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0 Introduction

There has been increasing interest over the last few decades in the study of the effective
content of Mathematics. One field whose effective content has been the subject of a large
body of work, dating back at least to the early 1960’s, is model theory. (A valuable
reference is the handbook [7]. In particular, the introduction and the articles by Ershov
and Goncharov and by Harizanov give useful overviews, while the articles by Ash and by
Goncharov cover material related to the topic of this communication.)

Several different notions of effectiveness of model-theoretic structures have been inves-
tigated. This communication is concerned with computable structures, that is, structures
with computable domains whose constants, functions, and relations are uniformly com-
putable.

In model theory, we identify isomorphic structures. From the point of view of com-
putable model theory, however, two isomorphic structures might be very different. For
example, under the standard ordering of w, the successor relation is computable, but it
is not hard to construct a computable linear ordering of type w in which the successor
relation is not computable. In fact, for every computably enumerable (c.e.) degree a,
we can construct a computable linear ordering of type w in which the successor relation
has degree a. It is also possible to build two isomorphic computable groups, only one of
which has a computable center, or two isomorphic Boolean algebras, only one of which
has a computable set of atoms. Thus, for the purposes of computable model theory,
studying structures up to isomorphism is not enough. Instead, we study structures up to
computable isomorphism. This leads naturally to the idea of a computable presentation
of a structure, which is, roughly speaking, a computable copy of this structure. (Formal
definitions of this and other concepts will be given in the next section.)

Most of the results in this communication are contained in the author’s doctoral dissertation, written
at Cornell University under the supervision of Richard A. Shore. The author was partially supported by
an Alfred P. Sloan Doctoral Dissertation Fellowship.



What the above examples, as well as many other natural ones, have in common is
the idea of attempting to understand the differences between noncomputably isomorphic
computable presentations of a structure M by comparing (from a computability-theoretic
point of view) the images in these presentations of a particular relation on the domain
of M. (Of course, this is only interesting if this relation is not the interpretation in M
of a relation in the language of M.) The study of additional relations on computable
structures began with the work of Ash and Nerode [2] and has been continued in a large
number of papers. (References can be found in the aforementioned articles in [7].)

One approach to the study of relations on computable structures, which began with
the work of Harizanov [17], is to look at the collection of (Turing) degrees of the images of a
relation in different computable presentations of a structure, which is known as the degree
spectrum of the relation. This communication is mainly concerned with the question
of which sets of degrees can be realized as degree spectra of relations on computable
structures, both in the general case and with certain restrictions imposed on the relation
or the structure. The latter case will bring us to the intersection of computable model
theory and computable algebra.

After discussing basic definitions and notation in Section 1, in Section 2 we give a few
examples of possible degree spectra of relations. In Section 3, we discuss finite degree
spectra of relations, and in Section 4, we present an application of the techniques used to
construct relations with certain particular finite degree spectra to the question of what
can happen to the number of computable presentations of a structure when the structure
is expanded by a constant. Finally, Sections 5 and 6 deal with degree spectra of relations
on structures which belong to well-known classes of structures such as linear orderings,
groups, rings, and so forth.

1 Definitions and Notation

For basic notions of computability theory and model theory, the reader is referred to [33]
and [23], respectively. By degree, we will mean Turing degree unless otherwise specified.
We will denote the join of degrees a and b by aU b.

Since a-c.e. sets and degrees for arbitrary computable ordinals & may not be familiar
to all readers, we define them here. It is slightly cumbersome to give a definition of a-c.e.
sets that works for both o < w (where we want to agree with the definition of n-c.e. sets,
n € w, given by the difference hierarchy) and a > w. Furthermore, for a > w?, which
sets and degrees are a-c.e. depends on the choice of ordinal notation system (see [6] for
details). The following (slightly nonstandard) definition works well for our purposes, and
is easily seen to be equivalent to standard definitions of n-c.e. and a-c.e. sets and degrees.

1.1 Definition. Let o be a computable ordinal and assume we have fixed a univalent,
computably related ordinal notation system with a notation for a. Let "5 denote the
unique notation for § < « in this system. A set A is a-c.e. if there exists a partial
computable binary function ¥ satisfying the following conditions for all = € w.



L ¥("a',z)]=0.

2. If @ > w then there exists a § < a such that W("57, z) converges.

3. For the least § < a such that U("57, ) converges, U("67, x) = A(x).
A degree is a-c.e. if it contains an a-c.e. set.

One of the central notions of computable model theory is that of a computable struc-
ture. We will always assume that we are working with computable languages.

1.2 Definition. A structure A is computable if both its domain |A| and the atomic
diagram of (A, a)ec)4) are computable.

If, in addition, the n-quantifier diagram of (A, a).ec|4) is computable then A is n-
decidable, while if the full first-order diagram of (A, a)qc|4 is computable then A is
decidable.

As we have discussed above, the following definition is a natural one to make in the
context of computable model theory.

1.3 Definition. An isomorphism from a structure M to a computable structure is called
a computable presentation of M. (We often abuse terminology and refer to the image of
a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.

Another important notion is the number of computable presentations of a computably
presentable structure.

1.4 Definition. The computable dimension of a computably presentable structure M is
the number of computable presentations of M up to computable isomorphism.
A structure of computable dimension 1 is said to be computably categorical.

We will also have occasion to consider structures that, while not computably categori-
cal, have relatively simple isomorphisms between their various computable presentations.

1.5 Definition. A computably presentable structure is A9-categorical if any two of its
presentations are isomorphic via a A9 map.

In Section 3, we will also mention c.e. presentations. We will take the more general of
two possible definitions of c.e. structure, in which equality is c.e. rather than computable.
It will be clear that the result involving c.e. structures in Section 3 also holds for the less
general definition.

1.6 Definition. A structure A is c.e. if its domain |A| is computable and the atomic
diagram of (A, a)eec)a is c.e..

An isomorphism from a structure M to a c.e. structure is called a c.e. presentation
of M. If M has a c.e. presentation then it is c.e. presentable. The c.e. dimension of a
c.e. presentable structure M is the number of c.e. presentations of M up to computable
isomorphism.



As we have mentioned above, the study of additional relations on computable struc-
tures began with the work of Ash and Nerode [2], who were concerned with relations that
maintain some degree of effectiveness in different computable presentations of a structure.

1.7 Definition. Let U be a relation on the domain of a computable structure A and let
¢ be a class of relations. U is intrinsically € on A if the image of U in any computable
presentation of A is in €.

In [2], conditions that guarantee that a relation is intrinsically computable or in-
trinsically c.e. were given. More recent work has led to a number of other conditions
guaranteeing that a relation is intrinsically € for various classes € (see [3], for example).

An important class of relations is that of invariant relations. All relations mentioned
below are invariant unless otherwise noted.

1.8 Definition. A relation U on the domain of a structure M is invariant if, for every
automorphism f: M = M, f(U) =U.

The following definition is due to Harizanov [17].

1.9 Definition. Let U be a relation on the domain of a computable structure A. The
degree spectrum of U on A, DgSp4(U), is the set of degrees of the images of U in all
computable presentations of A.

It is also interesting to consider degree spectra of relations with respect to other
reducibilities.

1.10 Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility)
or weak truth-table reducibility (wtt-reducibility). Let U be a relation on the domain of
a computable structure A. The r-degree spectrum of U on A, DgSp’y(U), is the set of
r-degrees of the images of U in all computable presentations of A.

2 Examples of Degree Spectra of Relations

In this section, we give a few examples of sets of degrees that can be realized as degree
spectra of relations. We begin with three observations that often allow us to modify and
combine examples of possible degree spectra of relations to yield further examples.

The first one is rather simple: For any class of relations €, if U is an intrinsically
¢ k-ary relation on the domain of a computable structure A then V = (|A|)* — U is
intrinsically co-€ and DgSp 4(V) = DgSp4(U).

Our second observation is contained in the following result.

2.1 Proposition. Let A and B be sets of degrees and let € be a class of relations closed
under m-equivalence and finite disjoint unions. Let C = {c | dJa,b(a€ AANb € BAc=
aUb)}. If there exist intrinsically € relations U and V' on computable structures A
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and B, respectively, such that DgSp 4(U) = A and DgSpg(V) = B, then there exists
an intrinsically € relation W on a computable structure C such that DgSpe.(W) = C.
Furthermore, if both U and V' are invariant then W can be chosen to be invariant, and if
both A and B are AS-categorical then C can be chosen to be AY-categorical.

Our final observation is about degree spectra of relations with respect to different
reducibilities. Let r and s be reducibilities such that r is stronger than s, and let U be a
relation on the domain of a computable structure A. Then DgSp%(U) is equal to the set
of s-degrees that contain at least one r-degree in DgSp’(U).

Now let Cy be the directed graph consisting of a single node and no edges and let C;
be the directed graph consisting of two nodes x and y with an edge from z to y. Consider
the directed graph G = (|G|, E) that is the disjoint union of infinitely many copies of
each of Cy and C'. Let U be the unary relation on the domain of G that holds of x if and
only if there is a y such that E(x,y). Since U is defined by an existential formula in the
language of directed graphs, U is intrinsically c.e.. Furthermore, it is not hard to check
that DgSpg(U) contains all c.e. degrees. (In fact, DgSpg(U) contains all c.e. m-degrees
other than the m-degrees of () and w.)

By modifying this example in a natural way, it is possible to realize, for any n € w,
the set of all n-c.e. degrees as the degree spectrum of an intrinsically n-c.e. relation on
the domain of a computable structure. Another way to generalize the above example is
given in the following result.

2.2 Theorem. Let n > 0. There exists an intrinsically X0 relation U on the domain of
a computable structure A such that DgSp 4(U) consists of all X2 degrees.

By the first observation above, we can replace X9 by II2 in the statement of Theo-
rem 2.2. The next result shows that we can also replace XY by AY.

2.3 Theorem. Let n > 0. There exists an intrinsically A relation U on the domain of
a computable structure A such that DgSp 4(U) consists of all AY degrees.

It is worth noting that the above results stand in contrast to the following theorem,
proved independently by Ash, Cholak, and Knight [1] and Harizanov [20], thus illustrat-
ing the potential differences between the general case, in which we are trying to realize
certain sets of degrees as degree spectra of relations on computable structures with no
additional restrictions, and cases in which we impose extra conditions on some aspect of
this realization. (See Section 6 for more on this theme.)

2.4 Theorem (Ash, Cholak, and Knight; Harizanov). Let U be a relation on the domain
of a computable structure A. Suppose that for each A set C' there is an isomorphism f
from A to a computable structure B such that f <, C and C <, f(U). Then for each set
C there is an isomorphism [ from A to a computable structure B such that f <, C and
C <, f(U). In particular, DgSp 4(U) contains every degree.



As mentioned above, it is not hard to construct, for each n > 0, an intrinsically n-c.e.
relation on the domain of a computable structure whose degree spectrum consists of all
n-c.e. degrees. A little more work can get us a similar result with a-c.e. in place of n-c.e.
for any computable ordinal a. The following theorem is a generalization of this result,
although the proof is somewhat more complicated and involves building graphs that
represent computations in which we are computably approximating a given c.e. oracle.

2.5 Theorem. Let a be a computable ordinal and let a be a c.e. degree. There exists
an intrinsically a-c.e. invariant relation U on the domain of a AY-categorical computable
structure A such that DgSp 4(U) consists of all a-c.e. degrees less than or equal to a.

It is also possible to realize all degrees below a given c.e. degree as the degree spectrum
of a relation on the domain of a computable structure.

2.6 Theorem. Let a be a c.e. degree. There exists an invariant relation U on the domain
of a AY-categorical computable structure A such that DgSp 4(U) consists of all degrees less
than or equal to a.

The fact that, in Theorems 2.5 and 2.6, U is invariant and A is AS-categorical is
interesting because, as we will see in Section 6, there are certain restrictions on what the
degree spectrum of an invariant computable relation on the domain of a AS-categorical
computable structure can be.

It is easy to give an example of a relation on the domain of a computable structure
whose degree spectrum contains all degrees, and for any degree a, it is equally easy to give
an example of a relation on the domain of a computable structure whose degree spectrum
is {a}. Thus, realizing all degrees above a given (not necessarily c.e.) degree as the degree
spectrum of a relation on the domain of a computable structure is a simple application
of Proposition 2.1.

Similarly, combining Theorem 2.6 with Proposition 2.1, we see that if a < b are degrees
and b is c.e. then there exists a relation U on the domain of a computable structure A
such that DgSp 4(U) consists of all degrees in the interval [a, b]. The analogous argument
shows that, for each computable ordinal «, there exists an intrinsically a-c.e. relation U
on the domain of a computable structure A such that DgSp 4(U) consists of all a-c.e.
degrees in the interval [a, b].

Theorems 2.5 and 2.6 remain true with degree replaced by wtt-degree and DgSp 4(U)
replaced by DgSp*(U).

Realizing sets of degrees of finite cardinality greater than 1 as degree spectra of rela-
tions on computable structures, which is the topic of the next section, normally requires
fairly complicated constructions. It is possible, however, to obtain finite degree spectra
of relations as easy corollaries to two results, one in computable model theory, and the
other in classical computability theory.

First of all, the existence of a relation with a two-element degree spectrum that in-
cludes 0 follows from the existence of a rigid structure of computable dimension 2, which
was shown by Goncharov [10]. (This has been noted by Harizanov (see [18]).)
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It is also possible to give an example of an intrinsically d.c.e. relation on the domain
of a AY-categorical structure with a two-element degree spectrum, but one that does not
include 0. Let d be a maximal incomplete d.c.e. degree, as constructed in [5]. (That
is, d # 0’ is d.c.e. and there are no d.c.e. degrees in (d,0').) It is easy to define an
invariant d.c.e. relation V' on the domain of a computably categorical structure B whose
degree spectrum is the singleton {d}. It is likewise easy to define an invariant intrinsically
d.c.e. relation U on the domain of a AS-categorical computable structure A whose degree
spectrum is the set of all d.c.e. degrees.

By Proposition 2.1, there exists an intrinsically d.c.e. invariant relation W on the
domain of a A9-categorical computable structure C whose degree spectrum is

{c|da,b(a € DgSp4(U) Ab € DgSpg(V) Ac=aUb)} =
{c|d<candcisdce}={d0}.

The fact that C is AJ-categorical and W is invariant is particularly interesting in light
of the result, discussed in Section 6, that no finite set of degrees containing 0 can be the
degree spectrum of an invariant relation on the domain of a AS-categorical computable
structure.

3 Finite Degree Spectra of Relations

The Ash-Nerode type conditions mentioned in Section 1 usually imply that the degree
spectrum of a relation is either a singleton or infinite. Indeed, for various classes of
degrees, conditions have been formulated that guarantee that the degree spectrum of a
relation consists of all the degrees in the given class (see [1], for example). Motivated
by these considerations, as well as by Goncharov’s examples [10] of structures of finite
computable dimension, Harizanov and Millar suggested the study of relations with finite
degree spectra.

Harizanov [19] was the first to give an example of an intrinsically AJ relation with a
two-element degree spectrum that includes O.

3.1 Theorem (Harizanov). There exist a A but not c.e. degree a and a relation U on the
domain of a computable structure A of computable dimension 2 such that DgSp4(U) =

{0,a}.

Khoussainov and Shore and Goncharov [15],[24] showed the existence of an intrinsically
c.e. relation with a two-element degree spectrum.

3.2 Theorem (Khoussainov and Shore, Goncharov). There exist a c.e. degree a and an

intrinsically c.e. relation U on the domain of a computable structure A of computable
dimension 2 such that DgSp 4(U) = {0,a}.



This left open the question, asked explicitly in [15], of which (c.e.) degrees can be
the nonzero element of a two-element degree spectrum. This is answered for c.e. degrees
in [21], where it is shown that every c.e. degree belongs to some two-element degree
spectrum whose other element is O.

3.3 Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation U
on the domain of a computable structure A such that DgSp,(U) = {0,a}.

The proof of this theorem uses techniques from [24], which in turn builds on work of
Goncharov [9],[10] and Cholak, Goncharov, Khoussainov, and Shore [4]. This proof can
be modified to obtain the following result, which is also due independently to Khoussainov
and Shore [25] (as are its extensions, Theorems 3.7 and 3.9 below), whose proof uses a
complicated modification of their proof of Theorem 3.2.

3.4 Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation U on
the domain of a computable structure A of computable dimension 2 such that DgSp 4,(U) =
{0,a}. In addition, A can be chosen so that every c.e. presentation of A is computable,
which implies that A has c.e. dimension 2.

In [24], Khoussainov and Shore also proved the following theorem.

3.5 Theorem (Khoussainov and Shore). For each computable partial ordering P there
exists an intrinsically c.e. relation U on the domain of a computable structure A such
that (DgSp4(U), <) = P. If P has a least element then we can pick U and A so that
0 € DgSp4(U).

The proof of Theorem 3.3 can be modified to establish the following extension of
Theorem 3.5.

3.6 Theorem. Let {A;}ic., be a uniformly c.e. collection of sets. There exists an intrin-
sically c.e. relation U on the domain of a computable structure A such that DgSp 4(U) =
[deg(A)) | i € w}.

Another way in which we can extend Theorem 3.3 is by broadening our focus from
the c.e. degrees to larger classes of degrees.

3.7 Theorem. Let a € w U {w} and let a > 0 be an a-c.e. degree. There exists an

intrinsically a-c.e. relation U on the domain of a computable structure A of computable
dimension 2 such that DgSp ,(U) = {0, a}.

Remark. One interesting consequence of Theorem 3.7 is that there exists a minimal degree
a such that {0,a} is realized as the degree spectrum of a relation on the domain of a
computable structure.

Theorems 3.6 and 3.7 can be conflated to produce the following results.



3.8 Theorem. Let o € wU {w} and let {A;}icw be a uniformly a-c.e. collection of sets.
There exists an intrinsically a-c.e. relation U on the domain of a computable structure A
such that DgSp 4(U) = {deg(4;) | i € w}.

3.9 Theorem. Let o € wU {w} and let ay,...,a, be a-c.e. degrees. There exists an
intrinsically a-c.e. relation U on the domain of a computable structure A of computable
dimension n + 1 such that DgSp ,(U) = {ay, ..., a,}.

The proofs of Theorems 3.3, 3.4, and 3.7 are such that these theorems remain true
with degree replaced by m-degree and DgSp ,(U) replaced by DgSp’y(U). Thus, for any
reducibility r weaker than m-reducibility, these theorems remain true with degree replaced
by r-degree and DgSp,(U) replaced by DgSp’y(U). The same holds of Theorems 3.6
and 3.8 if we require that A; # () and A; # w for all i € w, and of Theorem 3.9 if we
require that the m-degrees of () and w not be on the list ay, ..., a,.

4 Expansions of Computably Categorical Structures

In classical model theory, it follows from the Ryll-Nardzweski Theorem that a count-
ably categorical structure remains countably categorical when expanded by finitely many
constants. It is natural to ask whether the same is true in the analogous situation in
computable model theory. That is, does every computably categorical structure remain
computably categorical when expanded by finitely many constants?

Millar [29] showed that, with a relatively small additional amount of decidability,
computable categoricity is preserved under expansion by finitely many constants.

4.1 Theorem (Millar). If A is computably categorical and 1-decidable then any expansion
of A by finitely many constants remains computably categorical.

However, preservation of categoricity does not hold in general, as was shown by Cholak,
Goncharov, Khoussainov, and Shore [4].

4.2 Theorem (Cholak, Goncharov, Khoussainov, and Shore). For each k > 0 there exists
a computably categorical structure A and an a € |A| such that (A,a) has computable
dimension k.

This raises the following question, left open in [4], as well as in [24], where an easier
proof of Theorem 4.2 is given: Does there exist a computably categorical structure whose
expansion by some set of finitely many constants has computable dimension w? In joint
work with Bakhadyr Khoussainov and Richard A. Shore, the methods of the proof of
Theorem 3.4 have been applied to give the following positive answer to this question.

4.3 Theorem (Hirschfeldt, Khoussainov, and Shore). There exists a computably categor-
ical structure A and an a € |A| such that (A,a) has computable dimension w.



5 Relations on Algebraic Structures I: Positive Re-
sults

Whenever a computable structure with a particularly interesting property is found, it
is natural to ask whether similar examples can be found within well-known classes of
algebraic structures, such as groups, rings, lattices, and so forth. As an example, let us
consider the computable dimension of computable structures.

It is easy to construct computable structures with computable dimension 1 or w.
Indeed, most familiar structures and even all members of many classes of familiar struc-
tures have computable dimension 1 or w. For instance, Nurtazin [31] showed that all
decidable structures fall into this category. Goncharov [8] later extended this result to
1-decidable structures, and there have been several other familiar classes of structures for
which similar results have been established.

5.1 Theorem. All structures in each of the following classes have computable dimension
1 orw.

e (Nurtazin; Metakides and Nerode) algebraically closed fields

(Nurtazin) real closed fields

(Goncharov) Abelian groups

(Goncharov and Dzgoev; Remmel) linear orderings

(Goncharov; LaRoche) Boolean algebras

e (Goncharov) AY-categorical structures

The result for algebraically closed and real closed fields is implied by the results in [31];
the result for algebraically closed fields was also independently proved in [28]. The result
for Abelian groups appears in [11], that for linear orderings independently in [14] and [32],
and that for AY-categorical structures in [12]. The result for Boolean algebras appears in
full in [13], though it is implicit in earlier work of Goncharov and, independently, in [27].

Thus, an important question early in the development of computable model theory was
whether there exist computable structures of finite computable dimension greater than 1.
As previously mentioned, this question was answered positively by Goncharov [10].

5.2 Theorem (Goncharov). For each n > 0 there is a computable structure with com-
putable dimension n.

Further investigation led to examples of computable structures with finite computable
dimension greater than 1 in several classes of algebraic structures. In each case, the proof
consists of coding families of c.e. sets with a finite number of computable enumerations (up
to a suitable notion of computable equivalence of enumerations) in a sufficiently effective
way.
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5.3 Theorem. For each n > 0 there are structures with computable dimension n in each
of the following classes.

e (Goncharov) graphs, partial orderings, and lattices
e (Goncharov, Molokov, and Romanovskii) 2-step nilpotent groups
e (Kudinov) integral domains

The results for partial orderings and (implicitly) graphs appear in [10], and the result
for lattices is an easy consequence of the results in that paper. The result for 2-step
nilpotent groups (which improves a result in [11]) appears in [16], and that for integral
domains in [26].

In the original proofs of Theorems 3.2 and 4.2, the structures in question are directed
graphs, and the relation mentioned in Theorem 3.2 is unary. The same holds of the other
results mentioned in Sections 3 and 4. It is natural to ask, in the spirit of what was done
for structures of finite computable dimension, for which theories these theorems remain
true if we also require that A be a model of the given theory.

In this section, we present a method for showing that Theorems 3.2 and 4.2, as well as
related results, including the results of Sections 2, 3, and 4, remain true if we also require
that A be a model of a given theory. In joint work with Bakhadyr Khoussainov, Richard
A. Shore, and Arkadii M. Slinko [22], this method is applied to several classes of algebraic
structures.

5.4 Theorem (Hirschfeldt, Khoussainov, Shore, and Slinko). For each theory in the
following list, Theorems 2.2, 2.3, 2.5, 2.6, 3.1-3.9, 4.2, and 4.3 remain true if we also
require that the structures mentioned in these theorems be models of the given theory,
and that the relations mentioned in these theorems be submodels: symmetric, irreflexive
graphs; partial orderings; lattices; rings (with zero-divisors); integral domains of arbitrary
characteristic; commutative semigroups; and 2-step nilpotent groups.

Notice that, by Theorem 5.1, most of the results mentioned above cannot be extended
from partial orderings to linear orderings, from lattices to Boolean algebras, or from
commutative semigroups and 2-step nilpotent groups to Abelian groups. We will say
more about this in Section 6.

The proof of Theorem 5.4 is based on coding computable graphs with the desired
properties into models of the given theories in a way that is effective enough to preserve
these properties. This approach is much simpler than attempting to adapt the original
proofs of the theorems under consideration. Furthermore, the codings in [22] are suffi-
ciently effective to make several other existing theorems, as well as similar results that
might be proved for graphs in the future, carry over to the classes of structures mentioned
above without additional work.

The following theorem gives a sufficient condition for a coding of a graph into a struc-
ture to be effective enough for the purpose of establishing Theorem 5.4. It corresponds
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to an especially effective version of interpretations of theories (in the standard model-
theoretic sense). (See Chapter 5 of [23] for more on interpretations of theories.)

If Q is an equivalence relation on a set D then by a set of QQ-representatives we mean
a set of elements of D containing exactly one member of each Q)-equivalence class.

5.5 Theorem (Hirschfeldt, Khoussainov, Shore, and Slinko). Let G be a computably
presentable directed graph and let A be a computably presentable structure. Suppose there
exist intrinsically computable, invariant relations D(z), Q(z,y), and R(x,y) on |A| and
a map G — Ag from the set of computable presentations of G to the set of computable
presentations of A with the following properties.

(P1) For each computable presentation G of G, there exists a computable map go :

D(AG) M |G| such tha’t; fOT T,y € D(AG)7 RAG(xay) A EG(QG(x)agG(y)) and
Q4% (z,y) & ga(r) = galy). (Note that this implies that Q is an equivalence

relation and that if Q(x,z") and Q(y,y’) then R(x,y) < R(2',y').)

(P2) For every pair S, S’ of sets of Q-representatives, if f : S L1y 87 s such that for ev-

onto

eryx,y € S, R(x,y) < R(f(x), f(y)), then f can be extended to an automorphism
of A.

(P3) If G is a computable presentation of G and S is a computable set of Q*¢-rep-
resentatives then there is a computable set of existential formulas {po(a, l;o,x),
v1(a, gl,x),...} such that @ is a tuple of elements of |Ag|, for each i € w, b; is
a tuple of elements of S, each x € |Ag| satisfies some ;, and no two elements of
|Ag| satisfy the same ;. (Such a set of formulas is known as a defining family for

<AG7 a>a€5‘)
Then the following hold.
1. A has the same computable dimension as G.

2. If v € |G| then there exists an a € D(A) such that (A,a) has the same computable
dimension as (G, ).

3. If V.C |G| then there exists a U C D(A) such that DgSp 4(U) = DgSpg (V).

6 Relations on Algebraic Structures II: Negative Re-
sults
As remarked in Section 5, results such as Theorem 3.4 cannot be extended to any of the

classes of structures mentioned in Theorem 5.1. However, since it is certainly possible for
a relation on the domain of a computable structure of infinite computable dimension to
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have a degree spectrum of finite cardinality, this does not rule out the possibility that,
for one or more of these classes, results such as Theorem 3.3 still hold if we also require
that the structures mentioned in these results be in the given class. In this section, we
present conditions that guarantee that the degree spectrum of a relation on the domain
of a computable structure is either a singleton or infinite.

It should be pointed out that, in the general case, there are no known restrictions
on the sets of degrees that can be realized as degree spectra of relations on computable
structures other than the ones that follow from the fact that the set of images of a
relation on the domain of a computable structure in different computable presentations
of the structure is (by definition) 1.

Goncharov [12] has shown that if two computable structures are AS-isomorphic but
not computably isomorphic then their computable dimension is w. This theorem is quite
useful in establishing results such as those in Theorem 3.3, since it reduces the task
of building infinitely many noncomputably isomorphic computable presentations of a
computable structure to that of building a single computable presentation that is AY-
isomorphic but not computably isomorphic to the original structure. It is thus desirable
to have an analog of this result in the case of degree spectra of relations. Such an analog
is a corollary to the following result.

6.1 Theorem. Letk € w. Let U and U' be k-ary relations on the domains of computable
structures A° and A, respectively, and let By, ..., B,_, C w* be AY but not computable.
Suppose that U° is not computable, U is computable, and there exists a A isomorphism
f: A" — Al such that f(U°) = U'. Then there exists a AY function h : |A°] — w
such that h(A°) is a computable structure, h(U) is not computable, and for all m < n,
B, &1 h(UY).

6.2 Corollary. Let U° and Ul be relations on the domains of computable structures A°
and A, respectively. Suppose that U is not computable, U' is computable, and there
ezists a AY isomorphism f : A® =2 A' such that f(U°) = U'. Then DgSp .0(U°) is
infinite.

The following is an obvious application of Corollary 6.2.

6.3 Corollary. Let U be an invariant computable relation on the domain of a AY-
categorical computable structure A. Either U is intrinsically computable or DgSp 4(U)
is infinite.

Remark. In the above corollary, both conditions on U are necessary. In Section 2, we
saw that there exists an invariant relation on the domain of a AJ-categorical computable
structure whose degree spectrum consists of exactly two degrees, neither of them com-
putable. Now let A%, A!, U° and U! be the structures and relations built in [24] to prove
the theorem that we have numbered Theorem 3.2. We can assume that |A°| N |A'] = 0.
Let P be the predicate {(z,y) | x € U’Ay € U' A there is an isomorphism from A° to A*
that extends the map = +— y} and let E be the equivalence relation whose equivalence
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classes are |A°| and |A'|. In the proof of Theorem 4.2 of [24], it is shown that if B is
the computable structure obtained by taking the union of A° and A! and expanding
it by P and E then B is computably categorical. Since B has exactly one nontrivial
automorphism, which sends U! to U?, DgSpg(U!) = {0, deg(U°)}.

Even when A is not necessarily Ad-categorical (and U is not necessarily invariant), it is
sometimes possible to use Corollary 6.2 to show that either U is intrinsically computable
or DgSp 4(U) is infinite.

In [30], Moses showed that, for any computable relation U on a linear ordering £, either
U is definable by a quantifier free formula in the language of £ expanded by finitely many
constants (in which case it is obviously intrinsically computable) or there is a function f
such that f(L£) is a computable structure and f(U) is not computable. It is clear from
the proof of this result that, in the latter case, f can be chosen to be AS. Corollary 6.2
can now be invoked to establish the following result.

6.4 Theorem. Let U be a computable relation on the domain of a computable linear
ordering L. FEither U is intrinsically computable or DgSp,(U) is infinite.

The analogous result for Boolean algebras has recently been established by Downey,
Goncharov, and Hirschfeldt (in preparation).

As mentioned in Section 5, every 1-decidable structure has computable dimension 1
or w. A roughly analogous situation holds in the context of degree spectra of relations.
This follows from a result of Harizanov [18], but Corollary 6.2 allows us to conclude it
from the proof of an earlier result of Ash and Nerode [2].

6.5 Definition. Let U be a relation on a computable structure A. We say that U satisfies
condition (x) if there is a computable procedure for determining, given ay, ..., a, € |A|
and an existential formula ¢(Z) in the language of A expanded by constants for aq, . . ., a,,
whether (A, U, ag, ..., a,) EVEZ(Y(Z) = U(T)).

Notice that if U is a nonempty relation on a computable structure A satisfying condi-
tion (*) then U is computable and A is 1-decidable. Notice also that a sufficient condition
for both U and its complement to satisfy condition (x) is that (A, U) be 1-decidable.

6.6 Theorem (Ash and Nerode). Let U be a relation on a computable structure satisfying
condition (x). Then U is formally c.e. if and only if it is intrinsically c.e..

The proof of Theorem 6.6 shows that if a relation U on a computable structure A
satisfying condition (%) is not formally c.e. then there is a A function f such that f(.A)
is a computable structure and f(U) is not c.e.. Given a computable relation U on a
computable structure A such that both it and its complement satisfy condition (x), we
can apply this result to U and its complement to conclude that either U is formally
computable (in which case it is intrinsically computable) or there is a A function f such
that f(A) is a computable structure and f(U) is not computable. The result below now
follows from Corollary 6.2.
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6.7 Theorem (Harizanov). Let U be a computable relation on the domain of a computable
structure A such that both U and its complement satisfy condition (x). FEither U is
intrinsically computable or DgSp 4(U) is infinite.
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