prove that (P0) = (P3) and that (P3) — (P1). The Main Theorem
then follows by applying Theorem 4.6 ((P2) <= (P3)) and Corollary 3.3
((P1) «+— (P0)).

5.1 (P0) = (P3): Escape and isolated paths

Theorem 5.1. (P0) — (P3): If X has the escape property then X has
the isolated path property.

Proof. Assume X satisfies the escape property (P0),
(11) (Vh <7 0') (3f <1 X) (3%2) [ h(z) < f(2) ].

Let T C 2<% be a computable tree with no terminal nodes and with isolated
paths dense. Our goal is to produce an X-computable function g(x, s) such
that for all z € T, g, is an isolated path extending x. Let S be the set
of atoms of T, i.e., nodes x with a unique extension f € [7,]. Since S
is TIY and hence AY, there is a computable sequence {Ss}sc,, such that
S(x) = limg Sg(x) for all x. We may assume that for every z € T and every
s, Ss contains an element extending z.
For every z € T define the target,

y:=(uy)lzCy & yeS], and y:=(uy)lzCy & yeS,
its computable approximation at stage s. Define the 0’-computable function
(12)  h(n) = (us) (V2)jz1<n (Vo < 42) (VE 2> 5)[ Se(w) = Ss(w) = S(w) .

(Note that h is total because for each n we examine the finitely many z with
|z| < n, and for each z and each s the apparent target y5 until this stabilizes
using S(x) = lim, Ss(x).) By the escape property (P0) in (11),

(13) (3f <t X) (3 an infinite set T') (Yt € T') [ h(t) < f(¢) ].
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We may assume that f is monotonic. We refer to T" as the set of true stages.

Now use f to “speed up” the computable sequence {Ss}se, to an
X-computable sequence {gs}s@, by defining S, = St(s)- Define g3 = yg(s),
which is X-computable as a function of z and s. Note that any apparent

target y! at a true stage t € T is the true target y,, i.e.,
(14) (Vt e T) (V2)1<e (Vo > [T = T2 = y:].

For s < |z| define g(x, s) = z[s. Fix s > |z| and assume we are given g(z, s)
with |g(x, s)| = s. Define g(x,s+1) = @\‘;(I,s)[(s +1). (That is, let g(z, s+1)
strictly extend g(x,s) and also take one more step toward the apparent
target 7 . y-) Notice that for every s > |z| we have z C g(z,s) C g(x,s+1),
and |g(x,s)| = s for all s.

The key point is that we have not only (14), but also that if ¢ € T' and
y = @\;(m), then for every s with ¢ < s < v = |y|, we have 372(3:,3) =y,
because y will be the most attractive target for g(z,s) since no elements
w < y enter or leave S after stage t. Hence, if ¢ € T, then the sequence
{g(z,s) : t <s <wv} marches inexorably from g(z,¢) toward y until hitting
it at stage v, even though the intermediate stages s with t < s < v, need
not be in T'. Hence, g, € Ug, and so g, is an isolated path. O

5.2 The Millar theorem on prime models

Millar [1978, Theorem 4] (see also Harizanov [1998, p. 31]) proved that
there is a CAD theory T which has no computable prime model. He did
this by proving the following theorem and then applying a close variant
of Lemma 4.5. In the next section our proof will use the analogue for
X-computable functions of his strategy for computable functions, which
we NOwW review.

Theorem 5.2 (Millar). There is a computable tree T with no terminal nodes
and with isolated points dense, such that there is no computable function h
such that {\y [ h(n,y) | tnew is an enumeration of the isolated paths of [T].

Proof. Let g, 1, ... be an effective listing of all partial computable binary
functions. We must meet for all e the requirement Re: {Ay [ ¢c(n,9) ] }new
is not an enumeration of the isolated paths of [T]. Let ¢2(y) = we(n,y).
Construct 7 by first putting a. = 170 on 7. To ensure 7 has no terminal
nodes, we put 00 on T for every 0 € T. We use the nodes and paths
extending a, to satisfy Re.
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We wait until there is some n such that ¢! extends ae. If no such n
exists, then the extension of a, will be an isolated path not listed by e.
To defeat R., we use ¢! as follows. We introduce a splitting o, 7 along the
path extending a.. Then ¢! must eventually extend o or 7, or fail to list
a path on the tree. Say ¢7 extends o. Then we introduce another splitting
along the extension of o. We continue to build 7 in this way. Then ¢ will
either list a non-isolated path, or else fail to be total. ]

5.3 (P3) — (P1): Isolated paths and nonlow,

Theorem 5.3. (P3) — (P1). For X <1 0/, if X has the isolated path
property, then X is not lows.

Proof. Let X be lows. We shall build a computable tree 7 with no terminal
nodes and isolated paths dense such that

“(Fg<r X)Vz €T)[gs € To & gy is isolated ].

Let f(z,e,s) be a uniformly A§ approximation of the X-computable
functions, as in Corollary 3.6. Let fcs(z) = f(x,e,s) and fe(z) =
limg fe s(x). We think of the f. s as binary functions by writing f. s(n,y) for
fe,s((nyy»' Let f;fs(y) = fe,s(nay) and fg(y) = fe(n,y).

For each e, we must satisfy the requirement R, which says that f. is not
an enumeration of the isolated paths of 7. As in the proof of Theorem 5.2,
we first put a = 170 on 7 for all k. To ensure 7 has no terminal nodes, we
also ensure that 070 is in T for every o € T. We will still be able to employ
disjoint portions of T to satisfy the various requirements, but we will now
need infinitely many places at which to attempt to satisfy R.. Specifically,
for each 7 we use the nodes and paths extending ;) to satisfy R..

Since X is lows, there exists a AY function h which dominates all
X-computable functions. In particular, suppose that for each i there is
an n such that f' extends o ;. Then there is an i (in fact, cofinitely many
i) for which there is an n < h(z) such that f¢' extends o). With this in
mind, let ¢ ¢ be f7; for the least n < hs(i) such that f'; extends o, if

such an n exists, and undefined otherwise. Since h and f, are AY, either @ZJ; s
is undefined for all sufficiently large s or there is an n. ; such that 1/12,, ¢ = : §'
for all sufficiently large s, so that lim, %75 = foet

We now proceed as in the proof of Theorem 5.2. For each a ;), we wait
for 1)g ¢ to be defined, and then introduce a splitting o, 7 along the path
extending (. ;. We then wait for @Z);t to extend o or 7 for some t > s.

Say @bé’t extends o. Then we introduce another splitting along the path
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extending o. Of course, we might later find that ¢é,u extends 7 for some
u > t. In this case we introduce a splitting along the path extending 7. The
approximation of ¢ can shift between extending o and extending 7 only
finitely often. If it finally settles on extending o, say, then we only build
finitely many splittings extending 7. This ensures that the isolated paths
are dense in 7.

To see that R, is satisfied, suppose for a contradiction that f. is an
enumeration of the isolated paths of 7. Then for each ¢ there is an n such
that fg' extends a(. ;. Let i be large enough so that there is an n < h(7)
such that f;" extends av ;). Then for the least such n we have limg ¢ ; = f',
so the construction of 7T ensures that f7' is not an isolated path of 7. [

6 'Tree and omitting types properties

In this section we prove the first two parts of the second main implication
(2) of §2.2, which we now restate:

(P4) = (P3) and (P4) < (P5)

6.1 (P4) — (P3): The tree property and isolated paths

Proposition 6.1. (P4) = (P3). If X has the tree property then X has
the isolated path property.

Proof. Let T be a computable tree with no terminal nodes and with isolated
paths dense. If S is the set of nodes that belong to just one path, then S is
19 and hence AY. O

6.2 (P4) < (P5): The tree property and omitting types

The familiar Omitting Types Theorem, stated below, gives sufficient condi-
tions for T to have a model omitting a countable family of sets of formulas

{T;(T)) }jew-

Theorem 6.2 (Omitting Types). Let T be a countable consistent theory,
and let {I'j(Z;) } jew be a countable family of sets of formulas, all nonprincipal
with respect to T'. Then T has a model omitting all I';.

When we say that a theory is complete, we suppose that it is also con-
sistent. Consider a complete decidable theory T'. If I' is a noncomputable
complete type, then any decidable model of T automatically omits it. If I is
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a computable type (possibly partial) which is nonprincipal with respect to T,
then by the Effective Omitting Types Theorem of Millar [1983, Theorem 1,
p. 172] T has a decidable model omitting T

We now show how to use the tree property to produce an X-decidable
model omitting a uniformly AY family of sets of formulas. We begin by
showing that the tree property remains true when the uniformly A9 sets
mentioned in the definition of that property are replaced by uniformly X9
sets.

Proposition 6.3. Suppose that X has the tree property (P4). For every
computable tree T C 2<% with no terminal nodes, and for every uniformly
39 sequence of subsets {S;}icw all dense in T, there exists an X -computable
function g(x,y) such that for every x € T, g. = Ay [g(x,y)] is a path ez-
tending x and entering all S;.

Proof. Fix a 0/-computable enumeration of the S; and let S; s be the set of
all elements enumerated into .S; by stage s. Let S; be the set of all 7 € T
such that 7 2 o for some o € S; ;. The S; are uniformly A9, and any
path entering §Z must also enter S;. So the theorem follows from the tree
property applied to the §Z 0

Theorem 6.4. Suppose that X has the tree property (P4). Let T be a com-
plete decidable theory and let {T';(T;)}jcw be a uniformly AY family of sets
of formulas, all nonprincipal with respect to T'. Then there is an X -decidable
model of T omitting all I';(Z;). In other words, (P4) = (P5).

Proof. Let the set of Henkin constants C' = {¢;} e, and the Henkinization
T. of T'be as in §4.1. Let g, 11, ... be an effective listing of all the sentences
in the language of T,. For every string o € 2<% let

vo = NI i< (o)},
where 1! = 1 and ¢° = =4, and define
T =A{o: T.F Y, }.

The tree T is a computable tree with no terminal nodes, and each path in 7
corresponds to a maximal consistent extension of T, which can be effectively
converted into a model of T" as in the standard proof of the completeness
theorem.

In order to ensure that the model corresponding to f € [T] omits a set
of formulas I'(Z), it is enough to ensure that, for each tuple ¢ € C of the

23



same length as T, there exist o C f and 6 € F,,(T¢) such that (Z) € " and
Ve F —0(C).
For each pair j,¢ such that ¢ € C is a tuple of the same length as 7;, let

Siz = {0 : 30 Fu(T,) [0T;) €T & b, -0(@)]}.

The sets S;z are uniformly ©9. Furthermore, we claim that each of these
sets is dense in 7. To see that this claim is true, suppose that we have o € T
such that 7 ¢ S;z for all 7 D 0. Let §(Z;) € I';. We must have ¢, + 6(c),
since otherwise there would be a 7 O o such that ¢, - —6(¢), and this 7
would therefore be in Sjz. So ¢, F 6(¢) for every 6(z;) € I';. Substituting
¢ by Z; in v, (after renaming the variables appearing in 1), if necessary to
ensure that Z; is substitutable for ¢ in 1),), we obtain a generating formula
for I';, contradicting the fact that I'; is nonprincipal.

Now apply Proposition 6.3 to 7 and the Sjz. Let g(z,y) be the resulting
X-computable function. Consider the path gy = Ay [g(0, y)], where () denotes
the empty string. As discussed above, this path determines a model of T,
and this model omits each I';, since gy hits each S;z. ]

We now show that the converse of the above theorem also holds.

Theorem 6.5. Suppose that X has the omitting types property (P5). Let
T C 2<% be a computable tree with no terminal nodes, and let {S;}ic. be
a uniformly AY sequence of subsets, all dense in T. Then there exists an
X -computable function g(xz,y) such that for every x € T, g, = Ay [g(z,y)]
is a path extending x and entering all S;. In other words, (P5) — (P4).

Proof. Let T = T(T) be the complete decidable theory in Definition 4.4,
and let U, be as in that definition. In a model 2 of T, each element a
corresponds to a path f, ={ o : AF Us(a) }. Define the sets

i@ = {-Uys(x) : c€S85;}.

Since the S; are uniformly A9, so are the I';. The fact that the S; are
dense implies that each I'; is nonprincipal with respect to T. Indeed, if
there were a generating formula for I'; then, since T' admits elimination of
quantifiers, there would be a 7 € T such that T F Va [U,(z) — —U,(x)] for
all o € S;, whence o 2 7 for all o € S;, contradicting the density of S;.

Applying (P5) to T and the I';, we get an X-decidable model 2 omitting
all the I';. Now, using 2, we obtain the required X-computable function
g(o,s) as follows. For o € T, we first locate a € 2 such that 2 F U, (a).
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Then we let g(o,y) be the element at level y on the path f, corresponding
to a.

O]

Remark. In S, (7) the complement of the clopen set U, is the clopen set
Vo= J{Ur: 7€ Su(T) & |7]=1o] & T#0}.
For S C 2<%, the complement of the open set Ug is the closed set
CS:ﬂ{Vﬁio'ES}.

A set of formulas I' = {¢;(Z)} e, corresponds to a closed set Cr of paths
extending ¢; for every j € w, namely the intersection of the clopen sets
corresponding to ¢; for every j. To hit an open set Ug is to avoid (omit) all
paths in the closed set Cg (i.e., to omit the closed set Cr corresponding to
Cyg), and conversely. A similar analysis holds for the tree 7 defined in the
proof of Theorem 6.4.

In the proof of Theorem 6.4, we began with sets of formulas I';, passed
to the corresponding closed sets Clg; . (in the notation of that proof), and
applied the tree property (P4) to their complements, the open sets Us; -

In the proof of Theorem 6.5, we began with open sets Ug,, passed to
their complements Cy,, and defined the corresponding sets of formulas I'; so
that the closed sets Cr, corresponded to C,. This could result in a partial
type I'; in case Cg, has more than one element, or an inconsistent set of
formulas I'; in case Cg, is empty.

However, if I'; is required to be a complete type as in part (i) of Def-
inition 4.1 then the corresponding closed set Cs;, C [T] is a singleton. If
| [T] — Us, | > No, then the omitting types theorem, even if we omit a count-
ably infinite sequence of such types, will not suffice to prove that the con-
structed path lies in Ug,. (The extended omitting types theorem in Chang
and Keisler [1990, p. 84] allows a countable sequence of nonprincipal (com-
plete) types to be omitted.) Therefore, we have been scrupulous with our
terminology to avoid giving the impression that the conventional omitting
(complete) types principle (as in Chang and Keisler [1990, p. 80] or Sacks
[1972, p. 97]) implies the tree property (P4). Hence, property (P5) has been
stated for omitting sets of sentences, potentially including partial types and
inconsistent sets of formulas. (Of course, inconsistent sets of formulas are
automatically omitted, but given a uniformly A9 family JF of sets of formu-

las, the subfamily consisting of the consistent sets in F may not be uniformly
IND
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7 Algebraic properties

In this section we prove the last part of the second main implication (2) of
§2.2, namely
(P6) <= (P7) <— (P8).

7.1 (P6) <= (P7): Monotonicity and equivalence struc-
tures

Recall Definition 2.4 of a set S being X-monotonic. Note that (P6) asserts
that every infinite A set S is X-monotonic.

Proposition 7.1. For a set X, the following are equivalent:
(i) X satisfies the monotonic property (P6).
(ii) No infinite AY set is X -nonmonotonic.

(i) No infinite ¥Y set is X -nonmonotonic.

Proof. Clearly, (i) < (i), and (iii) == (ii). An infinite X9 set has an
infinite AY subset, and if the former is X-nonmonotonic, so is the latter.
Therefore, (ii) = (iii). O

So far as we know, the first appearance of limitwise monotonic functions
was in work of N. G. Khisamiev [1981], [1986], characterizing the Abelian
p-groups of bounded length (< w?) having computable copies. (See also the
survey paper by N. G. Khisamiev [1998].) Equivalence structures, discussed
in Ash and Knight [2000], form a simpler class with the same features as
groups of length w. Below, we state special cases of the results from these
references, and derive from them two further properties equivalent to prop-
erty (P6). We begin with equivalence structures.

Definition 7.2. An equivalence structure is a structure of the form
A = (A, E), where E is an equivalence relation on A.

There are obvious mathematical invariants associated with such structures.
For an equivalence structure A, let ¢,(A) be the number of equivalence
classes of size n. Define

R(A) ={(n,k) : c,(A) >k} and S(A)={n:c,(A) #0}.

The result below, taken from Ash and Knight [2000], characterizes the equiv-
alence structures with computable copies in terms of their invariants.
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Theorem 7.3. Let A be an equivalence structure.

(i) If A has infinitely many infinite classes, then A has a computable copy
iff R(A) is 9.

(ii) If A has only finitely many infinite classes, then there is a computable
copy iff R(A) is ¥ and, in addition, there is a computable function g(z, s)
such that for each xz, g(z,s) is nondecreasing, with a limit g(x) such that
g(z) > x and g(x) € S(A).

Sketch of Proof. 1t is clear that if A has a computable copy, then R(A) is
39, For (i), suppose A has infinitely many infinite classes. If R(A) is X9,
then we construct a computable copy, adding finite classes according to our
approximation of R(A), and turning our mistakes into infinite classes.

For (ii), suppose, for simplicity, that A has no infinite classes. If A has
a computable copy, then we define the required function g(x, s) as follows.
First, we locate (in the computable copy) x elements in the same class.
Then, looking at the first s elements at stage s, we let g(x, s) be number of
elements in this class at stage s.

If we have g(z, s), then we can produce a computable copy of A, adding
classes based on our approximation of R(.A), and using ¢ to turn our mistakes
into classes of acceptable finite sizes. O

For simplicity, we consider infinite equivalence structures .4 with no infinite
classes, and with at most one class of each finite size. Relativizing part 2 of
the theorem, we get the following.

Corollary 7.4. Let A be an infinite equivalence structure with no infinite
classes, and with at most one class of each finite size. Then A has an
X -computable copy iff S(A) is 9(X) and X -monotonic.

Using the corollary, we get a statement on equivalence structures equiv-
alent to property (P6), namely property (P7).
Theorem 7.5. For a set X, the following are equivalent:

(i) X has the monotonic property (P6).

(ii) X has the equivalence structure property (P7). For any infinite A9
set S with 0 ¢ S, there is an X-computable equivalence structure A, with
no infinite classes and with at most one class of each finite size, such that

S(A) = S.
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Proof. If X has property (P6), then by Corollary 7.4, X satisfies (P7). Sup-
pose X does not have property (P6). Let S be an infinite X-nonmonotonic
AJ set. Since S is AY(X), Corollary 7.4 yields the fact that there is no
X-computable equivalence structure with just one class of size n for each
n € S and no infinite classes, so (P7) fails. O

7.2 (P6) < (P8): Monotonicity and p-groups

Now we turn to Abelian p-groups. A countable Abelian p-group is deter-
mined by the Ulm sequence of its reduced part and the dimension of its
divisible part. Below, we state a special case of N. G. Khisamiev’s result,
characterizing the computable reduced Abelian p-groups of length w. (See
Ash and Knight [2000] for more on this subject.) Define

R(G) ={(n,k) :un(9) 2k} and  S(G) = {n:un(9) # 0}.

There are analogues of both parts of Theorem 7.3. The analogue for (i) in-
volves groups with an infinite-dimensional divisible part, while the analogue
for (ii) involves reduced groups. Below, we give only the analogue for (ii).

Theorem 7.6 (N. G. Khisamiev). Suppose G is a reduced Abelian p-group
of length w. Then G has a computable copy iff R(G) is ¥ and there is a
computable function g(x,s) such that for each x, g(x,s) is nondecreasing,
with a limit g(x) such that g(x) > z and g(z) € S(G).

For simplicity, we consider groups G such that for all n, u,(G) < 1.
Relativizing Theorem 7.6, we obtain the following.

Corollary 7.7. Let G be an infinite reduced Abelian p-group of length w,
with the feature that u,(G) < 1 for alln. Then G has an X -computable copy
iff S(G) is £9(X) and X -monotonic.

The next result gives the equivalence of Properties (P6) and (P8).
Theorem 7.8. (P6) <= (P8). For a set X, the following are equivalent:
(i) X has the monotonic property (P6).

(ii) X has the Abelian p-group property (P8). For any infinite AY set S
with 0 ¢ S, there is an X -computable reduced Abelian p-group G, of length
w, and with u,(G) <1 for all n, such that S(G) = S.

Proof. If X has property (P6), then by Corollary 7.7, X satisfies (P8). Sup-
pose X does not have property (P6). Let S be an infinite X-nonmonotonic
AY set. Since S is AY(X), Corollary 7.7 yields the fact that there is no
X-computable reduced Abelian p-group of length w such that u,(G) = S(n),
so (P8) fails. O
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8 (P0) = (P4), (P6)

To connect lines (1) and (2) in §2.2 we now prove that (P0) = (P4) and
(P0) = (P6) by essentially the same proof as for (P0) = (P3) in §5.1
above.

8.1 (P0) = (P4): Escape and the tree property

Theorem 8.1. (P0) = (P4): If X has the escape property, then X has
the tree property.

Proof. Let T C 2<% be a computable tree with no terminal nodes and let
{S;}icw be uniformly A9 sets, all dense in 7. Let {Si s}iscw be a computable
array such that S; = limsS; ;. We may assume that for every z € 7 and
every ¢ and s, S; s contains an element extending z. We wish to show that
there exists an X-computable function g(z,y) such that

Ve eT)Vi)(FzeS)[xCzCg:, & g.€[T]]

For each z € T we now define target functions y, and y5. First we define
auxiliary functions y(z,4) and y(z, 1, s) for —1 < i < |z| by induction on i as
follows. Define y(z,—1) = y(z,—1,s) = z. Now fix ¢ > 0, and assume that
y(z,i— 1) and y(z,7 — 1, s) have been defined. Define

y(z,1) = (pw)[w D y(z,i—1) & we S|
and
y(z,i,8) = (pw)[w 2 y(z,i—1,5) & weS;,].

That is, y(z,t,s) is the least extension of z meeting all S; g, in order, for
i < t. Define

y. = y(z,|z|)
and
y: = y(z, |2, s).

Define the 0’-computable function

h(n) = (15)(V2)jz1<n (Vi)icn (Vo < y2) (Vo 2 5)[Sin(w) = Sis(w) = Si(w)].

By (P0),

(3f <t X) (3 an infinite set T) (Yt € T) [ h(t) < f(t) ].
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We may assume that f is monotonic. Let y5 = yg () As in Theorem 5.1
define g(x,s) as follows. For s < |z| define g(z,s) = z[s. Fix s > |z|
and assume we are given g(x,s) with |g(z,s)| = s. Define g(z,s + 1) =
Ug(a,s)l (54 1)-

We first note that if ¢ is a true stage (i.e., t € T), then 37;(33,1:) = Yg(a,t)-
We claim that if ¢ is a true stage then g, D ﬂ;(x " Since there are infinitely
many true stages, this will show that g, meets all the S;.

Suppose t is a true stage. To show that g, D ngw we show that

s

Yo (z.5) ) @z(m) for all s > ¢. Suppose this holds for some s > t. Then

y(g(z, s +1), =1, f(s +1)) = g, s +1) =Ygz (s +1).

But /y\;’(m’s) [ (s + 1) either already extends /y\;(x’ p) OF is extended by it, by our
assumption on s. In the former case we are done, so assume the later.

Let z = @\;(LS)[(s—i— 1) As -@\Z(:p,t) Q z, it follow's that @\tg(m) i§ .the
least extension of z meeting each S; y(;), in order, for ¢+ < ¢. By definition,
y(g(z,s +1),t, f(s + 1)) is the least extension of z meeting each S ¢(s11),
in order, for i« <¢. Ast is a true stage, Sm[(gjz(m) +1) = Sif(g}\;(m) +1)
for all # < ¢ and v > h(t). Since f(s+ 1) > f(t) > h(t) we must have

y(g(x, s+ 1)7t7 f(S + 1)) = /y\;(%t) SO
Utarny = Y9, s +1), s +1, f(s +1)) 2
y(g($7 s+ 1)7t7 f(S =+ 1)) = 37;(55715)7
as desired.
O
8.2 (P0) = (P6): Escape and the monotonic property

Theorem 8.2. (P0) = (P6). If X has the escape property, then X has
the monotonic property.

Proof. Let the A set S be as in (P6). Then S = lim, S; for a computable
sequence {Ss}se, of infinite sets. Apply the same method of proof as in
Theorems 5.1 and 8.1. We use an X-computable construction to build g(z, )
such that ¢ <p X and

(Vo) (Vs > [z]) [z < g(z,5) < g(z,s + 1) & lim,g(z,s)le 5],
thereby demonstrating that S is X-monotonic. Define the targets,

Y, = (pw)[z<w & weS], and y; = (pw)[z<w & we S
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Define g(z,s) = x for s < |z|. Fix s > |z| and assume we are given
g(z,s) <s. Define h(n), f(t), and the set T of true stages, exactly as
n (12), (13), and (14), respectively. Let y5 = yZ(S). Define g(z,s + 1) =
g(z,s) + 1if g(x,s) < @\;(%S), and f(z,s +1) = g(z,s) if g(x,s) = @\;(%S).
At a true stage t € T, the apparent target @gt(x,t) > g(x,t) will be the true
target yy»4+) € S and g(x,v) eventually reaches this target at some stage
v >t O

By applying the same proof technique as above and in Theorem 5.1 one
can prove each instance of the following theorem.

Theorem 8.3. Forallk, 2 <k <8, (P0) = (Pk) can be proved directly
without passing through any other properties.

9 (P6) — (P1)

We now finish linking the last part of (2) in §2.2 to line (1) in the same
section by Theorem 9.1, which we prove in this section. In the proof we
need a technique for low; sets which we review before proceeding with the
theorem.

9.1 The Robinson method for low; sets

It is common in computability theory that we are given a coinfinite low; c.e.
set W and a computable enumeration of it { Wy }se,,. We wish to define
a computable function m(e,s) such that m(e) = limgm(e,s) L€ W and
also m(e) < m(i) for e < i. We can visualize m(e, s) as the position of a
“movable marker” m¢® which moves finitely often and settles on an element
in W. This technique used by Robinson is explained in more detail in Soare
[1987, pp. 224-228], but we briefly review it here.

In this method we define a uniformly c.e. sequence of c.e. sets { Ve }eew,
where V., = {m(e, s) }scw, the set of all positions of marker m® over the
whole construction. By the Recursion Theorem, we may assume we know a
¥? index of V, in advance. Since W is low;, we have W’ <1 0/, and hence
the question, “Is V. N W # (0?7 is Ag. Thus there is a computable function
G such that lims G(e, s) = 1 if V. N W # 0, and lim; G(e, s) = 0 otherwise.
We never put a new marker position m(e, s) into V. at stage s until all the
former marker positions {m(e,t)};<s have appeared in W;. Therefore,

(V) [|Ve,s = Ws| < 1],
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and hence we are interrogating the G-oracle about the current marker posi-
tion m(e, s) at stage s, and the oracle can “lie” (i.e., give the wrong answer)
at most finitely often.

It is easy to combine this G-oracle testing with other strategies, such
as moving the markers to maximize their e-states in the maximal set con-
struction. In this way Robinson proved that any such set W has a maximal
superset as described in Soare [1987, Exer. XI1.3.5].

Often we are concerned not only with individual markers m® at each
stage but with a finite set of them. In this case we enumerate into V. not
m(e,s) but a canonical index h(j) for a finite set Fj = Dy;y € Ws. By
lowness of W we can fix a computable function G(e, s) such that

L if (35)[Fy C W,
0 otherwise.

G(e) = lim, G(e, s) = {

We never enumerate a new index h(j) into Ve until F; N Wy # () for all
previously chosen finite sets F; with ¢ < j. Hence, the G-oracle is being
interrogated about the question, for the present F; C W, “do we have
F; € W?” Furthermore, G can give a false answer at most finitely often.
(We could also simply define F; = W | s at stage s and catch all the elements
of W in which we are interested without specifying them individually in F}
as above.) This finite set approach to low sets is also described in Soare
[1987, Exer. IV.4.9].

9.2 X-nonmonotonicity

Theorem 9.1. (P6) — (P1). If X <7 0/ has the monotonic property,
then X is nonlows.

Proof. We prove =(P1) — —(P6). Assume X is lowy and X <1 0. We
must construct a AY set A which is X-nonmonotonic, i.e., is infinite and
(15)

—(3g <v X)(Vo)(Vy)[z < g(z,y) < g(z,y +1) & limyg(z,y)l€ A

9.3 Constructing a 0-nonmonotonic set A

In order to better reveal the intuition, we first consider the case X = 0.
We must diagonalize against all partial computable functions ¢.(z,y), for
e € w, as possible candidates for g in (15). Define

(16) m(e,x,s) = max{{z} U{pes(®,y) 1y <s & (V2)<ylpes(r, 2) 4 1}
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(17) W ={(e,z,2z) : (3s)[z <ml(e,z,s)] }.

Clearly, m(e,x,s) is a computable function, and W is a c.e. set. (Think
of m(e,x,s) as the position at the end of stage s of a “movable marker”
m¢ which moves monotonically in s, and which either comes to rest on
m(e,z) = limgm(e, x, s) or goes to infinity.) We must meet for every e the
requirement

Re:  (ze)[ mle,xe)tT V mle,xe) g Al

Let wl? = {{e,y) : y € w}. Choose finite sets I, C wld, e € w, sufficiently
large as determined later, and let d. = max(l.). We shall put at least one
element a, from I, into A for every e, thereby ensuring that A is infinite.
We construct the set A <t 0’ during the following 0’-construction.

9.3.1 The basic module for R, when X =0

Choose a witness x = . for R, when s = 0. If m(e,z,s) € I, ask the 0/-
oracle whether (e, z, z) € W, where z = m(e, x,s)+1. (That is, ask whether
m(e,xz,t) > m(e,x,s) at some stage t > s.) If not, then z is a good location
for a.. Otherwise, find such ¢ and repeat the process with 2z’ = m(e,z,t)
until either

(18) de < m(e,z,t) (so marker m¢ moves beyond I.), or

(19) m(e,x,t) <d. & the 0’-oracle certifies (e, z,m(e,x,t) + 1) € W,

in which case m(e,x) is defined, and we can select a. € I, such that a. #
m(e,x). Define V, to be the set of elements (e, x, z) for which we query the
0’-oracle on whether (e,x,z) € W. (While this set plays no part in this
construction, the analogous set will be important in the case X >1 0, which
we discuss below.)

9.3.2 The modified general strategy for R, when X =0

In case (18) we must ensure by future action that m(e,z) # a; for lower
priority requirements R;, i > e. This means by the Golden Rule Principle?
that R, must choose a. so that a. # m(j,x;) for all j < e. To achieve this,

2The Harrington-Lachlan Golden Rule Principle says that R. must take the same
action to respect higher priority requirements, R;, j < e, which R. needs the lower
priority requirements, R;, ¢ > e, to take toward it.
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R, will repeat the same process as above until either (18) or (19) holds for
every j < e. There are at most e + 1 many values m(j, z;) with j < e which
a. must avoid, and we can choose the interval I, of cardinality > e + 2, so
a. can avoid them all.

9.4 Constructing an X-nonmonotonic set A when X >1 0

Fix X <t 0" and lows. Define m(e,z,s) and W exactly as above in
(16) and (17) but with @2 (z,y) in place of pes(z,y). Now, m(e,z,s)
is X-computable, and hence 0’-computable. Also W € X, and hence
W € Z(f/, because X <t 0’. Furthermore, the fact that X is lowy implies
that X’, and hence W, are low over 0'. Let {W; : s € w} be a 0’-enumeration
of W.

9.4.1 The basic module for R, when X >10

The main difference over the previous construction in §9.3 for the case X = 0
is that previously we had W <t 0’ so we could 0’-computably determine for
{e,x,z) € V, whether (e,x,z) € W. Here we will have V., € X, and V,
low over (', uniformly in e. We can relativize to 0’ the Robinson technique
of §9.1. Hence, there is a 0/-computable function G(e, s) such that G(e) =
lim, G(e,s) = 1if V. N W # 0 and G(e) = 0 otherwise. Choose a witness
r = x, for R, and a finite I, C wle! with largest element d.. If m(e,z,s) € I,
then enumerate (e, z, z) into V. for z = m(e,z,s) + 1. Find ¢t > s such that
either

(20) (e,x,z) e Wy or

(21) Gle,t) = 1.

In case (20) we iterate this process until either d. < m(e,z,t) or G(e,t) =1,
in which case we say that the G-oracle certifies that {(e,z,2) € W for
z=m(e,x,t) + 1, and hence that m(e, z,t) = m(e, z).

In case (21) we put some a$ # m(e, z,t), a current candidate for a., into
A. However, the G-oracle may have lied and we may later discover at some
stage u > t that m(e,z,u) = af, which threatens to make m(e, ) = a.. In
this case we choose new large values for x. and I, and restart the module.
Because G can lie only finitely often, if m(e, z) is defined, then we eventually

settle on some final value for a. # m(e, x).
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9.4.2 The modified general strategy for R, when X >1 0

In the general strategy we must have the G-oracle certify not only the
position of m(e,z¢,s) but m(j,x;,s) for all j < e. Hence, we put our
queries into finite sets Fi 1y = Dp(e,r), Where h is 0’-computable, and define
Ve = {h(e, k) : k € w}. Using the Recursion Theorem, we have an index e
for Ve ahead of time. By lowness of W over 0" we can fix a 0’-computable
function G(e, s) as in §9.1 such that G(e) = lims G(e, s) = 1 if (35)[F; C W]
and @(e) = 0 otherwise. Now we do the same construction as in §9.3.2,
modified as in §9.4.1. 0

The implications in sections §3-89 yield the following result.

Theorem 9.2. If X <y (/, then the properties (P0)-(P8) are all equivalent
and they are equivalent to —(U0).

10 The case where X £t 0/

Theorem 9.2 establishes the equivalence of all the properties for the case
X <t 0. However, if X £7 0/, then many of these implications disappear.
Let us reexamine the implications in lines (1)—(3) but omitting all those
implications which used X <7 0. Without assuming X <t 0/, we have only

(P0) = (P4) <= (P5) = (P3) < (P2).

(P0) = (P6) «—= (P7) < (PS8).

This raises the question of which other implications follow without the
hypothesis that X <t 0/. In a later paper we will examine these questions.
For example, we will show that (P3) does not imply (P1) without the as-
sumption that X is AJ, and that (P0) and (P1) do not imply one another,
as we noted in §3.

11 Bounding homogeneous models

It is natural to investigate bounding degrees for other classes of models, such
as homogeneous or saturated models in place of prime.

Definition 11.1. A set X (degree d) is homogeneous bounding if, for every
complete decidable theory T, there is a homogeneous model decidable in X
(decidable in d). (Notice that unlike the prime bounding case we do not
require that the theory T' be atomic.)
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As was the case for prime bounding, the definition of homogeneous
bounding could be about models computable in X without affecting the
result mentioned below.

Denisov [1989] proved that X = 0’ is homogeneous bounding, and
claimed to prove that no set X <t 0 is. He incorrectly assumed that
every such X <7 0/ has the 0’-matrix representation given in Corollary 3.6.
The reader might assume that the rest of Denisov’s proof is correct, i.e.,
that he actually proved that every set X with the 0’-matrix property (and
hence, every lows set) is homogeneous bounding. However, this statement
is false by the following recent theorem.

Theorem 11.2 (Csima, Harizanov, Hirschfeldt, and Soare, (ta)). A degree
1s homogeneous bounding if and only if it is the degree of a complete extension
of Peano arithmetic.

It is well-known by results of Scott that a degree d is a degree of a
complete extension of Peano arithmetic iff every infinite computable tree
7 C 2<% has an infinite path f € [T] computable in d. Hence, unlike the
prime bounding characterization in the Main Theorem 1.5, the character-
ization of homogeneous bounding degrees is not in terms of equalities or
inequalities involving the jump, like nonlow, and high,,. Rather, it is in
terms of the ability of d to compute a path in an arbitrary infinite com-
putable tree 7 C 2<“. In this case 7 may have nonextendible nodes, unlike
the trees we have studied above.
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