Degree Spectra of Relations on Structures of

Finite Computable Dimension

Denis R. Hirschfeldt
School of Mathematical and Computing Sciences

Victoria University of Wellington, New Zealand

Abstract

We show that for every c.e. degree a > 0 there is an intrinsically c.e. relation
on the domain of a computable structure of computable dimension 2 whose degree
spectrum is {0, a}, thus answering a question of Goncharov and Khoussainov [13].
We also show that this theorem remains true with a-c.e. in place of c.e. for any
a € wU{w}. A modification of the proof of this result similar to what was done in
[18] shows that for any o € w U {w} and any a-c.e. degrees ay, ..., a, there is an
intrinsically a-c.e. relation on the domain of a computable structure of computable
dimension n + 1 whose degree spectrum is {ap,...,a,}. These results also hold

for m-degree spectra of relations.

1 Introduction

The study of the effective content of model theory has proved quite fertile, and has
attracted the attention of a large number of researchers. The recent publication of
the Handbook of Recursive Mathematics [9], the first volume of which is dedicated to
effective model theory, attests to the growth of the field. (This handbook is a valuable

reference; in particular, the introduction and the articles by Ershov and Goncharov [§]

The results in this paper are part of the author’s doctoral dissertation, written at Cornell University
under the supervision of Richard A. Shore. The author thanks Professor Shore for many useful com-
ments and suggestions. The author was partially supported by an Alfred P. Sloan Doctoral Dissertation

Fellowship.

and Harizanov [16] give useful overviews, while the articles by Ash [1] and Goncharov [12]
cover material related to the topic of this paper. Another relevant survey article is [21].)

Several different notions of effectiveness of model-theoretic structures have been in-
vestigated. In this paper, we are mainly concerned with structures whose constants,

functions, and relations are uniformly computable.

1.1 Definition. A structure A in a computable language is computable if both its

domain |A| and the atomic diagram of (A, a).e|4 are computable.

Remark. It will be more convenient to treat equality in computable structures as actual
equality rather than as a relation. This is not an important distinction, however, since

every computable structure is computably isomorphic to some computable structure B

such that if a # b € |B| then B F a # b.

Providing effective analogs of theorems of classical model theory (and showing that
in certain cases there are none) is part of the work of computable model theory. Another
part consists of analysing phenomena that only arise in the computable setting, such as
the fact that isomorphic computable structures, which are considered to be essentially
identical in classical model theory, might behave quite differently from a computability-
theoretic point of view.

For example, under the standard ordering of w, the successor relation is computable,
but it is not hard to construct a computable linear ordering of type w in which the
successor relation is not computable (see, for instance, [6]). In fact, for every computably
enumerable (c.e.) degree a, we can construct a computable linear ordering of type w in
which the successor relation has degree a. It is also possible to build two isomorphic
computable groups, only one of which has a computable center, or two isomorphic
Boolean algebras, only one of which has a computable set of atoms. This leads us to
study computable structures up to computable isomorphism, a point of view reflected
in the following definition.

1.2 Definition. An isomorphism from a structure M to a computable structure is
called a computable presentation of M. (We often abuse terminology and refer to the
image of a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.

The computable dimension of a computably presentable structure M is the number
of computable presentations of M up to computable isomorphism.

A structure of computable dimension 1 is said to be computably categorical.

We will also have occasion to consider c.e. structures.

1.3 Definition. A structure A is c.e. if its domain |A] is computable and the atomic
diagram of (A, a)qc4 is c.e..

An isomorphism from a structure M to a c.e. structure is called a c.e. presentation
of M. (As in the computable case, we often refer to the image of a c.e. presentation as
a c.e. presentation.)

If M has a c.e. presentation then it is c.e. presentable.

The c.e. dimension of a c.e. presentable structure M is the number of c.e. presenta-

tions of M up to computable isomorphism.

Remark. We take the more general of two possible definitions of c.e. structure, in which
equality is c.e. rather than computable. It will be clear that the results involving c.e.
structures in this paper also hold for the less general definition.

It is convenient to assume that the domain of a c.e. structure is computable rather
than c.e., but this makes no real difference, since any structure with c.e. domain is

computably isomorphic to a structure with computable domain.

The examples mentioned above of structures that are isomorphic but not computably
isomorphic, as well as many other natural ones, suggest the idea of attempting to under-
stand the differences between noncomputably isomorphic computable presentations of a
structure M by comparing (from a computability-theoretic point of view) the images in
these presentations of a particular relation on the domain of M. (Of course, this is only
interesting if this relation is not the interpretation in M of a relation in the language of
M.) The study of additional relations on computable structures began with the work
of Ash and Nerode [3] and has been continued in a large number of papers. (References
can be found in the aforementioned articles in [9], as well as in [21].)

Ash and Nerode [3] were concerned with relations that maintain some degree of

effectiveness in different computable presentations of a structure.

1.4 Definition. Let U be a relation on the domain of a computably presentable struc-
ture M and let € be a class of relations. U is intrinsically € on M if the image of U in

any computable presentation of M is in €.

In [3], conditions that guarantee that a relation is intrinsically computable or in-
trinsically c.e. were given. More recent work has led to a number of other conditions

guaranteeing that a relation is intrinsically € for various classes € (see [4], for example).

A different approach to the study of relations on computable structures, which began
with the work of Harizanov [14] (although there is some earlier work, for instance by
Remmel in [23], that can be thought of in this light), is to look at the (Turing) degrees

of the images of a relation in different computable presentations of a structure.

1.5 Definition. Let U be a relation on the domain of a computably presentable struc-
ture M. The degree spectrum of U on M, DgSp \((U), is the set of degrees of the images

of U in all computable presentations of M.

It is also interesting to consider degree spectra of relations with respect to other
reducibilities.

1.6 Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility)
or weak truth-table reducibility (wtt-reducibility). Let U be a relation on the domain of
a computably presentable structure M. The r-degree spectrum of U on M, DgSp',(U),

is the set of r-degrees of the images of U in all computable presentations of M.

Ash-Nerode type conditions often imply that the degree spectrum of a relation is
either a singleton or infinite. Indeed, for various classes of degrees, conditions have been
formulated that guarantee that the degree spectrum of a relation consists of all the de-
grees in the given class (see [2] or [17], for example). Motivated by these considerations,
as well as by Goncharov’s examples [11] of structures of finite computable dimension,
Harizanov and Millar suggested the study of relations with finite degree spectra.

Harizanov [15] was the first to give an example of an intrinsically AJ relation with a
two-element degree spectrum that includes 0. (Harizanov also noted that Goncharov’s
example of a rigid structure of computable dimension 2 can be converted into an example

of an intrinsically AJ relation with a two-element degree spectrum that includes 0.)

1.7 Theorem (Harizanov). There exist a AY but not c.e. degree a and a relation

U on the domain of a computable structure A of computable dimension 2 such that

DgSpA4(U) = {0,a}.

Khoussainov and Shore and Goncharov [13],[20] showed the existence of an intrinsi-

cally c.e. relation with a two-element degree spectrum.

1.8 Theorem (Khoussainov and Shore, Goncharov). There ezist a c.e. degree a and an
intrinsically c.e. relation U on the domain of a computable structure A of computable
dimension 2 such that DgSp,(U) = {0, a}.

This left open the question, asked explicitly in [13], of which (c.e.) degrees can be
the nonzero element of a two-element degree spectrum of a relation on a structure of
computable dimension 2. A partial answer to this question was given by the author

in [18], where the following result was established.

1.9 Theorem. Let a > 0 be a c.e. degree. There is an intrinsically c.e. relation U on
the domain of a computable structure A such that DgSp 4,(U) = {0, a}.

In this paper, we improve this result by showing that 4 can be chosen to have
computable dimension 2, thus fully answering the question mentioned above in the c.e.
case. Our proof is such that we are able to control not only the computable dimension

but also the c.e. dimension of the structures we build (which was also the case in [20]).

1.10 Theorem. Let a > 0 be a c.e. degree. There is an intrinsically c.e. relation
U on the domain of a computable structure A of computable dimension 2 such that
DgSp4(U) = {0,a}. In addition, A can be picked so that every c.e. presentation of A
is computable, which implies that A has c.e. dimension 2.

This result and its extensions, Theorems 1.12 and 1.14 below, are also due indepen-
dently to Khoussainov and Shore [22], whose proofs use a complicated modification of
their proof of Theorem 1.8.

The proof of Theorem 1.10, which appears in Section 2, is based on the proof of
Theorem 1.9, and uses techniques from [20], which in turn builds on work of Gon-
charov [10],[11] and Cholak, Goncharov, Khoussainov, and Shore [5].

We can extend Theorem 1.10 by broadening our focus from the c.e. degrees to larger

classes of AY degrees.

1.11 Definition. Let A C w be a set. A computable sequence ag,ay, ... is a A)
approzimation of A if for all x € w, |{s | a; = «}| is finite and v € A < [{s | as = x}| is
odd.

Let n € w. A is n-c.e. if there exists a AY approximation ag,as, ... of A such that
{s]as=x} <nforall z €w.

Ais w-c.e. if there exist a A approximation ag, ay, . . . of A and a computable function
f such that |{s | a; = z}| < f(z) for all z € w.

Let @ € wU {w}. A degree is a-c.e. if it contains an a-c.e. set. A collection of sets
{Ai}tiew is uniformly a-c.e. if @, ., A; = {(i,z) | v € 4;} is a-c.e..

Remark. The above definition of w-c.e. is the one that will be useful in Section 3. There
is an equivalent definition which can be generalized to define the concepts of a-c.e. set
and a-c.e. degree for any computable ordinal « (see [7]). It is also interesting to note

that a set is w-c.e. if and only if it is wtt-reducible to (.

1.12 Theorem. Let o« € w U {w} and let b > 0 be an «a-c.e. degree. There is an
intrinsically a-c.e. relation V- on the domain of a computable structure B of computable
dimension 2 such that DgSpg(V') = {0,b}. In addition, B can be picked so that every

c.e. presentation of B is computable, which implies that B has c.e. dimension 2.

The structure B, which will be described in Section 3, will be an extension of the
structure A constructed in the proof of Theorem 1.10 for an appropriate c.e. degree a.

In [18], the following extension of Theorem 1.9 was established.

1.13 Theorem. Let {A;}ic., be a uniformly c.e. collection of sets. There is an intrinsi-
cally c.e. relation U on the domain of a computable structure A such that DgSp 4(U) =
{deg(4;) | i € w}.

Khoussainov and Shore [20] showed that, for each n € w, there exist c.e. degrees
ayp, ...,a, and an intrinsically c.e. relation U on the domain of a computable structure
A of computable dimension n + 2 such that DgSp 4(U) = {0, a, ..., a,}. It is straight-
forward to combine the proofs of Theorems 1.10 and 1.12 with that of Theorem 1.13,
given in Section 3 of [18], to yield the following strengthening of that result.

1.14 Theorem. Let o € w U {w} and let ag,...,a, be a-c.e. degrees. There is an
intrinsically a-c.e. relation U on the domain of a computable structure A of computable
dimension n + 1 such that DgSp,(U) = {ap,...,a,}. In addition, A can be picked so
that every c.e. presentation of A is computable, which implies that A has c.e. dimension
n—+ 1.

The proofs of Theorems 1.10 and 1.12 are such that these theorems remain true with
degree replaced by m-degree and DgSp 4(U) replaced by DgSp’i(U). The same holds of
Theorem 1.14 if we require that the m-degrees of () and w not be on the list ay, ..., a,.
Thus, for any reducibility r weaker than m-reducibility, these theorems remain true with
degree replaced by r-degree and DgSp 4(U) replaced by DgSp’y(U).

By the results of [19], for each of the following theories, Theorems 1.10, 1.12, and 1.14
remain true if we also require that the structures mentioned in them be models of

the given theory, and that the relations mentioned in them be submodels: symmetric,

6

irreflexive graphs; partial orderings; lattices; rings (with zero-divisors); integral domains

of arbitrary characteristic; commutative semigroups; and 2-step nilpotent groups.

2 Proof of Theorem 1.10

In this section we prove the following theorem.

1.10. Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation
U on the domain of a computable structure A of computable dimension 2 such that
DgSp 4(U) = {0,a}. In addition, A can be picked so that every c.e. presentation of A

is computable, which implies that A has c.e. dimension 2.

Proof. Let A be a c.e. set that is not computable and let ag,ay,... be a computable
enumeration of A. Let A[0] =) and A[s + 1] = {ao,...,as}. We wish to construct
computable structures A° and A! and unary relations U° and U! on the domains of A°

and A!, respectively, so that the following properties hold.
(2.1) AY = A! via an isomorphism that carries U° to U'.
(2.2) U% =, A and U! is computable.

(2.3) If G = A° is a computable structure then G is computably isomorphic to either
A° or A

(2.4) A° is rigid.
(2.5) Every c.e. presentation of A° with computable equality relation is computable.

The reason that (2.5) is enough to establish the last part of Theorem 1.10 is that
we can let A be the result of adding to A” the binary relation @ that holds of x and
y if and only if x # y. Clearly, A shares all the relevant computable properties of A°,
and any c.e. presentation of A restricts to a c.e. presentation of A° with computable
equality relation.

The construction in this section will be similar in many ways to what was done in [18]
to prove the result we have numbered Theorem 1.9, as will the proof that properties
(2.1) and (2.2) hold. (The construction in [18] also satisfied (2.4), but this was not
mentioned in that paper because it was not needed to prove Theorem 1.9.) There

will also be similarities with certain aspects of the proof in [20] of the result we have

numbered Theorem 1.8. However, we will not assume that the reader is familiar with
these papers, and will make our discussion below, as well as the formal proof that follows
it, self-contained.

Our structures will be directed graphs. We begin by defining our basic building
blocks.

2.1 Definition. Let n € w. The directed graph [n] consists of n + 3 many nodes
X0, T1, ..., Tpro With an edge from x(to itself, an edge from x, .5 to x;, and an edge
from z; to ;44 for each i < n+1. We call xq the top of [n| and x,,5 the coding location
of [n].

Let S C w. The directed graph [S] consists of one copy of [s] for each s € S, with
all the tops identified.

Figure 2.1 shows [2] and [{2, 3}] as examples.

: top coding location

top coding location

coding location

Figure 2.1: [2] and [{2, 3}]

The description of the construction of A%, A!, U° and U! will be organized as
follows. In Section 2.1, we discuss how we satisfy (2.1) and (2.2). Before dealing
with the satisfaction of (2.3) in Section 2.3, we review in Section 2.2 what was done
in the proof of Theorem 1.9 to satisfy the corresponding property. Formal definitions
and conventions are given in Section 2.4; this is followed by the formal construction in
Section 2.5 and its verification in Section 2.6.

We will ignore (2.5) until we give the formal definitions used in the full construction;
at that point, we will introduce a few minor changes to ensure the satisfaction of this
property. We will also not make explicit mention in our informal discussion below of
how (2.4) is satisfied, but it should be clear that the construction we describe ensures

the rigidity of the A*, and we will assume this fact in our discussion. We will also assume

in our discussion that our construction is such that no connected component of A’ is

embeddable in another component of A’

2.1 Satisfying (2.1) and (2.2)

We build A° and A in stages. We begin by letting A) and A} be computable structures
with co-infinite domains, each consisting of one copy of [k] for each k£ € w. (This will
change slightly when we introduce the changes needed to satisfy (2.5).) If at each
stage s + 1 we enumerate the coding location of the copy of [3a,] in A into U° then we
will have ensured that U° =,, A. However, we also wish to make U' computable while
guaranteeing that A" = A! via an isomorphism that carries U° to U'. To describe how

we can do this, we need two more definitions.

2.2 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. G consists of the disjoint union of a number of connected
components, which from now on we will just call the components of G.

Suppose that G has components K and L isomorphic to [B] and [C], respectively,
where B,C' C w are finite. We define the operation K - L, which takes G to a new
computable structure extending G, as follows. Extend K to be a copy of [B U C] using
numbers not in the domain of G. Leave every other component of G (including L)
unchanged.

We will also use the notation K - L to denote the graph [B U C]. It should always

be clear which meaning of K - L is being used.

Given a finite sequence of operations, each of which can be performed on G, so that
no two operations in the sequence affect the same component of G, we can perform all
the operations in the sequence simultaneously on G to get a structure extending G. In

this case we will say that we have performed the sequence of operations on G.

2.3 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite and let X, ..., X, be components of G such that, for each
i < n, X; is isomorphic to [S;] for some finite S; C w. We define two operations, each of

which takes G to a new computable structure extending G.

e The L-operation L(Xj, ..., X,) consists of performing the sequence of operations
XU'Xh Xl'XQ, ey XnXO on g

e The R-operation R(Xjy, ..., X,) consists of performing the sequence of operations
Xo- X, Xi-Xo, ..., X,-X,,.10ong.

Note that if H is the structure obtained by performing L(Xy,...,X,) on G and #H'
is the structure obtained by performing R(Xj,...,X,) on G then H = H'.

We can now proceed as follows. At stage s + 1, let X!, Y and Z' be the copies in
Al of [3a,], [3as + 1], and [3a, + 2|, respectively. Perform L(Y?, X9 Z%) on A° to get
AY, and perform R(Y}', X!, Z}) on A} to get AL . (In order to ensure that A° and
Al are computable, the new numbers added to their domains at this stage are assumed
to be greater than s.) Put the coding location of the old copy of [3a,] in A?, ; (that is,
the copy that was already in \A9) into U° and put the coding location of the new copy
of [3as] in AL, into U™

Figure 2.2 pictures what happens on either side of the construction. For each ¢ = 0,1,

the copy of [3a,] whose coding location enters U® is underlined.

Ba, + 1] [3a] B, + 2]
[Ba, + L - [3a,] [3a,] - [ias +2 [3a,+2 l Ba, + 1]
[Bas + 1] [3a] 3as + 2]
Ba, + 1] j Ba,+2 [[ias +1] [Ba, + i] - [3a,]

Figure 2.2: The basic coding strategy (top: A° / bottom: A')

Now let A° = [J,, A2 and A' = |, AL It is easy to show, by induction using
the definition of the L- and R-operations, that for each s, A% = A! via an isomorphism
that carries UY[s] to U'[s]. (Here U’[s] is the set of all numbers that have entered U* by
the end of stage s.) It is also true that whenever a component of A’ participates in an
operation at stage s + 1, so does the isomorphic component of A!~*. Since A° and A’
have no infinite components, it follows that A% = A! via an isomorphism that carries
U° to U

Furthermore, it is still the case that U° =, A, since a number is in U if and only if

it is the coding location of the copy of [3a] in A9 for some a € A. On the other hand,

10

any number put into U' at a stage s + 1 is a new number, and is therefore greater than

s, which implies that U! is computable.

2.2 The Proof of Theorem 1.9

Before we turn to the satisfaction of (2.3), it will be useful to discuss what was done in
the proof of Theorem 1.9 to satisfy the following weaker condition, which, together with
(2.1) and (2.2), clearly implies that theorem.

(2.3) If G = AY is a computable structure then the image of U° in G is either com-

putable or m-equivalent to A.

Our strategy for satisfying (2.3) will be quite similar to that used to satisfy (2.3),
although the proof that it succeeds will be significantly more involved.

The way in which (2.3") can be satisfied for a single G is based on the following
observation.

Let U be the image of U in G and let G[s| denote the stage s approximation to G.
Assume that, for all s € w, no component of A’ is embeddable in another component of
A’ and Gls] is embeddable in A%. The latter assumption can be made because we only
care about G if it is isomorphic to A°.

Suppose that, at some stage s, A% has components X?, Y0, Z% and SY, A! has
isomorphic components X!, Y!, Z! and S, respectively, and G[s] has isomorphic com-
ponents X, Y,, Z,, and S, respectively. Now suppose we perform L(Y? X? 79 SY)
on A? to get AY,, and perform R(Y}', X!, Z!,S}) on Al to get AL, ;. Then A%, has
components isomorphic to SV - VP V0. X% X0. 79 and Z¥-SY, and these are the only
components of AY,; that contain copies of X?, Y2, Z?, or S0. So if X;, Y;, Z,, and S,
do not grow into isomorphic copies of the aforementioned components of AY ; then we
can win immediately by not involving these components in any further operations, thus
guaranteeing that G 2 A°.

So if G = A° then there are only two possibilities. The first is that S, grows into
a copy of Sy - Yy, Y, grows into a copy of Y, - X, X, grows into a copy of X - Z,, and
Zs grows into a copy of Z; - S;. In this case we will say that G “goes to the left”. The
other possibility is that Y, grows into a copy of S, - Y, S, grows into a copy of Z, - S,
Z grows into a copy of X, - Z,, and X, grows into a copy of Y; - X,. In this case we will
say that G “goes to the right”.

Now if the coding location of X? is put into U" and the coding location of the new

copy of X! is put into U' then the coding location of the copy of X, that is part of

11

the component isomorphic to X - Z; is in U. In other words, if G goes to the left then
the coding location of X in G[s] is in U, while if G goes to the right then the coding
location of the copy of X, in G — G[s] is in U. It is easy to conclude from this that if
G goes to the left at all but finitely many stages then U =,, A, while if G goes to the
right at all but finitely many stages then U is computable.

So to satisfy (2.3') it is enough to ensure that G either almost always goes to the
left or almost always goes to the right. This can be done by always using the same
component of G, which we will call the special component of G, as S;.

That is, we first pick some component of G to be its special component. Say we pick
the one that extends the first copy of [0] to appear in G. (Let us assume that 0 ¢ A.)
At stage 0, we define Aj as above and wait until a copy of [0] is enumerated into G. We
also define ry to be 0. The value of r, will code whether G goes to the left or to the
right at stage s.

At stage s + 1, we let X!, Y} and Z' be the copies in A’ of [3a,], [3as + 1], and
[3as + 2], respectively, and let S? be the isomorphic copy in A’ of the special component
S, of G[s]. We wait until copies of X!, Y

7 and Z! are enumerated into G[s] and then

perform the same operations as before. We then wait until copies of Sy - Yy, Y, - X,
X+ Zs, and Z, - S are enumerated into G. Either the copy of Sy - Y, or that of Z, - S
will extend Ss. Whichever one it is now becomes Sgy 1. If Sgy1 = S - Y then rgpy = 0
otherwise r;11 = 1.

The above construction ensures that if G = A° then the special component of G
is infinite. On the other hand, it also guarantees that if G changes direction infinitely
often (that is, if 7, does not have a limit) then no component of A° is infinite, so that
G 2 A°. This is because, for each s € w, the copy of the special component of G[s+1] in
Ai;;s“ is a component that participates in an operation for the first time at stage s+ 1.
Figure 2.3 illustrates the case 74,1 = 0. In this figure, the special components of G|s]
and G[s + 1] and their images are shown in boxes.

However, there are two problems with this construction. First of all, by the same
reasoning as in the last paragraph, if G almost always goes to the left then no component
of A! is infinite, while if G almost always goes to the right then no component of A° is
infinite. In either case, (2.1) no longer holds.

This problem can be solved by re-using components in operations. The idea is
roughly as follows. Instead of using four components in our operations, we use six. That
is, at stage s 4+ 1, in addition to the components mentioned above, we pick two other

components BY and C? of A% and isomorphic components B! and C! of Al perform

12

Y- X X+ Zs ZsSs Ss - Y
0 XO ZO SO

Yo. X0 X0. 20 79.89 S0.y0
1 Xl Zl Sl

Y-S XY Z; - X, SsZ

Figure 2.3: The images of the special component (top: G / middle: A° / bottom: A!)

L(Y?, X?2,20,BY,S9,C7) on A? to get A2, and perform R(Y}', X!, Z} B!, Si,C1) on
Al to get Al +1- (In order to accommodate the extra components, X' can be the copy
of [6a,] in A’, and a similar change can be made for the other components.)

As long as G is going in the same direction, we designate every other stage as an
isomorphism recovery stage. At such a stage s + 1, if r, = 0 then we let C? be the
component of A? that extends B | and let C! be the isomorphic component of A!. On
the other hand, if 7, = 1 then we let B! be the component of A! that extends C!_; and
let B? be the isomorphic component of A%. Whenever G changes direction, we restart
this isomorphism recovery process.

It is straightforward to check that this strategy guarantees that if r; has a limit
then the copies of the special component of G in A° and A' are isomorphic, while still
ensuring that if 7, does not have a limit then no component of A" or A" is infinite. We
will give an example below to illustrate isomorphism recovery.

Another problem that had to be faced in the proof of Theorem 1.9, and will have

to be faced here also, is that, in general, we cannot know in advance whether a given

13

computable structure G is isomorphic to A°, so it is not possible to wait at each stage
until the appropriate components are enumerated into G. To get around this, the notion
of a recovery stage can be used.

At stage s + 1, where we would have waited for G to provide components Y, X,
Zs, Bs, and Cy, we can simply not involve copies of the special component of G in our
operations unless these components are provided. (That is, if these components are not
in G[s] then we perform L(Y?, X?, Z?) on A? to get A%, and perform R(Y}!, X}, Z})
on A to get AL, ,.) Furthermore, where we would have waited for Y;, X, Z;, B, Ss,
and Cy to grow into copies of Y- X, X+ Zs, Zs- Bs, B+ S, Ss- Cy, and Cy - Yy, we can
just declare that we are waiting for these copies to appear in G.

A recovery stage in the sense of the proof of Theorem 1.9 is then a stage s + 1 such
that

1. G[s] contains copies of all the components for which we are currently waiting and

2. for each j ¢ Als] that is less than or equal to the number of recovery stages before
stage s + 1, G[s| contains components that can be used as Y;, X;, Z;, By, and C;

if a; = 7 for some ¢t > s.

(As we will see in the next section, we will need a somewhat more complicated version
of this concept.)

Now suppose that G = A°. Say that G is active at a given stage if isomorphic copies
of its special component participate in the operations performed at that stage. We want
there to be infinitely many recovery stages. This will happen as long as there is a bound
on how often G can be active while waiting for recovery.

Let P be the set of all j € w that do not enter A before the j' recovery stage. Let
M be the set of all coding locations of copies of [6j], j € P, in G and let N be the set
of all coding locations of copies of [6j], 7 ¢ P, in G. By the definition of recovery stage,
G will be active at each stage s + 1 such that a; € P. We make it a rule that G is not
active at any other stage. This clearly provides the desired bound on the number of
times G can be active while waiting for recovery.

Arguing as before, we conclude that if G almost always goes to the left then UNM =,
A, while if G almost always goes to the right then U N M is computable. But P, N,
and UN N are computable, since if we wait until the j* recovery stage then we can tell
whether j € P, and if j ¢ P then j € A. So if G almost always goes to the left then
U =, A, while if G almost always goes to the right then U is computable. Thus (2.3')
is satisfied for this G.

14

We remark that the modification to the construction that we have just described
makes the definition of isomorphism recovery stage a little more complicated, in that a
stage cannot be an isomorphism recovery stage unless it is a first stage, that is, the first
stage at which G is active after a recovery stage. We will discuss this further below.

Before proceeding, let us look at two examples. The first one illustrates what happens
in the construction described above when G recovers. Suppose that s <t < u < v are
such that s+ 1 is a first stage, 5,1 = 0, v+ 1 is the next recovery stage after stage s+ 1,
and t + 1 and u 4 1 are the only two stages between stages s + 1 and v + 1 at which G
1s active.

Figure 2.4 pictures what happens on the A° side of the construction. From now on,
we will use the notation R’ in place of S, since this is the notation that we will adopt
in the full construction. This change is made because R! might not be isomorphic to

the special component of G[w] if w + 1 is not a recovery stage.

voooox 2 B R s
|
YOXD XO-ZD 2B BLRS c- vy
S B RS- 3 s
. l |
YOX? XP-Z) ZB) BYRCO cy- ¥y
Yo X0 70 BY RY.CO. O o
|

Yo-Xe Xo-Zy Zy-By By-R-CO-C) O RE-CO-CPACY CpeYY

Figure 2.4: Recovery

Note that, by the definition of recovery stage, the special component of G[s| is iso-
morphic to R? and, for each w = s,t,u, G[s] has components Y,,, X, Zy, By, and C,,
isomorphic to Y2, X0 79 B and C?, respectively.

Since G recovers at stage v + 1, there are two possibilities. The first one is that the

special component of G[v] is isomorphic to one of BY- R?, BY- R?-CY or BY- RY-C?-CY.

15

In this case, r,41 = 1.

The second possibility is that the special component of G[v] is isomorphic to R?-C? -
C?-C?. In this case, the component of G[v] that extends C,, must be the one isomorphic
to C2- Y2 From this it follow that the component of G[v] that extends Y, must be the
one isomorphic to Y,? - X?. Proceeding in this fashion, we see that for each w = s,t, u,
the component of G[v] that extends X, is the one isomorphic to XY - Z0.

Notice that in the previous argument it is crucial that no component of A° other
than the one that extends R? participates in operations more than once in the interval
(s,v]. This is the reason for requiring that isomorphism recovery happen only at first
stages.

Our second example illustrates isomorphism recovery. Suppose that s < t < u <
v < w are such that s 4+ 1 and v + 1 are first stages, t + 1 and u + 1 are the only stages
between s+ 1 and v+ 1 at which G is active, and w + 1 is the first stage after stage v+ 1
at which G is active. Suppose further that rs1 = 7441 = ry41 = roq1 = w1 = 0.

Figure 2.5 pictures what happens on either side of the construction. The key point
to notice here is that if R = R} then RY extends RY, R} extends R}, and R = R..
This pattern would allow us to prove by induction that if r, has a limit then each A’
has a unique infinite component S* and S° = S*.

In the full construction in the proof of Theorem 1.9, we of course had to satisfy (2.3")
for every computable directed graph. Let Gy, Gi, ... be a standard enumeration of all
partial computable directed graphs. In that construction, we defined the concepts of
n-recovery stage, n-isomorphism recovery stage, r, s, and so forth in the same way as
the corresponding concepts have been defined above, with G,, in place of G. We also said
that n was active at a given stage if copies of the special component of G, participated

in operations at that stage.

Remark. For the sake of definiteness, we make the following definition, although we will
make no explicit use of it. A partial computable directed graph G consists of two 0, 1-
valued partial computable functions ® and ¥, the former unary and the latter binary,
such that if ®(z)[s] = ®(y)[s]{= 1 then ¥(x,y)[s]|. The graph G (resp. G[s]) is the
graph whose domain has characteristic function ® (®[s]) and whose edge relation has

characteristic function U (U[s]).

We were able to satisfy (2.3) for each G,, independently. In order to describe how
this was done, we first need some notation to allow us to distinguish the components

that were used to satisfy (2.3') for a particular G,,. We will denote by (A),, the subgraph

16

Y- C} Xy zl-Xx! B -Z R} - B} C{ - R}
e X! 71 B! R! !

Y, C, X, Yl Z,-X. B.-Z, C{ - R} B, Cs- R} -C}
vl X! 71 Bl R! / !

Y)-Ri-B X,Y) Z;,-X; B, Z, C,-R-C{-B, R -B-C{ C,
Rl

w

Figure 2.5: Isomorphism recovery (top: A" / bottom: A!)

17

of A; consisting of those components used in the construction to satisfy (2.3') for G,;
that is, those components that act as Y, Z, B, S, and C components at some stage in
the strategy for satisfying (2.3’) for G,, described above. The corresponding components
of G, for m possibly but not necessarily equal to n will be denoted by (G,).

We need to define new L- and R-operations that allow us to involve components of

(A", for different n’s in operations at the same stage.

2.4 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. Let Ky, K1, ..., K, and L be components of G isomorphic
to [yol, [11], .-, [yn] and [z], respectively, where yo,y1,...,yn,z € w. We define two

operations, each of which takes G to a new computable structure extending G.

e The operation (Ky, K71, ..., K,) - L consists of performing the following steps, and
otherwise leaving G unchanged. Create a new copy of [z| using numbers not in
the domain of G. For each ¢ < n, add an edge from the top of this new copy of [z]
to the top of Kj.

e The operation L - (Ky, K1, ..., K,) consists of performing the following steps, and
otherwise leaving G unchanged. For each i < n, create a new copy of [y;] using
numbers not in the domain of G. For each ¢ < n, add an edge from the top of L

to the top of the new copy of [y;].

For example, suppose that L, Ky, and K are copies of [2], [3], and [4], respectively.
Then the operation (Ky, K;) - L consists of extending Ky U K; to a copy of the graph
shown in Figure 2.6, while the operation L - (K, K;) consists of extending L to a copy
of that same graph.

top coding location

coding location

coding location

Figure 2.6: The result of either of the operations ([3],[4]) - [2] or [2] - ([3], [4])

18

2.5 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. We say that a component C' of G is a set component if it
is isomorphic to [T] for some finite 7" C w. If T" is a singleton then we say that C' is a
singleton component.

Let Yo,..., Y, X, Zo,..., Z,, Bo,...,Bn, So,...,5, and Cy, ..., C,, be components
of G such that for each ¢+ < n, X, Y;, and Z; are singleton components and B;, 5;,
and C; are set components. We define two operations, each of which takes G to a new

computable structure extending G.
e The L-operation
L(Yo,....Y; X 2o, ..., Zn; Bo, So,Co; . ; B, Sn, Ch)
consists of performing the following sequence of operations on G.

(Yo,...,. Y- X, X-(Zo,...,2Zn), Zo-Bo, ..., Zp- By,
BO'S()a ceey BTLS’n7 80'007 teey Sn'C’n7 00'3/07 R CnYn

e The R-operation
R, ..., Ya; X5 20, ., Zn; Bo, So, Co; - - - 5 Bn,y Spy C)
consists of performing the following sequence of operations on G.

%'COJ R YnCn7 CYO"SO7 S CnSn7 SO'BO7 SR San7
Bo-Zy, ..., By Zn, (Zoy.Zn) - X, X (Yo,...,Yn)

Note that if H is the structure obtained by performing
L(Yo,....Y; X5 20, ..., Zn; Bo, So, Co; . .. ; Bny Sn, Cy)
on G and H' is the structure obtained by performing
R(Yo,...,Yn; X5 Z0,..., Zy; By, So,Co; ... ; By Sy, Cr)

on G then H = H'.

The idea now is that, at any given stage in the construction, there is a certain number

of G,’s that need to have components Y, Z' B! S and C! of (A"), participate in

19

operations at that stage in order for the strategy for satisfying (2.3’) for G, to proceed
as described above. (The construction is organized in such a way that these components
are distinct for different n’s.) On the other hand, there is a unique component X° of A°
whose coding location will go into U?, as well as a unique corresponding component X1
of A'. Letting nq, ..., ny be all the n such that components of (G,), need to participate

in an operation at this stage, we can now perform

0 0. %0. 70 0.1R0 g0 ~0. .pR0 g0 0O
L(Yno,...,Ynk,X ’Zn()?"‘7an7Bno7Sno7Cno’“‘7Bnk78nk7onk)
on A° and perform
1 1. yl. 71 1.pl ol ~1. .pl gl o
R(Y.,... Vi X%Z.,..., 2\ B! S Cl: . :B.. S C.)

on A'. It is easy to check that the argument sketched out above still applies, and thus
that, in this way, we can satisfy (2.3") for all G,,.

2.3 Satisfying (2.3)

As we have seen, the construction in the proof of Theorem 1.9 was an injury-free one in
which the satisfaction of (2.3") for a given G, was handled by a single strategy, which
worked with the components of (A%), and acted independently from strategies for the
satisfaction of (2.3') for other G,,. The trade-off was forgoing any control of (G,),, for
m # n.

In order to satisfy (2.3), we need to control more of G, than just (G,),. In order
to illustrate how we do this, we consider the following sample situation. We have two
graphs Gy and G;. We proceed with a construction like that described above, except
that, in order for Gy to recover at stage s + 1, we require not only that Gy[s] have the
components that were necessary for O-recovery, but also those that were necessary for
1-recovery, and we do not allow 1-recovery unless there is O-recovery, which means that
1 is not active unless 0 is active. We claim that we will succeed in controlling (Gp); in
the same sense that we controlled (Gy)o before.

An example should be helpful here. Suppose that s <t < u < v are such that s 4+ 1
is a first stage, v+ 1 is the next recovery stage after stage s+ 1, ro 511 = 70.,4+1 = 0, and
t+1 and u+ 1 are the only two stages in the interval (s + 1,v+ 1) at which 0 is active.
Suppose further that 1 is also active at stages t + 1 and u + 1. Notice that, since we do

not allow 1 to be active unless 0 is active, t + 1 and u + 1 are the only two stages in the

20

Yo
(Yol Y1) - X5
Yo
(Yo, Y1) - X7
Yoo

0
BO,s

l

0 0
BO,S ’ RO,S

0
BO,t

l

0 0 0
BO,t ’ RO,S ’ CO,S

0
BO,u

!

0 0 0 0
BO,u ’ RO,s ’ OO,S ’ OO,t

XO

XJ- (Zos 20)

0 0
RO,s ’ CO,s

0 0 0
Ro,s ’ CO,s ’ CO,t

l

0 0 0 0
RO,s ’ C’0,s ’ C((),t ’ CO,u

Zg.s
Z5s Bis
Z3,s
Z(()),t ’ Bg,t
28

0 0
ZO,u ’ BO,u

0
C10,3
0 0
OO,S ’ }/E),S

0
Cos

l

0 0
CO,t ’ Y(Lt

0
CO,u

!

0 0
C’O,u ’ }/(),u

Figure 2.7: Recovery in a two-strategy scenario: (A°)g

21

0
Yis

|

l

l

0
Zl,s

(Yo Yilo) - X{ X¢ (256 21) 2 Bl
Vi X 4
(YE)(?tv Yf?t) .Xl? X? ' (Z%,ta Z?,t) Z?,t 'lB(l),t
YL, X 2
(You, Yfﬁ’u) - X, X (Z(%,u,) 2 -lB‘iu
B, R Cls
B, l R, C?,sl‘ Yo,
Btl),t R[I),s) C?,s O?,t
B?,t ’ R%is ’ C?,s C?,tl' Yl(?t
Bi, Ri,-Cl-CYy Cr

l

0 0 0 0 0 0 0 0 0 0
Bl,u ’ Rl,s ’ Cl,s ’ Ol,t R1,s ’ Cl,s ’ Cl,t) Cl,u Ol,u ’ Ylu

Figure 2.8: Recovery in a two-strategy scenario: (A°); in case 71,641 = 0

22

(Yz)?ta le?t) ' X}?

YO

1u

l

(You, Yi) - X

u

0
Bl,s

0
Bl,t

0
Bl,u

!

0 0 0 0
Bl,u ’ Bl,t) Bl,s ’ Rl,s

0 0 0 0
Bl,t ' Bl,s ' Rl,s ' Ol,u

0
Zl,s
0 0
Zl,s ’ Bl,s
0
Zl,t
0 0
Zl,t ’ Bl,t
0
Zl,u

0 0
ZLu ’ BLu

0
Cl,s

J

0 0
Cl,s ')/1,3

0
Ciy

!

0 0
Cl,t ' YLt

CO

1u

l

0 0
Ol,u ' Yyl,u

Figure 2.9: Recovery in a two-strategy scenario: (A°); in case Ts+1 = 1

23

interval (s+ 1,v+ 1) at which 1 is active. Figures 2.7-2.9 picture what happens on the
A side of the construction, depending on whether 71 .1 = 0 or 71 4,1 = 1.

We are assuming the definition of recovery stage is such that the special component
of Go[s] is isomorphic to RY, Go[s] has a component Ry ; isomorphic to RY ., and, for each
w = s,t,u and i = 0,1, Gy[s] has components Y; ,,, Xw, Ziw, Biw, and C;,, isomorphic
to Y, Xu, 2}y, By, and 7, respectively.

Since Gy recovers at stage v + 1 and 7,41 = 0, the special component of Gylv] is
isomorphic to Ry ,-Cg,-Cf,-Cg,,. So, arguing as before, we see that, for each w = s,t, u,
the components of Gy[v] that extend Y§ ., Xuw, Zow, Bow, and Cy,, are isomorphic to
the components of A that extend Yy, X°, Z§.,, By

s 0w B, and Cf ,, respectively. In other

words, all of (Gy)o goes in the same direction as (A%)o.
We wish to show that (Gy); also goes in the same direction as (A%);. Let R, be
X, 7!

the component of Gylv] that extends R; s and, for each w = s,t,u, let Y/ Law>

B/

1w>

7w’

and C7 ,, be the components of Gy[v] that extend Y} ., Xu, Z1w, Biw, and C,
respectively.

In the 71 541 = 0 case, we can argue as follows. As we have mentioned above, for each
w=s,tu, X, =X (Z,,2},), which implies that Z{ , = Z7 - B},. This in turn
implies that Bj , = BY - R}, B{, = B},-R},-C?,, and B} , = B} - R} -C},-CY},.
So the only component of AJ left for R}, to be isomorphic to is R} - C7, - C7, - CY,.
This implies that, for each w = s,t,u, C{,, = C7,, - Y,
Y = (Y,
as (A°);.

In the r 441 = 1 case, the argument that (Gp); goes in the same direction as (A");
is as follows. As before, for each w = s,t,u, X}, = X} - (Z3,,, Z1,,,), which implies that
2w =277, - BY,,. This implies that Bj, = B}, - B, - B}, - R}, which implies that
B, =B, -BY -R} -C},, which implies that B , = B} - R} ,-C?,, which implies that

1s = RY,-CY,. Now, for for each w = s,t,u, we have C{ , = C? - Y?,, which implies
that Y/, = (Y,
(A”)1.

In either case, we have the same kind of control over (Gy); as we have over (Gy)o.

which in turn implies that

YP,) - X4 Thus, in this case, we see that (Gy); goes in the same direction

7u7

YP,) - Xo. Thus, in this case also, (Go)1 goes in the same direction as

Now assume that Gy = A° and lim, ro,s = 0. We claim that, if there are no other
elements to the construction, so that from some stage s on all of Gy goes in the same
direction as A°, then the unique isomorphism f : A° — Gy is computable. (Recall that
we are assuming that A° is rigid.) Indeed, the following is an effective procedure for

computing f(z) given x € A°. Find the least stage t > s such that z is contained in

24

a component K of A? and there is an isomorphism ¢ from K to some component L of
Go[t]. Such a stage must exist by the definition of O-recovery, and, since all of Gy goes
in the same direction as A° from stage s on, f(z) = g(z).

Of course, the strategy for Gy that we have just described works at the expense of
the corresponding strategy for G;. Indeed, if Gy does not recover infinitely often then
G, is not allowed to recover infinitely often, even though it might be the case that
G = A°. We solve this problem in the standard way, by having multiple strategies for
satisfying (2.3) for a given G, and organizing these on a tree. (The reader unfamiliar
with the technique of organizing priority constructions on a tree should consult [24].)
More specifically, for each finite binary string o, there will be a strategy for satisfying
(2.3) for Gi5|, where |o| is the length of 0. The string o represents a guess about which
Gm, m < |ol, recover infinitely often, with o(m) = 0 representing a guess that G,
recovers infinitely often and o(m) = 1 representing a guess that it does not.

For each o of length n, G, will have a o-special component. We will say that o
is active whenever this component participates in an operation, and will define the
concepts of o-recovery, o-isomorphism recovery, and so forth. We will write 07 to
mean the concatenation of ¢ with the string of length 1 whose only element is 3.

For all 7 such that 070 C 7, 7 will not be accessible except at o-recovery stages,
which means that there will not be 7-recovery at a given stage unless there is also o-
recovery. As in the two-strategy scenario above, the requirements for o-recovery will be
such that the components that must be provided by G, for it to o-recover include all the
components that must be provided by Gy for it to 7-recover. (Since there are infinitely
many 7 extending 0”0 and we can only require G|, to provide finitely many components
for each o-recovery, we will not allow such a 7 to recover until o has recovered || + 1
many times.) In this way, if ¢ is on the true path of the construction (which will be
defined, as usual, as the leftmost path visited infinitely often) and G|,| = A° then we
will be able to control not only (Gjs|)s, but also (Gj,), for all 7 such that ¢~0 C 7, by
a similar argument to that in the two-strategy scenario.

It is important to note that o might be active at stages at which it is not accessi-
ble. This is because, as in the simpler construction described above, in order for G,
to o-recover, we will require that it provide enough components to allow o to be ac-
tive whenever a number less than the number of times G|, has o-recovered enters A.
Whenever such a number does enter A, we will allow o to be active, unless G, has not
o-recovered since the last time o was initialized (that is, the last time the construction
moved to the left of o.)

25

The reason we require G,| to o-recover at least once following an initialization before
o can be active again is that the components that can be used by the strategy corre-
sponding to o (including the o-special component) will change each time o is initialized
(more on this below). This restriction will not hamper the strategies on the true path,
since these will be initialized only finitely often.

In the following discussion, we will denote by (k) the component of A’ that extends
the unique copy of [k] in A}, and by (A%), we will mean the union of the components
of A" that might potentially be used by the strategy for satisfying (2.3) for G, corre-
sponding to ¢; once we give the formal details of the construction, it will be clear which
components these are. (As was the case with the corresponding notations in [18], (A?),
and (G,)s, n € w, will refer to the union of those components that are actually used by
the strategy corresponding to 0.) By (A?) we will mean the union of the components of
A of the form (6k), k € w. (These are the components that might not be in (A%, for
any o.)

Fix o on the true path such that G,) = A°. These conditions on o will imply that,
for all 7 C o, 7 recovers infinitely often if and only if 770 C ¢. They will also imply
that 070 is on the true path, so that o recovers infinitely often, and that lim, 7, , exists
(where 7, s will be defined analogously to r, s). Let i = lim, r, 5 and let f be the unique
isomorphism from A’ to G,. As discussed above, we will be able to compute both
F 1A, and £ 11U, om0 (A7)

Of course, this leaves the problem of uniformly computing f | {A°), for other 7, as
well as f | (A%). Our strategy for computing f will be to break up the domain of A°
into finitely many c.e. sets and show that the restriction of f to each of these sets is
computable. Most of the cases will be handled by making use of the fact that, for a c.e.
union 7" of finite components of A’ if each component of T participates in operations
only finitely often and there is a computable bound on the last stage (if any) at which
each component of T' participates in an operation then f | T is computable. This is
because if a component K of T" does not participate in operations after stage s then
K is a component of A%, and hence the unique embedding from K into G, can be
found effectively. (Recall that we are assuming that our construction is such that no
component of A’ is embeddable in another component of A°.)

We begin by looking at (A%). As discussed above, we will have a computable bound
h(k) such that if (6k) has not participated in an operation by stage h(k) then, whenever
it does participate in an operation, o is active. Let Ty be the union of those components
(6k) of (A") that do not participate in an operation by stage h(k). Then f [Ty will be

26

computable for the same reason as f [(A%),. On the other hand, since no component
of (A?) will participate in operations more than once, f | ({A*) —Ty) will be computable
because h(k) will be a computable bound on the last stage at which a component (6k)
of (A") — Ty participates in an operation. Thus f | (A%) will be computable.

Now let 77 be the union of all (A%), such that 7 is to the left of o. By the definition
of the true path, only finitely many components of 77 will ever participate in operations,
and those that do, will do so only finitely often. Thus there will exist a computable
bound on the last stage at which each component of T participates in an operation,
and hence f | T} will be computable.

Let Ty be the union of all (A), such that 771 C o. The fact that there are only
finitely many 7-recovery stages will imply that only finitely many components of T3
participate in operations, and those that do, do so only finitely often. Thus there will
exist a computable bound on the last stage at which each component of T5 participates
in an operation, and hence f [T5 will be computable.

Let T3 be the union of all (A"), such that 7 is to the right of ¢70. Every time
the construction moves to the left of 7, we will guarantee, as part of the initialization
process, that a certain set of components of (A?), will never again participate in an
operation, in such a way that if the construction moves to the left of 7 infinitely often
then every component of {A*), will eventually be guaranteed never again to participate
in an operation. Since ¢~0 is on the true path, this will mean that there exists a
computable bound on the last stage at which each component of T5 participates in an
operation, and hence f | T3 will be computable.

We are left with the case of (A’), such that 770 C 0. We will show that, for each
such 7, if 7, 5 has a limit then (A’), has a unique infinite component S, while if 7,
does not have a limit then all components of (A?), are finite. Let T be the union of the
Si, 770 C 0, . has a limit. Given a copy K of [m] contained in a component C' of T
with top x, we will be able to find effectively the unique copy L of [m] in the component
of Gj»| with top f(x), and f will extend the unique isomorphism from K to L. Since T}
has only finitely many components, this will mean that f | T, is computable.

Finally, let T5 be the union of all finite components of (A"),, 770 C o. Examining
the construction in the proof of Theorem 1.9, we see that, given an n such that G,, = A°,
once a finite component K of (A"), participates in an operation at a stage s, we can
effectively find a stage t such that K does not participate in an operation after stage t.
Indeed, we can take t to be the first stage after stage s such that, for some u < ¢, K

does not participate in an operation in the interval [u, ¢] and there is an n-isomorphism

27

recovery stage in [u, t].

The analogous situation will hold here, but this will not quite be enough to show that
f I Ts is computable. We will also need an effective procedure that, for each component
K of Ty, gives us a stage s such that if K has not participated in an operation by stage s
then it will not participate in an operation after stage s. In order to do this, every time
7 recovers, we will guarantee that a certain set of components of (A’), that have not yet
participated in an operation will never participate in an operation, in such a way that
if 7 recovers infinitely often then every singleton component of (A%), will eventually
be guaranteed never to participate in an operation. (That is, we will add an extra
condition to the definition of 7-recovery to ensure that, for each singleton component
that had been available at the last 7-recovery stage to be used for the sake of the strategy
corresponding to 7 and that has not yet been used, there is a new component that can
be used in its place. A similar procedure was employed in [20].) Thus f | T5 will be

computable.

2.4 Formal Definitions and Conventions

For the sake of satisfying (2.5), we need a new kind of building block, whose use will
be made clear shortly. (Basically, if G is a c.e. graph with computable equality relation
and K and L are different components of G[s], s € w, then it cannot be the case that
K and L are both extended by a component of the form K - L in G. However, K and L
might both be extended by the same component of G if this component is of the form
K - (L), for example, since the fact that there is no edge from the top of K to the top
of L in G[s] does not mean that the same is true in G. We will avoid this possibility
by only performing operations of the form K - (Ly,..., L) when K is of the form [n]™,

n € w, as defined below.)

2.6 Definition. The directed graph [n]* consists of the following nodes and edges.
1. A copy of [n] with top x.

2. For each @ < n, i+ 1 many nodes x;y, ..., %;;, with an edge from x to z;¢ and, for

each j <, an edge from z; ; to x; j11. We call z;; the i-attachment node of [n]*.

Figure 2.10 shows [2|T as an example.

We also need a new version of Definition 2.4.

28

top coding location

O-attachment node

1-attachment node

2-attachment node
Figure 2.10: [2]*

2.7 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite.

Let Ko, K1, ..., K, and L be components of G isomorphic to [ko], [k1], ..., [k,] and
[[]T, respectively, where ko, k1, ..., kn, | € w and n < I. We define two operations, each

of which takes G to a new computable structure extending G.

e The operation (Ko, K1, ..., K,) - L consists of creating a new copy of [I|T, using
the top of K; as the i-attachment node for ¢ < n and numbers not in the domain

of G as the other nodes, and otherwise leaving G unchanged.

e The operation L - (Ky, K7, ..., K,) consists of creating a new copy of [k;] for each
1 < n, using the i-attachment node of L as the top and numbers not in the domain

of G as the other nodes, and otherwise leaving G unchanged.

We define the L- and R-operations as in Definition 2.5, except that we now require
that X be of the form [k|T, k € w.
Fix a computable one-to-one function from 2<“ onto w — {0} and let "o denote the

image under this function of the string o.

2.8 Definition. Let G be a directed graph. We denote by (G), the subgraph of G

consisting of those components C' of G that satisfy both of the following conditions.
1. C is not isomorphic to [z] or [z]T for any x € w.
2. C contains a copy of [6("0,j) + 3], j € w, or a copy of [6("c ", j, k) + 1], j,k € w,

le{1,2,4,5},

29

Define (G)>, = UTQU(Q)T‘

For 0,7 € 25¥, ¢ <;, 7 means that either o C 7 or there exists an n < |o|, || such
that o(m) = 7(m) for all m < n, o(n) =0, and 7(n) = 1. If 0 <, 7 and o € 7 then we
say that o is to the left of 7 and that 7 is to the right of o.

For each i = 0,1, we will first define a computable structure Aj. At each stage s+1,
we will perform an operation on A’ to get A’,; D A’ and add an element of the
domain of A! , to U". We will then let A" = |J,_, AL In order to guarantee that A’
is computable, we make it a convention that all numbers added to the domain of A% at
stage s + 1 to get A%, are greater than s.

Let t > s. We say that a component L of A or A’ (resp. G,[t] or G,) extends a
component K of A’ (G,[s]) if the domain of K is contained in the domain of L, and that
L properly extends K if this containment is proper. (Note that saying that L extends
K means more than just that K can be embedded in L, though it of course implies
the latter.) If L extends K but not properly then we say that L is a component of A’
(Gnls])-

It will be the case that if K and L are distinct components of AY and K is not a
copy of [6k + 1] or [6k + 2| for any k € w then K and L are not extended by the same
component of A°. Thus, since we are not interested in G,, unless it is isomorphic to A°,
we may assume without loss of generality that, for each n, s € w, there is an embedding
of G,[s] into A? such that if K and L are distinct components of G,[s] and K is not
a copy of [6k + 1] or [6k + 2] for any k € w then K and L are mapped into distinct
components of A.

Let k£ be the number of times o has been initialized (defined below) before stage t.
Suppose there is a least stage s <t such that G, |[s] has a component K isomorphic to
[6{"c", k) + 3]. We call the component of G,([t] that extends K the o-special component
of G»([t]. If o is initialized only finitely often, say k many times, and there is a least
stage s such that Gy, [s] has a component K isomorphic to [6("0", k) + 3] then we call
the component of G| that extends K the o-special component of Gio|.

2.5 The Construction

We now proceed with the construction of A%, A!, U°, and U!. It will be easy to check

as we go along that the following are properties of the construction.

1. For each s € w, A? = A! and no component of A’ is embeddable in another

30

component of AC.

2. Let t < s. No component of A! isomorphic to one of [6as]™ or [6(j, as, k) +],
J. k€ w, l €{1,2,4,5}, participates in an operation at stage t + 1.

stage 0. Let A and Aj be computable structures with co-infinite domains, each con-
sisting of one copy of [6k + {] and one of [6k] for each k € w and 0 < [< 6. For each
og€2<% let ryo=0.

stage s + 1. For o € 2<¥ let recov(o,s) be the number of o-recovery stages before
stage s+ 1, let init(o, s) be the number of times o has been initialized before stage s+1,
and let ¢(o, s) = max(recov(o, s), init(o, s)).

Define the string o[s + 1] € 2/ by recursion as follows, beginning with n = 0. Let
o = o[s+ 1] [n. Say that s + 1 is a o-recovery stage if all of the following conditions
hold.

1. Every 7 such that 770 C o has recovered at least |o| + 1 many times.
2. G,[s] has a o-special component isomorphic to some component of A2,

3. If 7 O 070 has not yet recovered since the last time it was initialized and |7| <

recov(c, s) then G,[s] has a component isomorphic to [6("7", init(, s)) + 3.
4. (Guls])o = (Ao
5. (gn[SDQJ"O = (‘A(S))QU“O-

6. Let 7 be such that either 7 = o or both 7 O 070 and |7| < recov(o, s). Let j ¢ Als]
be less than or equal to recov(r, s). There is a component of G,[s| isomorphic to
[67]7 and, for each [€ {1,2,4,5}, there is a component of G,[s] isomorphic to
67, j, e(7,) + 1.

If s+ 1is a o-recovery stage then let o[s + 1](n) = 0. Otherwise, let o[s + 1](n) = 1.
For each o such that s+ 1 is a o-recovery stage, proceed as follows. For i =0, 1, let
S? . be the component of A’ that is isomorphic to the o-special component of Gjy[s]. If
s+ 1 is either the first o-recovery stage ever or the first o-recovery stage since the last
time o was initialized then let 7,11 = 0. Otherwise, proceed as follows. Let ¢ = 1, ,
and let ¢ + 1 be the last o-recovery stage before stage s + 1. If S, extends S, then let

Tes+1 = %, and otherwise let r, o1 =1 — 1.

31

For each o € 2<% such that s + 1 is not a o-recovery stage, let r, 41 = 75 .

Declare each o to the right of o[s+ 1] to have been initialized. For each o <, o[s+1],
if there has been a o-recovery stage since the last time o was initialized, as > |o|, and
as is less than the number of o-recovery stages less than or equal to s+ 1 then say that
o is active at stage s + 1.

For i = 0,1, let X! be the component of A’ isomorphic to [6as]™.

Let og,...,0,, be all the strings that are active at stage s + 1. For ¢ = 0,1 and
j<m,let Yy s and Z; bethe components of Aj isomorphic to [6(0", as, c(0y, 5)) +1]
and [6("0;", as, c(o;, s)) + 2|, respectively.

For each j < m, let t; +1 < s+1 be the last oj-recovery stage. We say that s+1isa
oj-first stage if it is the first stage after stage ¢; at which o; is active. We say that s +1
is a 0j-change stage if it is a o;-first stage and one of the following holds: ¢; +1 was the
first oj-recovery stage ever, t; + 1 was the first o;-recovery stage since the last time o;
was initialized, or 1y, ;.41 # 7o, We say that s+ 1 is a oj-isomorphism recovery stage
it it is a oj-first stage but not a o;-change stage and one of the following conditions
holds.

1. The last o;-first stage before stage s + 1 was a oj-change stage.

2. There has been at least one stage at which o; was active after the last oj-

isomorphism recovery stage and before stage s + 1.

For each j < m we define components B}, and C;_, i = 0,1. There are two cases.

04,87

1. s+ 1 is a o;-isomorphism recovery stage. If the first condition in the definition of
oj-isomorphism recovery stage holds then let ¢t + 1 be the last o;-first stage, and
otherwise let ¢ 4+ 1 be the first stage after the last oj-isomorphism recovery stage

at which o; was active. There are two subcases.

(a) If 7y, s11 = 0 thenlet C be the component of A{ that extends By, and let
Cy, s be its isomorphic image in A;. For i = 0,1, let B} be the component
of A% isomorphic to [6(c;,as, c(0;,s)) + 4].

(b) If 7,11 = 1 then let B, be the component of A; that extends C, , and let
By, be its isomorphic image in AJ. For i = 0,1, let C;_ ; be the component
of AL isomorphic to [6(c;, as, (0, s)) + 5].

32

2. s+ 11is not a o;-isomorphism recovery stage. For ¢ = 0, 1, let Bffﬁs be the compo-
nent of A% isomorphic to [6(c;, as, c(0;,s)) + 4] and let Cf,j,s be the component of
A? isomorphic to [6(c;, as,c(cj,s)) + 5].

For each j < m, proceed as follows. Let ¢ = r,, ;41 and let £ +1 < s + 1 be the last
oj-recovery stage. Let R} be the component of A{ that extends S} , and let R, % be
its isomorphic image in Al

Now perform

0 0 . y0. 70 0 . po 0 0
L(Yoo,s’ s 7Y0m,s’ Xs’ Zo’o,s’ SRR Zam,m Bo‘g,s’ Rao,s7 Coo,s’
0 0 N 0 0
Bal,s7 ch,s? 001,57 LRI Bam,s7 Ram,s7 Cam,s)
on A? to get A, and perform
1 1yl ol 1 . pl 1 1.
R<Yao,s7 te JYam,m Xs ’ Zao,s7 tr Zom,s7 Bcro,s7 Ro’g,s? Cao,sﬂ
1 1 1. .pl 1 1
Bal,s> ch,s’ Cal,s7 ey Bam,s> Ram,s7 Cam,s)

on A! to get AL, . (If no o is active at stage s+ 1 then, for j = 0,1, let YJ, ZJ, BI, R’
and C? be the components of A7 isomorphic to [6(0, a,, s)+1], [6(0, as, s)+2], [6(0, as, s)+
4], [6(0, s) + 3], and [6(0, as, s) + 5], respectively. Perform L(Y?; X?; Z% B R%; C?) on
A to get A%, and perform R(Y}; X}; ZL; Bl RL; CY) on A} to get AL, ;)

Put the coding location of the copy of [6a,] in A into U® and put the coding location
of the copy of [6a,] in AL, — Al into U*.

This completes the construction. Let A° = J,., A? and A" = |J,., Al Define
the true path TP of the construction to be the leftmost path of 2¢ such that there are
infinitely many stages s with o[s] € TP.

2.6 Verification

Since, for each s € w and i = 0,1, all numbers in A%, — A’ are greater than s, A" and
A are computable. We will now argue that properties (2.1)-(2.5) hold. Theorem 1.10
will then follow immediately.

Properties (2.2) and (2.5) are easy to establish, so we deal with them first.

2.9 Lemma. U° =, A and U' is computable.

33

Proof. The numbers in U are all coding locations of components of A of the form [6],
J € w, and the coding location of the copy of [65] in AJ is in U? if and only if j € A.
Since given any number we can computably determine whether it is a coding location
in AJ and if so, for what [k], this means that U° =, A.

Any number put into U! at a stage s + 1 is a new number, that is, one not in the

domain of A!, and hence is greater than s. Thus U! is computable. O

2.10 Lemma. If G is a c.e. presentation of A° with computable equality relation then

G 1s computable.

Proof. Since the equality relation in G is computable, we can assume without loss of
generality that the enumeration of G is such that, for all s,w,z,y,z € w, if w,z,y,z €
|G[s]| and the pairs (w,x) and (y, z) satisfy the equality relation in G then there is an
edge from w to y in G[s] if and only if there is an edge from = to z in G[s]|. Let zg, 2, € G.
Wait until a stage s in the enumeration of G such that, for each 1 = 0,1, x; is in a copy
of either [n;] for some n; # 0 mod 6 or [n;]* for some n; = 0 mod 6. It is easy to check
from the definition of A" that, for each i = 0, 1, there is an edge from z; to z;_; if and

only if there already is such an edge at stage s. O

In showing that (2.1), (2.3), and (2.4) are satisfied, we will need a few facts about
the construction. The more obvious ones are given without proof, while the remaining
ones are broken down into easily checked properties of the construction. Figures 2.4
and 2.5 should be helpful here.

We say that a component of A participates in an operation at stage s+ 1 if it extends

a component of A’ that participates in an operation at stage s + 1.

2.11 Lemma. Let G = A° be computable. Given x in the domain of G, we can com-
putably determine if x is the coding location of a copy of some [k], k € w, and if so,
for what k. In particular, the set of coding locations of copies of [6j], j € w, in G is

computable.

2.12 Lemma. Let K and L be distinct components of A’ such that K is not a copy of
[6k 4+ 1] or [6k + 2] for any k € w. K and L are not extended by the same component of
A’

Lemmas 2.11 and 2.12 will be used without explicit mention several times below.

2.13 Lemma. Each component of A’ is rigid and contains at most one copy of [k| for
each k € w.

34

~Y

2.14 Lemma. For each s € w, A? = Al and no component of A. is embeddable
in another component of AL. Furthermore, if a component of A’ participates in an

operation at stage s + 1 then so does the (unique) isomorphic component of AL~

2.15 Lemma. A component of A® is infinite if and only if it participates in operations

infinitely often.

2.16 Lemma. Let k,j € w and 0 € 2. Any component of A® containing a copy of
[6k] or [6("c",j, k) + 1], | € {1,2}, can participate in an operation at most once. Any
component of A* containing a copy of [6{"c", j) + 3] or [6("c ", j, k) + 1], | € {1,2,4,5},

can participate in operations only at stages at which o is active.

2.17 Lemma. Let x be the coding location of a copy of [6as| in component K of A"
Either K contains a copy of [6(n, as, k) + 1] for some n, k € w, in which case x ¢ U*, or
K contains a copy of [6(n,as, k) + 2| for some n,k € w, in which case v € U".

2.18 Lemma. If a component K of (.%l’i)(7 participates in operations at stages s < t+ 1
but does not participate in an operation at any stage in the interval (s,t] then there are

no o-change stages or o-isomorphism recovery stages in (s,t].

Proof. Let w be the last o-first stage before stage ¢t + 1. If K extends Rf,,t then it is
easy to check that K must have participated in an operation in the interval [w, t], which
means that w < s. Since every o-change or o-isomorphism recovery stage is a o-first
stage, in this case we are done.

Otherwise, t is an isomorphism-recovery stage and either r,,1; = 0 and K extends
Cl,or rgpr = 1 and K extends B.,. Suppose for a contradiction that there is at
least one o-change stage or o-isomorphism recovery stage in (s, t], and let u be maximal
among such stages.

If u is a o-change stage then it must be the last o-first stage before stage ¢t + 1,
since the next o-first stage after a o-change stage is either a o-change stage or a o-
isomorphism recovery stage. In this case, by the way components that participate in an
operation at an isomorphism-recovery stage are chosen, K participated in an operation
at stage u.

If u is a o-isomorphism recovery stage then there must be at least one stage at which
o is active in the interval (u,t|, since otherwise ¢ + 1 could not be a o-isomorphism
recovery stage. Let v be the least stage in (u,t| at which o is active. In this case, again
by the way components that participate in an operation at an isomorphism-recovery

stage are chosen, K participated in an operation at stage v.

35

In either case, we have a contradiction. O

2.19 Lemma. Suppose that v, = i # r451. Of all the components of (A%), that
participate in operations before stage s + 1, the only one that can participate in an

operation after stage s is the one that extends Sf,’s.

Proof. Let t be the first stage after stage s at which o is active. Then ¢ is a o-change
stage, and hence not a o-isomorphism recovery stage. It follows that, of all the com-
ponents of (A"), that participate in operations before stage s + 1, the only one that
participates in an operation at stage t is the one that extends S;S. The lemma now

follows from Lemma 2.18. O

2.20 Lemma. Suppose that v, s =1 for all s > t, o is not initialized at any stage after
stage t, and o is active at stages so + 1 and s; + 1, where s; > so > t. Then R!

0,51
i
extends Ry o .

2.21 Lemma. Let u be a stage after which o is never initialized. Let s+ 1 and t + 1
be o-recovery stages such that s+ 1 >1t+ 1 > u and there is no o-recovery stage in the
interval (t + 1,5 +1). If 155 = 0 # 1oy then Sy, extends BY, for some v € [t,s).

Similarly, if ros =1 # ro 1 then Sy, extends Cy ,, for some v € [t,).

Proof. The two cases, i = 0 and ¢+ = 1, are similar. We do the case i = 0.

Since SY . contains a copy of SY, and 75,11 = r,s = 0, either S?

0,8

0
s extends S, or

So , extends BY,, for some u such that ¢t < u < s. But it cannot be the case that SJ,

extends S?,,

since that would imply that 7,411 = 0.]

2.22 Lemma. Suppose that ro; =0 (resp. ro4 = 1) for allt > so. Then no component
of (A), ((AY),) can participate in an operation more than twice after stage so unless it
extends Ry, (RY,) for somet > sq, while no component of (A'), ((A°),) can participate
in an operation more than twice after stage sy unless it extends Cy, (BY,) for somet > sq

such that t + 1 is a o-isomorphism recovery stage.

Proof. The two cases, i = 0 and 2 = 1, are similar. We do the case i = 0.

Suppose that component K of (AY), participates in operations at stages s + 1 <
t+1<u+1, where s+ 1 > sg, but not at any stage in (¢t + 1,u + 1). Then either K
extends Ry, or u+ 1 is a g-isomorphism recovery stage and K extends CJ,. We claim
that the latter case cannot hold. Indeed, if K extends CJ, then K extends Bj , for

some v € w. Since K does not participate in operations at any stage in (¢t + 1,u + 1),

36

v = t. But since ro;y1 = 0, BY, is a singleton component, which means that K does
not participate in an operation at stage s + 1, contrary to hypothesis.

Now suppose that component L of (A'), participates in operations at stages s+ 1 <
t+1 <wu+1, where s +1 > s, but not at any stage in (¢t + 1,u + 1). Then either L
extends R, or t + 1 is a o-isomorphism recovery stage and L extends C,. But in the
former case, u + 1 is a o-isomorphism recovery stage and, since K does not participate

in operations at any stage in (¢t + 1,u + 1), L extends C;,u']

2.23 Lemma. Let sg be a stage after which o is never initialized. Suppose that sy <
s <t < wv are such that s + 1 is a o-isomorphism recovery stage, 74, = 4541 for all
u > s, t+ 1 is the next stage after stage s + 1 at which o is active, and v + 1 is the
next o-isomorphism recovery stage after stage s +1. For i = 0,1, let B*, R', and C"
be the components of Aj,, that extend B, R.,, and C.,,

and C' be the components of AL that extend B', R', and C*, respectively. If ro 511 =0
then B2 BY and R' = R!, while if Tyst1 = 1 then C' =~ C' gnd R° = RO,

respectively, and let Ei, }A%i,

Proof. The two cases, ¢ = 0 and ¢ = 1, are similar. We do the case i = 0. It is enough
to show that the components of (A"), and (A'), that extend B® and R', respectively,
do not participate in operations at any stage in (t + 1,v + 1).

Suppose that component K of (AY), participates in operations at stages t + 1 and
u+ 1, where t < u < v. Since no stage in (¢t + 1,v + 1) is a o-isomorphism recovery
stage, K extends Ry ,, which in turn extends R_,. Thus K does not extend B".

Now suppose that component L of (A!), participates in operations at stages ¢t + 1
and u+ 1, where t < u < v. Again, no stage in (t+1,v+ 1) is a o-isomorphism recovery

stage, so L extends R. ,, which in turn extends Cy,. Thus L does not extend R'. [

o)

2.24 Lemma. If o is to the left of TP then (A")>, is finite.

2.25 Lemma. If o is initialized at stage s + 1 then no components of (A"), that par-
ticipate in operations at stages before stage s + 1 can participate in an operation after

stage s. Thus if o is to the right of TP then (A%), has no infinite components.

Proof. Let t be the first stage after stage s at which o is active. (If there are no such
stages then we are done.) Then ¢ is a o-change stage, and hence not a o-isomorphism
recovery stage. It is easy to check that, together with the fact that o is initialized
at stage s + 1, this implies that none of the components of (A%), that participate in

operations before stage s + 1 can participate in an operation at stage t. Thus the first

37

part of the lemma follows from Lemma 2.18. The second part of the lemma now follows

from Lemma 2.15.]

We are now ready to show that (2.1) holds. In the course of doing so, we will also
be able to show that (2.4) holds. It follows from Lemmas 2.14, 2.15, and 2.17 that, to
show that (2.1) holds, it is enough to show that for each infinite component of A’ there
is a corresponding isomorphic component of A'~%. The first step in establishing this
result is characterizing the infinite components of A’. Clearly, each infinite component
of A" is in (A", for some o € 2<¥. By Lemmas 2.24 and 2.25, if ¢ is not on T'P then
no component of (A"), is infinite. By Lemmas 2.15 and 2.16, if ¢ is not active infinitely
often then no component of (A), is infinite. Thus we can restrict our attention to the

components of (A%),, ¢ € TP, such that o is active infinitely often.

2.26 Lemma. Let 0 € TP. If r, s does not have a limit then no component of (A"), is

infinite.

Proof. Suppose that r,s = 0 # r, .41 and let £ + 1 be the last o-recovery stage before
stage s + 1. By Lemma 2.19, of all the components of (A%), that have participated in
operations before stage s + 1, the only one that can participate in an operation after
stage s is the component L that extends Sg’s. By Lemma 2.21, L extends Bgu for some
€ [t,s). But the fact that 7,11 = 0 means that, for all u € [t,s), By, is a singleton
component, and hence did not participate in an operation at any stage before stage t+1.
Thus no component of (A°), that participates in an operation before stage ¢ + 1
can do so again after stage s. A similar argument shows that if r, s = 1 # 7,11 and
t + 1 is the last o-recovery stage before stage s + 1 then no component of (A!), that
participates in an operation before stage ¢t 4+ 1 can do so again after stage s. The lemma

now follows from Lemma 2.15.]

Thus the only components of A’ that can be infinite are those that are in (A%), for
some o € TP such that r,4 has a limit and o is active infinitely often. So, by the
comments preceding Lemma 2.26, to establish that (2.1) holds it is enough to show that
it o € TP, r,, has a limit, and o is active infinitely often, then there is exactly one
infinite component S of (A"), for each i = 0,1, and S? = S!. Together with the fact
that no two infinite components of A’ are isomorphic, this will also be enough to show
that (2.4) holds.

2.27 Lemma. Let 0 € TP. There are infinitely many o-recovery stages if and only if

o 18 active infinitely often.

38

Proof. By definition, o is not active at a stage s+ 1 unless a, is less than the number of
o-recovery stages less than or equal to s+ 1. Thus, if there are finitely many o-recovery
stages then ¢ cannot be active infinitely often.

For the other direction, suppose that there are infinitely many o-recovery stages but
only finitely many stages at which o is active. Let s be a stage after which ¢ is never
active or initialized and such that there has been a o-recovery stage since the last time
o was initialized. Now, given = > |o|, let t + 1 be the first stage after stage s by which
there have been x + 1 many o-recovery stages. Then = € A < x € A[t], since if = were
equal to a, for some u >t then o would be active at stage v + 1. But this means that

A is computable, contrary to hypothesis. O

2.28 Lemma. If 0 € TP is active infinitely often and r,s has a limit then there are

nfinitely many o-isomorphism recovery stages.

Proof. If o is active infinitely often then, by Lemma 2.27, there are infinitely many
o-recovery stages, and thus infinitely many o-first stages. The fact that r, ; has a limit
and that o is initialized only finitely often implies that only finitely many of these can be
o-change stages. The lemma now follows directly from the definition of o-isomorphism

recovery stage. O

2.29 Lemma. Suppose that o € TP is active infinitely often and s and i are such that
o 1s not initialized after stage s and v, = 1, =1 for allt > s. By Lemma 2.28, there
are infinitely many o-isomorphism recovery stages. Let so +1 < sy +1 < --- be the
o-isomorphism recovery stages after stage s. For each j € w, let t; 41 be the next stage
after stage s; + 1 at which o is active. (Note that t; < s;ji1 for all j € w.) Fort > to,
let K} be the component of A} that extends R, . Then K,fj = Rla,tj forall j € w.

Proof. The two cases, i = 0 and ¢+ = 1, are similar. We do the case i = 0.
That Ktoj = Rgtj for all j € w follows from Lemma 2.20. Now assume by induction
that K, = R, . Let B be the component of A ., that extends By, . By construction,

B = Ktlj 41+ Since s;41+1is a o-isomorphism recovery stage, Cg,st extends B. Thus, by

0 ~ 1 ~ 1 0 ~ 1
Lemma 2.23, €7, = B. By the same lemma, K, = K, ;,s0C;, =K, , and

hence C} = K} Let R be the component of A% ., that extends R Then

0,854+1 Sj4+1° Sj+1+ 0,554+1"

~ 1 0 ~ 1 ~ 1 1 ~ PO

R=K, . But, by Lemma 2.16, R;, = Rand K, =K, ., s0K, =R, ,
1 _ pl

and hence K} =R, .]

Now assume the hypotheses of Lemma 2.29 and adopt its notation. For [= 0,1, let
S! be the component of A’ that extends R!

0,50 "

39

2.30 Lemma. S! is the only infinite component of (A!),.

Proof. This follows immediately from Lemmas 2.15, 2.22, and 2.29 and the observation
that, for all j € w, if ¢ = 0 in the hypotheses of Lemma 2.29 then R;tj extends C!

0,557

while if ¢ = 1 then R?,’t]_ extends Bgsj. O
2.31 Lemma. S? > S!.

Proof. This follows immediately from Lemma 2.29, since, by definition, Rg,tj = Rzlzt;- for
all j € w, and S}, = {J,, Ry, fori =0, 1. O

As we have argued above, Lemmas 2.30 and 2.31 suffice to establish that (2.1) holds.

2.32 Lemma. A° = A' via an isomorphism that carries U° to U,

To show that (2.4) holds, we need to check that if ¢ # 7 and (A’), and (A?), have
infinite components S! and S?, respectively, then S¢ 2 S?. This is a consequence of the

following lemma, which will also be useful later on.

2.33 Lemma. No component of A" is embeddable in another component of A

Proof. For finite components this follows from Lemma 2.14. For infinite components it
follows from Lemma 2.30 and the fact that if (A%), has an infinite component S? then

S¢ contains a copy of [6("c, k) + 3] for some k € w if and only if 7 = 0. O
2.34 Lemma. A° is rigid.

Proof. By Lemma 2.13, it is enough to show that no two components of A° are isomor-
phic. By Lemma 2.14, for each s € w, no component of A? is embeddable in another
component of A%, which implies that no two finite components of A° are isomorphic.
Since the only infinite components of A? are the SY defined above and, by Lemma 2.33,
SY = 8% if and only if 7 = o, it is also the case that no two infinite components of .A°

are isomorphic. O

We are left with showing that (2.3) holds. This is where this proof differs most
significantly from that of Theorem 1.9. We begin by showing that if ¢ € TP and
Go| = A" then lim, r, ; is well-defined.

2.35 Lemma. If 0 € TP and G, = A% then there are infinitely many o-recovery

stages, and hence the o-special component of G|, is infinite.

40

Proof. Assume for a contradiction that there are only m many o-recovery stages and
let sg be the last o-recovery stage. (If m = 0 then let sy = 0.) By Lemma 2.27, there
is a stage s; > sp such that o is not active at any stage t > s;. By the definition of
TP and the hypothesis that G, = A°, there is a stage sy > s; satisfying the following
conditions: every 7 such that 770 C o has recovered at least |o| + 1 many times by
stage sa, G|o|[s2] has a o-special component, and ¢ is not initialized at any stage greater
than or equal to so. If m = a, for some u > s, then let s = u + 1; otherwise, let s = s,.

By the definition of s, the first condition in the definition of o-recovery stage is met
at every stage greater than or equal to s.

Consider the components of A° that contain a copy of the o-special component of
G|s|- By Lemma 2.16, each such component is finite. Thus, if the second condition in the
definition of o-recovery stage is not eventually satisfied after stage s then the o-special
component of Gy, is not isomorphic to any component of A°.

Since we are assuming that ¢70 is to the left of T'P, there is a stage t > s after
which no 7 such that 7 O ¢70 is initialized. Any such 7 that has not recovered since
the last time it was initialized never again recovers, and hence there is a component
of A° isomorphic to [6("7,init(7,t)) + 3]. Since there are only finitely many 7 such
that |7] < recov(o, s), if the third condition in the definition of o-recovery stage is not
eventually satisfied after stage s then Gy, 2 A°.

Now consider (A°),. Again by Lemma 2.16, (A°), is finite. So if the fourth condition
in the definition of o-recovery stage is not eventually satisfied after stage s then (Gj,(), 2
(A"

Since we are assuming that there are only finitely many o-recovery stages, 60”1 € T'P.
Thus, by Lemma 2.24, (A?)5,-¢ is finite. So if the fifth condition in the definition of
o-recovery stage is not eventually satisfied after stage s then (Gs)55~0 Z (A%)50-0-

Finally, let 7 be such that either 7 = ¢ or both 7 D ¢70 and |7| < recov(o,s).
Let j ¢ A[s] be less than or equal to recov(r,s). Clearly, ¢(7,t) reaches a limit ¢(7).
By the choice of s, j ¢ A[s] = j ¢ A. So, for each | € {1,2,4,5}, there is a unique
component of A° that contains a copy of [6("7",j,c(7)) + I], and it is isomorphic to
[6("7",j,c(7)) +I]. Similarly, there is a unique component of A° that contains a copy
of [67]T, and it is isomorphic to [6j]*. Thus, if the last condition in the definition of
o-recovery stage is not eventually satisfied after stage s then there is a component of
AP that is not isomorphic to any component of Glo|-

In any case, G|,| cannot be isomorphic to A%, contrary to hypothesis. So there are

infinitely many o-recovery stages.

41

Now let v be a stage after which o is never initialized. Given any two o-recovery
stages v < t+ 1 < u + 1 such that there is a stage in (¢,u] at which o is active, the o-
special component of G [u] properly extends the o-special component of G [t]. Since,
by Lemma 2.27, o is active at infinitely many stages, this establishes the second part of

the lemma. O
2.36 Lemma. If o € TP and G, = A° then lim, Tos 15 well-defined.
Proof. This follows immediately from Lemmas 2.26 and 2.35. O]

Now fix ¢ € TP such that G,| = A” and let n = |o|. By Lemma 2.36, r = lim, 7, , is
well-defined. We wish to show that G, is computably isomorphic to A”. The two cases,
r =0 and r = 1, are symmetrical, so we will assume that r = 0.

Let f: A%~ G,. Since A° is rigid, f is the unique isomorphism from A° to G,,, so
we need to show that f is computable. As outlined at the beginning of this section,
our strategy will be to break up the domain of A° into a finite number of c.e. sets and
show that the restriction of f to each of these sets is computable. (If P is c.e. then we
say that f | P is computable if there exists a partial computable function ® such that
x € P= ®(x)]l= f(x).) We will need the following definition.

2.37 Definition. Let k,s € w. We denote by (k) and (k), the components of A° and
AY, respectively, that extend the unique copy of [k] in .AJ.
For D C w, let Pp = J,cp(k).

Note that, for any k,s € w, (k)s is finite. Note also that, since every component
of A% extends some component of A9, |, (k) = A% similarly, [, (k)s = A2. It is
not the case that k # | = (k) # (I), but, as we will see, this will not matter for our

purposes.

2.38 Lemma. Let Dy,...,D,, be computable subsets of w such that \J;-, D; = w. If

f 1 Pp, is computable for each i < m then f is computable.

Proof. Since Dy, ..., D,, are computable, Pp,,...,Pp, are c.e.. Since |JI_)D; = w,
U, Pp; = A°. Thus, to compute f(x) for some z € A%, all we need to do is wait until

x is enumerated into some Pp, and then compute (f [Pp,)(z). O

We will partition w into the pairwise disjoint computable sets Dy, ..., Dg shown in
Table 1. (The corresponding Pp, will not be pairwise disjoint, but this does not matter,

since it was not required to prove Lemma 2.38.) We will then show that, for each i < 6,

42

Table 1: Do, ce ,D6

Do | {6(0,k) +3, 6(0,4, k) +1|jkecw, L €{1,2,4,5}}

Dy | {6(7, k) +3, 6(77,4,k) + 1| 7 to the left of o or 771 C o,

jokew, 1€{1,2,4,5}}
Dy | {6(77, k) +3, 6("7",j,k) + 1 | T to the right of 070, j,k € w, I € {1,2,4,5}}
Dy | {m € w | (m) is the unique infinite component of some (A%),, 770 C o'}

Dy | {6(7,) +3, 6(7,j,k) +1|770C 0, jk€w, €{1,2,4,5}} — Ds

Ds | {6k | k <n} U {6as | as > recov(o, s+ 1) or s is less than

the first o-recovery stage after the last time o is initialized}
D | {6(7,5)+3, 6(7,j,k)y+1l|T=00r070CT, jkew, L €{1,2,4,5}}U
{6k |kew}—Ds

f | Pp, is computable, which will enable us to apply Lemma 2.38 to conclude that f is

computable. The following two lemmas provide a useful tool for our task.

2.39 Lemma. Let k € w and suppose there is a stage s such that, for each t > s, (k)
does not participate in an operation at stage t + 1. Then (k) = (k)s.

Proof. Clearly, if (k), does not participate in an operation at stage ¢ + 1 then (k)11 =
(k). So, by induction, (k); = (k)e1 for all ¢t > s. Since (k) = J,e,(F)s, the lemma
follows. m

2.40 Lemma. Let both D C w and h : D — w be computable. Suppose that, for each
k€ D and t > h(k), (k); does not participate in an operation at stage t + 1. Then
f I Pp is computable.

Proof. Let x € Pp and let k € D be such that « € (k). By Lemma 2.39, (k)nu) = (k),
so (k) is finite. By Lemma 2.33, there is a unique finite set 7" C G, such that there is
an isomorphism g, : (k) = T. Clearly, g, can be extended to an isomorphism from .A°
to G,. By the uniqueness of f, f(z) = g.(x). Since g, can be computably determined
given x € Pp, this implies that f | Pp is computable.]

2.41 Lemma. Let Dy consist of all numbers of the form 6(0,k) + 3 or 6(0, 7, k) + 1,
gk €w, l€{1,2,4,5}. Then f | Pp, is computable.

43

Proof. Let m be of the form 6(0, k) + 3 or 6(0,j,k) + 1, j,k € w, l € {1,2,4,5}. Recall
that, for all 7 € 2<“, 771 £ 0. Thus the only time (m) can participate in an operation
is at stage k + 1. (This happens if no element of 2<“ is active at stage k + 1.) So if we
define h(m) = k + 1 then the hypotheses of Lemma 2.40 are satisfied for D = Dy. [

2.42 Lemma. There exists a stage s such that if T is either to the left of o or such that

771 C o then T is not active after stage s.

Proof. Let T be the set of all 7 which are either to the left of o or such that 771 C o.
Since o € T'P, only finitely many elements of T" ever recover, and those that do recover,
do so only finitely often. But, by definition, no 7 € 2<“ can be active at a stage t + 1
unless a; is less than the number of 7-recovery stages less than or equal to ¢t 4+ 1, and

hence no 7 can be active more often than it recovers. O

2.43 Lemma. Let Dy be the set of all numbers of the form 6("1", k)+3 or 6("1", j, k) +1,
T to the left of o or 771 C oo, j,k € w, l € {1,2,4,5}. Then f | Pp, is computable.

Proof. Let s be as in Lemma 2.42. By Lemma 2.16, for each m € Dy and t > s, (m),
does not participate in an operation at stage t + 1. So if we let h(m) = s for all m € D,
then the hypotheses of Lemma 2.40 are satisfied for D = D;. [

2.44 Lemma. Let 7 be to the right of 0~0. Let m be of the form 6("7, k) + 3 or
6(" .4, ky +1,1 € {1,2,4,5}. Let s+ 1 be a stage by which by T has been initialized

k+ 1 many times. Then (m) does not participate in an operation after stage s.

Proof. 1If a singleton component of A? of the form [6("7,p) + 3] participates in an
operation at a stage t + 1 > s then p = init(r,t) > k + 1. If a singleton component of
AY of the form [6("7",7,p) + 1], | € {1,2,4,5}, participates in an operation at a stage
t+1 > s then p = ¢(1,t) > init(r,t) > k+ 1. So if (m) does not participate in an
operation before stage s + 1 then it does not participate in an operation after stage s.
On the other hand, if (m) participates in an operation before stage s+1 then the fact

that it does not participate in an operation after stage s follows from Lemma 2.25. []

2.45 Lemma. Let D be the set of all numbers of the form 6{"7, k)43 or 6{"1", j, k) +1,
T to the right of 070, j,k € w, l € {1,2,4,5}. Then f | Pp, is computable.

Proof. If m € Dy is of the form 6("7", k) + 3 or 6("7", j, k) 4+ [then define h(m) to be

the first stage by which 7 has been initialized k£ + 1 many times (which exists, since

44

0”0 € TP). Then, by Lemma 2.44, the hypotheses of Lemma 2.40 are satisfied for
D = D,. [

If 770 C o and 7,4 has a limit then, by Lemma 2.30, (A%), has a unique infinite
component. On the other hand, if 770 C ¢ and r;, does not have a limit then, by
Lemma 2.26, all components of (AY), are finite. Let D3 be the set of all m € w such
that (m) is the unique infinite component of some 770 C ¢ such that 7. has a limit.
Note that Ds is finite.

2.46 Lemma. f | Pp, is computable.

Proof. Let T = {zy,...,x,} be the tops of the components of Pp,. Let v € Pp, — T.
By Lemma 2.13, there is a unique k such that z is in a copy K of [k]. The top of K
is x; for some i < m. Let L be the unique copy of [k] in G, with top f(x;) and let g,
be the unique isomorphism form K to L. By the uniqueness of f, f(z) = g.(x). Since
g can be computably determined given x € Pp, — T and T is finite, this implies that
f I Pp, is computable. O]

2.47 Lemma. Let D, be the set of all numbers not in D3 that are of the form 6{"7, j)+3
or 6(t, 5, k) +1, 770 C 0, j,k €w, l €{1,2,4,5}. Then f | Pp, is computable.

Proof. Let m € Dy. If m is of the form 6("7, j, k) + 1, 1 € {1,2,4,5}, then let s be the
first stage by which 7 has recovered k£ + 1 many times. If (m) has not participated in
an operation before stage s then, by the same reasoning as in the proof of Lemma 2.44,
it does not participate in an operation after stage s. In this case, let h(m) = s.

Now suppose that m is of the form 6("7", j) + 3. Let init(7) = lim, init(7, s), which
exists since 7 € T'P. If j < init(7) then let s be the least stage by which 7 has been
initialized k£ 4+ 1 many times. Arguing as in the proof of Lemma 2.44, we see that
(m) does not participate in an operation after stage s. In this case, let h(m) = s. If
J > init(7) then (m) never participates in an operation. In this case, let h(m) = 0.

If h(m) has not yet been defined then (m) participates in an operation at least once.
However, since (m) is finite, (m) participates in operations only finitely often, so there
exist stages s < t such that (m) does not participate in an operation in the interval
(s,t] and there is a 7T-isomorphism recovery stage in (s,t]. By Lemma 2.18, (m) does
not participate in an operation after stage ¢. In this case, let h(m) = t.

Now the hypotheses of Lemma 2.40 are satisfied for D = Djy. O

45

2.48 Lemma. Let DL be the set of all numbers of the form 6k, k < n. Let Dy be set
of all numbers of the form 6as such that as > recov(o,s + 1) or s is less than the first
o-recovery stage after the last time o is initialized. Let Dy = DL U DY. Then f | Pp, is

computable.

Proof. By Lemma 2.16, there is a stage ¢ such that no (6k), k < n, participates in an
operation after stage t. For k < n, let h(6k) = t. For 6as € DY, let h(6as) = s+1. Again
by Lemma 2.16, (6as) does not participate in an operation after stage h(6as). Since DY

is finite, h is computable, and hence the hypotheses of Lemma 2.40 are satisfied for
D = Ds. O

Let Dg be the set of all numbers of the form 6("7",j) +3 or 6("7,j,k) + [, 7 =0
or 0”0 C 7, kew, le€{l,24,5} Let Df be the set of all numbers of the form 6k
that are not in Ds. Let Dg = Dy U D{. In order to show that f is computable, we are
left with showing that f | Pp, is computable. Roughly speaking, the idea is to show
that, once r, ¢ has reached its final value, G, and A always go in the same direction at

stages at which components of Pp, participate in operations.

2.49 Lemma. Let 7 be such that T = o or 0”0 C 7. Let u be a stage after which o is
never initialized and such that, for all s > u, r,s = 0. Let s+1 and t + 1 be o-recovery
stages such that s+1 > t+1 > u and there is no o-recovery stage in the interval (t+1, s],
and let so+1 < s34+ 1< -+ < sp,+1 be the stages in the interval (t,s] at which T is
active. For each k < m, let Yy, Xi, Zi, By, Rr, and Cj, be YTOSk, ng, ngk, Bgsk, R?sk,
and C?

D s Tespectively, and let Yy, X;, Zy, By, Ry, and Cj, be the components of A} that
extend Yy, Xy, Zi, By, Ri and Cy, respectively. Then the following hold.

1. For every k < m, Yy, Xy, Zx, By, and Cy are components of AY, and so is Ry.
If rri41 = 0 then, for every k,l < m, R, = R). If .41 = 1 then, for every
0<k<m, R,=DBj_,.

2. There exists a component Ro of Qn[t] such that ﬁo = Ry and, for each k < m, there
exist components Yk, Xk, Zk, Bk, and Ck of Gnlt] such that }Afk >~ Vi,)?k ~ X,
Zk = Zk, Bk Bk, and Ck Ck

3. Let E’ be the component of Guls| that extends ﬁo and, for each k < m, let }7,;,
Xk, Zk, B,'g, and C’k be the components of G,|s| that extend)/}k,)A(k, Z\k, Ek, and
Ch, respectively. R’ = Ry and, for each k < Yk' =Y/, X,’C = X, ZIQ = 7,
B, = B, and C}, = C}.

46

Proof. There are no 7-recovery stages in the interval (¢ 4 1, s|, which implies that if 7 is
initialized in the interval (¢, s| then this initialization happens after stage s, +1. So the
first part of the lemma follows from the way Y?°, , X0, 22, BY_ R}, and C?, are
defined. The second part of the lemma follows from the definition of o-recovery stage.
We prove the third part of the lemma. Figures 2.7-2.9 might be helpful here.

We begin with the 7 = o case.

By definition, Ry and E{) are the special components of G,[t] and G,[s], respectively.
Thus, since 7,11 = 755 = 0 and s 4 1 is a o-recovery stage, Eg = R}. We now proceed
by reverse induction, beginning with m.

It follows from the construction and the first part of the lemma that if K is taken
from among JBL{), ?k’,)A(,’C, 2,;, E;, and é,g, k < m, and L # K is taken from among]?26,
2’,)/(\'l’, Z\l’, B\l’, and (7;, [< m, then K 2 L. Furthermore, if K is one of ?,c’,)/(\',’c, /Z\,’c, E,;,
or 6,’6, and L is a component of A? such that K = L then L is one of R}, Y/, X], Z],
Bj,or C,l > k.

Thus, since we assume by induction that, for all j > k, }Afj’ =2Y],)A(]’ = XY, ZJ/ =7,
E; = Bj, and @J’ = (7, we may assume that if K is one of)A/k’,)?,’C, ZQ, E,’C, or 6,; and L
is a component of A? such that K = L then L is one of Ry, Y}, X}, Z;, B;, or Cj.

The only components among Ry, Y,, X}, Z;, By, or C}. that contain copies of C'\k are
R{ and Cj,.. Since ﬁf) = Ry, it must be the case that A,’c = (.

The only components among Ry, Y,, X}, Z;, By, or C}, that contain copies of Y}, are
C}. and Y. Since = ., it must be the case that ?k’ =Y.

The only components among Ry, Y), X, Z,, By, or C}, that contain copies of X,
are Y} and Xj. Since 17% =Y}, it must be the case that)A(,'Q = X,

The only components among Ry, Y), X;., Z;, By, or C}, that contain copies of 7, are
X}, and Z;. Since)?,; = X}, it must be the case that Z\,; = 7.

The only components among Ry, Y., X}, Z,, By, or C} that contain copies of By
are Z;, and By. Since Z; = Z, , it must be the case that Bj, = Bj.

This completes the 7 = o case. We now handle the 7 O ¢70 case. There are two
subcases.

First suppose that r;;4; = 0.

Let £ < m. Since o is active whenever 7 is active, it follows from the 7 = o case
that X| = X.

The only components of A that contain copies of Z; are X} and Z. Since X} = X,
it must be the case that Z\,; = 7.

The only components of A? that contain copies of By, are Z;, and Bj,. Since 2,2 = 7.,

47

it must be the case that B\,’C = B,.

The only components of A? that contain copies of Ry are R} and Bj,...,B!.. We
have shown that, for every k < m, §,’€ = B,.. Thus it must be the case that §6 = R;.

We now proceed by reverse induction, beginning with m. Let k < m. Assume by
induction that, for all j > k, ¥/ = Y}, X} = X}, 7 = 7, B} = B}, and 0} = C}. As
in the 7 = o case, we may assume that if K is one of Y}, X, Z}, B}, or C}, and L is a
component of A? such that K = L then L is one of R}, Y/, X}, Z,, By, or Cj.

We have already seen that)/(\',’C = X}, Z\,; =7, é,’g = By, and Eg = R|.

The only components among Ry, Y,, X}, Z;, By, or C}, that contain copies of Cj, are
R{ and Cj,.. Since }A% = Ry, it must be the case that A]’C = (.

The only components among R}, Y/, X}, Z,., B;,, or C}. that contain copies of Y, are
C}. and Y. Since = > it must be the case that ?k’ =Y.

This completes the 7,41 = 0 case. Now suppose that r; ;1 = 1.

As before, it follows from the 7 = o case that)A(,’C = X for all k < m.

We first proceed by reverse induction, beginning with m, to show that Z’c = 7,
E;C = By, and E{) = R{. Let k < m. We may assume by induction that, for all
k<j<m, B~ B,

The only components of A? that contain copies of Z, are X and Z;. Since X; = X/,
it must be the case that Z’g = 7.

The only components of A? that contain copies of By are Zy, and Bj, k < j < m.
Since Z’c = Z; and, for all k < j < m, §3 & By, it must be the case that B\,’C = By.

The only components of A% that contain copies of }A%o are R and B(,...,B],. We
have shown that, for every k < m, B; = Bj,. Thus it must be the case that Rj, = Rj.

Now let 0 < k < m. The only components of A? that contain copies of Cy. are B,
and Cj. Since B\,’C_l = B;_,, it must be the case that = -

The only components of A? that contain copies of Cj are R{ and C}. Since ﬁ{) = Ry,
it must be the case that 66 = (.

Let k < m. The only components of A that contain copies of Y, are Cf and Y.
Since 6,; = (), it must be the case that ?k’ =Y.

This completes the 7, ;.1 = 1 case. O

The following lemma can be easily checked from the way components that participate

in operations in the construction are chosen.

2.50 Lemma. Let m € w be of the form 6("r", j)+3 or6("r", j,k)+l, 7T =0 orc”0 C 7,
Jok €w, le{1,2,4,5}. If (m)s participates in an operation at stage s+ 1 then it is one

48

0
R,

Of YT?S’ Zg,sf Bﬂ(-),sf or C1’9,3'
Let m € Dy. If (m), participates in an operation at stage s + 1 then it is X? and o

18 active at stage s+ 1.

2.51 Lemma. Let u be a stage after which o is never initialized and such that, for all
52U, 755 =0. Let s+ 1 > u be a o-recovery stage and let t + 1 be the next o-recovery
stage after stage s+ 1. Let m € Dg. Suppose there exists a component L of G,[s] that

is isomorphic to (m)s. Then the component L' of G, [t] that extends L is isomorphic to
(m)¢.

Proof. Tf (m) does not participate in an operation in the interval (s, ¢] then (m), = (m)s.
Since L' 2 L, (m); is not embeddable in another component of A?, and, by convention
(see page 30), G,[t] is embeddable in A?, this means that L' = (m),.

Otherwise, the lemma follows from Lemmas 2.49 and 2.50. O

2.52 Lemma. Let x € Pp, and let u be a stage after which o is never initialized and
such that, for all s > u, r,s = 0. There exists a o-recovery stage s + 1 > u such that
x is contained in (k)s for some k € Dg and G,[s| has a component L = (k)s. For any

such s, if we let g be the unique isomorphism from (k)s to L then f(z) = g(z).

Proof. If x is contained in a finite component of A° then the existence of s follows from
the fact that G, = A°. Otherwise, there are t > s > u such that s + 1 is a o-recovery
stage, there are no o-recovery stages in the interval (s + 1,¢ 4+ 1], x is contained in
(k), k € Dg, and (k); is involved in an operation at stage t + 1. Now it follows from
Lemma 2.49 that x is contained in (k)s and G,[s] has a component L = (k).

Let s+1=s5p+1<s;+1<--- be the o-recovery stages greater than or equal to
s+ 1. Let L; be the component of G,[s;] that extends L and let L’ be the component of
G, that extends L. Using Lemma 2.51 and induction, we see that, for each ¢ > 0, there
exists a unique isomorphism g; : (k)s, = L;. Furthermore, if j > ¢ then g; extends g;.
Thus the limit ¢’ of the g; is well-defined and is an isomorphism from (k) to L. By the
uniqueness of f, f(z) = ¢'(x) = go(x) = g(z). O

2.53 Lemma. f [Pp, is computable.

Proof. Let u be a stage after which o is never initialized and such that, for all s > u,
res = 0. Given x € Pp,, find the least o-recovery stage s + 1 > u such that z is
contained in a component (m)s, m € Dg, of A? and there exists a component L of

Gn|s] isomorphic to (m)s. Such a stage exists by Lemma 2.52. Let g, be the unique

49

isomorphism from (m)s to L. Again by Lemma 2.52, f(z) = g.(x). Since g, can be
computably determined given x € Pp,, f | Pp, is computable.]

By Lemmas 2.41, 2.43, 2.45, 2.46, 2.47, 2.48, and 2.53, f | Pp, is computable for
each i < 6. As can be easily checked by referring to Table 1, Dy, ..., Dg are computable
and U?:o D; = w. Thus, by Lemma 2.38, we have the following result.

2.54 Lemma. The unique isomorphism f : A° = G, is computable.

Theorem 1.10 follows from Lemmas 2.9, 2.10, 2.32, 2.34, and 2.54. [

3 Proof of Theorem 1.12

In this section we prove the following theorem, using a construction similar to that of
Section 4 of [18].

1.12. Theorem. Let a € w U {w} and let b > 0 be an a-c.e. degree. There exists an
intrinsically a-c.e. relation V- on the domain of a computable structure B of computable
dimension 2 such that DgSpg(V') = {0,b}. In addition, B can be picked so that every

c.e. presentation of B is computable, which implies that B has c.e. dimension 2.

Proof. Let a € wU {w} and let B be an a-c.e. set that is not computable. It follows
immediately from Definition 1.11 that there exist a computable sequence by, by, ... € w

and a function f such that
1. either & < w and f(z) = a for all x € w or @ = w and f is computable,
2. {s|bs =z} < f(x) for all x € w, and
3. z€B& |{s|bs =z} =1mod 2.

Since the a = 0 case is trivial, we may assume without loss of generality that f(xz) > 0
for all x € w.
We wish to construct computable structures B and B! and unary relations V9 and

V! on the domains of BY and B!, respectively, so that the following properties hold.

(3.1) B® = B! via an isomorphism that carries V° to V1.

(3.2) VY=, B and V! is computable.

50

(3.3) If G = BY is a computable structure then G is computably isomorphic to either
B° or B

(3.4) BY is rigid.
(3.5) Every c.e. presentation of B® with computable equality relation is computable.

For each s € w, let ¢; = |{t < s| by = bs}| and let a5 = (b, cs). Let A ={ag,ay,...}.
A is clearly c.e. but not computable, so we can follow the construction in Section 2 to
obtain computable structures A° and A' and relations U® and U! on the domains of .A°
and A, respectively, satisfying properties (2.1)—(2.5). (We assume that the construction
has been carried out in such a way that the domains of A% and A" are co-infinite.)

Now, for © = 0,1, proceed as follows. Add an element, which we will call the
identifying node of B, to the domain of A* and add an edge from this node to each
node of A’. For each j € w and each sequence of components Ly, L1, ..., L;)—1 such
that each Ly contains a copy of [6(7, k)|, add an element = (which will be said to be a
j-coding node) to the domain of A’, add an edge from z to the coding location of the
copy of [6(7, k)] in Ly, for each k < f(j), and add an edge from x to the identifying node
of B'. The resulting graph is B'.

Clearly, we can build each B so that it is a computable graph, and the following

lemma can be easily checked, using the fact that A is rigid.
3.1 Lemma. B° is rigid.
It is also not hard to establish that (3.5) holds.

3.2 Lemma. If G is a c.e. presentation of B® with computable equality relation then G

s computable.

Proof. Let z be the image of the identifying node of BY in G. Let G’ be the subgraph of
G consisting of all elements y of G such that there is an edge from z to y, and let G” be
the subgraph of G consisting of all elements y of G such that there is an edge from y to
z. Since |G'| N|G"| = 0 and |G'| U |G"| U {z} = |G|, both |G’| and |G"| are computable.
Since G’ = A%, it follows from (2.5) that G’ is computable.

For each element x € G, there is either an edge from z to x or an edge from x to
z, but not both. Furthermore, there are no edges between elements of G” or from an
element of G’ to an element of G”. Thus it suffices to show that there is an effective

procedure for determining, given = € G” and y € G’, whether there is an edge from x to

Y.

51

Fix z and y as above. Then z is a j-coding node for some j € w, and this j can
be found effectively. There are exactly f(j) many elements w # z of G for which there
is an edge from z to w. Since f is computable, we can find these elements and check

whether y is among them. O]

We now define a relation V* on the domain of B. Let K* be the set of coding nodes
in B'. Let j € w and let be a j-coding node in B. By construction, there exist
components Ly, ..., Lg;—1 of A" such that, for each k < f(j), Ly contains a copy of
[6(7, k)] whose coding location yj, is attached to z. Let ¢'(z) be the least k < f(j) such
that v, ¢ U, if such a k exists, and let ¢(x) = f(j) otherwise. Now let V' = {x € K" |
c(z) is odd}.

3.3 Lemma. B° = B! via an isomorphism that carries V° to V1.

Proof. By (2.1), A° = A via an isomorphism that carries U°? to U'. Tt is straightforward
to extend this isomorphism to an isomorphism & : BY = B!. The fact that h(U°) = (U?)
implies that if z € K° then °(x) = ¢!(h(z)), which in turn implies that (V%) = V1. O

3.4 Lemma. V; is computable and Vy =,, B.

Proof. Since U' is computable, there is a computable procedure for determining c(z)
given r € K, and thus V; is computable.

Let x € K°. By construction, there exist components Ly, . . ., Ly)—1 of AP such that,
for each k < f(j), Ly contains a copy of [6(j, k)] whose coding location yy is attached to
x. Let d(z) be the least k such that, for all m > k, y,, is the coding location of the copy
of [6(7,m)] in AY, if such a k exists, and let d(x) = f(j) otherwise. Note that there is a
computable procedure for determining d(z) given z € K°.

If d(z) > 0 then clearly (j,d(z) — 1) € A. But this means that, in fact, (j, k) € A
for all k < d(z). It follows that we can computably determine whether y, € U° for
k < d(z). So if we define S = {x € K° | ¢(z) < d(x)} and T = K° — S then S, T, and
V%N S are computable.

Now let € T be a j-coding node and let yo, . .., y7(j)—1 be as above. By the definition
of T, Yo, .-, Yaw)—1 € U so (j, k) € A for all k < d(z). But, by the definition of d(x),
for each k > d(z), yp € U° if and only if (j,k) € A. So c(z) = |{k]| (j,k) € A}| =
{t | b, =j}|. Thus z € V°if and only if j € B, and hence V' NT =,, B. Since
V0=V S)u (VPNT), it follows that V° =, B. O

52

3.5 Lemma. If G = B° is a computable structure then G is computably isomorphic to
either B® or B!.

Proof. Let z be the image of the identifying node of B° in G. Let G’ be the computable
subgraph of G consisting of all elements y of G such that there is an edge from z to y.
By the definition of B°, G’ = A°. Thus, by (2.3), there exists a computable isomorphism
h: A"~ G for some i < 1.

To extend this isomorphism to a computable isomorphism h : Bi = G, we first
define o | A" = h and h(u) = z, where u is the identifying node of Bi. Now let
r € B — (A'U{u}). Then z is a j-coding node for some j € w, and we can computably
determine the f(j) many coding locations yo, . .., ¥yf(;)—1 attached to z. There is a unique
w € G — G attached to h(yo), ..., h(ys;)-1). Define fz(x) = w. It is now easy to check
that / is a computable isomorphism from B’ to G. n

Theorem 1.12 follows from Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5. |

References

[1] C. J. Ash, Isomorphic recursive structures, in Ershov et al. [9] 167-182.

[2] C.J. Ash, P. Cholak, and J. F. Knight, Permitting, forcing, and copying of a given
recursive relation, Ann. Pure Appl. Logic 86 (1997) 219-236.

[3] C.J. Ash and A. Nerode, Intrinsically recursive relations, in J. N. Crossley (ed.),
Aspects of Effective Algebra (Clayton, 1979) (Upside Down A Book Co., Yarra
Glen, Australia, 1981) 26-41.

[4] E. Barker, Intrinsically 3° relations, Ann. Pure Appl. Logic 39 (1988) 105-130.

[5] P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore, Computably cate-
gorical structures and expansions by constants, J. Symbolic Logic 64 (1999) 13-37.

[6] R. G. Downey, Computability theory and linear orderings, in Ershov et al. [9] 823—
976.

[7] R. L. Epstein, R. Haas, and R. L. Kramer, Hierarchies of sets and degrees below
0’, in M. Lerman, J. H. Schmerl, and R. 1. Soare (eds.), Logic Year 1979-80 (Proc.
Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), vol.
859 of Lecture Notes in Mathematics (Springer—Verlag, Heidelberg, 1981) 32-48.

53

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. L. Ershov and S. S. Goncharov, Elementary theories and their constructive
models, in Ershov et al. [9] 115-166.

Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (eds.), Handbook of
Recursive Mathematics, vol. 138-139 of Studies in Logic and the Foundations of
Mathematics (Elsevier Science, Amsterdam, 1998).

S. S. Goncharov, Computable single-valued numerations, Algebra and Logic 19
(1980) 325-356.

S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations,
Algebra and Logic 19 (1980) 401-414.

S. S. Goncharov, Autostable models and algorithmic dimensions, in Ershov et al.
[9] 261-288.

S. S. Goncharov and B. Khoussainov, On the spectrum of degrees of decidable
relations, Doklady Math. 55 (1997) 55-57, research announcement.

V. S. Harizanov, Degree spectrum of a recursive relation on a recursive structure,
PhD Thesis, University of Wisconsin, Madison, WI (1987).

V. S. Harizanov, The possible Turing degree of the nonzero member in a two element
degree spectrum, Ann. Pure Appl. Logic 60 (1993) 1-30.

V. S. Harizanov, Pure computable model theory, in Ershov et al. [9] 3—-114.

V. S. Harizanov, Turing degrees of certain isomorphic images of computable rela-
tions, Ann. Pure Appl. Logic 93 (1998) 103-113.

D. R. Hirschfeldt, Degree spectra of intrinsically c.e. relations, to appear in J.
Symbolic Logic.

D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, Degree spectra

and computable dimension in algebraic structures, to appear.

B. Khoussainov and R. A. Shore, Computable isomorphisms, degree spectra of
relations, and Scott families, Ann. Pure Appl. Logic 93 (1998) 153-193.

o4

[21] B. Khoussainov and R. A. Shore, Effective model theory: the number of models and
their complexity, in S. B. Cooper and J. K. Truss (eds.), Models and Computability,
vol. 259 of London Mathematical Society Lecture Note Series (Cambridge Univer-
sity Press, Cambridge, 1999) 193-239.

[22] B. Khoussainov and R. A. Shore, Solutions of the Goncharov-Millar and degree
spectra problems in the theory of computable models, Dokl. Akad. Nauk SSSR (to

appear).

23] J. B. Remmel, Recursive isomorphism types of recursive Boolean algebras, J. Sym-
bolic Logic 46 (1981) 572-594.

[24] R. L. Soare, Recursively Enumerable Sets and Degrees, Perspectives in Mathemat-

ical Logic, Omega Series (Springer—Verlag, Heidelberg, 1987).

95

