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Abstract

We give some new examples of possible degree spectra of invariant relations

on ∆0
2-categorical computable structures, which demonstrate that such spectra

can be fairly complicated. On the other hand, we show that there are nontrivial

restrictions on the sets of degrees that can be realized as degree spectra of such

relations. In particular, we give a sufficient condition for a relation to have infinite

degree spectrum that implies that every invariant computable relation on a ∆0
2-

categorical computable structure is either intrinsically computable or has infinite

degree spectrum. This condition also allows us to use the proof of a result of

Moses [23] to establish the same result for computable relations on computable

linear orderings.

We also place our results in the context of the study of what types of degree-

theoretic constructions can be carried out within the degree spectrum of a relation

on a computable structure, given some restrictions on the relation or the structure.

From this point of view we consider the cases of ∆0
2-categorical structures, linear

orderings, and 1-decidable structures, in the last case using the proof of a result

of Ash and Nerode [3] to extend results of Harizanov [13].
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1 Introduction

The study of properties of computable structures has formed an important and fertile

branch of computable model theory. (A valuable reference is the handbook [9]. In partic-

ular, the introduction and the articles by Ershov and Goncharov [8] and Harizanov [14]

give useful overviews, while the articles by Ash [1] and Goncharov [11] cover material

related to the topic of this paper. Another relevant survey article is [21].) One direction

this study has taken, beginning with the work of Ash and Nerode [3] in the early 1980’s,

concerns the question of what can be said about the images of an additional relation U

on the domain of a computable structureM (that is, one that is not the interpretation

in M of a relation in the language of M) in different computable copies of M.

For example, if L is a linear ordering of type ω and S is the successor relation on L
then there is a computable copy of L in which the image of S is computable, namely

ω with its standard ordering. But there are also computable copies of L in which the

images of S are not computable (see, for instance, [5]). In fact, for every computably

enumerable (c.e.) degree a, we can construct a computable linear ordering of type ω in

which the successor relation has degree a. On the other hand, the successor relation on

any linear ordering is always co-c.e., so this is the most we can do.

In the previous example we see two ways of approaching the question of what happens

to a relation in different copies of a structure. One, taken in [3], is to begin with a relation

U on a computable structure A that is in some particular class of relations, such as the

computable relations or the c.e. relations, and ask when is it the case that the image of

U in different computable copies of A always remains in the given class.

A different approach, which was first taken by Harizanov [12] (although there are

portents of this approach in earlier work such as [24]), is to look at the collection of

(Turing) degrees of the images of a relation in different computable copies of a structure,

which is known as the degree spectrum of the relation.

The question of which sets of degrees can be realized as degree spectra of relations on

computable structures, both in the general case and with certain restrictions imposed

on the relation or the structure, has received increasing attention from a number of

researchers. (References can be found in the aforementioned articles in [9], as well

as in [21].) Several natural classes of degrees can be so realized, for example the α-

c.e. degrees (see Section 3) and the Σ0
α and ∆0

α degrees (see [18]) for any computable

ordinal α. However, not all degree spectra of relations are natural classes of degrees.

For instance, in [16] it is shown that, for every uniformly c.e. collection S of sets of
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natural numbers, there is an invariant relation on a computable structure whose degree

spectrum coincides with the degrees of elements of S.

In [17] it is shown that for various classes of structures, such as nilpotent groups

and integral domains, there are no more restrictions on the possible degree spectra of

relations on structures belonging to these classes than there are in the general case. In

this paper, we discuss classes of structures of which this is not true. Our main focus

is on ∆0
2-categorical structures, that is, structures for which any two computable copies

are isomorphic via a ∆0
2 map. This class of structures includes several natural classes

of structures, such as algebraically closed fields, graphs in which all connected compo-

nents are finite, and structures in relational languages all of whose relations are unary.

We show, for example, that every invariant computable relation on a ∆0
2-categorical

computable structure is either intrinsically computable (that is, computable in every

computable copy of the structure) or has infinite degree spectrum. This is in contrast

to the general case, since invariant computable relations with degree spectra of finite

cardinality greater than one have been known to exist since the work of Harizanov [12].

First, however, in Section 3, we give some new examples of possible degree spectra of

invariant relations on ∆0
2-categorical computable structures. In Section 4, we establish

results that, besides their independent interest discussed below, can be used to give a

sufficient condition for a relation to have infinite degree spectrum. This condition is

given in Section 5, and is applied to ∆0
2-categorical structures and linear orderings, in

the last case making use of the proof of a result of Moses [23].

There is a sense in which the study of degree spectra of relations on computable

structures is as a generalization of the classical study of the degrees, since the degrees

can be seen as the degree spectrum of an infinite and coinfinite relation (of any arity) on

the domain of a computable structure in the empty language. (The view of the study of

relations on structures as a form of generalized computability theory, and of the study of

relations on computable structures as an effective version of this approach, is well-known

in abstract computability theory (see [22] or [26], for instance), but the focus there has

been principally on questions of definability and computability-theoretic hierarchies,

rather than on degrees. Of course, it is only in the effective case that concentrating

on degrees becomes natural.) From this point of view, it is interesting to consider the

question of which of the constructions that have been developed in the context of the

degrees as a whole (or, more to the point, the c.e. degrees, since we are dealing with

computable structures and thus with issues of effectivity that do not arise in the case of

the degrees as a whole) are still possible in subcases of this more general setting.
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Of course, in general, nothing is possible, since there are relations whose degree

spectra are singletons, and, even if we ignore this case, the existence of structures of

finite computable dimension shows that not much can be done in the most general

case. However, when restrictions on the relation or the structure are imposed, certain

constructions become possible. Results that give sufficient conditions for the degree

spectrum of a relation to contain all degrees in a given natural class of degrees (see [2]

or [15], for example) can be thought of as examples of this approach, but a study of

degree spectra along the lines suggested above can be carried out even when no such

conditions hold.

In the case of invariant computable relations on ∆0
2-categorical computable structures

whose degree spectra are not singletons, the results of Section 4 will show that techniques

for constructing infinite sets of pairwise incomparable c.e. degrees and for avoiding the

cone of degrees above a given degree are always applicable. (We will show that this is

also the case for computable relations on linear orderings and for relations satisfying

certain decidability conditions from [3].) On the other hand, the results of Section 3 will

imply that the same is not true of techniques for building noncomputable sets below a

given (c.e.) degree.

2 Basic Definitions and Notation

For basic notions of computability theory and model theory, the reader is referred to [25]

and [19], respectively. By degree, we will mean Turing degree unless otherwise specified.

We will denote the join of degrees a and b by a ∪ b.

Since α-c.e. sets and degrees for arbitrary computable ordinals α may not be familiar

to all readers, we define them here. The definition of α-c.e. sets and degrees depends

on the choice of ordinal notation system; see [7] for details. When we talk about α-c.e.

sets and degrees, where α is a computable ordinal, we assume that we have fixed a

univalent, computably related ordinal notation system with a notation for α (and hence

for all ordinals less than α).

It is slightly cumbersome to give a definition of α-c.e. sets that works for both α < ω

(where we want to agree with the definition of n-c.e. sets, n ∈ ω, given by the difference

hierarchy) and α > ω. The following (slightly nonstandard) definition works well for

our purposes, and is easily seen to be equivalent to standard definitions of n-c.e. and

α-c.e. sets and degrees (as in [7]).
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2.1 Definition. Let α be a computable ordinal and assume we have fixed a univalent,

computably related ordinal notation system with a notation for α. Let pβq denote the

unique notation for β 6 α in this system.

A set A is α-c.e. if there exists a partial computable binary function Ψ satisfying

the following conditions for all x ∈ ω. (We will say that Ψ witnesses the fact that A is

α-c.e..)

1. Ψ(pαq, x)↓= 0.

2. If α > ω then there exists a β < α such that Ψ(pβq, x)↓.

3. For the least β 6 α such that Ψ(pβq, x)↓, Ψ(pβq, x) = A(x).

A degree is α-c.e. if it contains an α-c.e. set.

Whenever we mention a c.e. set X, we assume we have fixed some computable

enumeration of X and let X[s] denote the part of X enumerated after s+ 1 many steps.

Similarly, whenever we mention a ∆0
2 set Y , we assume we have fixed some computable

approximation of Y and let Y [s] denote the result of performing s + 1 many steps of

this approximation.

When we mention a fresh large number in one of our constructions, we mean a

number larger than any appearing in the construction up to that point.

For any set X, let X � m = X ∩ {0, . . . ,m− 1}.
The eth partial computable function with oracle X is denoted by ΦX

e . The evaluation

of Φ
X[s]
e at stage s is denoted by ΦX

e [s] and its value at x by ΦX
e (x)[s]. The use of the

computations ΦX
e (x) and ΦX

e (x)[s] are denoted by ϕXe (x) and ϕXe (x)[s], respectively.

Fix a computable one-to-one function from ω × ω onto ω and let 〈a, b〉 denote the

image under this function of the ordered pair consisting of a ∈ ω and b ∈ ω. We will

write 〈a, b, c〉 instead of 〈a, 〈b, c〉〉, and similarly for longer sequences of natural numbers.

Let π1(〈a, b〉) = a.

If ~x = (x0, . . . , xm) and ~y = (y0, . . . , yn) are sequences of natural numbers then

~x(i) = xi, max(~x) = max{xi | i < k}, and ~xa~y is the sequence (x0, . . . , xm, y0, . . . , yn).

We will write ~xaz instead of ~xa(z), where (z) is the sequence consisting of the single

element z. If f is a function on ω then we will write f(~x) to mean (f(x0), . . . , f(xm)).

If z ∈ ω then we will write ~x < z to mean that max(~x) < z. The notations ~x 6 z and

z 6 ~x are defined analogously.

One of the central notions of computable model theory is that of a computable

structure. We will always assume we are working with computable languages.
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2.2 Definition. A structure A is computable if its domain |A| is a computable subset

of ω and the atomic diagram of (A, a)a∈|A| is computable.

If, in addition, the existential diagram of (A, a)a∈|A| is computable then A is 1-

decidable.

Of course, there are often many different ways of making a given structure com-

putable. From the point of view of computable model theory, two computably isomor-

phic computable copies of a structure are the same, since they share all computability-

theoretic properties. However, two noncomputably isomorphic computable copies of a

structure can have very different computability-theoretic properties. This leads natu-

rally to the following definitions.

2.3 Definition. An isomorphism from a structure M to a computable structure is

called a computable presentation of M. (We often abuse terminology and refer to the

image of a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.

2.4 Definition. The computable dimension of a computably presentable structure M
is the number of computable presentations of M up to computable isomorphism.

A structure of computable dimension one is said to be computably categorical.

The main focus of this paper is on structures that, while perhaps not computably

categorical, do have relatively simple isomorphisms between their various computable

presentations.

2.5 Definition. A computably presentable structure is ∆0
2-categorical if any two of its

presentations are isomorphic via a ∆0
2 map.

As we have mentioned above, the study of additional relations on computable struc-

tures began with the work of Ash and Nerode [3], who were concerned with relations

that maintain some degree of effectiveness in different computable presentations of a

structure.

2.6 Definition. Let U be a relation on the domain of a computably presentable struc-

ture M and let C be a class of relations. The relation U is intrinsically C on M if the

image of U in any computable presentation of M is in C.

In particular, for any computable ordinal α, the relation U is intrinsically α-c.e. on

M if the image of U in any computable presentation of M is α-c.e..
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For example, any relation on the domain of a computably presentable structure that

is definable by an existential formula is intrinsically c.e., although the converse does not

hold. For more details, see Section 15 of [14].

It is often useful to consider relations that are preserved under all automorphisms of

a structure.

2.7 Definition. A relation U on the domain of a structureM is invariant if f(U) = U

for every automorphism f :M∼=M.

The following definition is due to Harizanov [12].

2.8 Definition. Let U be a relation on the domain of a computably presentable struc-

ture M. The degree spectrum of U on M, denoted by DgSpM(U), is the set of degrees

of the images of U in all computable presentations of M.

It is also interesting to consider degree spectra of relations with respect to other

reducibilities.

2.9 Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility)

or weak truth-table reducibility (wtt-reducibility). Let U be a relation on the domain

of a computably presentable structure M. The r-degree spectrum of U on M, denoted

by DgSpr
M(U), is the set of r-degrees of the images of U in all computable presentations

of M.

3 Examples of Degree Spectra of Relations on ∆0
2-

Categorical Structures

We begin with a simple observation. Let U and V be k-ary relations on the domains

of computable graphs A = (|A| , E) and B = (|B| , F ), respectively. Let C = (|C| , R,Q)

be the computable structure in the language with one binary and one unary relation

defined by

|C| = {2x | x ∈ |A|} ∪ {2x+ 1 | x ∈ |B|},

R = {(2x, 2y) | E(x, y)} ∪ {(2x+ 1, 2y + 1) | F (x, y)},

and

Q = {2x | x ∈ |A|}.
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Let

W = {(2x0, . . . , 2xk−1) | (x0, . . . , xk−1) ∈ U}∪
{(2x0 + 1, . . . , 2xk−1 + 1) | (x0, . . . , xk−1) ∈ V }.

It is easy to check that

DgSpC(W ) = {c | ∃a,b(a ∈ DgSpA(U) ∧ b ∈ DgSpB(V ) ∧ c = a ∪ b)}.

Furthermore, if A and B are ∆0
2-categorical then so is C, if U and V are invariant then

so is W , and, for any class of relations C closed under m-equivalence and finite disjoint

unions, if U and V are intrinsically C then so is W .

It is not hard to modify this construction to handle the case in which U and V do

not necessarily have the same arity and A and B are arbitrary computable structures,

and hence establish the following result.

3.1 Proposition. Let A and B be sets of degrees and let C be a class of relations closed

under m-equivalence and finite disjoint unions. Let C = {c | ∃a,b(a ∈ A∧b ∈ B ∧ c =

a ∪ b)}. If both A and B can be realized as degree spectra of intrinsically C invariant

relations on the domains of ∆0
2-categorical computable structures then so can C.

Now let C0 be the directed graph consisting of a single node and no edges and let C1

be the directed graph consisting of two nodes x and y with an edge from x to y. Consider

the directed graph G = (|G| , E) that is the disjoint union of infinitely many copies of

each of C0 and C1. Let U be the unary relation on the domain of G that holds of x if

and only if there is a y such that E(x, y). Since U is defined by an existential formula

in the language of directed graphs, U is intrinsically c.e.. We claim that DgSpG(U)

consists of all c.e. degrees. (In fact, DgSpm
G (U) consists of all c.e. m-degrees other than

the m-degrees of ∅ and ω.)

Indeed, let A be an infinite and coinfinite c.e. set and let a0, a1, . . . be a computable

enumeration of A. Define a directed graph G with edge relation F as follows. Let

|G| = ω and, for x, y ∈ ω, let F (x, y) hold if and only if x = 2ak and y = 2k + 1 for

some k ∈ ω. It is easy to check that G is a computable presentation of G. Furthermore,

UG(x)⇔ x = 2a ∧ a ∈ A, and hence UG ≡m A.

By modifying this example, it is possible to construct, for each n > 0, an intrinsically

n-c.e. invariant relation on a ∆0
2-categorical computable structure whose degree spectrum

consists of all n-c.e. degrees. A little more work can get us a similar result with α-c.e.

in place of n-c.e. for any computable ordinal α.
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In this section, we show that, in fact, for any c.e. degree a and any computable ordi-

nal α, there is an intrinsically α-c.e. invariant relation on a ∆0
2-categorical computable

structure whose degree spectrum consists of all α-c.e. degrees less than or equal to a,

and we extend this result to certain other nonprincipal ideals of ∆0
2 degrees. We begin

with a theorem that has a similar but simpler proof.

3.2 Theorem. Let a be a c.e. degree. There exists an invariant relation U on the

domain of a ∆0
2-categorical computably presentable structure M such that DgSpM(U)

consists of all degrees less than or equal to a.

Proof. The structure M will be a directed graph. We begin by defining our basic

building blocks.

3.3 Definition. Let n ∈ ω. The directed graph [n] consists of n + 3 many nodes

x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x0, and an edge

from xi to xi+1 for each i 6 n+ 1. We call x0 the top of [n].

Figure 3.1 shows [2] as an example.

•�� ��top // //• // //• // //• // //•hhhh

Figure 3.1: [2]

3.4 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1 and S ⊆ {0, 1, . . . , k}. The directed

graph [~m, S] consists of the following nodes and edges.

1. k + 1 many nodes x0, x1, x2, . . . , xk with an edge from xi to xi+1 for each i < k.

2. For each i ∈ S, a copy of [2mi + 1] with xi as its top.

3. For each i ∈ {0, 1, . . . , k} − S, a copy of [2mi] with xi as its top.

We call x0 the principal node of [~m, S]. The height of [~m, S] is defined to be |~m| and its

length is defined to be max{|σm| | m ∈ ~m}.
Figure 3.2 shows [(1, 2, 3), {2}] as an example.

Let A be a c.e. set in a and let σ0, σ1, . . . be a computable list of all finite binary

strings. The idea behind Definition 3.4 is that the [~m, S] can be used to represent

computations in which we are computably approximating a ∆0
2 oracle, with the strings
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•�� ��principal

node
// //

����

• // //• // //• // //•hhhh

•�� �� // //

����

• // //• // //• // //• // //• // //• // //•kkkk

•�� �� // //• // //• // //• // //• // //• // //• // //• // //•llll

Figure 3.2: [(1, 2, 3), {2}]

σm, m ∈ ~m, representing initial segments of approximations of the oracle and the

elements of S representing stages at which the computation changes its mind about

its output at a particular input. Of course, we are only interested in the case in which

the oracle is A. This leads to the following definition.

3.5 Definition. We say that [~m, S], with ~m = (m0,m1, . . . ,mk) and S ⊆ {0, 1, . . . , k},
is A-acceptable if it satisfies both of the following conditions.

1. A � |σmk
| = σmk

.

2. If i < k then σmi
6= A � |σmi

| and σmi
(j) = 1⇒ A(j) = 1 for every j < |σmi

|.

We define A[s]-acceptability analogously.

Note that, if we think of an A-acceptable [~m, S] as an approximation of some com-

putation relative to A in the manner described above, then condition 2 in Definition 3.5

makes sense because A is c.e.. This condition is important for two reasons. As we will

see, together with condition 1 it ensures that, given a copy of an A-acceptable [~m, S]

in some computable graph, we can A-computably determine ~m and S. Furthermore,

it guarantees that if [~m, S] is A[s]-acceptable, ~n is a proper initial segment of ~m, and

T ⊆ {0, . . . , |~n| − 1}, then [~n, T ] is not A[t]-acceptable for any t > s, and hence is not

A-acceptable.

We now define M and U .

3.6 Definition. Let M′ be the disjoint union of infinitely many copies of each A-

acceptable [~m, S]. Let T be the set of principal nodes of these copies.

The directed graph M consists of M′ and one additional root node x, with an edge

from x to each element of T . We call the connected components of M′ the components
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ofM. For any computable presentation M ofM, we call the image of x in M the root

node of M .

The unary relation U on the domain of M is the set of all elements of T that are

principal nodes of components of M of the form [~m, S] with |S| odd.

We need to show that U andM have the desired properties. Let [~m, S] have length

l. The following facts, which will be used below without explicit mention, follow easily

from the definitions.

1. Let s ∈ ω be such that A[s] � l = A � l. Then [~m, S] is A-acceptable if and only if

it is A[s]-acceptable.

2. If [~m, S] is A[s]-acceptable, A[s + 1] � l 6= A[s] � l, and m is such that σm =

A[s+ 1] � l, then [~mam,S] is A[s+ 1]-acceptable.

3. Let m ∈ ω and either T = S or T = S ∪ {|~m|}. Then [~m, S] can be extended to

[~mam,T ] by adding new nodes and edges.

3.7 Lemma. M is ∆0
2-categorical.

Proof. This follows from the fact that each connected component of M′ is finite.

3.8 Lemma. If M is a computable presentation of M then UM 6T A.

Proof. Let T be set of all nodes y of M such that there is an edge from y to itself. Let

y ∈ T . Then y is the top of a copy of [k] for some k ∈ ω. Let m be such that k = 2m

or k = 2m + 1. Define σ(y) = σm and c(y) = k − 2m. Note that T is computable, and

so are the maps taking y ∈ T to σ(y) and c(y).

To A-computably determine whether x ∈ UM , we can proceed as follows. First,

check whether there is an edge from the root node of M to x. If not then x /∈ UM .

Otherwise, x is the principal node of a copy of some [~m, S]. In this case, by the definition

of M, there is a unique list x0, . . . , xn of elements of T such that x = x0, for all i < n

there is an edge from xi to xi+1, and σ(xn) = A � |σ(xn)|. Clearly, we can A-computably

find x0, . . . , xn, and hence A-computably determine c =
∑n

i=0 c(xi). It follows from the

definition of U that x ∈ UM if and only if c is odd.

To complete the proof of the theorem, given a set B = ΦA
e , we need to build a

computable presentation M of M such that UM ≡T B. (In fact, we will build M so

that UM ≡m B.) We take advantage of the fact thatM contains infinitely many copies
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of each of its components and proceed as follows. We first construct a computable

presentation N of M such that UN is computable. We then add to this presentation

A-acceptable components Cn, n ∈ ω, such that the principal node of Cn is in UM if and

only if n ∈ B.

At each stage s+ 1 in the construction of M , we will have approximations Cn[s+ 1]

for each n such that ΦA
e (n)[t] ↓ for some t 6 s. Each such Cn[s + 1] will be a copy

of some [~m, S] such that, for the last element m of ~m and the largest t 6 s such that

ΦA
e (n)[t]↓, we have σm = A[t] � ϕAe (n)[t] and |S| ≡ ΦA

e (n)[t] mod 2.

Every time the computation ΦA
e (n) changes, we change the approximation of Cn to

reflect this. Since ΦA
e (n) is total, this will guarantee that Cn = limsCn[s] is A-acceptable

and is a copy of some [~m, S] such that |S| ≡ ΦA
e (n) mod 2.

3.9 Lemma. There exists a computable presentation N of M such that UN is com-

putable.

Proof. We build N in stages. By the beginning of each stage s + 1, we will have built

components C0[s], . . . , Cks−1[s] for some ks ∈ ω, where each Ci[s] will be a copy of some

A[s]-acceptable
[
~mi[s], Si

]
. For each i, ~mi[s] will have a limit ~mi, and thus Ci[s] will

have a limit Ci.

stage 0. Choose 0 as the root node of N . Let k0 = 0.

stage s+ 1. We break the stage up into two phases.

1. Define ks+1, and ~mi[s+1] and Si for ks 6 i < ks+1, so that the set
{[
~mi[s+1], Si

]
|

ks 6 i < ks+1

}
contains every A[s+ 1]-acceptable [~m, S] whose height and length

are less than or equal to s. For each ks 6 i < ks+1, build a new copy Ci[s + 1] of[
~mi[s+ 1], Si

]
using fresh large numbers and add an edge from 0 to the principal

node of Ci[s+ 1].

2. For each Ci[s], i < ks, if Ci[s] is not A[s+1]-acceptable then proceed as follows. Let

m be such that σm = A[s + 1] � l, where l is the length of Ci[s]. Let ~mi[s + 1] =

~mi[s]
am. Extend Ci[s] to a copy Ci[s + 1] of

[
~mi[s + 1], Si

]
using fresh large

numbers. Note that, since Ci[s] is A[s]-acceptable but not Ci[s + 1]-acceptable,

Ci[s+ 1] is A[s+ 1]-acceptable.

On the other hand, if Ci[s] is A[s + 1]-acceptable then let ~mi[s + 1] = ~mi[s] and

Ci[s+ 1] = Ci[s].
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Let i ∈ ω and let s be such that Ci[s] is defined. It is easy to check that if t > s

then Ci[t] is A[t] acceptable and has the same length as Ci[s]. Thus there exists a t > s

such that Ci[u] = Ci[t] for all u > t, and hence Ci = limuCi[u] is well-defined and

A-acceptable. So every Ci is a copy of some component of M.

Now suppose that [~m, S] is A-acceptable and has length l and let s > l be such that

A[s + 1] � l = A � l. Then for every t > s there exists kt−1 6 i < kt such that Ci[t]

is a copy of [~m, S], and Ci = Ci[t] by the choice of s. Thus each component of M has

infinitely many copies in N . Together with the result of the previous paragraph, this

shows that N is a computable presentation of M.

To determine whether x ∈ UN , all we need to do is to look for a stage s in the

construction during which numbers greater than x are used. Then x ∈ UN if and only

if it is the principal node of some
[
~mi[s], Si

]
, i < ks, with |Si| odd.

3.10 Lemma. Let B 6T A. There is a computable presentation M of M such that

UM ≡m B.

Proof. Let e be such that ΦA
e = B. By Lemma 3.9, there is a computable presentation

N of M such that UN is computable. We can assume that D = ω − |N | is infinite.

We extend N to another computable presentation M ofM in stages. When we make

use of fresh numbers in the construction, we take them from D in order. We adopt the

conventions that n 6 s ⇒ ΦA
e (n)[s] ↑ and A[s + 1] � ϕAe (n)[s] 6= A[s] � ϕAe (n)[s] ⇒

ΦA
e (n)[s+ 1]↑.

At the beginning of stage s+1, we have copies Cn[s] of graphs
[
~mn[s], Sn[s]

]
for each

n < s such that ΦA
e (n)[t]↓ for some t < s. For each n 6 s, we proceed as follows.

If ΦA
e (n)[s]↓ and ΦA

e (n)[t]↑ for all t < s then let m be such that σm = A[s] � ϕAe (n)[s]

and let ~mn[s + 1] = (m). If ΦA
e (n)[s] = 0 then let Sn[s + 1] = ∅; otherwise, let

Sn[s + 1] = {0}. Let Cn[s + 1] be a new copy of
[
~mn[s + 1], Sn[s + 1]

]
, formed using

fresh numbers in D, and add an edge from the root node of N to the principal node of

Cn[s+ 1].

If Cn[s] is defined, ΦA
e (n)[s] ↓, and ΦA

e (n)[s − 1] ↑, then let m be such that σm =

A[s] � ϕAe (n)[s] and let ~mn[s + 1] = ~mn[s]am. If ΦA
e (n)[s] ≡ |Sn[s]| mod 2 then let

Sn[s + 1] = Sn[s]; otherwise, let Sn[s + 1] = Sn[s] ∪ {|~mn[s]|}. Extend Cn[s] to a copy

Cn[s+ 1] of
[
~mn[s+ 1], Sn[s+ 1]

]
, using fresh numbers in D.

If neither of the previous two cases holds then let ~mn[s+1] = ~mn[s], Sn[s+1] = Sn[s],

and Cn[s+ 1] = Cn[s].
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It is easy to check that M is a computable presentation of M. In particular, the

following facts hold.

1. Whenever Cn[s] changes, it is only to reflect the fact that a number has entered

A below the use of the computation ΦA
e (n).

2. Cn[s] will necessarily change to reflect the last change in this use.

Thus each Cn[s] comes to a limit Cn, and it is then a copy of an A-acceptable [~mn, Sn].

Let xn be the principal node of Cn. We wish to show that UM ≡m B. By our choice

of N , UM ∩ |N | is computable, so it suffices to show that n ∈ B ⇔ xn ∈ UM , that is,

that ∀n ∈ ω(B(n) ≡ |Sn| mod 2).

Fix n and let s be the least number such that ΦA
e (n)[t] ↓= ΦA

e (n) for all t > s.

By the minimality of s, ΦA
e (n)[s − 1] ↑, and hence one of the first two cases in the

description of the stage s + 1 action of the construction of M holds for n, so that

B(n) = ΦA
e (n) = ΦA

e (n)[s] ≡ |Sn[s+ 1]| mod 2. Furthermore, neither of these cases ever

holds after stage s+ 1, so that Sn = Sn[s+ 1]. Thus B(n) ≡ |Sn| mod 2.

The theorem follows from Lemmas 3.7, 3.8, and 3.10. �

The above theorem could have been proved by building, instead of a graph, a struc-

ture in the language consisting of infinitely many unary relations R0, R1, . . . , the basic

idea being to substitute each graph [~m, S], with ~m ∈ ωk+1 and S ⊆ {0, . . . , k}, by a

point x~m,S,f for each function f : {0, . . . , k} → ω, letting Rn hold of x~m,S,f if and only if,

for some i 6 k, either i /∈ S and n = 〈2~m(i), f(i)〉, or i ∈ S and n = 〈2~m(i) + 1, f(i)〉.
This would probably make the proof less perspicuous, but it is interesting to note that

the results of this section also hold in this seemingly simpler case.

We now show how to modify the proof of Theorem 3.2 in order to realize the set

of all α-c.e. degrees below a given c.e. degree as the degree spectrum of an invariant

relation on a ∆0
2-categorical computable structure.

3.11 Theorem. Let a be a c.e. degree and let α be a computable ordinal. There exists an

intrinsically α-c.e. invariant relation U on the domain of a ∆0
2-categorical computably

presentable structure M such that DgSpM(U) consists of all α-c.e. degrees less than or

equal to a.

Proof. This proof is similar to that of Theorem 3.2; we give the necessary changes.

Unless otherwise noted, we use the same notation and conventions as in that proof.
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Let A be a c.e. set in a. In the proof of Theorem 3.2, we had graphs [~m, S] that

could be used to represent computations in which we computably approximate the oracle

A. In this proof, we also want to be able to represent the nonincreasing sequences of

ordinals less than or equal to α that can be associated to computable approximations

of α-c.e. sets. This leads to the following definitions.

3.12 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1, let S ⊆ {0, 1, . . . , k}, and let

~γ = (γ0, γ1, . . . , γk) ∈ (α+ 1)k+1 be nonincreasing. The directed graph [~m, S,~γ] consists

of the following nodes and edges.

1. k + 1 many nodes x0, x1, x2, . . . , xk with an edge from xi to xi+1 for each i < k.

2. For each i ∈ S, a copy of [〈mi, pγiq, 1〉] with xi as its top.

3. For each i ∈ {0, 1, . . . , k} − S, a copy of [〈mi, pγiq, 0〉] with xi as its top.

As before, we call x0 the principal node of [~m, S,~γ]. The height of [~m, S,~γ] is defined

to be |~m|, its length is defined to be max{|σm| | m ∈ ~m}, and its range is defined to be

max{pγiq | i 6 k}.

3.13 Definition. Let ~m = (m0,m1, . . . ,mk) ∈ ωk+1, let S ⊆ {0, 1, . . . , k}, and let

~γ = (γ0, γ1, . . . , γk) ∈ (α+ 1)k+1 be nonincreasing. We say that [~m, S,~γ] is A-acceptable

if it satisfies all of the following conditions.

1. A � |σmk
| = σmk

.

2. If i < k then σmi
6= A � |σmi

| and σmi
(j) = 1⇒ A(j) = 1 for every j < |σmi

|.

3. For i > 0, if i ∈ S then γi 6= γi−1.

4. If α > ω or 0 ∈ S then γ0 < α.

We define A[s]-acceptability analogously.

Now M and U are defined much as before.

3.14 Definition. Let M′ be the disjoint union of infinitely many copies of each A-

acceptable [~m, S,~γ]. Let T be the set of principal nodes of these copies.

The directed graphM consists ofM′ and one additional root node x, with an edge

from x to each element of T .

The unary relation U on the domain of M is the set of all elements of T that are

principal nodes of connected components of M′ of the form [~m, S,~γ] with |S| odd.

15



The following lemmas hold for the same reasons as the corresponding ones in the

proof of Theorem 3.2.

3.15 Lemma. M is ∆0
2-categorical.

3.16 Lemma. If M is a computable presentation of M then UM 6T A.

We also need to check that U is intrinsically α-c.e..

3.17 Lemma. If M is a computable presentation of M then UM is α-c.e..

Proof. Let S be the set of all nodes y of M such that there is an edge from the root

node of M to y. Let T be set of all nodes y of M such that there is an edge from y to

itself. Let y ∈ T . Then y is the top of a copy of [k] for some k ∈ ω. Let m ∈ ω, β 6 α,

and i 6 1 be such that k = 〈m, pβq, i〉. Define σ(y) = σm, β(y) = β, and c(y) = i. Note

that T is computable, and so are the maps taking y ∈ T to σ(y), β(y), and c(y).

Define the partial computable binary function Ψ as follows.

stage 0. For all x ∈ ω, let Ψ(pαq, x) = 0. If x /∈ S then let Ψ(pβq, x) = 0 for all β < α.

If x ∈ S then let Ψ(pβ(x)q, x) = c(x).

stage s + 1. For all x ∈ S, proceed as follows. Let x0, . . . , xn be the longest chain of

elements of T � s ∪ {x} such that x = x0 and for all i < n there is an edge from xi to

xi+1. Let c = |{i < n | c(xi) 6= c(xi+1)}|. If Ψ(pβ(xn)q, x) has not yet been defined then

let Ψ(pβ(xn)q, x) = c.

It is not hard to check that the fact that each x ∈ S is the principal node of an

A-acceptable component of M implies that Ψ witnesses that UM is α-c.e. in the sense

of Definition 2.1.

As before, in order to show that DgSpM(U) contains every α-c.e. degree less than

or equal to a, we begin by showing that it contains 0.

3.18 Lemma. There exists a computable presentation N of M such that UN is com-

putable.

Proof. We build N in stages in much the same way as before.

stage 0. Choose 0 as the root node of N . Let k0 = 0.

stage s+ 1. We break the stage up into two phases.
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1. Define ks+1, and ~mi[s + 1], Si, and ~γi[s + 1] for ks 6 i < ks+1, so that the set{[
~mi[s+1], Si, ~γi[s+1]

]
| ks 6 i < ks+1

}
contains every A[s+1]-acceptable [~m, S,~γ]

of height, length, and range less than or equal to s. For each ks 6 i < ks+1, build

a new copy Ci[s+ 1] of
[
~mi[s+ 1], Si, ~γi[s+ 1]

]
using fresh large numbers and add

an edge from 0 to the principal node of Ci[s+ 1].

2. For each Ci[s], i < ks, if Ci[s] is not A[s + 1]-acceptable then proceed as follows.

Let m be such that σm = A[s+ 1] � l, where l is the length of Ci[s]. Let k be the

height of Ci[s]. Let ~mi[s + 1] = ~mi[s]
am and ~γi[s + 1] = ~γi[s]

a~γi(k − 1). Extend

Ci[s] to a copy Ci[s+ 1] of
[
~mi[s+ 1], Si, ~γi[s+ 1]

]
using fresh large numbers.

On the other hand, if Ci[s] is A[s + 1]-acceptable then let ~mi[s + 1] = ~mi[s],

~γi[s+ 1] = ~γi[s], and Ci[s+ 1] = Ci[s].

It is easy to check, as in the proof of Lemma 3.9, that Ci = limsCi[s] is well-defined

and A-acceptable for every i ∈ ω. So every Ci is a copy of some component of M.

Moreover, by the same argument as before, each component of M has infinitely many

copies in N . Thus N is a computable presentation of M.

As before, to determine whether x ∈ UN , all we need to do is to look for a stage s

in the construction during which numbers greater than x are used. Then x ∈ UN if and

only if it is the principal node of some
[
~mi[s], Si, ~γi[s]

]
with i < ks and |Si| odd.

3.19 Lemma. Let B 6T A be α-c.e.. There exists a computable presentation M of M
such that UM ≡m B.

Proof. This proof is much the same as that of Lemma 3.10; we give the necessary

changes.

Let Ψ be a partial computable binary function witnessing the fact that B is α-c.e..

It is not hard to see that there exists an e ∈ ω with the following properties.

1. ΦA
e = B.

2. If ΦA
e (n)[s]↓ then Ψ(pαq, n)[s]↓ and ΦA

e (n)[s] = Ψ(pβq, n) for the least β 6 α such

that Ψ(pβq, n)[s]↓.

3. For the least number s such that ΦA
e (n)[s]↓, if either α > ω or ΦA

e (n)[s] = 1 then

Ψ(pβq, n)[s]↓ for some β < α.
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By Lemma 3.18, there is a computable presentation N of M such that UN is com-

putable. We can assume that D = ω − |N | is infinite. We extend N to another

computable presentation M ofM in stages. When we make use of fresh numbers in the

construction, we take them from D in order.

At the beginning of stage s + 1, we have copies Cn[s] of graphs
[
~mn[s], Sn[s], ~γn[s]

]
for each n < s such that ΦA

e (n)[t] ↓ for some t < s. For each n 6 s, we proceed as

follows.

If ΦA
e (n)[s]↓ and ΦA

e (n)[t]↑ for all t < s then let m be such that σm = A[s] � ϕAe (n)[s]

and let ~mn[s + 1] = (m). If ΦA
e (n)[s] = 0 then let Sn[s + 1] = ∅; otherwise, let

Sn[s + 1] = {0}. Let β 6 α be the least ordinal such that Ψ(pβq, n)[s] ↓ and let

~γn[s+ 1] = (β). Let Cn[s+ 1] be a new copy of
[
~mn[s+ 1], Sn[s+ 1], ~γn[s+ 1]

]
, formed

using fresh numbers in D, and add an edge from the root node of N to the principal

node of Cn[s+ 1].

If Cn[s] is defined, ΦA
e (n)[s] ↓, and ΦA

e (n)[s − 1] ↑, then let m be such that σm =

A[s] � ϕAe (n)[s] and let ~mn[s + 1] = ~mn[s]am. If ΦA
e (n)[s] ≡ |Sn[s]| mod 2 then let

Sn[s + 1] = Sn[s]; otherwise, let Sn[s + 1] = Sn[s] ∪ {|~mn[s]|}. Let β 6 α be the least

ordinal such that Ψ(pβq, n)[s] ↓ and let ~γn[s + 1] = ~γn[s]aβ. Extend Cn[s] to a copy

Cn[s+ 1] of
[
~mn[s+ 1], Sn[s+ 1], ~γn[s+ 1]

]
, using fresh numbers in D.

If neither of the previous two cases holds then let ~mn[s+1] = ~mn[s], Sn[s+1] = Sn[s],

~γn[s+ 1] = ~γn[s], and Cn[s+ 1] = Cn[s].

It is easy to check that M is a computable presentation of M, and the proof that

UM ≡m B is the same as before.

The theorem follows from Lemmas 3.15, 3.16, 3.17, and 3.19. �

It is not hard to replace the single c.e. degree of the previous results by any finite

set of degrees.

3.20 Theorem. Let a0, . . . , an be c.e. degrees and let α be a computable ordinal.

1. There exists an invariant relation U on the domain of a ∆0
2-categorical computably

presentable structure M such that DgSpM(U) consists of all degrees b such that

b 6 ai for all i 6 n.

2. There exists an intrinsically α-c.e. invariant relation V on the domain of a ∆0
2-

categorical computably presentable structure N such that DgSpN (V ) consists of all

α-c.e. degrees b such that b 6 ai for all i 6 n.
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Proof sketch. The proof of this theorem is very similar to those of Theorems 3.2 and 3.11.

We will restrict ourselves to definingM and U . It should be clear how to define N and

V and complete the proof along the lines of the proofs of Theorems 3.2 and 3.11.

Let A0, . . . , An be c.e. sets in a0, . . . , an, respectively. Define the graphs [~m, S] and

the concept of Ai-acceptability of such graphs as before. For ~m0, . . . , ~mn ∈ ωk+1 and

S0, . . . , Sn ⊆ {0, . . . , k}, the directed graph [~m0, . . . , ~mn;S0, . . . , Sn] consists of the fol-

lowing nodes and edges.

1. A coding node x and n + 1 many nodes x0, . . . , xn with an edge from x to xi for

each i 6 n.

2. For each i 6 n, a copy of [i] with xi as its top.

3. For each i 6 n, a node yi with an edge from xi to yi.

4. For each i 6 n, a copy of [~mi, Si] with yi as its principal node.

We say that [~m0, . . . , ~mn;S0, . . . , Sn] is acceptable if each [~mi, Si] is Ai-acceptable

and all |Si| have the same parity. The idea, of course, is that an acceptable component

can be used to represent n + 1 many simultaneous computations, each using a differ-

ent Ai as an oracle, and all arriving at the same result. Part 2 of the definition of

[~m0, . . . , ~mn;S0, . . . , Sn] guarantees that we can tell which representation corresponds to

a given Ai.

Now let M′ be the disjoint union of infinitely many copies of each acceptable

[~m0, . . . , ~mn;S0, . . . , Sn]. Let T be the set of coding nodes of these copies. The di-

rected graphM consists ofM′ and one additional node z, with an edge from z to each

element of T . The unary relation U on the domain of M is the set of all elements of

T that are coding nodes of components of M of the form [~m0, . . . , ~mn;S0, . . . , Sn] with

|S0| odd (equivalently, |Si| odd for all i 6 n).

For any degree a, it is easy to give an example of an invariant relation on the domain

of a computably categorical structure whose degree spectrum is {a}. Thus, combining

Theorem 3.2 with Proposition 3.1, we see that if a < b are degrees and b is c.e. then there

exists an invariant relation U on the domain of a ∆0
2-categorical computable structure

A such that DgSpA(U) consists of all degrees in the interval [a,b]. Similarly, for each

computable ordinal α, there exists an intrinsically α-c.e. invariant relation U on the

domain of a ∆0
2-categorical computable structure A such that DgSpA(U) consists of all
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α-c.e. degrees in the interval [a,b], and similar results can be obtained by combining

Theorem 3.20 with Proposition 3.1.

Suppose that we add to Definition 3.5 the condition that |σm0| = |σm1 | = · · · = |σmk
|

and define M and U as in Definition 3.6. Then, given a computable presentation M

of M, we can compute as a function of x the use of the A-computable procedure given

in the proof of Lemma 3.8 for determining whether x ∈ UM , and hence UM 6wtt A.

Furthermore, Lemma 3.9 can be proved as before, as can Lemma 3.10 for B 6wtt A. (In

the proof, we need to pick e so that there is a computable bound f on the use of ΦA
e and

then adopt the convention that ϕAe (n)[s] = f(n) for all n, s ∈ ω.) Similar changes can

be made to the proofs of Theorems 3.11 and 3.20. Thus we have the following result,

where we restrict ourselves to α-c.e. wtt-degrees, α ∈ ω∪{ω}, because every wtt-degree

less than or equal to a c.e. wtt-degree is ω-c.e..

3.21 Theorem. Let a0, . . . , an be c.e. wtt-degrees and let α ∈ ω ∪ {ω}. There exists an

intrinsically α-c.e. invariant relation U on the domain of a ∆0
2-categorical computably

presentable structure M such that DgSpwtt
M (U) consists of all α-c.e. wtt-degrees b such

that b 6 ai for all i 6 n.

The following is a natural question in light of the above results.

3.22 Question. How far can Theorems 3.2 and 3.11 be extended to the case where a

is not c.e.?

By the results of Section 5, these theorems cannot hold if a is a minimal degree, and

hence c.e. cannot be replaced by ∆0
2, or even by ω-c.e., in their statements. Similarly,

the existence of a minimal c.e. tt-degree implies that wtt cannot be replaced by tt, or

by any stronger reducibility, in the statement of Theorem 3.21. As shown in [16], the

situation is quite different if the requirement thatM be ∆0
2-categorical is dropped. For

instance, for each ω-c.e. degree a > 0 there is an invariant relation on a computable

structure whose degree spectrum is {0, a}, and this remains true if degree is replaced by

m-degree.

As we will see in Section 5, no finite set of degrees containing 0 can be the degree spec-

trum of an invariant relation on the domain of a ∆0
2-categorical computable structure.

However, it is not hard to give an example of an intrinsically d.c.e. invariant relation on

the domain of a ∆0
2-categorical structure with a two-element degree spectrum, but one

that does not include 0.
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Indeed, let d be a maximal incomplete d.c.e. degree, as constructed in [4]. (That is,

d 6= 0′ is d.c.e. and there are no d.c.e. degrees in (d,0′).) It is easy to construct invari-

ant, intrinsically d.c.e. relations U and V on the domains of ∆0
2-categorical computable

structures A and B, respectively, so that the degree spectra of U and V are the singleton

{d} and the set of all d.c.e. degrees, respectively. By Proposition 3.1, there exists an

intrinsically d.c.e. invariant relation W on the domain of a ∆0
2-categorical computable

structure C whose degree spectrum is

{c | ∃a,b(a ∈ DgSpA(U) ∧ b ∈ DgSpB(V ) ∧ c = a ∪ b)} =

{c | d 6 c and c is d.c.e.} = {d,0′}.

3.23 Question. Can the degree spectrum of an intrinsically c.e. invariant relation on

a ∆0
2-categorical computable structure have finite cardinality greater than one?

4 Restrictions on Degree Spectra in the Presence of

∆0
2 Isomorphisms

In this section, we show that, for a computable relation U on a computable structure

A such that the image of U in some ∆0
2-isomorphic copy of A is not computable, both

upper cone avoidance and the building of infinitely many pairwise incomparable degrees

are possible within DgSpA(U). We will give the full proof of the possibility of cone

avoidance and then comment on the modifications necessary to build infinitely many

pairwise incomparable degrees.

We will need some notation to talk about finite portions of a computable structure

A of (possibly infinite) signature L. Let S ⊂ ω be finite. Define LS to be the language

obtained by restricting L to its first |S| many symbols, substituting all j-ary function

symbols by (j + 1)-ary relation symbols in the obvious way, and dropping any constant

whose interpretation in A is not in S. Define A � S to be the finite structure obtained

from A by restricting the domain to |A| ∩ S and restricting the language to LS.

4.1 Theorem. Let k ∈ ω. Let U0 and U1 be k-ary relations on the domains of com-

putable structures A0 and A1, respectively, and let B0, B1, . . . be a uniformly ∆0
2 sequence

of noncomputable subsets of ωk. Suppose that U0 is not computable, U1 is computable,

and there exists a ∆0
2 isomorphism f : A0 → A1 such that f(U0) = U1. Then there

exists a ∆0
2 function h : |A0| 1–1−−→

onto
ω such that h(A0) is a computable structure, h(U0)

is not computable, and Bn 
T h(U0) for all n ∈ ω.
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Proof. Let Φe be the eth k-ary Turing functional. We will build the ∆0
2 function h :

|A0| 1–1−−→
onto

ω to satisfy the requirements

Qe : Φe 6= h(U0)

and

R〈i,j〉 : Φ
h(U0)
i 6= Bj

for each e, i, j ∈ ω, while in addition guaranteeing that h(A0) is a computable structure.

Since f is ∆0
2, there exist sequences Si0 ⊂ Si1 ⊂ · · · , i = 0, 1, of subsets of ω

such that
⋃
s∈ω S

i
s = |Ai|, and a computable sequence f0, f1, . . . of maps such that

fs : A0 � S0
s
∼= A1 � S1

s for each s ∈ ω and f(x) = lims fs(x) for each x ∈ |A0|. For each

s ∈ ω, we will denote f−1s (U1 ∩ (S1
s )
k) by U0[s].

Our construction will be similar to the standard finite injury argument that would

be used to satisfy the above requirements with a ∆0
2 set A in place of h(U0). Of course,

when building a ∆0
2 set, we can decide at any stage whether we want the value of A at

some given element to remain the same or change. In our construction, the only thing

we control is h.

At each stage s + 1, we will define the approximation hs+1 of h to extend either hs

or hs ◦ f−1s ◦ fs+1. If hs+1 extends hs ◦ f−1s ◦ fs+1 then, for all ~x in the range of hs,

U0(h−1s+1(~x))[s + 1] = U0(h−1s (~x))[s], which means that h(U0) remains unaltered at this

stage. On the other hand, if U0(h−1s (~x))[s+ 1] 6= U0(h−1s (~x))[s] then we can change the

value of h(U0) at ~x by letting hs+1 extend hs. The fact that f is ∆0
2 means that, for

each ~x ∈ ωk, there is a stage s such that f−1t ◦ ft+1(~x) = ~x for all t > s. This will imply

that ht+1(~x) = ht(~x) for all t > s, thus ensuring that limt ht exists.

We now proceed with the construction. To simplify our notation, we assume without

loss of generality that |A| = ω. We can do this because every infinite computable

structure is computably isomorphic to one with domain ω.

stage 0. Let h0 = ∅.

stage s+ 1. For each e < s+ 1, let i and j be such that 〈i, j〉 = e and define

qe,s =


max(f−1s (~z)) Qe is currently satisfied

through ~z (defined below)

max{y | ∀~z < y(Φe(~z)[s]↓)} otherwise,

le,s = max
{
y | ∀~z < y

(
Φ
hs(U0[s])
i (~z)[s]↓= Bj(~z)[s]

)}
,
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me,s = max{le,t | t 6 s},

and

re,s = max
{
ϕ
hs(U0[s])
i (~z)[s] | ~z 6 me,s

}
.

In order to define hs+1, we will begin by defining an auxiliary function g. Let e < s+1

be the least number such that

1. fs+1(y) = fs(y) for all y such that either y 6 e or hs(y) 6 e and

2. one of the following holds.

(a) Qe is not satisfied and, for some ~x ∈ dom(hs), we have U0(~x)[s+1] 6= U0(~x)[s]

and Φe(hs(~x))[s]↓.

(b) Not 2.a and fs+1(y) 6= fs(y) for some y 6 qe,s.

(c) Not 2.a or 2.b, and fs+1(y) 6= fs(y) for some y such that hs(y) 6 re,s.

If no such number exists then let g = hs.

If condition 2.a holds then proceed as follows. If Φe(hs(~x)) = U0(~x)[s] then let

g = hs; otherwise, let g = hs ◦ f−1s ◦ fs+1. In either case, declare Qe to be satisfied

through fs(~x). We say that Qe is active at stage s+ 1.

If condition 2.b holds then proceed as follows. If Qe is not satisfied then let g = hs;

otherwise, let g = hs ◦ f−1s ◦ fs+1. In either case, we say that Qe is active at stage s+ 1.

If condition 2.c holds then let g = hs ◦ f−1s ◦ fs+1. We say that Re is active at

stage s+ 1.

If either Qe or Re is active at stage s+1 then declare each Qi, i > e, to be unsatisfied.

Now define hs+1 as follows. For y ∈ dom(g), let hs+1(y) = g(y). Let y0 < · · · < ym

be the elements of Ss+1− dom(g) and let z0 < · · · < zm be the m+ 1 least numbers not

in rng(g). For i 6 m, let hs+1(yi) = zi.

This completes the construction. We now need to show that h = lims hs and h−1 =

lims h
−1
s are well-defined, all requirements are met, and h(A0) is a computable structure.

We begin by showing by induction that h and h−1 are well-defined; each requirement

is active only finitely often; qe,s and re,s have finite limits for each e ∈ ω; and for each

e ∈ ω, if Φe is total then Qe is eventually permanently satisfied.

For the following lemmas, fix e ∈ ω and assume by induction that, for all i < e, the

requirements Qi and Ri are active only finitely often and lims h
−1
s (i) is well-defined.
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4.2 Lemma. Both h−1(e) = lims h
−1
s (e) and h(e) = lims hs(e) are well-defined.

Proof. Let s be a stage such that no requirement Qi or Ri, i < e, is active after stage s.

By construction, for all t ∈ ω, the map ht+1 extends either ht or ht ◦ f−1t ◦ ft+1. One

of the conditions for a requirement Qj or Rj, j > e, to be active at stage t + 1 is that

ft+1(e) = ft(e) and ft+1(h
−1
t (e)) = ft(h

−1
t (e)). So, for all t > s, if ft+1(e) 6= ft(e) or

ft+1(h
−1
t (e)) 6= ft(h

−1
t (e)) then no requirement is active at stage t + 1, and hence ht+1

extends ht. Thus ht(e) = hs(e) and h−1t (e) = h−1s (e) for all t > s.

Let s0 > e be such that the following conditions hold: no requirement Qi or Ri,

i < e, is active after stage s0; h
−1
t (i) = h−1(i) for all t > s0 and i 6 e; and ft(y) = f(y)

for all t > s0 and all y such that either y 6 e or h−1(i) = y for some i 6 e.

4.3 Lemma. If Φe is total then Qe is eventually permanently satisfied.

Proof. It is enough to show that if Φe is total then Qe is satisfied at some stage t > s0.

Suppose otherwise. We claim that we can compute U0, which contradicts the hypothesis

that U0 is not computable. Let ~x ∈ ωk. Since Φe is total and Qe is never satisfied after

stage s0, we have limt qe,t = ∞. Let t > s0 be such that ~x < qe,t and ~x ∈ (dom(ht))
k.

As mentioned above, for all u ∈ ω, the map hu+1 extends either hu or hu ◦ f−1u ◦ fu+1.

Furthermore, for all u > t, if fu+1(~x) 6= fu(~x) then hu+1 extends hu. So hu(~x) = ht(~x)

for all u > t. Now let u > t be such that Φe(ht(~x))[u]↓. If U0(~x)[v + 1] 6= U0(~x)[v] for

some v > u then Qe is satisfied at stage v + 1. Therefore, ~x ∈ U0 ⇔ ~x ∈ U0[u].

4.4 Lemma. lims qe,s <∞ and Qe is active only finitely often.

Proof. If Qe is satisfied through ~z after stage s0 then lims qe,s = max(f−1(~z)). Otherwise,

by the previous lemma, Φe is not total, and thus lims qe,s is equal to the largest y such

that Φe(~x)↓ for all ~x < y. If Qe is satisfied after stage s0 then let t > s0 be such that Qe

is satisfied at stage t. Otherwise, let t > s0 be such that for all u > t and y 6 lims qe,s,

we have qe,u = qe,t and fu(y) = ft(y). In either case, Qe is not active after stage t.

Let s1 > s0 be such that Qe is not active after stage s1. Let i and j be such that

〈i, j〉 = e.

4.5 Lemma. limsme,s <∞.

Proof. Let t > s1, let x 6 re,t, and let z = ft ◦ h−1t (x). For any u > t, if fu+1(x) 6= fu(x)

then hu+1 extends hu ◦ f−1u+1 ◦ fu. So fu ◦ h−1u (x) = z for all u > t. Therefore, for all
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u > t, we have hu(U
0[u])(x) = U0(h−1u (x))[u] = U1(fu ◦ h−1u (x)) = U1(ft ◦ h−1t (x)) =

U0(h−1t (x))[t] = ht(U
0[t])(x).

Now assume for a contradiction that limsme,s = ∞. Then for each ~x ∈ ωk there

is a t~x ∈ ω such that ~x < le,t~x . Since Bj is not computable and we can computably

determine t~x from ~x, there exists an ~x ∈ ωk such that Bj(~x) 6= Bj(~x)[t~x]. Let u be such

that Bj(~x)[v] = Bj(~x)[u] for all v > u. Using the result of the previous paragraph, we

conclude that, for all v > u, we have Φ
hv(U0[v])
i (~x)[v]↓= Φ

ht~x (U
0[t~x])

i (~x)[t~x]↓= Bj(~x)[t~x] 6=
Bj(~x)[v], which implies that le,v 6 ~x, contradicting the assumption that limsme,s =

∞.

4.6 Lemma. lims re,s <∞ and Re is active only finitely often.

Proof. Let t > s1 be such that me,u = me,t for all u > t. As we have seen, hu(U
0[u])(~y) =

ht(U
0[t])(~y) for all ~y 6 re,t and u > t. Thus ϕ

hu(U0[u])
i (~x)[u] = ϕ

ht(U0[t])
i (~x)[t] for all u > t

and ~x 6 me,t. So re = lims re,s <∞.

Now let t > s1 be such that re,u = re,t for all u > t. For m 6 re, let zm = ft ◦h−1t (m).

For all u > t and m 6 re, we have fu ◦ h−1u (m) = zm. Let u > t be such that

f−1v (zm) = f−1u (zm) for all v > u and m 6 re. For m 6 re, let ym = h−1u (m). Now, for

all v > u and m 6 re, we have h−1v (m) = ym and fv(ym) = fu(ym). It follows that Re is

not active after stage u.

This completes the induction. We now show that all requirements are met and h(A0)

is a computable structure.

4.7 Lemma. For all e ∈ ω, Φe 6= h(U0).

Proof. If Φe is not total then there is nothing to show, so assume that Φe is total. By

Lemma 4.3, there are ~z ∈ ωk and t ∈ ω such that Qe is permanently satisfied through ~z

at stage t + 1. Let ~y = ht ◦ f−1t (~z). It is easy to check from the definition of ht+1 that

Φe(~y) 6= U1(~z).

We claim that hu+1 ◦ f−1u+1(~z) = ~y for all u > t. Indeed, let u > t and assume by

induction that hu ◦ f−1u (~z) = ~y. There are two cases.

1. If f−1u+1(~z) = f−1u (~z) then, no matter which way hu+1 is defined, hu+1 ◦ f−1u+1(~z) =

hu ◦ f−1u (~z) = ~y.

2. If f−1u+1(~z) 6= f−1u (~z) then, since qe,u = f−1u (~z), it follows that hu+1 extends hu ◦
f−1u ◦ fu+1, and hence hu+1 ◦ f−1u+1(~z) = hu ◦ f−1u ◦ fu+1 ◦ f−1u+1(~z) = hu ◦ f−1u (~z) = ~y.
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So, by induction, hu+1 ◦ f−1u+1(~z) = ~y for all u > t, and hence h ◦ f−1(~z) = ~y. Thus

h(U0)(~y) = U0(h−1(~y)) = U0(f−1(~z)) = U1(~z) 6= Φe(~y).

4.8 Lemma. For all i ∈ ω and j < n, Φ
h(U0)
i 6= Bj.

Proof. If Φ
h(U0)
i = Bj then limsm〈i,j〉,s =∞, which we have already shown not to be the

case.

4.9 Lemma. h(A0) is a computable structure.

Proof. For all s ∈ ω, rng(hs+1) ⊃ rng(hs) and h−1s+1 ◦ hs is either the identity or is equal

to f−1s+1 ◦ fs, and hence is an embedding from A0 � Ss into A0 � Ss+1, if we restrict the

latter structure to the language LSs . Furthermore,
⋃
s∈ω rng(hs) = ω. So the images of

hs form a chain whose limit h(A0) is a computable structure.

The theorem follows from Lemmas 4.7, 4.8, and 4.9. �

It is straightforward to modify the proof of Theorem 4.1 to build, instead of one ∆0
2

map h, infinitely many such maps h0, h1, . . ., to satisfy the requirements

Qe : Φe 6= hi(U
0)

and

R〈e,i,j〉 : Φhi(U
0)

e 6= Bj

for each e, i, j ∈ ω and

S〈e,i,j〉 : Φhi(U
0)

e 6= hj(U
0)

for each e, i, j ∈ ω, i 6= j, while in addition guaranteeing that each hj(A0) is a com-

putable structure. This shows that, as mentioned above, in the context of invariant

computable (but not intrinsically computable) relations on ∆0
2-categorical computable

structures, techniques for upper cone avoidance and building of incomparable degrees

developed for the c.e. degrees are applicable. We record below this stronger form of

Theorem 4.1.

4.10 Theorem. Let U be a computable relation on the domain of a computable structure

A. Let D be the set of degrees of a uniformly ∆0
2 collection of noncomputable sets. If

there exists a ∆0
2, 1–1 function f such that f(A) is a computable structure (isomorphic

to A) and f(U) is not computable, then DgSpA(U) contains an infinite set S of pairwise

incomparable degrees such that b � a for each a ∈ D and b ∈ S.
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In the next section, the role of these results in showing that certain kinds of relations

always have infinite degree spectra will be explored. It should be noted, however, that

they already show that there are limitations on the possible degree spectra of invariant

relations on computably categorical structures that do not arise in the general case, even

if we restrict ourselves to infinite degree spectra.

For instance, as mentioned in Section 1, it is shown in [16] that, for every uniformly

c.e. collection S of sets of natural numbers, there is an invariant relation on a com-

putable structure whose degree spectrum coincides with the degrees of elements of S.

An appropriate choice of S shows that, for each c.e. degree a < 0′, there is an invariant

computable relation on a computable structure whose degree spectrum is infinite and

such that every nonzero member is above a. Similarly, there is an invariant computable

relation on a computable structure whose degree spectrum is infinite but contains no

pairwise incomparable elements. By Theorem 4.10, neither of these cases is possible if

the structure is ∆0
2-categorical.

On the other hand, the results of Section 3 imply that there are certain directions

in which Theorem 4.1 cannot be extended. For instance, we might have hoped that

some kind of permitting could be used to show that for any c.e. degree a, the degree

spectrum of an invariant computable relation on a ∆0
2-categorical computable structure

that is not intrinsically computable has a noncomputable element below a. However,

Theorem 3.11 shows that this is not possible. Indeed, let a and b be a minimal pair

of c.e. degrees. By Theorem 3.11, there is an invariant relation U on a ∆0
2-categorical

computable structure A such that DgSpA(U) consists of all c.e. degrees less than or

equal to a. For any c ∈ DgSpA(U), either c = 0 or c 
 b.

5 A Sufficient Condition for Infinite Degree Spectra

The results of the previous section (either Theorem 4.10 directly or Theorem 4.1 by re-

peated applications) have as an immediate consequence the following sufficient condition

for a relation to have infinite degree spectrum.

5.1 Theorem. Let U be a computable relation on the domain of a computable struc-

ture A. If there exists a ∆0
2, 1–1 function f such that f(A) is a computable structure

(isomorphic to A) and f(U) is not computable, then DgSpA(U) is infinite.

It should be noted that this result is an analog of the following theorem of Gon-

charov [10], which is very useful in showing that certain classes of structures have no
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members of finite computable dimension greater than one.

5.2 Theorem (Goncharov). If two computable structures are ∆0
2-isomorphic but not

computably isomorphic then their computable dimension is ω.

The following result follows immediately from Theorem 5.1.

5.3 Theorem. Let U be an invariant computable relation on the domain of a ∆0
2-

categorical computable structure A. Either U is intrinsically computable or DgSpA(U)

is infinite.

In Theorem 5.3, both conditions on U are necessary. In Section 3, we saw that there

exists an invariant relation on the domain of a ∆0
2-categorical computable structure

whose degree spectrum consists of exactly two degrees, neither of them computable.

Now let A0, A1, U0, and U1 be the structures and relations built by Khoussainov and

Shore to prove Theorem 2.1 of [20]. We can assume that |A0| ∩ |A1| = ∅. Let P

be the predicate {(x, y) | x ∈ U0 ∧ y ∈ U1 ∧ there is an isomorphism from A0 to A1

that extends the map x 7→ y} and let E be the equivalence relation whose equivalence

classes are |A0| and |A1|. The construction of the Ai ensures that P is computable.

In the proof of Theorem 4.2 of [20], it is shown that if B is the computable structure

obtained by taking the union of A0 and A1 and expanding it by P and E then B is

computably categorical. Since B has exactly one nontrivial automorphism, which sends

U1 to U0, it follows that DgSpB(U1) = {0, deg(U0)}.
Even when A is not necessarily ∆0

2-categorical and U is not necessarily invariant, it is

sometimes possible to use Theorem 5.1 to show that either U is intrinsically computable

or DgSpA(U) is infinite.

In [23], Moses showed that, for any computable relation U on a linear ordering L,

either U is definable by a quantifier free formula in the language of L expanded by

finitely many constants (in which case it is obviously intrinsically computable) or there

is a 1–1 function f such that f(L) is a computable structure and f(U) is not computable.

It is clear from the proof of this result that, in the latter case, f can be chosen to be

∆0
2. Theorem 5.1 can thus be invoked to establish the following result.

5.4 Theorem. Let U be a computable relation on the domain of a computable linear

ordering L. Either U is intrinsically computable or DgSpL(U) is infinite.

5.5 Question. Another way of phrasing Theorem 5.4 is that the degree spectrum of a

computable relation on the domain of a computable linear ordering is either a singleton
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or infinite. How far can this result be extended to the case where the relation is not

computable? Is there any ∆0
2 relation on a computable linear ordering whose degree

spectrum is finite but not a singleton?

An example of an intrinsically ∆0
3 relation on a computable linear ordering with a

two element degree spectrum is given in [6].

Of course, it also follows from the proof of Moses’s result that the comments following

Theorem 4.1 are also applicable in the case of linear orderings. That is, upper cone

avoidance and the building of infinitely many pairwise incomparable degrees are possible

within the degree spectrum of any computable but not intrinsically computable relation

on a computable linear ordering.

By the proof of a result of Ash and Nerode [3], the same is true for certain relations

on 1-decidable structures. The key here is the following extra decidability condition.

5.6 Definition. Let U be a relation on a computable structure A. We say that

U satisfies condition (∗) if there is a computable procedure for determining, given

a0, . . . , an ∈ |A| and an existential formula ψ(~x) in the language of A expanded by

constants for a0, . . . , an, whether (A, U, a0, . . . , an) � ∀~x(ψ(~x)→ U(~x)).

Notice that if U is a nonempty relation on a computable structure A satisfying

condition (∗) then U is computable and A is 1-decidable. Notice also that a sufficient

condition for both U and its complement to satisfy condition (∗) is that (A, U) be

1-decidable.

Two other notions introduced in [3] are those of formally c.e. and formally computable

relations.

5.7 Definition. A k-ary relation U on a computable structure A is formally c.e. if there

exists a c.e. sequence ψ0, ψ1, . . . of existential formulas in the language of A expanded

by finitely many constants from A such that U(~x)⇔
∨
n∈ω ψn(~x) for every ~x ∈ ωk.

A relation U on a computable structure is formally computable if both it and its

complement are formally c.e..

In [3] the following result was established.

5.8 Theorem (Ash and Nerode). Let U be a relation on a computable structure satis-

fying condition (∗). Then U is formally c.e. if and only if it is intrinsically c.e..

The proof of Theorem 5.8 shows that if a relation U on a computable structure A
satisfying condition (∗) is not formally c.e. then there is a ∆0

2, 1–1 function f such that
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f(A) is a computable structure and f(U) is not c.e.. Given a computable relation U on

a computable structure A such that both it and its complement satisfy condition (∗),
we can apply this result to U and its complement to conclude that either U is formally

computable (in which case it is intrinsically computable) or there is a ∆0
2, 1–1 function

f such that f(A) is a computable structure and f(U) is not computable.

Thus we have the following results, of which only the cone avoidance part is new, the

other parts having been established by Harizanov [13]. For a c.e. but not intrinsically c.e.

relation U on a computable structure satisfying condition (∗), both upper cone avoidance

and the building of infinitely many pairwise incomparable degrees are possible within

the degree spectrum of U , and the same is true of a computable but not intrinsically

computable relation on a computable structure such that both it and its complement

satisfy condition (∗). In particular, in both these cases the degree spectrum is infinite.

5.9 Question. It would be interesting to know whether condition (∗) can be replaced in

the above results by the weaker condition that U be computable and A be 1-decidable.

In particular, is there a computable but not intrinsically computable relation on a 1-

decidable structure whose degree spectrum is finite?

The results of this section suggest the following question.

5.10 Question. For what other natural classes of structures is it true that every (invari-

ant) computable but not intrinsically computable relation on a computable structure

from the given class has infinite degree spectrum?

The case of Boolean algebras has been handled by Downey, Goncharov, and Hirsch-

feldt [6]. Another strong possibility, in light of results about computable dimension and

well-established structure theorems, is the class of Abelian groups. On the other hand,

the results of [17] give several examples of classes of structures that do not satisfy the

condition of Question 5.10.
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