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Abstract. For r ∈ [0, 1] we say that a set A ⊆ ω is coarsely computable at

density r if there is a computable set C such that {n : C(n) = A(n)} has lower

density at least r. Let γ(A) = sup{r : A is coarsely computable at density r}.
We study the interactions of these concepts with Turing reducibility. For

example, we show that if r ∈ (0, 1] there are sets A0, A1 such that γ(A0) =

γ(A1) = r where A0 is coarsely computable at density r while A1 is not
coarsely computable at density r. We show that a real r ∈ [0, 1] is equal to

γ(A) for some c.e. set A if and only if r is left-Σ0
3. A surprising result is that

if G is a ∆0
2 1-generic set, and A 6T G with γ(A) = 1, then A is coarsely

computable at density 1.

1. Introduction

There are two natural models of “imperfect computability” defined in terms of
the standard notion of asymptotic density, which we now review. For A ⊆ ω and

n ∈ ω \ {0}, define ρn(A), the density of A below n, by ρn(A) = |A�n|
n , where

A � n = A ∩ {0, 1, . . . , n− 1}. Then

ρ(A) = lim inf
n

ρn(A) and ρ(A) = lim sup
n

ρn(A)

are respectively the lower density of A and the upper density of A. The (asymptotic)
density of A is ρ(A) = limn ρn(A) provided the limit exists.

The idea of generic computability was introduced and studied in connection with
group theory in [11] and then studied in connection with arbitrary subsets of ω in
[10]. In generic computability we have a partial algorithm that is always correct
when it gives an answer but may fail to answer on a set of density 0. The paper [5]
began studying computability at densities less than 1 and introduced the following
definitions.

Definition 1.1 ([5, Definition 5.9]). Let A be a set of natural numbers and let r
be a real number in the unit interval [0, 1]. The set A is partially computable at
density r if there is a partial computable function ϕ such that ϕ(n) = A(n) for all
n in the domain of ϕ and the domain of ϕ has lower density at least r.

Thus A is generically computable if and only if A is partially computable at
density 1.
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Definition 1.2 ([5, Definition 6.9]). If A ⊆ ω, the partial computability bound of
A is

α(A) = sup{r : A is partially computable at density r}.
In the paper [5] the term “partially computable at density r” was simply called

“computable at density r” and the “partial computability bound” was called the
“asymptotic computability bound”. That paper considered only partial computabil-
ity at densities less than 1, but since we are here comparing the partial computabil-
ity concepts with their coarse analogs, the present terminology is more exact.

If A is generically computable, then α(A) = 1. The converse fails by [5, Ob-
servation 5.10]. There are sets that are partially computable at every density less
than 1 but are not generically computable.

Definition 1.3. If A,B ⊆ N, then A and B are coarsely similar, written A vc B,
if the density of the symmetric difference of A and B is 0, that is, ρ(A4 B) = 0.
Given A, any set B such that B vc A is called a coarse description of A.

It is easy to check that coarse similarity is indeed an equivalence relation. Coarse
similarity was called generic similarity in [10], but the current terminology seems
better.

Coarse computability considers algorithms that always give an answer, but may
give an incorrect answer on a set of density 0. We have the following definition.

Definition 1.4 ([10, Definition 2.13]). The set A is coarsely computable if there is
a computable set C such that the density of {n : A(n) = C(n)} is 1. That is, A is
coarsely computable if it has a computable coarse description C.

The following definitions are similar to those for partial computability.

Definition 1.5. If A ⊆ ω and r ∈ [0, 1], an r-description of A is any set B such
that the lower density of {n : A(n) = B(n)} is at least r. A set A is coarsely
computable at density r if there is a computable r-description B of A.

Note that A is coarsely computable if and only A is coarsely computable at
density 1.

Definition 1.6. If A ⊆ ω, the coarse computability bound of A is

γ(A) = sup{r : A is coarsely computable at density r}.
If A is coarsely computable, then γ(A) = 1, but the next lemma implies that the

converse fails.
It is shown in [10, Proposition 2.15 and Theorem 2.26] that neither of generic

computability and coarse computability implies the other, even among c.e. sets.
Nonetheless, the following lemma gives an inequality between α and γ.

Lemma 1.7. For any A ⊆ ω, α(A) 6 γ(A). In particular, if A is generically
computable then γ(A) = 1.

Proof. Fix ε > 0. If α(A) = r then there is a partial algorithm ϕ for A such that the
lower density of the c.e. set D = domϕ is greater than or equal to r − ε. Theorem
3.9 of [5] shows that if D is a c.e. set there is a computable set C ⊆ D such that
ρ(C) > ρ(D) − ε. Let C1 = {n ∈ C : ϕ(n) = 1}. Then C1 is a computable set
and {n : A(n) = C1(n)} ⊇ C. It follows that ρ({n : A(n) = C1(n)}) > ρ(C) >
ρ(D) − ε > r − 2ε, and hence A is coarsely computable at density r − 2ε. Since
ε > 0 was arbitrary, it follows that γ(A) > r = α(A). �
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One consequence of this lemma is that any set that is generically computable
but not coarsely computable is an example of a set A such that γ(A) = 1 but A is
not coarsely computable.

Definition 1.8. If A,B ⊆ N, let D(A,B) = ρ(A4B).

It is shown in [5, remarks after Proposition 3.2] that D is a pseudometric on
subsets of ω and, since D(A,B) = 0 exactly when A and B are coarsely similar,
D is actually a metric on the space of coarse similarity classes. Note that γ is an
invariant of coarse similarity classes.

Although easy, the following is useful enough to be stated as a lemma.

Lemma 1.9. If A ⊆ ω then ρ(A) = 1− ρ(A).

Proof. Note that ρn(A) = 1 − ρn(A) for all n > 1. The lemma follows by taking
the lim inf of both sides of this equation. �

Since we have a pseudometric space, we can consider the distance from a single
point to a subset of the space in the usual way.

Definition 1.10. If A ⊆ ω and S ⊆ P(N), let

δ(A,S) = inf{D(A,S) : S ∈ S}.

The above lemma shows that

γ(A) = 1− δ(A, C),
where C is the class of computable sets. Thus γ(A) = 1 if and only if A is a limit
of computable sets in the pseudometric. A set A is coarsely computable at density
r if and only if δ(A, C) 6 1− r.

The symmetric difference A4B = {n : A(n) 6= B(n)} is the subset of ω where A
and B disagree. There does not seem to be a standard notation for the complement
of A4 B, which is {n : A(n) = B(n)}, the “symmetric agreement” of A and B.
We find it useful to use A

4
B to denote {n : A(n) = B(n)}.

We assume that the reader is familiar with basic computability theory. See, for
example, [14]. If S is a set of finite binary strings and A ⊆ ω we say that A meets
S if A extends some string in S and that A avoids S if A extends a string that has
no extension in S.

2. Turing degrees, coarse computability, and γ

It is easily seen that every Turing degree contains a set that is both coarsely
and generically computable and hence a set A with α(A) = γ(A) = 1. In the other
direction it is shown in Theorem 2.20 of [10] that every nonzero Turing degree
contains a set that is neither generically computable nor coarsely computable. The
same construction now yields a quantitative version of that result.

Theorem 2.1. Every nonzero Turing degree contains a set whose partial com-
putability bound is 0 but whose coarse computability bound is 1/2.

Proof. Let In = [n!, (n + 1)!). Suppose that A is not computable, and let I(A) =⋃
n∈A In. It is clear that I(A) is Turing equivalent to A. We prove first that

γ(I(A)) 6 1
2 . If there is a computable C with ρ(I(A)

4
C) > 1

2 we can compute
A by “majority vote”. That is, for all sufficiently large n, we have that n is in A
if and only if more than half of the elements of In are in C. (For any n for which
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this equivalence fails, we have ρ(n+1)!(I(A)
4
C) 6 (1 + (n + 1)−1)/2.) It follows

that A is computable, a contradiction. If C is the set of even numbers, then it is
easily seen that ρ(C

4
I(A)) = 1

2 , so γ(I(A)) > 1
2 . It follows that γ(I(A)) = 1

2 .
To see that α(I(A)) = 0, note that any set of positive lower density intersects In
for all but finitely many n, and apply this observation to the domain of any partial
computable function that agrees with I(A) on its domain. �

We next observe that a large class of degrees contain sets A with γ(A) = 0.

Theorem 2.2. Every hyperimmune degree contains a set whose coarse computabil-
ity bound is 0.

Proof. A set S ⊆ 2<ω of finite binary strings is dense if every string has some
extension in S. Stuart Kurtz [12] defined a set A to be weakly 1-generic if A meets
every dense c.e. set S of finite binary strings and proved that the weakly 1-generic
degrees coincide with the hyperimmune degrees. Hence, it suffices to show that
every weakly 1-generic set A satisfies γ(A) = 0. Assume that A is weakly 1-generic.

If f is a computable function then, for each n, j > 0, define

Sn,j =

{
σ ∈ 2<ω : |σ| > j & ρ|σ|({k < |σ| : σ(k) = f(k)}) < 1

n

}
.

Each set Sn,j is computable and dense soAmeets each Sn,j . Thus {k : f(k) = A(k)}
has lower density 0. �

In view of the preceding result, it is natural to ask whether every nonzero degree
contains a set A such that γ(A) = 0. This question is answered in the negative in [1]
where it is shown that that every computably traceable set is coarsely computable at
density 1

2 , and also that every set computable from a 1-random set of hyperimmune-

free degree is coarsely computable at density 1
2 . Each of these results implies

that there is a nonzero degree a 6 0′′ such that every a-computable set is coarsely
computable at density 1

2 . Here it is not possible to replace 1
2 by any larger number,

by Theorem 2.1. In [1], the following definition is made for Turing degrees a:

Γ(a) = inf{γ(A) : A is a-computable}.
By the above, Γ takes on the values 0 and 1

2 , and of course Γ(0) = 1. By Theorem

2.1, Γ does not take on any values in the open interval ( 1
2 , 1). An open question

posed in [1] is whether Γ takes on any values other than 0, 12 , and 1.

3. Coarse computability at density γ(A)

If A is any set, it follows from the definition of γ(A) that A is coarsely computable
at every density less than γ(A) and at no density greater than γ(A). What happens
at γ(A)? Let us say that A is extremal for coarse computability if it is coarsely
computable at density γ(A). In this section, we show that extremal and non-
extremal sets exist. Moreover, we also show that every real in (0, 1] is the coarse
computability bound of an extremal set and of a non-extremal set. We also explore
the distribution of these cases in the Turing degrees. Roughly speaking, we show
that hyperimmune degrees yield extremal sets and high degrees yield non-extremal
sets.

Theorem 3.1. Every real in [0, 1] is the coarse computability bound of a set that
is extremal for coarse computability.
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Proof. Suppose 0 6 r 6 1. By Corollary 2.9 of [10] there is a set A1 such that
ρ(A1) = r. Let Z be a set with γ(Z) = 0, which exists by Theorem 2.2, and let
A = A1 ∪ Z. Note first that that A is coarsely computable at density r via the
computable set ω since

ρ(A
4
ω) = ρ(A) > ρ(A1) = r.

It follows that γ(A) > r, so it remains only to show that γ(A) 6 r.
Suppose for a contradiction that γ(A) > r, so A is coarsely computable at some

density r′ > r. Let C be a computable set such that ρ(A
4
C) > r′. Let:

S1 = A1 ∩ C
S2 = (Z \A1) ∩ C
S3 = A ∩ C.

Note that A
4
C is the disjoint union of S1, S2, and S3 so

ρn(A
4
C) = ρn(S1) + ρn(S2) + ρn(S3)

for all n.
Let ε = r′ − r. For all sufficiently large n we have ρn(A

4
C) > r + ε

2 . Since
S1 ⊆ A1 and ρn(A1) < r+ ε

3 for all sufficiently large n, we have ρn(S2)+ρn(S3) > ε
6

for all sufficiently large n. Hence ρ(S2 ∪ S3) > 0. But S2 ∪ S3 ⊆ C
4
Z so

ρ(C
4
Z) > 0, contradicting γ(Z) = 0. This contradiction shows that γ(A) 6 r,

and the proof is complete. �

Corollary 3.2 (to proof). Suppose a is a hyperimmune degree. Then, every ∆0
2

real in [0, 1] is the coarse computability bound of a set in a that is extremal for
coarse computability.

Proof. Just note that the proof of the theorem can be carried out effectively in a.
In more detail, by Theorem 2.21 of [10] there is a computable set A1 of density r.
Further, by Theorem 2.2 there is an a-computable set Z such that γ(Z) = 0. Then
A = A1 ∪ Z satisfies the theorem and is a-computable. We can ensure that A ∈ a
by coding a set in a into A on a set of density 0. �

We now consider sets that are not extremal for coarse computability. We first
consider the degrees of the sets A such that γ(A) = 1 but A is not coarsely com-
putable.

Define

Rn = {k : 2n | k & 2n+1 - k}.
The sets Rn were heavily used in [10] and [5]. Note that they are uniformly com-
putable and pairwise disjoint, and ρ(Rn) = 2−(n+1). As in [10] and [5], define

R(A) =
⋃
n∈A

Rn.

Note that, for all A, we have that A ≡T R(A) and α(R(A)) = γ(R(A)) = 1. To
see the latter (which was pointed out by Asher Kach), note that if Ck =

⋃
{Rn :

n ∈ A & n < k}, then Ck is computable and agrees with R(A) on
⋃
n<k Rn, and

the latter has density 1− 2−k.

Theorem 3.3. (i) If a is a degree such that a 
 0′, then a contains a set that
is not coarsely computable but whose coarse computability bound is 1.
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(ii) If a is a nonzero c.e. degree, then a contains a c.e. set that is not coarsely
computable but whose coarse computability bound is 1.

Proof. It is shown in Theorem 2.19 of [10] that R(B) is coarsely computable if and
only if B is ∆0

2. If a 
 0′ and B has degree a, then R(B) is a set of degree a that
is not coarsely computable even though its coarse computability bound is 1. Part
(i) follows.

Theorem 4.5 of [5] shows that every nonzero c.e. degree contains a c.e. set A
that is generically computable but not coarsely computable. Then α(A) = 1, so by
Lemma 1.7, γ(A) = 1. This proves part (ii). �

This result raises the natural question: Does every nonzero Turing degree contain
a set A such that γ(A) = 1 but A is not coarsely computable? We will later obtain
a negative answer in Theorem 5.12. In fact, we will show that if G is 1-generic and
∆0

2, and A 6T G has γ(A) = 1, then A is coarsely computable.
We now consider the coarse computability bounds of non-extremal sets.

Theorem 3.4. Every real in (0, 1] is the coarse computability bound of a set that
is not extremal for coarse computability.

Proof. Suppose 0 < r 6 1. We construct a set A so that γ(A) = r but A is not
coarsely computable at density r. As an auxiliary for defining A, we first use the
technique of Corollary 2.9 of [10] to define a set S of density r. To this end, we turn
r into a set B in the natural way. That is, since r > 0, it has a non-terminating
binary expansion r = 0.b0b1 . . . . We then set B = {i : bi = 1}. By restricted
countable additivity (Lemma 2.6 of [10]), R(B) has density r. Set S = R(B).

We now divide S into “slices” S0, S1, . . . as follows. Let c0 < c1 < · · · be the
increasing enumeration of B. Set Se = Rce . Note that the Se’s are pairwise disjoint
and that S =

⋃
e Se. Note also that each Se is computable (though not necessarily

computable uniformly in e).
We now define A. We first choose a set Z so that γ(Z) = 0. Such a set exists by

Theorem 2.2. Let C0, C1, . . . be an enumeration of the computable sets. We then
set

A = (S ∩ Z) ∪
⋃
e

(Se ∩ Ce).

We now claim that A is coarsely computable at density q whenever 0 6 q < r.
For, suppose 0 6 q < r. Since the density of S is r, there is a number n so that
ρ(
⋃
e<n Se) > q. Let C =

⋃
e<n(Se∩Ce). Then, C is a computable set. Also A and

C agree on each Se for e < n, so ρ(A
4
C) > ρ(

⋃
e<n Se) > q. Hence, C witnesses

that A is coarsely computable at density q.
To complete the proof, it suffices to show that A is not coarsely computable at

density r. To this end, it suffices to show that the lower density of A
4
Ce is smaller

than r for each e. Fix e ∈ N. By construction, (A
4
Ce)∩S is disjoint from Se and

so has upper density less than r. At the same time, note that (A
4
Ce)∩S ⊆ Ce

4
Z.

Since γ(Z) = 0, it follows that for each ε > 0 there are infinitely many n such that
ρn((A

4
Ce) ∩ S) < ε/3, as we will use below. Let r0 = ρ((A

4
Ce) ∩ S), and let

ε = r − r0. Then for infinitely many n we have

ρn(A
4
Ce) = ρn((A

4
Ce) ∩ S) + ρn((A

4
Ce) ∩ S) <

(
r0 +

ε

2

)
+
ε

3
< r.

It follows that ρ(A
4
Ce) < r. Hence A is not coarsely computable at density r,

which completes the proof. �



ASYMPTOTIC DENSITY AND THE COARSE COMPUTABILITY BOUND 7

Corollary 3.5 (to proof). Suppose a is a high degree. Then, every computable
real in (0, 1] is the coarse computability bound of a set in a that is not extremal for
coarse computability.

Proof. We just observe that the preceding proof can be carried out in an a-comput-
able fashion. By Theorem 1 of [9], there is a listing C0, C1, . . . of the computable
sets that is uniformly a-computable. Also, since r is computable, the sequence
S0, S1, . . . in the proof of the theorem is also uniformly a-computable. Each Se
contains only multiples of 2e and hence only numbers exceeding 2e. It follows that
S =

⋃
e Se is a-computable. Finally, every high degree is hyperimmune by a result

of D. A. Martin [13], and so every high degree computes a set Z with γ(Z) = 0 by
Theorem 2.2. Hence the set A defined in the proof of the theorem can be chosen to
be a-computable. By coding a set in a into A on a set of density 0 we can ensure
that A ∈ a. �

By using suitable computable approximations, the previous corollary can be
extended from computable reals to ∆0

2 reals. We omit the details.
It was shown in Theorem 4.5 of [5] that every nonzero c.e. degree contains a

c.e. set that is generically computable but not coarsely computable. It follows at
once from Lemma 1.7 that every nonzero c.e. degree contains a c.e. set A such that
γ(A) = 1 but A is not coarsely computable. We now use the method of Theorem
3.4 to extend this result to the case where γ(A) is a given computable real.

Theorem 3.6. Suppose a is a nonzero c.e. degree. Then, every computable real
in (0, 1] is the coarse computability bound and the partial computability bound of a
c.e. set in a that is not extremal for coarse computability.

Proof. Define the sets S, S0, S1, . . . as in the proof of Theorem 3.4 so that S =
⋃
e Se

and so that ρ(S) = r. Let B be a c.e. set of degree a, and let {Bs} be a computable
enumeration of B. We construct the desired set A 6T B using ordinary permitting;
i.e. if x ∈ As+1 \ As, then there exists y 6 x such that y ∈ Bs+1 \ Bs. To ensure
that B 6T A, we code B into A on a set of density zero.

Let the requirement Ne assert that if Φe is total, then the lower density of the
set on which it agrees with A is smaller than r. Thus, if Ne is met for every e, then
A is not coarsely computable at density r. We meet Ne by appropriately defining
A on Se and on S. If Φe is total, we meet Ne by making A completely disagree
with Φe on infinitely many large finite sets I ⊆ Se ∪ S. To this end, we effectively
choose finite sets Ie,i such that the following hold for all e, i, e′, and i′:

(i) Ie,i ⊆ (Se ∪ S).
(ii) min Ie,i+1 > max Ie,i.

(iii) ρm(Ie,i) > i
i+1ρm(Se ∪ S) where m = max Ie,i + 1.

(iv) If (e, i) 6= (e′, i′), then Ie,i ∩ Ie′,i′ = ∅.
The sets Ie,i may be obtained by intersecting appropriately large intervals with

Se∪S while preserving pairwise disjointness, and we will call the sets Ie,i “intervals”.
During the construction we will designate an interval Ie,i as “successful” if we have
ensured that Φe and A totally disagree on Ie,i. The construction is as follows:

Stage 0. Let A0 = ∅.
Stage s+ 1. For each e, i 6 s, declare Ie,i to be successful if it has not yet been

declared successful and if the following conditions are met.

(1) Φe,s is defined on all elements of Ie,i.
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(2) min(Ie,i) exceeds all elements of As ∩ Se.
(3) At least one number in Bs+1 \Bs is less than or equal to min(Ie,i).

If Ie,i is declared to be successful at stage s+ 1, then enumerate into A all x ∈ Ie,i
with Φe(x) = 0.

The set A is clearly c.e., and A 6T B by ordinary permitting. If the interval
Ie,i is ever declared to be successful, then A and Φe totally disagree on Ie,i, by
the action taken when it is declared successful and the disjointness condition (iv),
which ensures that no elements of Ie,i are enumerated into A except by this action.

Note that (2) ensures that A ∩ Se is computable for each e. It follows that
γ(A) > α(A) > r as in the proof of Theorem 3.4.

It remains to show that every requirement Ne is met. Suppose that Φe is total.
We claim first that the interval Ie,i is declared successful for infinitely many i.
Suppose not. Then A ∩ Se is finite. It follows that B is computable, since, for
all sufficiently large i, if s > i and Φe,s is defined on all elements of Ie,i, then no
number less than min(Ie,i) enters B after stage s. Since we assumed that B is
noncomputable, the claim follows.

Suppose Ie,i is successful. Set I = Ie,i. Then A4 Φe ⊇ I, so

ρm(A4 Φe) > ρm(I) >
i

i+ 1
ρm(Se ∪ S),

where m = max Ie,i + 1. There are infinitely many such i’s, and as i tends to

infinity, the right hand side of the above inequality tends to ρ(Se)+ρ(S). It follows
that ρ(A4Φe) > ρ(Se)+(1−r), and so by Lemma 1.9, ρ(A

4
Φe) 6 r−ρ(Se) < r,

as needed to complete the proof. �

4. Coarse Computability and Lowness

We now consider the coarse computability properties of c.e. sets that have a
density.

Proposition 4.1. Every low c.e. set having a density is coarsely computable. Every
c.e. set having a density has coarse computability bound 1.

Proof. The first statement is Corollary 3.16 of [5]. Let A be a c.e. set that has a
density and let ε > 0. Theorem 3.9 of [5] shows that A has a computable subset
C such that ρ(C) > ρ(A) − ε. Then C 4 A = A \ C. Hence, by Lemma 1.9,

ρ(A
4
C) = 1− ρ(A \ C). But by Lemma 3.3 (iii) of [5],

ρ(A \ C) 6 ρ(A)− ρ(C) < ε.

Hence ρ(A
4
C) > 1− ε. Since ε > 0 was arbitrary, we conclude that γ(A) = 1. �

The next result shows that the lowness assumption is strongly required in the
first part of Proposition 4.1.

Theorem 4.2. Every nonlow c.e. Turing degree a contains a c.e. set of density
1/2 that is not coarsely computable.

Proof. The proof of the theorem is similar to the proof in Theorem 4.3 of [5] that
every nonlow c.e. degree contains a c.e. set A such that ρ(A) = 1 but A has no
computable subset of density 1. Hence we give only a sketch. Let C be a c.e. set of
degree a. We ensure that A 6T C by a slight variation of ordinary permitting: If
x enters A at stage s, then either some number y 6 x enters C at s or x = s. This
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implies that A 6T C, and by coding C into A on a set of density 0 we can ensure
that A ≡T C without disturbing the other desired properties of A.

To ensure that ρ(A) = 1
2 , we arrange that ρ(A∩Rn) = ρ(Rn)

2 for all n. Then by
restricted countable additivity (Lemma 2.6 of [10]),

ρ(A) =
∑
n

ρ(A ∩Rn) =
∑
n

ρ(Rn)

2
=

∑
n ρ(Rn)

2
=

1

2
.

Let Rn be listed in increasing order as rn,0, rn,1, . . . . We require that, for all n and
all sufficiently large k, exactly one of rn,2k and rn,2k+1 is in A. This clearly implies

that ρ(A ∩Rn) = ρ(Rn)
2 .

Let Ne be the requirement that ρ(A4 Φe) > 0 if Φe is total. So, if Ne is met,
then A is not coarsely computable via Φe. We will define a ternary computable
function g(e, i, s) to help us meet this requirement by “threatening” to witness that
C is low. Let Ne,i be the requirement that either Ne is met or C ′(i) = lims g(e, i, s).
Since C is not low, to meet Ne it suffices to meet all of its subrequirements Ne,i.
Let Re,i denote R〈e,i〉. We use Re,i to meet Ne,i.

Fix e, i. Our module for satisfying Ne,i proceeds as follows. Let s0 be the least

number so that Φ
Cs0
i,s0

(i)↓; if there is no such number, then let s0 = ∞. For each

s < s0, let g(e, i, s) = 0 and put s into A if s is of the form r〈e,i〉,2k for some k.
If s0 is infinite, that is if the search for s0 fails, then no other work is done on
Ne,i. (Note that in this case lims g(e, i, s) = 0 = C ′(i), so Ne,i is met.) Suppose
s0 is finite (that is, the search for s0 succeeds). We choose an interval I0 ⊆ Re,i
as follows. Let I0 be of the form {r〈e,i〉,2j , . . . , r〈e,i〉,2k+1} so that min(I0) > s0 and
so that ρm(I0) > ρm(Re,i)/2 where m = r〈e,i〉,2k+1 + 1. Let u0 be the use of the

computation Φ
Cs0
i,s0

(i). Note that u0 < s0 by a standard convention and that no
element of I0 has been enumerated in A. We then restrain all elements of I0 from
entering A but continue putting alternate elements of Re,i above max I0 into A as
before.

We then continue by searching for the least number s1 > s0 so that Φe,s1(x)↓ for
every x ∈ I0 or some number less than u0 is enumerated into C at stage s1. If no
such number s1 exists, then let s1 =∞. Set g(e, i, s) = 0 whenever s0 6 s < s1. If
s1 is infinite, then no other work is done on Ne,i. (In this case, Ne is met because
Φe is not total.) Suppose s1 is finite (that is, this search succeeds). There are two
cases. First, suppose some number less than u0 is enumerated in C at stage s1. We
then have permission from C to enumerate numbers in I0 into A. Accordingly, we
cancel the restraint on I0 and put r〈e,i〉,2j′ into A whenever j 6 j′ 6 k. In this case
the interval I0 has become useless to us, and we go back to our first step but now

starting at stage s1. If we find a stage s2 > s1 with Φ
Cs2
i,s2

(i)↓, say with use u1, we

choose a new interval I1 of the same form as before, but now with min(I1) > s2 and
proceed as before with I1 in place of I0, and setting g(e, i, s) = 0 for s1 6 s < s2.

Now, suppose no number smaller than u0 is enumerated into C at s1. Then,
Φe,s1(x)↓ for all x ∈ I0. We are now in a position to make progress on Ne provided
that C later permits us to change A on I0. We then search for the least number
s2 > s1 so that some number less than u0 is enumerated in C at stage s2. If there
is no such number then let s2 = ∞. We set g(e, i, s) = 1 whenever s1 6 s < s2 in
order to force C to give us the desired permission. If s2 is infinite, then no other
work is done on Ne,i. (In this case, we have lims g(e, i, s) = 1 = C ′(i).) Suppose
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s2 is finite (that is, this search succeeds). We then declare the interval I0 to be
successful and cancel the restraint on I0. Since a number smaller than u0 < min(I0)
has now entered C, we have permission to enumerate elements of I0 into A. So, for
each j 6 j′ 6 k put exactly one of r〈e,i〉,2j′ , r〈e,i〉,2j′+1 into A so that A and Φe differ
on at least one of these numbers. (This ensures that at least half of the elements of

I0 are in A4Φe and hence that ρm(A4Φe) >
ρm(Re,i)

4 where m = max I0 +1.) We
now restart our process as above. We continue in this fashion, defining a sequence
of intervals. Note that, in general, g(e, i, s) = 1 if at stage s the most recently
chosen interval has been declared successful and we are awaiting a C-change below
it, and otherwise g(e, i, s) = 0.

This strategy clearly succeeds if any of its searches fail, by the parenthetical
remarks in the construction. Also, if there are infinitely many successful intervals,

it ensures that ρ(A4Φe) >
ρ(Re,i)

4 > 0, so Ne is met. If all searches are successful
but there are only finitely many successful intervals, then C ′(i) = 0 = lims g(e, i, s)
and Ne,i is met. Only finitely many elements of Re,i are permanently restrained
from entering A (namely the elements of the final interval, if any), so ρ(A) = 1

2 for
reasons already given. �

We now obtain the following from Proposition 4.1 and Theorem 4.2.

Corollary 4.3. If a is a c.e. degree, then a is low if and only if every c.e. set in
a that has a density is coarsely computable.

For an application of this result to a degree structure arising from the notion of
coarse computability, see Hirschfeldt, Jockusch, Kuyper, and Schupp [6].

5. Density, 1-genericity, and randomness

As we have already mentioned, it is easily seen that every degree contains a set
that is both coarsely computable and generically computable, and every nonzero
degree contains a set with neither of these properties. On the other hand, the
next two results show that for “most” degrees a, every a-computable set that is
generically computable is also coarsely computable. A set A is called 1-generic if
for every c.e. set S of binary strings, A either meets or avoids S.

Theorem 5.1. Let A be a 1-generic set and let r ∈ [0, 1]. Suppose that B 6T A and
B is partially computable at density r. Then B is coarsely computable at density r.

Proof. Fix a Turing functional Φ with B = ΦA and a partial computable function
ϕ such that ϕ(n) = B(n) for all n in the domain of ϕ, and ρ(domϕ) > r. Let

S = {σ ∈ 2<ω : Φσ is incompatible with ϕ}.
Then S is a c.e. set of strings so A either meets or avoids S. If A meets S, then
B disagrees with ϕ on some argument, a contradiction. Hence A avoids S. Fix a
string γ ≺ A such that no string extending γ is in S. Now define a computable set
C as follows. Given n, search for a string σ extending γ such that Φσ(n)↓ and put
C(n) = Φσ(n) for the first such σ that is found. Then C is total because A extends
γ and ΦA is total. Hence C is a computable set. Further, if ϕ(n)↓ then B(n) = C(n)
since no extension of γ is in S. Hence C

4
B ⊇ domϕ, so ρ(C

4
B) > r, and hence

B is coarsely computable at density r. �

Corollary 5.2. If A is 1-generic and B 6T A is generically computable, then B
is coarsely computable.
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We do not need the definition of n-randomness here, but we simply point out
the easy result that if A is 1-random, then γ(A) = 1

2 . A set A is called weakly

n-random if A does not belong to any Π0
n class of measure 0.

Theorem 5.3. (i) If A is weakly 1-random, B 6tt A, and B is partially com-
putable at density r, then B is coarsely computable at density r.

(ii) If A is weakly 2-random, B 6T A, and B is partially computable at density
r, then B is coarsely computable at density r.

Proof. To prove (i), fix a Turing functional Φ such that B = ΦA and ΦX is total
for all X ⊆ ω. Let ϕ be a partial computable function that witnesses that B is
partially computable at density r, and define

P = {X : ΦX is compatible with ϕ}.

Then P is a Π0
1 class and A ∈ P , so µ(P ) > 0, where µ is Lebesgue measure. By

the Lebesgue density theorem, there is a string γ such that µ(P∩[γ])
µ([γ]) > 1

2 , where

[γ] = {X ∈ 2ω : γ ≺ X}. Define

C =

{
n :

µ({Z � γ : ΦZ(n) = 1})
µ([γ])

>
1

2

}
.

Then it is easily seen that C is a computable set and C
4
B contains the domain

of ϕ, so B is coarsely computable at density r.
To prove (ii), fix a Turing functional Φ with B = ΦA and fix a partial computable

function ϕ that witnesses that B is partially computable at density r. Define

P = {X : ΦX is total and compatible with ϕ}.

Then P is a Π0
2 class and A ∈ P , so µ(P ) > 0. Then for notational convenience

assume that µ(P ) > 2
3 , applying the Lebesgue density theorem as in part (a). It

follows that for every n there exists i 6 1 such that µ({X : ΦX(n) = i}) > 1
3 .

Given n, one can compute such an i effectively, and then put n into C if and only
if i = 1. One can easily check that C is computable and C

4
B ⊇ domϕ, so

ρ(C
4
B) > ρ(domϕ) > r. Hence B is coarsely computable at density r. �

Note that 1-randomness does not suffice in part (ii) of the above theorem, since
every set is computable from some 1-random set.

Since the 1-generic sets are comeager and the weakly 2-random sets have measure
1, it follows from the last two theorems that generic computability implies coarse
computability below almost every set, both in the sense of Baire category and in
the sense of measure. The next result, due to Igusa [7], shows that the situation is
entirely different for the converse implication.

Theorem 5.4 (Igusa [7, Proposition 2.4]). For every degree a > 0 there is an a-
computable set B such that B has density 1 but B has no c.e. subset of density
1. Hence, every nonzero degree computes a set that is coarsely computable but not
generically computable.

The next result has a stronger hypothesis and a stronger conclusion.

Theorem 5.5. If the degree a is hyperimmune, there is an a-computable set B
such that B is of density 1 and is bi-immune.
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We omit the proof, which is an easy variation of Jockusch’s proof in [8, Theorem
3] that every hyperimmune set computes a bi-immune set.

Bienvenu, Day, and Hölzl [2] proved the beautiful theorem that every nonzero
Turing degree contains an absolutely undecidable set A; that is, a set such that ev-
ery partial computable function that agrees with A on its domain has a domain of
density 0. Of course, absolutely undecidable sets fail badly to be generically com-
putable. We now consider the degrees of sets that are both absolutely undecidable
and coarsely computable.

Corollary 5.6. In the sense of Lebesgue measure, almost every set A computes a
set B that is absolutely undecidable and coarsely computable.

Proof. D. A. Martin (see [3, Theorem 8.21.1]) proved that almost every set has
hyperimmune degree. It is obvious that every bi-immune set is absolutely undecid-
able. �

On the other hand, Igusa has proved the following theorem using forcing with
computable perfect trees.

Theorem 5.7 (Igusa, private communication). There is a noncomputable set A
such that no set B 6T A is both coarsely computable and absolutely undecidable.

We now turn to studying the degrees of sets A such that γ(A) = 1 but A is not
coarsely computable. As shown in Theorem 3.3, if either a 
 0′ or a is a nonzero c.e.
degree, then a contains such a set. This observation might lead one to conjecture
that every nonzero degree computes such a set, but we shall prove the opposite for
∆0

2 1-generic degrees. We will reach this result by first considering sets for which
γ(A) = 1 is witnessed constructively.

Definition 5.8. We say that γ(A) = 1 constructively if there is a uniformly com-
putable sequence of computable sets C0, C1, . . . such that ρ(A4Cn) < 2−n for all
n.

Of course, if A is coarsely computable, then γ(A) = 1 constructively. Although
the converse appears unlikely, it was proved by Joe Miller.

Theorem 5.9 (Joe Miller, private communication). If γ(A) = 1 constructively,
then A is coarsely computable.

Proof. We present Miller’s proof in essentially the form in which he gave it. Let Ik
be the interval [2k − 1, 2k+1 − 1). For any set C, let dk(C) be the density of C on

Ik, so dk(C) = |C∩Ik|
2k

. The following lemma, which will also be useful in the proof

of Theorem 5.12, relates ρ(C) to d(C), where d(C) = lim supk dk(C).

Lemma 5.10. For every set C,

d(C)

2
6 ρ(C) 6 2d(C).

Proof. For all k,

dk(C) =
|C ∩ Ik|

2k
6
|C � (2k+1 − 1)|

2k
6 2ρ2k+1−1(C).

Dividing both sides of this inequality by 2 and then taking the lim sup of both sides

yields that d(C)
2 6 ρ(C).
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To prove that ρ(C) 6 2d(C), assume that k − 1 ∈ In, so 2n 6 k < 2n+1. Then

ρk(C) =
|C � k|
k

6
|C � (2n+1 − 1)|

2n
=

∑
06i6n 2idi(C)

2n
< 2 max

i6n
di(C).

Let ε > 0 be given. Then di(C) < d(C) + ε for all sufficiently large i. Hence
there is a finite set F such that di(C \ F ) < d(C \ F ) + ε for all i. Then, by the
above inequality applied to C \ F , we have ρk(C \ F ) < 2(d(C \ F ) + ε) for all k,
so ρ(C \ F ) 6 2d(C \ F ). As ρ and d are invariant under finite changes of their
arguments and ε > 0 is arbitrary, it follows that ρ(C) 6 2d(C). �

We now complete the proof of Theorem 5.9. Let the sequence Cn witness that
γ(A) = 1 constructively, so {Cn} is uniformly computable and ρ(A4 Cn) < 2−n

for all n. It follows from the lemma that d(A4Cn) < 2−n+1. Hence, for each n, if
k is sufficiently large, we have dk(A4 Cn) < 2−n+1.

For m < n, we say that Cm trusts Cn on Ik if dk(Cn 4 Cm) < 2−m+2. We say
that Cn is trusted on Ik if Cm trusts Cn for all m < n. Note that C0 is trusted on
every interval Ik. We now define a computable set C that will witness that A is
coarsely computable. For each k, let N 6 k be maximal such that CN is trusted
on Ik, and let C � Ik = CN � Ik.

We claim that ρ(A4 C) = 0. Fix n. Let k > n be large enough that dk(A4
Cm) < 2−m+1 for all m 6 n. Then dk(Cn 4 Cm) 6 dk(A4 Cn) + dk(A4 Cm) <
2−m+1 + 2−n+1 < 2−m+2 for all m < n. Therefore, Cn is trusted on Ik. Hence
C � Ik = CN � Ik for some N > n such that CN is trusted on Ik. Therefore,
Cn trusts CN on Ik, so dk(Cn 4 CN ) < 2−n+2. It follows that dk(A 4 C) =
dk(A4 CN ) 6 dk(A4 Cn) + dk(Cn 4 CN ) < 2−n+1 + 2−n+2 < 2−n+3. Because
this is true for every sufficiently large k, we have d(A4 C) 6 2−n+3. Since n was
arbitrary, it follows that d(A4 C) = 0 and hence, by the lemma, ρ(A4 C) = 0.
Thus A is coarsely computable. �

Corollary 5.11. Suppose there is a 0′-computable function f such that, for all e,
we have that Φf(e) is total and {0, 1}-valued, and ρ(A4 Φf(e)) 6 2−e. Then A is
coarsely computable.

Proof. By the theorem, it suffices to show that γ(A) = 1 constructively. Let g be
a computable function such that f(e) = lims g(e, s). We now define a computable
function h such that, for all e, we have that Φh(e) is total and differs on only finitely
many arguments from Φf(e), so that Φh(0),Φh(1), . . . witnesses that γ(A) = 1 con-
structively. To compute Φh(e)(n), search for s > n such that Φg(e,s)(n) converges
in at most s many steps, and let Φh(e)(n) = Φg(e,s)(n). The s-m-n theorem gives
us such an h, and clearly h has the desired properties. �

We now have the tools to prove the following result, which we did not initially
expect to be true.

Theorem 5.12. Let G be a ∆0
2 1-generic set, and suppose that A 6T G and

γ(A) = 1. Then A is coarsely computable.

Proof. Fix Φ such that A = ΦG. As in the proof of Theorem 5.9 let Ik be the

interval [2k − 1, 2k+1 − 1) and define dk(C) = |C�Ik|
2k

and d(C) = lim supk dk(C).
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Consider first the case that for some ε > 0 and for every computable set C and
every number k, we have that G meets the set Sε,C,k of strings defined below:

Sε,C,k = {ν : (∃l > k)[dl(Φ
ν 4 C) > ε]}.

Of course, ν must be such that Φν(j)↓ for all j ∈ Il for the above to make sense.
We claim that γ(A) < 1 in this case, so that this case cannot arise. Let C be a
computable set and fix ε as in the case hypothesis. Then, for every k there exists
l > k such that dl(A4 C) > ε by the choice of ε. It follows that d(A4 C) > ε, so
ρ(A4 C) > ε

2 by Lemma 5.10. By Lemma 1.9 it follows that ρ(A
4
C) 6 1 − ε

2 .
Hence γ(A) 6 1− ε

2 < 1. Since γ(A) = 1 by assumption, this case cannot arise.
Since G is 1-generic, it follows that for every n there is a computable set C and

a number k such that G avoids S2−(n+2),C,k; i.e., there exists γ ≺ G such that γ has
no extension in S2−(n+2),C,k. Given l > k, let ν0 and ν1 be strings extending γ such
that Φνi(x)↓ for all x ∈ Il and i 6 1. Then

dl(Φ
ν0 4 Φν1) 6 dl(Φ

ν0 4 C) + dl(C 4 Φν1) < 2−(n+2) + 2−(n+2) = 2−(n+1).

Since G is ∆0
2, using an oracle for 0′ we can find γn ≺ G and kn such that for

all ν0, ν1 extending γn and all l > kn, if Φνi(x)↓ for all x ∈ Il and i 6 1 then
dl(Φ

ν0 4Φν1) 6 2−(n+1). Note that if we take ν0 ≺ G then dl(Φ
ν1 4A) < 2−(n+1).

For each n, define a computable set Bn as follows. On each interval Ik search
for ν1 < γn such that Φν1 converges on Ik. Note that such a ν1 exists because
γn ≺ G and ΦG is total. Let Bn � Ik = Φν1 � Ik. Then Bn is a computable set,
since the only non-effective part of its definition is the use of the single string γn.
Furthermore, an index for Bn as a computable set can be effectively computed from
γn and hence from 0′.

We claim that ρ(Bn 4 A) 6 2−n. Fix n. By Lemma 5.10, it suffices to show
that d(Bn 4 A) 6 2−(n+1). For all k, we have that dk(Bn 4 A) = dk(Φν1 4 A)
for some string ν1 extending γn. Hence, if k is sufficiently large, it follows that
dk(Bn4A) 6 2−n+1, and hence d(Bn4A) 6 2−(n+1), so ρ(Bn4A) 6 2−n. It now
follows from Corollary 5.11 with Φf(e) = Be that A is coarsely computable. �

6. Further results

In this section we investigate the complexity of γ(A) as a real number when
A is c.e. and look at the distribution of values of γ(B) as B ranges over all sets
computable from a given set A. A real r is left-Σ0

3 if {q ∈ Q : q < r} is Σ0
3.

Proposition 6.1. If A is a c.e. set, then γ(A) is a left-Σ0
3 real.

Proof. Let A be a c.e. set, and let q be a rational number. Then the following two
statements are equivalent:

(i) q < γ(A).
(ii) There is a computable set C and a rational number r > q such that ρn(A

4

C) > r for all sufficiently large n.

It is immediate that (ii) implies (i) since (ii) implies that A is coarsely computable
at density r and so q < r 6 γ(A).

Now assume (i) in order to prove (ii). Let r and s be rational numbers with
q < r < s < γ(A). Then A is coarsely computable at density s, so there is a
computable set C such that A

4
C has lower density at least s. Since r < s, it
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follows that ρn(A
4
C) > r for all sufficiently large n. Hence C and r witness the

truth of (ii).
Routine expansion shows that the set of rational numbers q satisfying (ii) is Σ0

3,
so γ(A) is left-Σ0

3 by definition. �

In the next result, we prove the converse and thus characterize the reals of the
form γ(A) for A c.e.

Theorem 6.2. Suppose 0 6 r 6 1. Then the following are equivalent:

(i) r = γ(A) for some c.e. set A.
(ii) r is left-Σ0

3.

Proof. It was shown in the previous proposition that (i) implies (ii), so it remains
to be shown that (ii) implies (i). Let r be left-Σ0

3. Our proof is based on that
of Theorem 5.7 of [5], which shows that r is the lower density of some c.e. set.
That proof consists in taking a ∆0

2 set B such that ρ(B) = r (which exists by the

relativized form of Theorem 5.1 of [5]) and constructing a strictly increasing ∆0
2

function t and a c.e. set A0 such that for each n,

(1) ρt(n)(A0) = ρn(B)
(2) A0 ∩ [t(n), t(n+ 1)) is an initial segment of [t(n), t(n+ 1)).

It then follows easily that ρ(A0) = ρ(B) = r.
Let S be the set of all pairs (k, e) such that e 6 k. Let f be a computable

bijection between S and ω. We can easily adapt the proof of Theorem 5.7 of [5] to
replace (1) by

(1′) ρt(f(k,e))(A0) = ρk(B) for each k and e 6 k,

while still having (2) hold for each n. Furthermore, we can also ensure that when
a new approximation t(n, s + 1) to t(n) is defined, it is chosen to be greater than
both 2t(n−1,s+1) and 2t(s,s) (because for each instance of Lemma 5.8 of [5], there
are infinitely many c witnessing the truth of the lemma).

We now define a c.e. set C. At stage s, proceed as follows for each pair (k, e)
with f(k, e) 6 s. Let n = f(k, e). If Φe,s(x)↓ for all x ∈ [t(n − 1, s), t(n, s)), then
for each such x for which Φe(x) = 0, enumerate x into C (if x is not already in C).
We say that x is put into C for the sake of (k, e).

Let A = A0 ∪ C. Then A is a c.e. set, and ρ(A) > ρ(A0) = r. By Theorem 3.9
of [5], for each ε > 0, there is a computable subset of A with lower density greater
than r − ε. It follows that γ(A) > r.

Now let e be such that Φe is total. Fix k and let n = f(k, e). Let s be least
such that t(n, s+ 1) = t(n). Every number put into C by the end of stage s is less
than t(s, s). Every number put into C after stage s for the sake of any pair other
than (k, e) is either less than t(n− 1) = t(n− 1, s+ 1) or greater than or equal to
t(n). By our assumption on the size of t(n), it follows that C(x) 6= Φe(x) for every

x ∈ [log2 t(n), t(n)), so ρt(n)(C
4

Φe) 6
log2 t(n)
t(n) , and hence

ρt(n)(A
4

Φe) 6 ρt(n)(C
4

Φe)+ρt(n)(A0) 6
log2 t(n)

t(n)
+ρt(n)(A0) =

log2 t(n)

t(n)
+ρk(B).

Since limn
log2 t(n)
t(n) = 0, we have ρ(A

4
Φe) 6 ρ(B) = r. Since e is arbitrary,

γ(A) 6 r. �
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Definition 6.3. If A ⊆ N we call

S(A) = {γ(B) : B 6T A} ⊆ [0, 1]

the coarse spectrum of A.

Theorem 6.4. For any set A and any ∆0
2 real s ∈ [0, 1], we have that s · γ(A) +

(1− s) ∈ S(A). It follows that S(A) is dense in the interval [γ(A), 1].

Proof. We may assume that s > 0, since any computable B 6T A witnesses the fact
that 1 ∈ S(A). By Theorem 2.21 of [10] there is a computable set R of density s.
Note that R is infinite. Let h be an increasing computable function with range R,
and let B = h(A). Then B 6T A, so it suffices to prove that γ(B) = s·γ(A)+(1−s).
For this, we need the following lemma, which relates the lower density of h(X) to
that of X. The corresponding lemma for density was proved as Lemma 3.4 of [4],
and the proof here is almost the same.

Lemma 6.5. Let h be a strictly increasing function and let X ⊆ ω. Then ρ(h(X)) =
ρ(rng(h))ρ(X), provided that the range of h has a density.

Proof. Let Y be the range of h, and for each u, let g(u) be the least k such that
h(k) > u. As shown in the proof of Lemma 3.4 of [4], ρu(h(X)) = ρu(Y )ρg(u)(X)
for all u, via bijections induced by h. Taking the lim inf of both sides and using
the fact that ρ(Y ) exists, we see that

ρ(h(X)) = ρ(Y )(lim inf〈ρg(0)(X), ρg(1)(X), . . . 〉).
It is easily seen that the function g is finite-one and g(h(x)) = x for all x, and
g(u + 1) 6 g(u) + 1 for all u. Hence the sequence on the right-hand side of the
above equation can be obtained from the sequence ρ0(X), ρ1(X), . . . by replacing
each term by a finite, nonempty sequence of terms with the same value. Thus
the two sequences have the same lim inf, and we obtain ρ(h(X)) = ρ(Y )ρ(X), as
needed to prove the lemma. �

To prove that γ(B) = s ·γ(A)+(1−s), it suffices to show that for each t ∈ [0, 1],
A is coarsely computable at density t if and only if B is coarsely computable at
density st + 1 − s. Suppose first that A is coarsely computable at density t, and

let C be a computable set such that ρ(A
4
C) > t. Let Ĉ = h(C). Then Ĉ is a

computable set and

ρ(Ĉ
4
B) = ρ(h(C

4
A)∪R) = ρ(h(C

4
A))+ρ(R) = sρ(C

4
A)+1−s > st+(1−s).

It follows that B is coarsely computable at density st+ (1− s).
Conversely, suppose a computable set Ĉ witnesses that B is coarsely computable

at density st+ (1− s). Since B = h(A) ⊆ rng(h) = R, we may assume without loss

of generality that Ĉ ⊆ R. Let C = h−1(Ĉ). Then

st+1−s 6 ρ(Ĉ
4
B) = ρ(h(C

4
A)∪R) = ρ(h(C

4
A))+ρ(R) = sρ(C

4
A)+1−s.

Solving for t (using the fact that s 6= 0), we obtain t 6 ρ(C
4
A), and it follows

that C witnesses that A is coarsely computable at density t. �
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