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Abstract

We study effectively given positive reals (more specifically, computably enu-
merable reals) under a measure of relative randomness introduced by Solovay [32]
and studied by Calude, Hertling, Khoussainov, and Wang [6], Calude [2], Kučera
and Slaman [20], and Downey, Hirschfeldt, and LaForte [15], among others. This
measure is called domination or Solovay reducibility, and is defined by saying that
α dominates β if there are a constant c and a partial computable function ϕ such
that for all positive rationals q < α we have ϕ(q) ↓< β and β − ϕ(q) 6 c(α − q).
The intuition is that an approximating sequence for α generates one for β whose
rate of convergence is not much slower than that of the original sequence. It is
not hard to show that if α dominates β then the initial segment complexity of α
is at least that of β.

In this paper we are concerned with structural properties of the degree struc-
ture generated by Solovay reducibility. We answer a natural question in this area
of investigation by proving the density of the Solovay degrees. We also provide a
new characterization of the random c.e. reals in terms of splittings in the Solovay
degrees. Specifically, we show that the Solovay degrees of computably enumerable
reals are dense, that any incomplete Solovay degree splits over any lesser degree,
and that the join of any two incomplete Solovay degrees is incomplete, so that
the complete Solovay degree does not split at all. The methodology is of some
technical interest, since it includes a priority argument in which the injuries are
themselves controlled by randomness considerations.
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1 Introduction

In this paper we are concerned with effectively generated reals in the interval (0, 1] and

their relative randomness. In what follows, real and rational will mean positive real

and positive rational, respectively. It will be convenient to work modulo 1, that is,

identifying n + α and α for any n ∈ ω and α ∈ (0, 1], and we do this below without

further comment.

Our basic objects are reals that are limits of computable increasing sequences of ratio-

nals. We call such reals computably enumerable (c.e.), though they have also been called

recursively enumerable, left computable (by Ambos-Spies, Weihrauch, and Zheng [1]),

and left semicomputable. If, in addition to the existence of a computable increasing

sequence q0, q1, . . . of rationals with limit α, there is a total computable function f such

that α − qf(n) < 2−n for all n ∈ ω, then α is called computable. These and related

concepts have been widely studied. In addition to the papers and books mentioned

elsewhere in this introduction, we may cite, among others, early work of Rice [26], Lach-

lan [21], Soare [28], and Cĕıtin [8], and more recent papers by Ko [17, 18], Calude, Coles,

Hertling, and Khoussainov [5], Ho [16], and Downey and LaForte [14].

A computer M is self-delimiting if, for each binary string σ, M(σ) ↓ implies that

M(σ′)↑ for all σ′ properly extending σ. It is universal if for each self-delimiting computer

N there is a constant c such that, for each binary string σ, if N(σ)↓ then M(τ)↓= N(σ)

for some τ with |τ | 6 |σ|+ c.

Fix a self-delimiting universal computer M . We can define Chaitin’s number Ω = ΩM

via

Ω =
∑
M(σ)↓

2−|σ|.

The properties of Ω relevant to this paper are independent of the choice of M . A c.e.

real is an Ω-number if it is ΩM for some self-delimiting universal computer M .

The c.e. real Ω is random in the canonical Martin-Löf sense. Recall that a Martin-

Löf test is a uniformly c.e. sequence {Ve : e > 0} of c.e. subsets of {0, 1}∗ such that for

all e > 0,

µ(Ve{0, 1}ω) 6 2−e,

where µ denotes the usual product measure on {0, 1}ω. The string σ ∈ {0, 1}ω and

the real 0.σ are random, or more precisely, 1-random, if σ /∈
⋂
e>0 Ve{0, 1}ω for every

Martin-Löf test {Ve : e > 0}.
An alternate characterization of the random reals can be given via the notion of a

Solovay test. We give a somewhat nonstandard definition of this notion, which will be
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useful below. A Solovay test is a c.e. multiset {Ii : i ∈ ω} of intervals with rational end-

points such that
∑

i∈ω |Ii| <∞, where |I| is the length of the interval I. As Solovay [32]

showed, a real α is random if and only if {i ∈ ω : α ∈ Ii} is finite for every Solovay test

{Ii : i ∈ ω}.
Many authors have studied Ω and its properties, notably Chaitin [10, 11, 12] and

Martin-Löf [25]. In the very long and widely circulated manuscript [32] (a fragment of

which appeared in [33]), Solovay carefully investigated relationships between Martin-

Löf-Chaitin prefix-free complexity, Kolmogorov complexity, and properties of random

languages and reals. See Chaitin [10] for an account of some of the results in this

manuscript.

Solovay discovered that several important properties of Ω (whose definition is model-

dependent) are shared by another class of reals he called Ω-like, whose definition is

model-independent. To define this class, he introduced the following reducibility relation

among c.e. reals, called domination or Solovay reducibility.

1.1 Definition. Let α and β be c.e. reals. We say that α dominates β, and write

β 6S α, if there are a constant c and a partial computable function ϕ : Q → Q such

that for each rational q < α we have ϕ(q)↓< β and

β − ϕ(q) 6 c(α− q).

We write β <S α if β 6S α and α 
S β, and we write α ≡S β if α 6S β and β 6S α.

The notation 6dom has sometimes been used instead of 6S.

The prefix-free complexity H(τ) of a binary string τ is the length of the shortest

binary string σ such that M(σ) ↓= τ , where M is a fixed self-delimiting universal

computer. (The choice of M does not affect the prefix-free complexity, up to a constant

additive factor.) Most of the statements about H(τ) made below also hold for the

standard Kolmogorov complexity K(τ). For more on the definitions and basic properties

of H(τ) and K(τ), see Chaitin [12], Calude [3], and Li and Vitanyi [24]. Among the

many works dealing with these and related topics, and in addition to those mentioned

elsewhere in this paper, we may cite Solomonoff [30, 31], Kolmogorov [19], Levin [22, 23],

Schnorr [27], and the expository article Calude and Chaitin [4].

As shown by Schnorr (see Chaitin [9]), a real α is random if and only if there is a

constant c such that H(α � n) > n − c for all n ∈ ω. (We identify a real α ∈ (0, 1]

with the infinite binary string σ such that α = 0.σ. The fact that certain reals have two

different dyadic expansions need not concern us here, since all such reals are rational.)

Solovay reducibility is naturally associated with randomness because of the following

fact, whose proof we sketch for completeness.
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1.2 Theorem (Solovay [32]). Let β 6S α be c.e. reals. There is a constant k such

that H(β � n) 6 H(α � n) + k for all n ∈ ω.

Proof sketch. We first sketch the proof of the following lemma, implicit in [32] and noted

by Calude, Hertling, Khoussainov, and Wang [6].

1.3 Lemma. Let c ∈ ω. There is a constant k such that, for all n > 1 and all binary

strings σ, τ of length n with |0.σ − 0.τ | < c2−n, we have |H(τ)−H(σ)| 6 k.

The proof of the lemma is relatively simple. We can easily write a program P that,

for each sufficiently long σ, generates the 2c + 1 binary strings τ ′ of length n with

|0.σ − 0.τ ′| < c2−n. For any binary strings σ, τ of length n with |0.σ − 0.τ | < c2−n, in

order to compute τ it suffices to know a program for σ and the position of τ on the list

generated by P on input σ.

Turning to the proof of the theorem, let ϕ and c be as in Definition 1.1. Let αn =

0.(α � n). Since αn is rational and α − αn < 2−(n+1), we have β − ϕ(αn) < c2−(n+1).

Thus, by the lemma, there is a constant k such that H(β � n) 6 H(ϕ(αn)) + k for all

n > 1, which implies that H(β � n) 6 H(α � n) + k.

Solovay observed that Ω dominates all c.e. reals, and Theorem 1.2 implies that if

a c.e. real dominates all c.e. reals then it must be random. This led Solovay to define

a c.e. real to be Ω-like if it dominates all c.e. reals. The point is that the definition

of Ω-like seems quite model-independent (in the sense that it does not require a choice

of self-delimiting universal computer), as opposed to the model-dependent definition of

Ω. However, Calude, Hertling, Khoussainov, and Wang [6] showed that the two notions

coincide.

1.4 Theorem (Calude, Hertling, Khoussainov, and Wang). A c.e. real is Ω-like

if and only if it is an Ω-number.

This circle of ideas was completed recently by Kučera and Slaman [20], who proved

the converse to the fact that Ω-like reals are random.

1.5 Theorem (Kučera and Slaman). A c.e. real is random if and only if it is Ω-like.

It is natural to seek to understand the c.e. reals under Solovay reducibility. A useful

characterization of this reducibility is given by the following lemma, which we prove in

the next section.

1.6 Lemma. Let α and β be c.e. reals. The following are equivalent.

1. β 6S α.
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2. For some computable sequence of rationals a0, a1, . . . such that

α =
∑
n∈ω

an

there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such

that

β =
∑
n∈ω

εnan.

3. For every computable sequence of rationals a0, a1, . . . such that α =
∑

n∈ω an there

are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that

β =
∑

n∈ω εnan.

Phrased another way, Lemma 1.6 says that the c.e. reals dominated by a given c.e.

real α essentially correspond to splittings of α under arithmetic addition.

1.7 Corollary. Let β 6S α be c.e. reals. There is a c.e. real γ and a rational c such

that cα = β + γ.

Proof. Let a0, a1, . . . be a computable sequence of rationals such that α =
∑

n∈ω an. Let

c ∈ Q and ε0, ε1, . . . < c be as in Lemma 1.6. Define γ =
∑

n∈ω(c − εn)an. Since each

εn is less than c, the real γ is c.e., and of course β + γ = cα.

Solovay reducibility has a number of other beautiful interactions with arithmetic, as

we now discuss.

The relation 6S is reflexive and transitive, and hence ≡S is an equivalence relation

on the c.e. reals. Thus we can define the Solovay degree [α] of a c.e. real α as its ≡S

equivalence class. (When we mention Solovay degrees below, we always mean Solovay

degrees of c.e. reals.) The Solovay degrees form an upper semilattice, with the join of

[α] and [β] being [α + β]=[αβ], a fact observed by Solovay and others, such as Calude,

Hertling, Khoussainov, and Wang [6] (⊕ is definitely not a join operation here). We

note the following slight improvement of this result. Recall that an uppersemilattice U

is distributive if for all a0, a1, b ∈ U with b 6 a0 ∨ a1 there exist b0, b1 ∈ U such that

b0 ∨ b1 = b and bi 6 ai for i = 0, 1.

1.8 Lemma. The Solovay degrees of c.e. reals form a distributive uppersemilattice with

[α] ∨ [β] = [α + β] = [αβ].

Proof. Suppose that β 6S α0 +α1. Let a0
0, a

0
1, . . . and a1

0, a
1
1, . . . be computable sequences

of rationals such that αi =
∑

n∈ω a
i
n for i = 0, 1. By Lemma 1.6, there are a constant c

5



and a computable sequence of rationals ε0, ε1, . . . < c such that β =
∑

n∈ω εn(a0
n + a1

n).

Let βi =
∑

n∈ω εna
i
n. Then β = β0 + β1 and, again by Lemma 1.6, βi 6S αi for i = 0, 1.

This establishes distributivity.

To see that the join in the Solovay degrees is given by addition, we again apply

Lemma 1.6. Certainly, for any c.e. reals β0 and β1 we have βi 6S β0 + β1 for i = 0, 1,

and hence [β0 + β1] >S [β0], [β1]. Conversely, suppose that β0, β1 6 α. Let a0, a1, . . .

be a computable sequence of rationals such that α =
∑

n∈ω an. For each i = 0, 1

there are a constant ci and a computable sequence of rationals εi0, ε
i
1, . . . < ci such that

βi =
∑

n∈ω ε
i
nan. Thus β0 +β1 =

∑
n∈ω(ε0

n+ε1
n)an. Since each ε0

n+ε1
n is less than c0 +c1,

a final application of Lemma 1.6 shows that β0 + β1 6S α.

The proof that the join in the Solovay degrees is also given by multiplication is a

similar application of Lemma 1.6.

There is a least Solovay degree, the degree of the computable reals, as well as a

greatest one, the degree of Ω. For proofs of these facts and more on c.e. reals and

Solovay reducibility, see for instance Chaitin [10, 11, 12], Calude, Hertling, Khoussainov,

and Wang [6], Calude and Nies [7], Calude [2], Kučera and Slaman [20], and Downey,

Hirschfeldt, and LaForte [15].

Despite the many attractive features of the Solovay degrees, their structure is largely

unknown. Coles, Downey, Hirschfeldt, and LaForte (to appear) have shown that this

structure is very complicated by proving that it has an undecidable first-order theory.

One question addressed in the present paper is whether the structure of the Solovay

degrees is dense. Indeed, up to now, it was not known even whether there is a minimal

Solovay degree. That is, intuitively, if a c.e. real α is not computable, must there be a

c.e. real that is also not computable, yet is strictly less random than α? In the process

of understanding a degree structure, the question of density has always played a key

role, and been one of the first to be addressed. For instance, the Sacks Density Theorem

(see [29]) was one of the earliest and most important results in the study of the c.e.

Turing degrees.

In this paper, we show that the Solovay degrees of c.e. reals are dense. To do this

we divide the proof into two parts. We prove that if α <S Ω then there is a c.e. real γ

with α <S γ <S Ω, and we also prove that every incomplete Solovay degree splits over

each lesser degree.

The nonuniform nature of the argument is essential given the techniques we use,

since, in the splitting case, we have a priority construction in which the control of the

injuries is directly tied to the enumeration of Ω. The fact that if a c.e. real α is Solovay-

incomplete then Ω must grow more slowly than α is what allows us to succeed. (We
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will discuss this more fully in Section 3.) This unusual technique is of some technical

interest, and clearly cannot be applied to proving upwards density, since in that case

the top degree is the degree of Ω itself. To prove upwards density, we use a different

technique, taking advantage of the fact that, however we construct a c.e. real, it is

automatically dominated by Ω.

In light of these results, and further motivated by the general question of how ran-

domness can be produced, it is natural to ask whether the complete Solovay degree can

be split, or in other words, whether there exist nonrandom c.e. reals α and β such that

α + β is random. We give a negative answer to this question, thus characterizing the

random c.e. reals as those c.e. reals that cannot be written as the sum of two c.e. reals

of lesser Solovay degrees.

We remark that there are (non-c.e.) nonrandom reals whose sum is random; the

following is an example of this phenomenon. Define the real α by letting α(n) = 0 if n

is even and α(n) = Ω(n) otherwise. (Here we identify a real with its dyadic expansion

as above.) Define the real β by letting β(n) = 0 if n is odd and β(n) = Ω(n) otherwise.

Now α and β are clearly nonrandom, but α + β = Ω is random.

Before turning to the details of the paper, we point out that there are other reducibili-

ties one can study in this context. Downey, Hirschfeldt, and LaForte [15, 13] introduced

two such reducibilities, sw-reducibility and rH-reducibility, and showed, among other

things, that the results of this paper also hold for rH-reducibility. The proofs are es-

sentially the same as those in this paper. Ultimately, the basic reducibility we seek to

understand is H-reducibility, where σ 6H τ if H(σ � n) 6 H(τ � n) + O(1). Not much

is known about this directly, but it is again possible to adapt the methods of this paper

to prove the analogous results for H-reducibility.

2 Preliminaries

The following lemma, implicit in [32] and proved in [15], provides an alternate charac-

terization of Solovay reducibility, which is the one that we will use below.

2.1 Lemma. Let α and β be c.e. reals, and let α0, α1, . . . and β0, β1, . . . be computable

increasing sequences of rationals converging to α and β, respectively. Then β 6S α if

and only if there are a constant d and a total computable function f such that for all

n ∈ ω,

β − βf(n) < d(α− αn).

Whenever we mention a c.e. real α, we assume that we have chosen a computable

increasing sequence α0, α1, . . . converging to α. The previous lemma guarantees that,
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in determining whether one c.e. real dominates another, the particular choice of such

sequences is irrelevant. For convenience of notation, we adopt the convention that, for

any c.e. real α mentioned below, the expression αs − αs−1 is equal to α0 when s = 0.

We will also make use of two more lemmas, the first of which has Lemma 1.6 as a

corollary.

2.2 Lemma. Let β 6S α be c.e. reals and let α0, α1, . . . be a computable increasing se-

quence of rationals converging to α. There is a computable increasing sequence β̂0, β̂1, . . .

of rationals converging to β such that for some constant c and all s ∈ ω,

β̂s − β̂s−1 < c(αs − αs−1).

Proof. Fix a computable increasing sequence β0, β1, . . . of rationals converging to β, let

d and f be as in Lemma 2.1, and let c > d be such that βf(0) < cα0. We may assume

without loss of generality that f is increasing. Define β̂0 = βf(0).

There must be an s0 > 0 for which βf(s0) − βf(0) < d(αs0 − α0), since otherwise we

would have

β − βf(0) = lims βf(s) − βf(0) > lims d(αs − α0) = d(α− α0),

contradicting our choice of d and f . It is now easy to define β̂1, . . . , β̂s0 so that β̂0 <

· · · < β̂s0 = βf(s0) and β̂s − β̂s−1 6 d(αs − αs−1) < c(αs − αs−1) for all s 6 s0. For

example, if we let µ the minimum value of d(αs − αs−1) for s 6 s0 and let t be least

such that β̂0 + d(αt − α0) < βf(s0) − 2−tµ then we can define

β̂s+1 =


β̂s + d(αs+1 − αs) if s+ 1 < t

βf(s0) − 2−(s+1)µ if t 6 s+ 1 < s0

βf(s0) if s+ 1 = s0.

We can repeat the procedure in the previous paragraph with s0 in place of 0 to

obtain an s1 > s0 and β̂s0+1, . . . , β̂s1 such that β̂s0 < · · · < β̂s1 = βf(s1) and β̂s − β̂s−1 <

c(αs − αs−1) for all s0 < s 6 s1.

Proceeding by recursion in this way, we define a computable increasing sequence

β̂0, β̂1, . . . of rationals with the desired properties.

We are now in a position to prove Lemma 1.6.

1.6. Lemma. Let α and β be c.e. reals. The following are equivalent.

1. β 6S α.
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2. For some computable sequence of rationals a0, a1, . . . such that

α =
∑
n∈ω

an

there are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such

that

β =
∑
n∈ω

εnan.

3. For every computable sequence of rationals a0, a1, . . . such that α =
∑

n∈ω an there

are a constant c and a computable sequence of rationals ε0, ε1, . . . < c such that

β =
∑

n∈ω εnan.

Proof. It is easy to see that 3⇒ 2⇒ 1. We prove that 1⇒ 3.

Suppose that β 6S α. Given a computable sequence of rationals a0, a1, . . . such that

α =
∑

n∈ω an, let αn =
∑

i6n ai and apply Lemma 2.2 to obtain c and β̂0, β̂1, . . . as in

that lemma. Define εn = (β̂n − β̂n−1)a−1
n . Now

∑
n∈ω εnan =

∑
n∈ω β̂n − β̂n−1 = β, and

for all n ∈ ω,

εn = (β̂n − β̂n−1)a−1
n = (β̂n − β̂n−1)(αn − αn−1)−1 < c.

We finish this section with a simple lemma which will be quite useful below.

2.3 Lemma. Let α 
S β be c.e. reals. The following hold for all total computable

functions f and all k ∈ ω.

1. For each n ∈ ω there is an s ∈ ω such that either

(a) αt − αf(n) < k(βt − βn) for all t > s or

(b) αt − αf(n) > k(βt − βn) for all t > s.

2. There are infinitely many n ∈ ω for which there is an s ∈ ω such that αt−αf(n) >

k(βt − βn) for all t > s.

Proof. If there are infinitely many t ∈ ω such that αt−αf(n) 6 k(βt−βn) and infinitely

many t ∈ ω such that αt − αf(n) > k(βt − βn) then

α− αf(n) = limt αt − αf(n) = limt k(βt − βn) = k(β − βn),

which implies that α ≡S β.
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If there are infinitely many t ∈ ω such that αt − αf(n) 6 k(βt − βn) then

α− αf(n) = limt αt − αf(n) 6 limt k(βt − βn) = k(β − βn).

So if this happens for all but finitely many n then α 6S β. (The finitely many n for

which α−αf(n) > k(β − βn) can be brought into line by increasing the constant k.)

3 Main Results

We now proceed with the proofs of our main results. We begin by showing that every

incomplete Solovay degree can be split over any lesser Solovay degree.

3.1 Theorem. Let γ <S α <S Ω be c.e. reals. There are c.e. reals β0 and β1 such that

γ <S β
i <S α for i = 0, 1 and β0 + β1 = α.

Proof. We want to build β0 and β1 so that γ 6S β
i 6S α for i = 0, 1, β0 + β1 = α, and

the following requirement is satisfied for each e, k ∈ ω and i < 2:

Ri,e,k : Φe total ⇒ ∃n(α− αΦe(n) > k(βi − βin)).

By Lemma 2.2 and the fact that γ/c ≡S γ for any rational c, we may assume without

loss of generality that 2(γs − γs−1) 6 αs − αs−1 for each s ∈ ω. (Recall our convention

that µ0 − µ−1 = µ0 for any c.e. real µ.)

In the absence of requirements of the form R1−i,e,k, it is easy to satisfy simultaneously

all requirements of the form Ri,e,k: for each s ∈ ω, simply let βis = γs and β1−i
s = αs−γs.

In the presence of requirements of the form R1−i,e,k, however, we cannot afford to be

quite so cavalier in our treatment of β1−i; enough of α has to be kept out of β1−i to

guarantee that β1−i does not dominate α.

Most of the essential features of our construction are already present in the case of

two requirements Ri,e,k and R1−i,e′,k′ , which we now discuss. We assume that Ri,e,k has

priority over R1−i,e′,k′ and that both Φe and Φe′ are total. We will think of the βj as

being built by adding amounts to them in stages. Thus βjs will be the total amount

added to βj by the end of stage s. At each stage s we begin by adding γs − γs−1 to the

current value of each βj; in the limit, this ensures that βj >S γ.

We will say that Ri,e,k is satisfied through n at stage s if Φe(n)[s]↓ and αs−αΦe(n) >

k(βis − βin). The strategy for Ri,e,k is to act whenever either it is not currently satisfied

or the least number through which it is satisfied changes. Whenever this happens, Ri,e,k

initializes R1−i,e′,k′ , which means that the amount of α− 2γ that R1−i,e′,k′ is allowed to

funnel into βi is reduced. More specifically, once R1−i,e′,k′ has been initialized for the
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mth time, the total amount that it is thenceforth allowed to put into βi is reduced to

2−m.

The above strategy guarantees that if R1−i,e′,k′ is initialized infinitely often then the

amount put into βi by R1−i,e′,k′ (which in this case is all that is put into βi except for

the coding of γ) adds up to a computable real. In other words, βi ≡S γ <S α. But it is

not hard to argue, with the help of Lemma 2.3, that this means that there is a stage s

after which Ri,e,k is always satisfied and the least number through which it is satisfied

does not change. So we conclude that R1−i,e′,k′ is initialized only finitely often, and that

Ri,e,k is eventually permanently satisfied.

This leaves us with the problem of designing a strategy for R1−i,e′,k′ that respects the

strategy for Ri,e,k. The problem is one of timing. To simplify notation, let α̂ = α − 2γ

and α̂s = αs − 2γs. Since R1−i,e′,k′ is initialized only finitely often, there is a certain

amount 2−m that it is allowed to put into βi after the last time it is initialized. Thus

if R1−i,e′,k′ waits until a stage s such that α̂ − α̂s < 2−m, adding nothing to βi until

such a stage is reached, then from that point on it can put all of α̂− α̂s into βi, which

of course guarantees its success. The problem is that, in the general construction, a

strategy working with a quota 2−m cannot effectively find an s such that α̂− α̂s < 2−m.

If it uses up its quota too soon, it may find itself unsatisfied and unable to do anything

about it.

The key to solving this problem (and the reason for the hypothesis that α <S Ω) is

the observation that, since the sequence Ω0,Ω1, . . . converges much more slowly than

the sequence α̂0, α̂1, . . . , Ω can be used to modulate the amount that R1−i,e′,k′ puts into

βi. More specifically, at a stage s, if R1−i,e′,k′ ’s current quota is 2−m then it puts into βi

as much of α̂s − α̂s−1 as possible, subject to the constraint that the total amount put

into βi by R1−i,e′,k′ since the last stage before stage s at which R1−i,e′,k′ was initialized

must not exceed 2−mΩs. As we will see below, the fact that Ω >S α implies that there

is a stage v after which R1−i,e′,k′ is allowed to put in all of α̂− α̂v into βi.

In general, at a given stage s there will be several requirements, each with a certain

amount that it wants (and is allowed) to direct into one of the βj. We will work back-

wards, starting with the weakest priority requirement that we are currently considering.

This requirement will be allowed to direct as much of α̂s − α̂s−1 as it wants (subject to

its current quota, of course). If any of α̂s − α̂s−1 is left then the next weakest priority

strategy will be allowed to act, and so on up the line.

We now proceed with the full construction. We say that Ri,e,k has stronger priority

than Ri′,e′,k′ if 2〈e, k〉+ i < 2〈e′, k′〉+ i′.
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We say that Ri,e,k is satisfied through n at stage s if

Φe(n)[s]↓ ∧ αs − αΦe(n) > k(βis − βin).

Let ni,e,ks be the least n through which Ri,e,k is satisfied at stage s, if such an n exists,

and let ni,e,ks =∞ otherwise.

A stage s is e-expansionary if

max{n | ∀m 6 n(Φe(m)[s]↓)} > max{n | ∀m 6 n(Φe(n)[s− 1]↓)}.

Let q be the last e-expansionary stage before stage s (or let q = 0 if there have been

none). We say that Ri,e,k requires attention at stage s if s is an e-expansionary stage

and there is an r ∈ [q, s) such that either ni,e,kr =∞ or ni,e,kr 6= ni,e,kr−1 .

If Ri,e,k requires attention at stage s then we say that each requirement of weaker

priority than Ri,e,k is initialized at stage s.

Each requirement Ri,e,k has associated with it a c.e. real τ i,e,k, which records the

amount put into β1−i for the sake of Ri,e,k.

We decide how to distribute δ = αs − αs−1 between β0 and β1 at stage s as follows.

1. Let j = s and ε = 2(γs − γs−1), and add γs − γs−1 to the current value of each βi.

2. Let i < 2 and e, k ∈ ω be such that 2〈e, k〉+ i = j. Let m be the number of times

Ri,e,k has been initialized and let t be the last stage at which Ri,e,k was initialized.

Let

ζ = min(δ − ε, 2−(j+m)Ωs − (τ i,e,ks−1 − τ
i,e,k
t )).

(It is not hard to check that ζ is non-negative.) Add ζ to ε and to the current

values of τ i,e,k and β1−i.

3. If ε = δ or j = 0 then add δ − ε to the current value of β0 and end the stage.

Otherwise, decrease j by one and go to step 2.

This completes the construction. Clearly, γ 6S β
i 6S α for i = 0, 1 and β0 + β1 = α.

We now show by induction that each requirement initializes requirements of weaker

priority only finitely often and is eventually satisfied. Assume by induction that Ri,e,k

is initialized only finitely often. Let j = 2〈e, k〉+ i, let m be the number of times Ri,e,k

is initialized, and let t be the last stage at which Ri,e,k is initialized. If Φe is not total

then Ri,e,k is vacuously satisfied and eventually stops initializing requirements of weaker

priority, so we may assume that Φe is total. It suffices to prove the following statements,

which are clearly equivalent and imply that Ri,e,k is satisfied:
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1. lims n
i,e,k
s exists and is finite;

2. Ri,e,k eventually stops requiring attention.

Assume for a contradiction that Ri,e,k requires attention infinitely often. Since Ω 
S

α, part 2 of Lemma 2.3 implies that there are v > u > t such that for all w > v we have

2−(j+m)(Ωw − Ωu) > αw − αu. Furthermore, by the way the amount ζ added to τ i,e,k

at a given stage is defined in step 2 of the construction, τ i,e,ku − τ i,e,kt 6 2−(j+m)Ωu and

τ i,e,kw−1 − τ i,e,ku 6 αw−1 − αu. Thus for all w > v,

αw − αw−1 = αw − αu − (αw−1 − αu) <
2−(j+m)(Ωw − Ωu)− (αw−1 − αu) = 2−(j+m)Ωw − (2−(j+m)Ωu + αw−1 − αu) 6

2−(j+m)Ωw − (τ i,e,ku − τ i,e,kt + τ i,e,kw−1 − τ i,e,ku ) = 2−(j+m)Ωw − (τ i,e,kw−1 − τ
i,e,k
t ).

From this we conclude that, after stage v, the reverse recursion performed at each stage

never gets past j, and hence everything put into βi after stage v is put in either to code

γ or for the sake of requirements of weaker priority than Ri,e,k.

Let τ be the sum of all τ 1−i,e′,k′
such that R1−i,e′,k′ has weaker priority than Ri,e,k.

Let sl > t be the lth stage at which Ri,e,k requires attention. If R1−i,e′,k′ is the (p+ 1)st

requirement on the priority list and p > j then τ 1−i,e′,k′ − τ 1−i,e′,k′
sl

6 2−(p+l)Ω. Thus

τ − τsl
6

∑
p∈ω

2−(p+l)Ω = 2−lΩ 6 2−l,

and hence τ is computable.

Putting together the results of the previous two paragraphs, we see that βi 6S γ.

Since α 
S γ, this means that α 
S β
i. It now follows from Lemma 2.3 that there is an

n ∈ ω such that Ri,e,k is eventually permanently satisfied through n, and such that Ri,e,k

is eventually never satisfied through any n′ < n. Thus lims n
i,e,k
s exists and is finite, and

hence Ri,e,k is satisfied and eventually stops requiring attention.

We now show that the Solovay degrees are upwards dense, which together with the

previous result implies that they are dense.

3.2 Theorem. Let γ <S Ω be a c.e. real. There is a c.e. real β such that γ <S β <S Ω.

Proof. We want to build β >S γ to satisfy the following requirements for each e, k ∈ ω:

Re,k : Φe total ⇒ ∃n(β − βΦe(n) > k(γ − γn))

and

Se,k : Φe total ⇒ ∃n(Ω− ΩΦe(n) > k(β − βn)).
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As in the previous proof, the analysis of an appropriate two-strategy case will be

enough to outline the essentials of the full construction. Let us consider the strategies

Se,k and Re′,k′ , the former having priority over the latter. We assume that both Φe and

Φe′ are total.

The strategy for Se,k is basically to make β look like γ. At each point of the con-

struction, Re′,k′ has a certain fraction of Ω that it is allowed to put into β. (This is in

addition to the coding of γ into β, of course.) We will say that Se,k is satisfied through n

at stage s if Φe(n)[s]↓ and Ωs−ΩΦe(n) > k(βs−βn). Whenever either it is not currently

satisfied or the least number through which it is satisfied changes, Se,k initializes Re′,k′ ,

which means that the fraction of Ω that Re′,k′ is allowed to put into β is reduced.

As in the previous proof, if Se,k is not eventually permanently satisfied through some

n then the amount put into β by Re′,k′ is computable, and hence β ≡S γ. But, as before,

this implies that there is a stage after which Se,k is permanently satisfied through some

n and never again satisfied through any n′ < n. Once this stage has been reached, Re′,k′

is free to code a fixed fraction of Ω into β, and hence it too succeeds.

We now proceed with the full construction. We say that a requirement Xe,k has

stronger priority than a requirement Ye′,k′ if either 〈e, k〉 < 〈e′, k′〉 or 〈e, k〉 = 〈e′, k′〉,
X = R, and Y = S.

We say that Re,k is satisfied through n at stage s if Φe(n)[s]↓ and

βs − βΦe(n) > k(γs − γn).

We say that Se,k is satisfied through n at stage s if Φe(n)[s]↓ and

Ωs − ΩΦe(n) > k(βs − βn).

For a requirement Xe,k, let n
Xe,k
s be the least n through which Xe,k is satisfied at stage s,

if such an n exists, and let n
Xe,k
s =∞ otherwise.

As before, a stage s is e-expansionary if

max{n | ∀m 6 n(Φe(m)[s]↓)} > max{n | ∀m 6 n(Φe(n)[s− 1]↓)}.

Let Xe,k be a requirement and let q be the last e-expansionary stage before stage s (or

let q = 0 if there have been none). We say that Xe,k requires attention at stage s if

s is an e-expansionary stage and there is an r ∈ [q, s) such that either n
Xe,k
r = ∞ or

n
Xe,k
r 6= n

Xe,k

r−1 .

At stage s, proceed as follows. First add γs − γs−1 to the current value of β. If

no requirement requires attention at stage s then end the stage. Otherwise, let Xe,k

be the strongest priority requirement requiring attention at stage s. We say that Xe,k
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acts at stage s. If X = S then initialize all weaker priority requirements and end the

stage. If X = R then let j = 〈e, k〉 and let m be the number of times that Re,k has

been initialized. If s is the first stage at which Re,k acts after the last time it was

initialized then let t be the last stage at which Re,k was initialized (or let t = 0 if Re,k

has never been initialized), and otherwise let t be the last stage at which Re,k acted.

Add 2−(j+m)(Ωs − Ωt) to the current value of β and end the stage.

This completes the construction. Since β is bounded by γ +
∑

i>0 2−iΩ = γ + 2Ω, it

is a well-defined c.e. real. Furthermore, γ 6S β.

We now show by induction that each requirement initializes requirements of weaker

priority only finitely often and is eventually satisfied. Assume by induction that there

is a stage u such that no requirement of stronger priority than Xe,k requires attention

after stage u. If Φe is not total then Xe,k is vacuously satisfied and eventually stops

requiring attention, so we may assume that Φe is total. It suffices to prove the following

statements, which are clearly equivalent and imply that Xe,k is satisfied:

1. lims n
Xe,k
s exists and is finite;

2. Xe,k eventually stops requiring attention;

3. Xe,k acts only finitely often.

First suppose that X = R. Let j = 〈e, k〉 and let m be the number of times that

Re,k is initialized. (Since Re,k is not initialized at any stage after stage u, this number

is finite.) Suppose that Re,k acts infinitely often. Then the total amount added to β

for the sake of Re,k after any stage v > u is greater than or equal to 2−(j+m)(Ω − Ωv),

and hence β ≡S 2−(j+m)Ω ≡S Ω 
S γ. It now follows from Lemma 2.3 that there is an

n ∈ ω such that Re,k is eventually permanently satisfied through n, and such that Re,k

is eventually never satisfied through n′ < n. Thus lims n
Re,k
s exists and is finite, and

hence Re,k is satisfied and eventually stops requiring attention.

Now suppose that X = S and Se,k acts infinitely often. If v > u is the mth stage at

which Se,k acts then the total amount added to β after stage v for purposes other than

coding γ is bounded by
∑

i>0 2−(i+m)Ω < 2−m+1. This means that β ≡S γ �S Ω. It now

follows from Lemma 2.3 that there is an n ∈ ω such that Se,k is eventually permanently

satisfied through n, and such that Se,k is eventually never satisfied through n′ < n. Thus

lims n
Se,k
s exists and is finite, and hence Se,k is satisfied and eventually stops requiring

attention.

Combining Theorems 3.1 and 3.2, we have the following result.

3.3 Theorem. The Solovay degrees of c.e. reals are dense.
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We finish by showing that the hypothesis that α <S Ω in the statement of Theo-

rem 3.1 is necessary. This fact will follow easily from a stronger result which shows

that, despite the upwards density of the Solovay degrees, there is a sense in which the

complete Solovay degree is very much above all other Solovay degrees. We begin with a

lemma giving a sufficient condition for domination.

3.4 Lemma. Let α and β be c.e. reals and let α0, α1, . . . and β0, β1, . . . be computable

increasing sequences of rationals converging to α and β, respectively. Let f be an in-

creasing total computable function and let k > 0 be a natural number. If there are

infinitely many s ∈ ω such that k(α−αs) > β−βf(s), but only finitely many s ∈ ω such

that k(αt − αs) > βf(t) − βf(s) for all t > s, then β 6S α.

Proof. By taking βf(0), βf(1), . . . instead of β0, β1, . . . as an approximating sequence for

β, we may assume that f is the identity.

By hypothesis, there is an r ∈ ω such that for all s > r there is a t > s with

k(αt − αs) 6 βt − βs. Furthermore, there is an s0 > r such that k(α − αs0) > β − βs0 .
Given si, let si+1 be the least number greater than si such that k(αsi+1

−αsi
) 6 βsi+1

−βsi
.

Assuming by induction that k(α− αsi
) > β − βsi

, we have

k(α− αsi+1
) = k(α− αsi

)− k(αsi+1
− αsi

) > β − βsi
− (βsi+1

− βsi
) = β − βsi+1

.

Thus s0 < s1 < · · · is a computable sequence such that k(α − αsi
) > β − βsi

for all

i ∈ ω.

Now define the computable function g by letting g(n) be the least si that is greater

than or equal to n. Then β − βg(n) < k(α− αg(n)) 6 k(α− αn) for all n ∈ ω, and hence

β 6S α.

3.5 Theorem. Let α and β be c.e. reals and let α0, α1, . . . and β0, β1, . . . be computable

increasing sequences of rationals converging to α and β, respectively. Let f be an in-

creasing total computable function and let k > 0 be a natural number. If β is random

and there are infinitely many s ∈ ω such that k(α− αs) > β − βf(s) then α is random.

Proof. As in Lemma 3.4, we may assume that f is the identity. If α is rational then we

can replace it with a nonrational computable real α′ such that α′ − α′s > α− αs for all

s ∈ ω, so we may assume that α is not rational.

We assume that α is nonrandom and there are infinitely many s ∈ ω such that

k(α − αs) > β − βs, and show that β is nonrandom. The idea is to take a Solovay test

A = {Ii : i ∈ ω} such that α ∈ Ii for infinitely many i ∈ ω and use it to build a Solovay

test B = {Ji : i ∈ ω} such that β ∈ Ji for infinitely many i ∈ ω.
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Let

U = {s ∈ ω | k(α− αs) > β − βs}.

Except in the trivial case in which β ≡S α, Lemma 2.3 guarantees that U is ∆0
2. Thus

a first attempt at building B could be to run the following procedure for all i ∈ ω in

parallel. Look for the least t such that there is an s < t with s ∈ U [t] and αs ∈ Ii. If

there is more than one number s with this property then choose the least among such

numbers. Begin to add the intervals

[βs, βs + k(αs+1 − αs)], [βs + k(αs+1 − αs), βs + k(αs+2 − αs)], . . . (∗)

to B, continuing to do so as long as s remains in U and the approximation of α remains

in Ii. If the approximation of α leaves Ii then end the procedure. If s leaves U , say at

stage u, then repeat the procedure (only considering t > u, of course).

If α ∈ Ii then the variable s in the above procedure eventually assumes a value in

U . For this value, k(α − αs) > β − βs, from which it follows that k(αu − αs) > β − βs
for some u > s, and hence that β ∈ [βs, βs + k(αu − αs)]. So β must be in one of the

intervals (∗) added to B by the above procedure.

Since α is in infinitely many of the Ii, running the above procedure for all i ∈ ω

guarantees that β is in infinitely many of the intervals in B. The problem is that

we also need the sum of the lengths of the intervals in B to be finite, and the above

procedure gives no control over this sum, since it could easily be the case that we start

working with some s, see it leave U at some stage t (at which point we have already

added to B intervals whose lengths add up to αt−1 − αs), and then find that the next

s with which we have to work is much smaller than t. Since this could happen many

times for each i ∈ ω, we would have no bound on the sum of the lengths of the intervals

in B.

This problem would be solved if we had an infinite computable subset T of U . For

each Ii, we could look for an s ∈ T such that αs ∈ Ii, and then begin to add the

intervals (∗) to B, continuing to do so as long as the approximation of α remained in Ii.

(Of course, in this easy setting, we could also simply add the single interval [βs, βs+k |Ii|]
to B.) It is not hard to check that this would guarantee that if α ∈ Ii then β is in one

of the intervals added to B, while also ensuring that the sum of the lengths of these

intervals is less than or equal to k |Ii|. Following this procedure for all i ∈ ω would give

us the desired Solovay test B. Unless β 6S α, however, there is no infinite computable

T ⊆ U , so we use Lemma 3.4 to obtain the next best thing.

Let

S = {s ∈ ω | ∀t > s(k(αt − αs) > βt − βs)}.
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If β 6S α then β is nonrandom, so, by Lemma 3.4, we may assume that S is infinite.

Note that k(α−αs) > β−βs for all s ∈ S. In fact, we may assume that k(α−αs) > β−βs
for all s ∈ S, since if k(α−αs) = β−βs then kα and β differ by a rational amount, and

hence β is nonrandom.

The set S is co-c.e. by definition, but it has an additional useful property. Let

S[t] = {s ∈ ω | ∀u ∈ (s, t](k(αu − αs) > βu − βs)}.

If s ∈ S[t− 1]− S[t] then no u ∈ (s, t) is in S, since for any such u we have

k(αt − αu) = k(αt − αs)− k(αu − αs) 6 βt − βs − (βu − βs) = βt − βu.

In other words, if s leaves S at stage t then so do all numbers in (s, t).

To construct B, we run the following procedure Pi for all i ∈ ω in parallel. Note

that B is a multiset, so we are allowed to add more than one copy of a given interval to

B.

1. Look for an s ∈ ω such that αs ∈ Ii.

2. Let t = s+ 1. If αt /∈ Ii then terminate the procedure.

3. If s /∈ S[t] then let s = t and go to step 2. Otherwise, add the interval

[βs + k(αt−1 − αs), βs + k(αt − αs)]

to B, increase t by one, and repeat step 3.

This concludes the construction of B. We now show that the sum of the lengths of

the intervals in B is finite and that β is in infinitely many of the intervals in B.

For each i ∈ ω, let Bi be the set of intervals added to B by Pi and let li be the sum of

the lengths of the intervals in Bi. If Pi never leaves step 1 then Bi = ∅. If Pi eventually

terminates then li 6 k(αt − αs) for some s, t ∈ ω such that αs, αt ∈ Ii, and hence

li 6 k |Ii|. If Pi reaches step 3 and never terminates then α ∈ Ii and li 6 k(α− αs) for

some s ∈ ω such that αs ∈ Ii, and hence again li 6 k |Ii|. Thus the sum of the lengths

of the intervals in B is less than or equal to k
∑

i∈ω |Ii| <∞.

To show that β is in infinitely many of the intervals in B, it is enough to show that,

for each i ∈ ω, if α ∈ Ii then β is in one of the intervals in Bi.

Fix i ∈ ω such that α ∈ Ii. Since α is not rational, αu ∈ Ii for all sufficiently large

u ∈ ω, so Pi must eventually reach step 3. By the properties of S discussed above,

the variable s in the procedure Pi eventually assumes a value in S. For this value,
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k(α − αs) > β − βs, from which it follows that k(αu − αs) > β − βs for some u > s,

and hence that β ∈ [βs, βs + k(αu−αs)]. So β must be in one of the intervals (∗), all of

which are in Bi.

3.6 Corollary. If α0 and α1 are c.e. reals such that α0 +α1 is random then at least one

of α0 and α1 is random.

Proof. Let β = α0+α1. For each s ∈ ω, either 3(α0−α0
s) > β−βs or 3(α1−α1

s) > β−βs,
so for some i < 2 there are infinitely many s ∈ ω such that 3(αi − αis) > β − βs. By

Theorem 3.5, αi is random.

Combining Theorem 3.1 and Corollary 3.6, we have the following results, the second

of which also depends on Theorem 1.5.

3.7 Theorem. A c.e. real γ is random if and only if it cannot be written as α + β for

c.e. reals α, β <S γ.

3.8 Theorem. Let d be a Solovay degree of c.e. reals. The following are equivalent:

1. d is incomplete.

2. d splits.

3. d splits over any lesser Solovay degree.
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