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Abstract

We show that for every c.e. degree a > 0 there is an intrinsically c.e. relation

on the domain of a computable structure of computable dimension 2 whose degree

spectrum is {0,a}, thus answering a question of Goncharov and Khoussainov [13].

We also show that this theorem remains true with α-c.e. in place of c.e. for any

α ∈ ω∪{ω}. A modification of the proof of this result similar to what was done in

[18] shows that for any α ∈ ω ∪ {ω} and any α-c.e. degrees a0, . . . ,an there is an

intrinsically α-c.e. relation on the domain of a computable structure of computable

dimension n + 1 whose degree spectrum is {a0, . . . ,an}. These results also hold

for m-degree spectra of relations.

1 Introduction

The study of the effective content of model theory has proved quite fertile, and has

attracted the attention of a large number of researchers. The recent publication of

the Handbook of Recursive Mathematics [9], the first volume of which is dedicated to

effective model theory, attests to the growth of the field. (This handbook is a valuable

reference; in particular, the introduction and the articles by Ershov and Goncharov [8]

The results in this paper are part of the author’s doctoral dissertation, written at Cornell University

under the supervision of Richard A. Shore. The author thanks Professor Shore for many useful com-

ments and suggestions. The author was partially supported by an Alfred P. Sloan Doctoral Dissertation

Fellowship.
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and Harizanov [16] give useful overviews, while the articles by Ash [1] and Goncharov [12]

cover material related to the topic of this paper. Another relevant survey article is [21].)

Several different notions of effectiveness of model-theoretic structures have been in-

vestigated. In this paper, we are mainly concerned with structures whose constants,

functions, and relations are uniformly computable.

1.1 Definition. A structure A in a computable language is computable if both its

domain |A| and the atomic diagram of 〈A, a〉a∈|A| are computable.

Remark. It will be more convenient to treat equality in computable structures as actual

equality rather than as a relation. This is not an important distinction, however, since

every computable structure is computably isomorphic to some computable structure B
such that if a 6= b ∈ |B| then B � a 6= b.

Providing effective analogs of theorems of classical model theory (and showing that

in certain cases there are none) is part of the work of computable model theory. Another

part consists of analysing phenomena that only arise in the computable setting, such as

the fact that isomorphic computable structures, which are considered to be essentially

identical in classical model theory, might behave quite differently from a computability-

theoretic point of view.

For example, under the standard ordering of ω, the successor relation is computable,

but it is not hard to construct a computable linear ordering of type ω in which the

successor relation is not computable (see, for instance, [6]). In fact, for every computably

enumerable (c.e.) degree a, we can construct a computable linear ordering of type ω in

which the successor relation has degree a. It is also possible to build two isomorphic

computable groups, only one of which has a computable center, or two isomorphic

Boolean algebras, only one of which has a computable set of atoms. This leads us to

study computable structures up to computable isomorphism, a point of view reflected

in the following definition.

1.2 Definition. An isomorphism from a structure M to a computable structure is

called a computable presentation of M. (We often abuse terminology and refer to the

image of a computable presentation as a computable presentation.)

If M has a computable presentation then it is computably presentable.

The computable dimension of a computably presentable structureM is the number

of computable presentations of M up to computable isomorphism.

A structure of computable dimension 1 is said to be computably categorical.
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We will also have occasion to consider c.e. structures.

1.3 Definition. A structure A is c.e. if its domain |A| is computable and the atomic

diagram of 〈A, a〉a∈|A| is c.e..

An isomorphism from a structure M to a c.e. structure is called a c.e. presentation

of M. (As in the computable case, we often refer to the image of a c.e. presentation as

a c.e. presentation.)

If M has a c.e. presentation then it is c.e. presentable.

The c.e. dimension of a c.e. presentable structureM is the number of c.e. presenta-

tions of M up to computable isomorphism.

Remark. We take the more general of two possible definitions of c.e. structure, in which

equality is c.e. rather than computable. It will be clear that the results involving c.e.

structures in this paper also hold for the less general definition.

It is convenient to assume that the domain of a c.e. structure is computable rather

than c.e., but this makes no real difference, since any structure with c.e. domain is

computably isomorphic to a structure with computable domain.

The examples mentioned above of structures that are isomorphic but not computably

isomorphic, as well as many other natural ones, suggest the idea of attempting to under-

stand the differences between noncomputably isomorphic computable presentations of a

structureM by comparing (from a computability-theoretic point of view) the images in

these presentations of a particular relation on the domain ofM. (Of course, this is only

interesting if this relation is not the interpretation inM of a relation in the language of

M.) The study of additional relations on computable structures began with the work

of Ash and Nerode [3] and has been continued in a large number of papers. (References

can be found in the aforementioned articles in [9], as well as in [21].)

Ash and Nerode [3] were concerned with relations that maintain some degree of

effectiveness in different computable presentations of a structure.

1.4 Definition. Let U be a relation on the domain of a computably presentable struc-

tureM and let C be a class of relations. U is intrinsically C onM if the image of U in

any computable presentation of M is in C.

In [3], conditions that guarantee that a relation is intrinsically computable or in-

trinsically c.e. were given. More recent work has led to a number of other conditions

guaranteeing that a relation is intrinsically C for various classes C (see [4], for example).
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A different approach to the study of relations on computable structures, which began

with the work of Harizanov [14] (although there is some earlier work, for instance by

Remmel in [23], that can be thought of in this light), is to look at the (Turing) degrees

of the images of a relation in different computable presentations of a structure.

1.5 Definition. Let U be a relation on the domain of a computably presentable struc-

tureM. The degree spectrum of U onM, DgSpM(U), is the set of degrees of the images

of U in all computable presentations of M.

It is also interesting to consider degree spectra of relations with respect to other

reducibilities.

1.6 Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility)

or weak truth-table reducibility (wtt-reducibility). Let U be a relation on the domain of

a computably presentable structureM. The r-degree spectrum of U onM, DgSpr
M(U),

is the set of r-degrees of the images of U in all computable presentations of M.

Ash-Nerode type conditions often imply that the degree spectrum of a relation is

either a singleton or infinite. Indeed, for various classes of degrees, conditions have been

formulated that guarantee that the degree spectrum of a relation consists of all the de-

grees in the given class (see [2] or [17], for example). Motivated by these considerations,

as well as by Goncharov’s examples [11] of structures of finite computable dimension,

Harizanov and Millar suggested the study of relations with finite degree spectra.

Harizanov [15] was the first to give an example of an intrinsically ∆0
2 relation with a

two-element degree spectrum that includes 0. (Harizanov also noted that Goncharov’s

example of a rigid structure of computable dimension 2 can be converted into an example

of an intrinsically ∆0
3 relation with a two-element degree spectrum that includes 0.)

1.7 Theorem (Harizanov). There exist a ∆0
2 but not c.e. degree a and a relation

U on the domain of a computable structure A of computable dimension 2 such that

DgSpA(U) = {0, a}.

Khoussainov and Shore and Goncharov [13],[20] showed the existence of an intrinsi-

cally c.e. relation with a two-element degree spectrum.

1.8 Theorem (Khoussainov and Shore, Goncharov). There exist a c.e. degree a and an

intrinsically c.e. relation U on the domain of a computable structure A of computable

dimension 2 such that DgSpA(U) = {0, a}.
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This left open the question, asked explicitly in [13], of which (c.e.) degrees can be

the nonzero element of a two-element degree spectrum of a relation on a structure of

computable dimension 2. A partial answer to this question was given by the author

in [18], where the following result was established.

1.9 Theorem. Let a > 0 be a c.e. degree. There is an intrinsically c.e. relation U on

the domain of a computable structure A such that DgSpA(U) = {0, a}.

In this paper, we improve this result by showing that A can be chosen to have

computable dimension 2, thus fully answering the question mentioned above in the c.e.

case. Our proof is such that we are able to control not only the computable dimension

but also the c.e. dimension of the structures we build (which was also the case in [20]).

1.10 Theorem. Let a > 0 be a c.e. degree. There is an intrinsically c.e. relation

U on the domain of a computable structure A of computable dimension 2 such that

DgSpA(U) = {0, a}. In addition, A can be picked so that every c.e. presentation of A
is computable, which implies that A has c.e. dimension 2.

This result and its extensions, Theorems 1.12 and 1.14 below, are also due indepen-

dently to Khoussainov and Shore [22], whose proofs use a complicated modification of

their proof of Theorem 1.8.

The proof of Theorem 1.10, which appears in Section 2, is based on the proof of

Theorem 1.9, and uses techniques from [20], which in turn builds on work of Gon-

charov [10],[11] and Cholak, Goncharov, Khoussainov, and Shore [5].

We can extend Theorem 1.10 by broadening our focus from the c.e. degrees to larger

classes of ∆0
2 degrees.

1.11 Definition. Let A ⊆ ω be a set. A computable sequence a0, a1, . . . is a ∆0
2

approximation of A if for all x ∈ ω, |{s | as = x}| is finite and x ∈ A⇔ |{s | as = x}| is
odd.

Let n ∈ ω. A is n-c.e. if there exists a ∆0
2 approximation a0, a1, . . . of A such that

|{s | as = x}| 6 n for all x ∈ ω.

A is ω-c.e. if there exist a ∆0
2 approximation a0, a1, . . . of A and a computable function

f such that |{s | as = x}| 6 f(x) for all x ∈ ω.

Let α ∈ ω ∪ {ω}. A degree is α-c.e. if it contains an α-c.e. set. A collection of sets

{Ai}i∈ω is uniformly α-c.e. if
⊕

i∈ω Ai = {〈i, x〉 | x ∈ Ai} is α-c.e..
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Remark. The above definition of ω-c.e. is the one that will be useful in Section 3. There

is an equivalent definition which can be generalized to define the concepts of α-c.e. set

and α-c.e. degree for any computable ordinal α (see [7]). It is also interesting to note

that a set is ω-c.e. if and only if it is wtt-reducible to ∅′.

1.12 Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There is an

intrinsically α-c.e. relation V on the domain of a computable structure B of computable

dimension 2 such that DgSpB(V ) = {0,b}. In addition, B can be picked so that every

c.e. presentation of B is computable, which implies that B has c.e. dimension 2.

The structure B, which will be described in Section 3, will be an extension of the

structure A constructed in the proof of Theorem 1.10 for an appropriate c.e. degree a.

In [18], the following extension of Theorem 1.9 was established.

1.13 Theorem. Let {Ai}i∈ω be a uniformly c.e. collection of sets. There is an intrinsi-

cally c.e. relation U on the domain of a computable structure A such that DgSpA(U) =

{deg(Ai) | i ∈ ω}.

Khoussainov and Shore [20] showed that, for each n ∈ ω, there exist c.e. degrees

a0, . . . , an and an intrinsically c.e. relation U on the domain of a computable structure

A of computable dimension n+ 2 such that DgSpA(U) = {0, a0, . . . , an}. It is straight-

forward to combine the proofs of Theorems 1.10 and 1.12 with that of Theorem 1.13,

given in Section 3 of [18], to yield the following strengthening of that result.

1.14 Theorem. Let α ∈ ω ∪ {ω} and let a0, . . . , an be α-c.e. degrees. There is an

intrinsically α-c.e. relation U on the domain of a computable structure A of computable

dimension n + 1 such that DgSpA(U) = {a0, . . . , an}. In addition, A can be picked so

that every c.e. presentation of A is computable, which implies that A has c.e. dimension

n+ 1.

The proofs of Theorems 1.10 and 1.12 are such that these theorems remain true with

degree replaced by m-degree and DgSpA(U) replaced by DgSpm
A(U). The same holds of

Theorem 1.14 if we require that the m-degrees of ∅ and ω not be on the list a0, . . . , an.

Thus, for any reducibility r weaker than m-reducibility, these theorems remain true with

degree replaced by r-degree and DgSpA(U) replaced by DgSpr
A(U).

By the results of [19], for each of the following theories, Theorems 1.10, 1.12, and 1.14

remain true if we also require that the structures mentioned in them be models of

the given theory, and that the relations mentioned in them be submodels: symmetric,

6



irreflexive graphs; partial orderings; lattices; rings (with zero-divisors); integral domains

of arbitrary characteristic; commutative semigroups; and 2-step nilpotent groups.

2 Proof of Theorem 1.10

In this section we prove the following theorem.

1.10. Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation

U on the domain of a computable structure A of computable dimension 2 such that

DgSpA(U) = {0, a}. In addition, A can be picked so that every c.e. presentation of A
is computable, which implies that A has c.e. dimension 2.

Proof. Let A be a c.e. set that is not computable and let a0, a1, . . . be a computable

enumeration of A. Let A[0] = ∅ and A[s + 1] = {a0, . . . , as}. We wish to construct

computable structures A0 and A1 and unary relations U0 and U1 on the domains of A0

and A1, respectively, so that the following properties hold.

(2.1) A0 ∼= A1 via an isomorphism that carries U0 to U1.

(2.2) U0 ≡m A and U1 is computable.

(2.3) If G ∼= A0 is a computable structure then G is computably isomorphic to either

A0 or A1.

(2.4) A0 is rigid.

(2.5) Every c.e. presentation of A0 with computable equality relation is computable.

The reason that (2.5) is enough to establish the last part of Theorem 1.10 is that

we can let A be the result of adding to A0 the binary relation Q that holds of x and

y if and only if x 6= y. Clearly, A shares all the relevant computable properties of A0,

and any c.e. presentation of A restricts to a c.e. presentation of A0 with computable

equality relation.

The construction in this section will be similar in many ways to what was done in [18]

to prove the result we have numbered Theorem 1.9, as will the proof that properties

(2.1) and (2.2) hold. (The construction in [18] also satisfied (2.4), but this was not

mentioned in that paper because it was not needed to prove Theorem 1.9.) There

will also be similarities with certain aspects of the proof in [20] of the result we have
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numbered Theorem 1.8. However, we will not assume that the reader is familiar with

these papers, and will make our discussion below, as well as the formal proof that follows

it, self-contained.

Our structures will be directed graphs. We begin by defining our basic building

blocks.

2.1 Definition. Let n ∈ ω. The directed graph [n] consists of n + 3 many nodes

x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and an edge

from xi to xi+1 for each i 6 n+ 1. We call x0 the top of [n] and xn+2 the coding location

of [n].

Let S ⊂ ω. The directed graph [S] consists of one copy of [s] for each s ∈ S, with

all the tops identified.

Figure 2.1 shows [2] and [{2, 3}] as examples.

•�� ��top // //• // //• // //• coding location// //•hhhh

•�� ��top // //

�� ��

• // //• // //• coding location// //•hhhh

• // //• // //• // //• coding location// //•jjjj

Figure 2.1: [2] and [{2, 3}]

The description of the construction of A0, A1, U0, and U1 will be organized as

follows. In Section 2.1, we discuss how we satisfy (2.1) and (2.2). Before dealing

with the satisfaction of (2.3) in Section 2.3, we review in Section 2.2 what was done

in the proof of Theorem 1.9 to satisfy the corresponding property. Formal definitions

and conventions are given in Section 2.4; this is followed by the formal construction in

Section 2.5 and its verification in Section 2.6.

We will ignore (2.5) until we give the formal definitions used in the full construction;

at that point, we will introduce a few minor changes to ensure the satisfaction of this

property. We will also not make explicit mention in our informal discussion below of

how (2.4) is satisfied, but it should be clear that the construction we describe ensures

the rigidity of the Ai, and we will assume this fact in our discussion. We will also assume

8



in our discussion that our construction is such that no connected component of Ai is

embeddable in another component of Ai.

2.1 Satisfying (2.1) and (2.2)

We build A0 and A1 in stages. We begin by letting A0
0 and A1

0 be computable structures

with co-infinite domains, each consisting of one copy of [k] for each k ∈ ω. (This will

change slightly when we introduce the changes needed to satisfy (2.5).) If at each

stage s+ 1 we enumerate the coding location of the copy of [3as] in A0
0 into U0 then we

will have ensured that U0 ≡m A. However, we also wish to make U1 computable while

guaranteeing that A0 ∼= A1 via an isomorphism that carries U0 to U1. To describe how

we can do this, we need two more definitions.

2.2 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite. G consists of the disjoint union of a number of connected

components, which from now on we will just call the components of G.

Suppose that G has components K and L isomorphic to [B] and [C], respectively,

where B,C ⊂ ω are finite. We define the operation K · L, which takes G to a new

computable structure extending G, as follows. Extend K to be a copy of [B ∪ C] using

numbers not in the domain of G. Leave every other component of G (including L)

unchanged.

We will also use the notation K · L to denote the graph [B ∪ C]. It should always

be clear which meaning of K · L is being used.

Given a finite sequence of operations, each of which can be performed on G, so that

no two operations in the sequence affect the same component of G, we can perform all

the operations in the sequence simultaneously on G to get a structure extending G. In

this case we will say that we have performed the sequence of operations on G.

2.3 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite and let X0, . . . , Xn be components of G such that, for each

i 6 n, Xi is isomorphic to [Si] for some finite Si ⊂ ω. We define two operations, each of

which takes G to a new computable structure extending G.

• The L-operation L(X0, . . . , Xn) consists of performing the sequence of operations

X0 ·X1, X1 ·X2, . . . , Xn ·X0 on G.
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• The R-operation R(X0, . . . , Xn) consists of performing the sequence of operations

X0 ·Xn, X1 ·X0, . . . , Xn ·Xn−1 on G.

Note that if H is the structure obtained by performing L(X0, . . . , Xn) on G and H′

is the structure obtained by performing R(X0, . . . , Xn) on G then H ∼= H′.

We can now proceed as follows. At stage s + 1, let X i
s, Y

i
s , and Zi

s be the copies in

Ais of [3as], [3as + 1], and [3as + 2], respectively. Perform L(Y 0
s , X

0
s , Z

0
s ) on A0

s to get

A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s ) on A1

s to get A1
s+1. (In order to ensure that A0 and

A1 are computable, the new numbers added to their domains at this stage are assumed

to be greater than s.) Put the coding location of the old copy of [3as] in A0
s+1 (that is,

the copy that was already in A0
0) into U0 and put the coding location of the new copy

of [3as] in A1
s+1 into U1.

Figure 2.2 pictures what happens on either side of the construction. For each i = 0, 1,

the copy of [3as] whose coding location enters U i is underlined.

[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as] [3as] · [3as + 2] [3as + 2] · [3as + 1]

[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as + 2] [3as] · [3as + 1] [3as + 2] · [3as]

Figure 2.2: The basic coding strategy (top: A0 / bottom: A1)

Now let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. It is easy to show, by induction using

the definition of the L- and R-operations, that for each s, A0
s
∼= A1

s via an isomorphism

that carries U0[s] to U1[s]. (Here U i[s] is the set of all numbers that have entered U i by

the end of stage s.) It is also true that whenever a component of Ais participates in an

operation at stage s + 1, so does the isomorphic component of A1−i
s . Since A0 and A1

have no infinite components, it follows that A0 ∼= A1 via an isomorphism that carries

U0 to U1.

Furthermore, it is still the case that U0 ≡m A, since a number is in U0 if and only if

it is the coding location of the copy of [3a] in A0
0 for some a ∈ A. On the other hand,
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any number put into U1 at a stage s+ 1 is a new number, and is therefore greater than

s, which implies that U1 is computable.

2.2 The Proof of Theorem 1.9

Before we turn to the satisfaction of (2.3), it will be useful to discuss what was done in

the proof of Theorem 1.9 to satisfy the following weaker condition, which, together with

(2.1) and (2.2), clearly implies that theorem.

(2.3′) If G ∼= A0 is a computable structure then the image of U0 in G is either com-

putable or m-equivalent to A.

Our strategy for satisfying (2.3) will be quite similar to that used to satisfy (2.3′),

although the proof that it succeeds will be significantly more involved.

The way in which (2.3′) can be satisfied for a single G is based on the following

observation.

Let U be the image of U0 in G and let G[s] denote the stage s approximation to G.

Assume that, for all s ∈ ω, no component of Ais is embeddable in another component of

Ais and G[s] is embeddable in A0
s. The latter assumption can be made because we only

care about G if it is isomorphic to A0.

Suppose that, at some stage s, A0
s has components X0

s , Y 0
s , Z0

s , and S0
s , A1

s has

isomorphic components X1
s , Y 1

s , Z1
s , and S1

s , respectively, and G[s] has isomorphic com-

ponents Xs, Ys, Zs, and Ss, respectively. Now suppose we perform L(Y 0
s , X

0
s , Z

0
s , S

0
s )

on A0
s to get A0

s+1 and perform R(Y 1
s , X

1
s , Z

1
s , S

1
s ) on A1

s to get A1
s+1. Then A0

s+1 has

components isomorphic to S0
s · Y 0

s , Y 0
s ·X0

s , X0
s ·Z0

s , and Z0
s · S0

s , and these are the only

components of A0
s+1 that contain copies of X0

s , Y 0
s , Z0

s , or S0
s . So if Xs, Ys, Zs, and Ss

do not grow into isomorphic copies of the aforementioned components of A0
s+1 then we

can win immediately by not involving these components in any further operations, thus

guaranteeing that G � A0.

So if G ∼= A0 then there are only two possibilities. The first is that Ss grows into

a copy of Ss · Ys, Ys grows into a copy of Ys ·Xs, Xs grows into a copy of Xs · Zs, and

Zs grows into a copy of Zs · Ss. In this case we will say that G “goes to the left”. The

other possibility is that Ys grows into a copy of Ss · Ys, Ss grows into a copy of Zs · Ss,
Zs grows into a copy of Xs ·Zs, and Xs grows into a copy of Ys ·Xs. In this case we will

say that G “goes to the right”.

Now if the coding location of X0
s is put into U0 and the coding location of the new

copy of X1
s is put into U1 then the coding location of the copy of Xs that is part of
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the component isomorphic to Xs · Zs is in U . In other words, if G goes to the left then

the coding location of Xs in G[s] is in U , while if G goes to the right then the coding

location of the copy of Xs in G − G[s] is in U . It is easy to conclude from this that if

G goes to the left at all but finitely many stages then U ≡m A, while if G goes to the

right at all but finitely many stages then U is computable.

So to satisfy (2.3′) it is enough to ensure that G either almost always goes to the

left or almost always goes to the right. This can be done by always using the same

component of G, which we will call the special component of G, as Ss.

That is, we first pick some component of G to be its special component. Say we pick

the one that extends the first copy of [0] to appear in G. (Let us assume that 0 /∈ A.)

At stage 0, we define Ai0 as above and wait until a copy of [0] is enumerated into G. We

also define r0 to be 0. The value of rs will code whether G goes to the left or to the

right at stage s.

At stage s + 1, we let X i
s, Y

i
s , and Zi

s be the copies in Ais of [3as], [3as + 1], and

[3as + 2], respectively, and let Sis be the isomorphic copy in Ais of the special component

Ss of G[s]. We wait until copies of X i
s, Y

i
s , and Zi

s are enumerated into G[s] and then

perform the same operations as before. We then wait until copies of Ss · Ys, Ys · Xs,

Xs · Zs, and Zs · Ss are enumerated into G. Either the copy of Ss · Ys or that of Zs · Ss
will extend Ss. Whichever one it is now becomes Ss+1. If Ss+1

∼= Ss · Ys then rs+1 = 0;

otherwise rs+1 = 1.

The above construction ensures that if G ∼= A0 then the special component of G
is infinite. On the other hand, it also guarantees that if G changes direction infinitely

often (that is, if rs does not have a limit) then no component of A0 is infinite, so that

G � A0. This is because, for each s ∈ ω, the copy of the special component of G[s+1] in

A1−rs+1

s+1 is a component that participates in an operation for the first time at stage s+1.

Figure 2.3 illustrates the case rs+1 = 0. In this figure, the special components of G[s]

and G[s+ 1] and their images are shown in boxes.

However, there are two problems with this construction. First of all, by the same

reasoning as in the last paragraph, if G almost always goes to the left then no component

of A1 is infinite, while if G almost always goes to the right then no component of A0 is

infinite. In either case, (2.1) no longer holds.

This problem can be solved by re-using components in operations. The idea is

roughly as follows. Instead of using four components in our operations, we use six. That

is, at stage s + 1, in addition to the components mentioned above, we pick two other

components B0
s and C0

s of A0
s and isomorphic components B1

s and C1
s of A1

s, perform
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��
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Y 0
s

��
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��
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s

��
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s

��

Y 0
s ·X0

s X0
s · Z0

s Z0
s · S0

s S0
s · Y 0

s

Y 1
s

��

X1
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��

Z1
s

��

S1
s

��
Y 1
s · S1

s X1
s · Y 1

s Z1
s ·X1

s S1
s · Z1

s

Figure 2.3: The images of the special component (top: G / middle: A0 / bottom: A1)

L(Y 0
s , X

0
s , Z

0
s , B

0
s , S

0
s , C

0
s ) on A0

s to get A0
s+1, and perform R(Y 1

s , X
1
s , Z

1
s , B

1
s , S

1
s , C

1
s ) on

A1
s to get A1

s+1. (In order to accommodate the extra components, X i
s can be the copy

of [6as] in Ais, and a similar change can be made for the other components.)

As long as G is going in the same direction, we designate every other stage as an

isomorphism recovery stage. At such a stage s + 1, if rs = 0 then we let C0
s be the

component of A0
s that extends B0

s−1 and let C1
s be the isomorphic component of A1

s. On

the other hand, if rs = 1 then we let B1
s be the component of A1

s that extends C1
s−1 and

let B0
s be the isomorphic component of A0

s. Whenever G changes direction, we restart

this isomorphism recovery process.

It is straightforward to check that this strategy guarantees that if rs has a limit

then the copies of the special component of G in A0 and A1 are isomorphic, while still

ensuring that if rs does not have a limit then no component of A0 or A1 is infinite. We

will give an example below to illustrate isomorphism recovery.

Another problem that had to be faced in the proof of Theorem 1.9, and will have

to be faced here also, is that, in general, we cannot know in advance whether a given

13



computable structure G is isomorphic to A0, so it is not possible to wait at each stage

until the appropriate components are enumerated into G. To get around this, the notion

of a recovery stage can be used.

At stage s + 1, where we would have waited for G to provide components Ys, Xs,

Zs, Bs, and Cs, we can simply not involve copies of the special component of G in our

operations unless these components are provided. (That is, if these components are not

in G[s] then we perform L(Y 0
s , X

0
s , Z

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s )

on A1
s to get A1

s+1.) Furthermore, where we would have waited for Ys, Xs, Zs, Bs, Ss,

and Cs to grow into copies of Ys ·Xs, Xs ·Zs, Zs ·Bs, Bs ·Ss, Ss ·Cs, and Cs ·Ys, we can

just declare that we are waiting for these copies to appear in G.

A recovery stage in the sense of the proof of Theorem 1.9 is then a stage s+ 1 such

that

1. G[s] contains copies of all the components for which we are currently waiting and

2. for each j /∈ A[s] that is less than or equal to the number of recovery stages before

stage s + 1, G[s] contains components that can be used as Yt, Xt, Zt, Bt, and Ct

if at = j for some t > s.

(As we will see in the next section, we will need a somewhat more complicated version

of this concept.)

Now suppose that G ∼= A0. Say that G is active at a given stage if isomorphic copies

of its special component participate in the operations performed at that stage. We want

there to be infinitely many recovery stages. This will happen as long as there is a bound

on how often G can be active while waiting for recovery.

Let P be the set of all j ∈ ω that do not enter A before the jth recovery stage. Let

M be the set of all coding locations of copies of [6j], j ∈ P , in G and let N be the set

of all coding locations of copies of [6j], j /∈ P , in G. By the definition of recovery stage,

G will be active at each stage s + 1 such that as ∈ P . We make it a rule that G is not

active at any other stage. This clearly provides the desired bound on the number of

times G can be active while waiting for recovery.

Arguing as before, we conclude that if G almost always goes to the left then U∩M ≡m

A, while if G almost always goes to the right then U ∩M is computable. But P , N ,

and U ∩N are computable, since if we wait until the jth recovery stage then we can tell

whether j ∈ P , and if j /∈ P then j ∈ A. So if G almost always goes to the left then

U ≡m A, while if G almost always goes to the right then U is computable. Thus (2.3′)

is satisfied for this G.
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We remark that the modification to the construction that we have just described

makes the definition of isomorphism recovery stage a little more complicated, in that a

stage cannot be an isomorphism recovery stage unless it is a first stage, that is, the first

stage at which G is active after a recovery stage. We will discuss this further below.

Before proceeding, let us look at two examples. The first one illustrates what happens

in the construction described above when G recovers. Suppose that s < t < u < v are

such that s+1 is a first stage, rs+1 = 0, v+1 is the next recovery stage after stage s+1,

and t+ 1 and u+ 1 are the only two stages between stages s+ 1 and v + 1 at which G
is active.

Figure 2.4 pictures what happens on the A0 side of the construction. From now on,

we will use the notation Ri
s in place of Sis, since this is the notation that we will adopt

in the full construction. This change is made because Ri
w might not be isomorphic to

the special component of G[w] if w + 1 is not a recovery stage.

Y 0
s

��

X0
s

��

Z0
s

��

B0
s

��

R0
s

��

C0
s

��
Y 0
s ·X0

s X0
s · Z0

s Z0
s ·B0

s B0
s ·R0

s C0
s · Y 0

s

Y 0
t

��

X0
t

��

Z0
t

��

B0
t

��

R0
s · C0

s

��

C0
t

��
Y 0
t ·X0

t X0
t · Z0

t Z0
t ·B0

t B0
t ·R0

s · C0
s C0

t · Y 0
t

Y 0
u

��

X0
u

��

Z0
u

��

B0
u

��

R0
s · C0

s · C0
t

��

C0
u

��
Y 0
u ·X0

u X0
u · Z0

u Z0
u ·B0

u B0
u ·R0

s · C0
s · C0

t R0
s · C0

s · C0
t · C0

u C0
u · Y 0

u

Figure 2.4: Recovery

Note that, by the definition of recovery stage, the special component of G[s] is iso-

morphic to R0
s and, for each w = s, t, u, G[s] has components Yw, Xw, Zw, Bw, and Cw

isomorphic to Y 0
w , X0

w, Z0
w, B0

w, and C0
w, respectively.

Since G recovers at stage v + 1, there are two possibilities. The first one is that the

special component of G[v] is isomorphic to one of B0
s ·R0

s, B
0
t ·R0

s ·C0
s , or B0

u ·R0
s ·C0

s ·C0
t .
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In this case, rv+1 = 1.

The second possibility is that the special component of G[v] is isomorphic to R0
s ·C0

s ·
C0
t ·C0

u. In this case, the component of G[v] that extends Cu must be the one isomorphic

to C0
u · Y 0

u . From this it follow that the component of G[v] that extends Yu must be the

one isomorphic to Y 0
u ·X0

u. Proceeding in this fashion, we see that for each w = s, t, u,

the component of G[v] that extends Xw is the one isomorphic to X0
w · Z0

w.

Notice that in the previous argument it is crucial that no component of A0 other

than the one that extends R0
s participates in operations more than once in the interval

(s, v]. This is the reason for requiring that isomorphism recovery happen only at first

stages.

Our second example illustrates isomorphism recovery. Suppose that s < t < u <

v < w are such that s+ 1 and v + 1 are first stages, t+ 1 and u+ 1 are the only stages

between s+1 and v+1 at which G is active, and w+1 is the first stage after stage v+1

at which G is active. Suppose further that rs+1 = rt+1 = ru+1 = rv+1 = rw+1 = 0.

Figure 2.5 pictures what happens on either side of the construction. The key point

to notice here is that if R0
t
∼= R1

t then R0
w extends R0

t , R
1
w extends R1

t , and R0
w
∼= R1

w.

This pattern would allow us to prove by induction that if rs has a limit then each Ai

has a unique infinite component Si and S0 ∼= S1.

In the full construction in the proof of Theorem 1.9, we of course had to satisfy (2.3′)

for every computable directed graph. Let G0,G1, . . . be a standard enumeration of all

partial computable directed graphs. In that construction, we defined the concepts of

n-recovery stage, n-isomorphism recovery stage, rn,s, and so forth in the same way as

the corresponding concepts have been defined above, with Gn in place of G. We also said

that n was active at a given stage if copies of the special component of Gn participated

in operations at that stage.

Remark. For the sake of definiteness, we make the following definition, although we will

make no explicit use of it. A partial computable directed graph G consists of two 0, 1-

valued partial computable functions Φ and Ψ, the former unary and the latter binary,

such that if Φ(x)[s] ↓= Φ(y)[s] ↓= 1 then Ψ(x, y)[s] ↓. The graph G (resp. G[s]) is the

graph whose domain has characteristic function Φ (Φ[s]) and whose edge relation has

characteristic function Ψ (Ψ[s]).

We were able to satisfy (2.3′) for each Gn independently. In order to describe how

this was done, we first need some notation to allow us to distinguish the components

that were used to satisfy (2.3′) for a particular Gn. We will denote by (Ai)n the subgraph
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Figure 2.5: Isomorphism recovery (top: A0 / bottom: A1)
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of Ai consisting of those components used in the construction to satisfy (2.3′) for Gn;

that is, those components that act as Y , Z, B, S, and C components at some stage in

the strategy for satisfying (2.3′) for Gn described above. The corresponding components

of Gm for m possibly but not necessarily equal to n will be denoted by (Gm)n.

We need to define new L- and R-operations that allow us to involve components of

(Ai)n for different n’s in operations at the same stage.

2.4 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite. Let K0, K1, . . . , Kn and L be components of G isomorphic

to [y0], [y1], . . . , [yn] and [x], respectively, where y0, y1, . . . , yn, x ∈ ω. We define two

operations, each of which takes G to a new computable structure extending G.

• The operation (K0, K1, . . . , Kn) ·L consists of performing the following steps, and

otherwise leaving G unchanged. Create a new copy of [x] using numbers not in

the domain of G. For each i 6 n, add an edge from the top of this new copy of [x]

to the top of Ki.

• The operation L · (K0, K1, . . . , Kn) consists of performing the following steps, and

otherwise leaving G unchanged. For each i 6 n, create a new copy of [yi] using

numbers not in the domain of G. For each i 6 n, add an edge from the top of L

to the top of the new copy of [yi].

For example, suppose that L, K0, and K1 are copies of [2], [3], and [4], respectively.

Then the operation (K0, K1) · L consists of extending K0 ∪K1 to a copy of the graph

shown in Figure 2.6, while the operation L · (K0, K1) consists of extending L to a copy

of that same graph.

•�� ��top // //

�� ��

����

• // //• // //• coding location// //•hhhh

•OOOOtop // //• // //• // //• // //• coding location// //•jjjj

•?? ??
top

// //• // //• // //• // //• // //• coding location// //•kkkk

Figure 2.6: The result of either of the operations ([3], [4]) · [2] or [2] · ([3], [4])
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2.5 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite. We say that a component C of G is a set component if it

is isomorphic to [T ] for some finite T ⊂ ω. If T is a singleton then we say that C is a

singleton component.

Let Y0, . . . , Yn, X, Z0, . . . , Zn, B0, . . . , Bn, S0, . . . , Sn, and C0, . . . , Cn be components

of G such that for each i 6 n, X, Yi, and Zi are singleton components and Bi, Si,

and Ci are set components. We define two operations, each of which takes G to a new

computable structure extending G.

• The L-operation

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

consists of performing the following sequence of operations on G.

(Y0, . . . , Yn) ·X, X · (Z0, . . . , Zn), Z0 ·B0, . . . , Zn ·Bn,

B0 · S0, . . . , Bn · Sn, S0 · C0, . . . , Sn · Cn, C0 · Y0, . . . , Cn · Yn

• The R-operation

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

consists of performing the following sequence of operations on G.

Y0 · C0, . . . , Yn · Cn, C0 · S0, . . . , Cn · Sn, S0 ·B0, . . . , Sn ·Bn,

B0 · Z0, . . . , Bn · Zn, (Z0, . . . , Zn) ·X, X · (Y0, . . . , Yn)

Note that if H is the structure obtained by performing

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

on G and H′ is the structure obtained by performing

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

on G then H ∼= H′.

The idea now is that, at any given stage in the construction, there is a certain number

of Gn’s that need to have components Y i
n, Zi

n, Bi
n, Sin, and Ci

n of (Ai)n participate in
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operations at that stage in order for the strategy for satisfying (2.3′) for Gn to proceed

as described above. (The construction is organized in such a way that these components

are distinct for different n’s.) On the other hand, there is a unique component X0 of A0

whose coding location will go into U0, as well as a unique corresponding component X1

of A1. Letting n0, . . . , nk be all the n such that components of (Gn)n need to participate

in an operation at this stage, we can now perform

L(Y 0
n0
, . . . , Y 0

nk
;X0;Z0

n0
, . . . , Z0

nk
;B0

n0
, S0

n0
, C0

n0
; . . . ;B0

nk
, S0

nk
, C0

nk
)

on A0 and perform

R(Y 1
n0
, . . . , Y 1

nk
;X1;Z1

n0
, . . . , Z1

nk
;B1

n0
, S1

n0
, C1

n0
; . . . ;B1

nk
, S1

nk
, C1

nk
)

on A1. It is easy to check that the argument sketched out above still applies, and thus

that, in this way, we can satisfy (2.3′) for all Gn.

2.3 Satisfying (2.3)

As we have seen, the construction in the proof of Theorem 1.9 was an injury-free one in

which the satisfaction of (2.3′) for a given Gn was handled by a single strategy, which

worked with the components of (Ai)n and acted independently from strategies for the

satisfaction of (2.3′) for other Gm. The trade-off was forgoing any control of (Gn)m for

m 6= n.

In order to satisfy (2.3), we need to control more of Gn than just (Gn)n. In order

to illustrate how we do this, we consider the following sample situation. We have two

graphs G0 and G1. We proceed with a construction like that described above, except

that, in order for G0 to recover at stage s + 1, we require not only that G0[s] have the

components that were necessary for 0-recovery, but also those that were necessary for

1-recovery, and we do not allow 1-recovery unless there is 0-recovery, which means that

1 is not active unless 0 is active. We claim that we will succeed in controlling (G0)1 in

the same sense that we controlled (G0)0 before.

An example should be helpful here. Suppose that s < t < u < v are such that s+ 1

is a first stage, v+ 1 is the next recovery stage after stage s+ 1, r0,s+1 = r0,v+1 = 0, and

t+ 1 and u+ 1 are the only two stages in the interval (s+ 1, v+ 1) at which 0 is active.

Suppose further that 1 is also active at stages t+ 1 and u+ 1. Notice that, since we do

not allow 1 to be active unless 0 is active, t+ 1 and u+ 1 are the only two stages in the
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Figure 2.7: Recovery in a two-strategy scenario: (A0)0
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Figure 2.8: Recovery in a two-strategy scenario: (A0)1 in case r1,s+1 = 0
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Figure 2.9: Recovery in a two-strategy scenario: (A0)1 in case r1,s+1 = 1
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interval (s+ 1, v+ 1) at which 1 is active. Figures 2.7–2.9 picture what happens on the

A0 side of the construction, depending on whether r1,s+1 = 0 or r1,s+1 = 1.

We are assuming the definition of recovery stage is such that the special component

of G0[s] is isomorphic to R0
s, G0[s] has a component R1,s isomorphic to R0

1,s, and, for each

w = s, t, u and i = 0, 1, G0[s] has components Yi,w, Xw, Zi,w, Bi,w, and Ci,w isomorphic

to Y 0
i,w, X0

w, Z0
i,w, B0

i,w, and C0
i,w, respectively.

Since G0 recovers at stage v + 1 and r0,v+1 = 0, the special component of G0[v] is

isomorphic to R0
0,s ·C0

0,s ·C0
0,t ·C0

0,u. So, arguing as before, we see that, for each w = s, t, u,

the components of G0[v] that extend Y0,w, Xw, Z0,w, B0,w, and C0,w are isomorphic to

the components of A0
v that extend Y 0

0,w, X0
w, Z0

0,w, B0
0,w, and C0

0,w, respectively. In other

words, all of (G0)0 goes in the same direction as (A0)0.

We wish to show that (G0)1 also goes in the same direction as (A0)1. Let R′1,s be

the component of G0[v] that extends R1,s and, for each w = s, t, u, let Y ′1,w, X ′w, Z ′1,w,

B′1,w, and C ′1,w be the components of G0[v] that extend Y1,w, Xw, Z1,w, B1,w, and C1,w,

respectively.

In the r1,s+1 = 0 case, we can argue as follows. As we have mentioned above, for each

w = s, t, u, X ′w
∼= X0

w · (Z0
0,w, Z

0
1,w), which implies that Z ′1,w

∼= Z0
1,w · B0

1,w. This in turn

implies that B′1,s
∼= B0

1,s · R0
1,s, B

′
1,t
∼= B0

1,t · R0
1,s · C0

1,s, and B′1,u
∼= B0

1,u · R0
1,s · C0

1,s · C0
1,t.

So the only component of A0
v left for R′1,s to be isomorphic to is R0

1,s · C0
1,s · C0

1,t · C0
1,u.

This implies that, for each w = s, t, u, C ′1,w
∼= C0

1,w · Y 0
1,w, which in turn implies that

Y ′1,w
∼= (Y 0

0,w, Y
0
1,w) ·X0

w. Thus, in this case, we see that (G0)1 goes in the same direction

as (A0)1.

In the r1,s+1 = 1 case, the argument that (G0)1 goes in the same direction as (A0)1

is as follows. As before, for each w = s, t, u, X ′w
∼= X0

w · (Z0
0,w, Z

0
1,w), which implies that

Z ′1,w
∼= Z0

1,w · B0
1,w. This implies that B′1,u

∼= B0
1,u · B0

1,t · B0
1,s · R0

1,s, which implies that

B′1,t
∼= B0

1,t ·B0
1,s ·R0

1,s ·C0
1,u, which implies that B′1,s

∼= B0
1,s ·R0

1,s ·C0
1,t, which implies that

R′1,s
∼= R0

1,s ·C0
1,s. Now, for for each w = s, t, u, we have C ′1,w

∼= C0
1,w ·Y 0

1,w, which implies

that Y ′1,w
∼= (Y 0

0,w, Y
0
1,w) ·X0

w. Thus, in this case also, (G0)1 goes in the same direction as

(A0)1.

In either case, we have the same kind of control over (G0)1 as we have over (G0)0.
Now assume that G0 ∼= A0 and lims r0,s = 0. We claim that, if there are no other

elements to the construction, so that from some stage s on all of G0 goes in the same

direction as A0, then the unique isomorphism f : A0 → G0 is computable. (Recall that

we are assuming that A0 is rigid.) Indeed, the following is an effective procedure for

computing f(x) given x ∈ A0. Find the least stage t > s such that x is contained in
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a component K of A0
t and there is an isomorphism g from K to some component L of

G0[t]. Such a stage must exist by the definition of 0-recovery, and, since all of G0 goes

in the same direction as A0 from stage s on, f(x) = g(x).

Of course, the strategy for G0 that we have just described works at the expense of

the corresponding strategy for G1. Indeed, if G0 does not recover infinitely often then

G1 is not allowed to recover infinitely often, even though it might be the case that

G1 ∼= A0. We solve this problem in the standard way, by having multiple strategies for

satisfying (2.3) for a given Gn and organizing these on a tree. (The reader unfamiliar

with the technique of organizing priority constructions on a tree should consult [24].)

More specifically, for each finite binary string σ, there will be a strategy for satisfying

(2.3) for G|σ|, where |σ| is the length of σ. The string σ represents a guess about which

Gm, m < |σ|, recover infinitely often, with σ(m) = 0 representing a guess that Gm
recovers infinitely often and σ(m) = 1 representing a guess that it does not.

For each σ of length n, Gn will have a σ-special component. We will say that σ

is active whenever this component participates in an operation, and will define the

concepts of σ-recovery, σ-isomorphism recovery, and so forth. We will write σai to

mean the concatenation of σ with the string of length 1 whose only element is i.

For all τ such that σa0 ⊆ τ , τ will not be accessible except at σ-recovery stages,

which means that there will not be τ -recovery at a given stage unless there is also σ-

recovery. As in the two-strategy scenario above, the requirements for σ-recovery will be

such that the components that must be provided by G|σ| for it to σ-recover include all the

components that must be provided by G|τ | for it to τ -recover. (Since there are infinitely

many τ extending σa0 and we can only require G|σ| to provide finitely many components

for each σ-recovery, we will not allow such a τ to recover until σ has recovered |τ | + 1

many times.) In this way, if σ is on the true path of the construction (which will be

defined, as usual, as the leftmost path visited infinitely often) and G|σ| ∼= A0 then we

will be able to control not only (G|σ|)σ, but also (G|σ|)τ for all τ such that σa0 ⊆ τ , by

a similar argument to that in the two-strategy scenario.

It is important to note that σ might be active at stages at which it is not accessi-

ble. This is because, as in the simpler construction described above, in order for G|σ|
to σ-recover, we will require that it provide enough components to allow σ to be ac-

tive whenever a number less than the number of times G|σ| has σ-recovered enters A.

Whenever such a number does enter A, we will allow σ to be active, unless G|σ| has not

σ-recovered since the last time σ was initialized (that is, the last time the construction

moved to the left of σ.)

25



The reason we require G|σ| to σ-recover at least once following an initialization before

σ can be active again is that the components that can be used by the strategy corre-

sponding to σ (including the σ-special component) will change each time σ is initialized

(more on this below). This restriction will not hamper the strategies on the true path,

since these will be initialized only finitely often.

In the following discussion, we will denote by (k) the component of Ai that extends

the unique copy of [k] in Ai0, and by 〈Ai〉σ we will mean the union of the components

of Ai that might potentially be used by the strategy for satisfying (2.3) for G|σ| corre-

sponding to σ; once we give the formal details of the construction, it will be clear which

components these are. (As was the case with the corresponding notations in [18], (Ai)σ

and (Gn)σ, n ∈ ω, will refer to the union of those components that are actually used by

the strategy corresponding to σ.) By 〈Ai〉 we will mean the union of the components of

Ai of the form (6k), k ∈ ω. (These are the components that might not be in 〈Ai〉σ for

any σ.)

Fix σ on the true path such that G|σ| ∼= A0. These conditions on σ will imply that,

for all τ ( σ, τ recovers infinitely often if and only if τa0 ⊆ σ. They will also imply

that σa0 is on the true path, so that σ recovers infinitely often, and that lims rσ,s exists

(where rσ,s will be defined analogously to rn,s). Let i = lims rσ,s and let f be the unique

isomorphism from Ai to G|σ|. As discussed above, we will be able to compute both

f � 〈Ai〉σ and f �
⋃
τ⊇σa0〈Ai〉τ .

Of course, this leaves the problem of uniformly computing f � 〈Ai〉τ for other τ , as

well as f � 〈Ai〉. Our strategy for computing f will be to break up the domain of Ai

into finitely many c.e. sets and show that the restriction of f to each of these sets is

computable. Most of the cases will be handled by making use of the fact that, for a c.e.

union T of finite components of Ai, if each component of T participates in operations

only finitely often and there is a computable bound on the last stage (if any) at which

each component of T participates in an operation then f � T is computable. This is

because if a component K of T does not participate in operations after stage s then

K is a component of Ais, and hence the unique embedding from K into G|σ| can be

found effectively. (Recall that we are assuming that our construction is such that no

component of Ai is embeddable in another component of Ai.)
We begin by looking at 〈Ai〉. As discussed above, we will have a computable bound

h(k) such that if (6k) has not participated in an operation by stage h(k) then, whenever

it does participate in an operation, σ is active. Let T0 be the union of those components

(6k) of 〈Ai〉 that do not participate in an operation by stage h(k). Then f � T0 will be
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computable for the same reason as f � 〈Ai〉σ. On the other hand, since no component

of 〈Ai〉 will participate in operations more than once, f � (〈Ai〉−T0) will be computable

because h(k) will be a computable bound on the last stage at which a component (6k)

of 〈Ai〉 − T0 participates in an operation. Thus f � 〈Ai〉 will be computable.

Now let T1 be the union of all 〈Ai〉τ such that τ is to the left of σ. By the definition

of the true path, only finitely many components of T1 will ever participate in operations,

and those that do, will do so only finitely often. Thus there will exist a computable

bound on the last stage at which each component of T1 participates in an operation,

and hence f � T1 will be computable.

Let T2 be the union of all 〈Ai〉τ such that τa1 ⊆ σ. The fact that there are only

finitely many τ -recovery stages will imply that only finitely many components of T2

participate in operations, and those that do, do so only finitely often. Thus there will

exist a computable bound on the last stage at which each component of T2 participates

in an operation, and hence f � T2 will be computable.

Let T3 be the union of all 〈Ai〉τ such that τ is to the right of σa0. Every time

the construction moves to the left of τ , we will guarantee, as part of the initialization

process, that a certain set of components of 〈Ai〉τ will never again participate in an

operation, in such a way that if the construction moves to the left of τ infinitely often

then every component of 〈Ai〉τ will eventually be guaranteed never again to participate

in an operation. Since σa0 is on the true path, this will mean that there exists a

computable bound on the last stage at which each component of T3 participates in an

operation, and hence f � T3 will be computable.

We are left with the case of 〈Ai〉τ such that τa0 ⊆ σ. We will show that, for each

such τ , if rτ,s has a limit then 〈Ai〉τ has a unique infinite component Siτ , while if rτ,s

does not have a limit then all components of 〈Ai〉τ are finite. Let T4 be the union of the

Siτ , τ
a0 ⊆ σ, rτ,s has a limit. Given a copy K of [m] contained in a component C of T4

with top x, we will be able to find effectively the unique copy L of [m] in the component

of G|σ| with top f(x), and f will extend the unique isomorphism from K to L. Since T4

has only finitely many components, this will mean that f � T4 is computable.

Finally, let T5 be the union of all finite components of 〈Ai〉τ , τa0 ⊆ σ. Examining

the construction in the proof of Theorem 1.9, we see that, given an n such that Gn ∼= A0,

once a finite component K of (Ai)n participates in an operation at a stage s, we can

effectively find a stage t such that K does not participate in an operation after stage t.

Indeed, we can take t to be the first stage after stage s such that, for some u < t, K

does not participate in an operation in the interval [u, t] and there is an n-isomorphism
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recovery stage in [u, t].

The analogous situation will hold here, but this will not quite be enough to show that

f � T5 is computable. We will also need an effective procedure that, for each component

K of T5, gives us a stage s such that if K has not participated in an operation by stage s

then it will not participate in an operation after stage s. In order to do this, every time

τ recovers, we will guarantee that a certain set of components of 〈Ai〉τ that have not yet

participated in an operation will never participate in an operation, in such a way that

if τ recovers infinitely often then every singleton component of 〈Ai〉τ will eventually

be guaranteed never to participate in an operation. (That is, we will add an extra

condition to the definition of τ -recovery to ensure that, for each singleton component

that had been available at the last τ -recovery stage to be used for the sake of the strategy

corresponding to τ and that has not yet been used, there is a new component that can

be used in its place. A similar procedure was employed in [20].) Thus f � T5 will be

computable.

2.4 Formal Definitions and Conventions

For the sake of satisfying (2.5), we need a new kind of building block, whose use will

be made clear shortly. (Basically, if G is a c.e. graph with computable equality relation

and K and L are different components of G[s], s ∈ ω, then it cannot be the case that

K and L are both extended by a component of the form K ·L in G. However, K and L

might both be extended by the same component of G if this component is of the form

K · (L), for example, since the fact that there is no edge from the top of K to the top

of L in G[s] does not mean that the same is true in G. We will avoid this possibility

by only performing operations of the form K · (L0, . . . , Lk) when K is of the form [n]+,

n ∈ ω, as defined below.)

2.6 Definition. The directed graph [n]+ consists of the following nodes and edges.

1. A copy of [n] with top x.

2. For each i 6 n, i+ 1 many nodes xi,0, . . . , xi,i, with an edge from x to xi,0 and, for

each j < i, an edge from xi,j to xi,j+1. We call xi,i the i-attachment node of [n]+.

Figure 2.10 shows [2]+ as an example.

We also need a new version of Definition 2.4.
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Figure 2.10: [2]+

2.7 Definition. Let G be a computable structure in the language of directed graphs

whose domain is co-infinite.

Let K0, K1, . . . , Kn and L be components of G isomorphic to [k0], [k1], . . . , [kn] and

[l]+, respectively, where k0, k1, . . . , kn, l ∈ ω and n 6 l. We define two operations, each

of which takes G to a new computable structure extending G.

• The operation (K0, K1, . . . , Kn) · L consists of creating a new copy of [l]+, using

the top of Ki as the i-attachment node for i 6 n and numbers not in the domain

of G as the other nodes, and otherwise leaving G unchanged.

• The operation L · (K0, K1, . . . , Kn) consists of creating a new copy of [ki] for each

i 6 n, using the i-attachment node of L as the top and numbers not in the domain

of G as the other nodes, and otherwise leaving G unchanged.

We define the L- and R-operations as in Definition 2.5, except that we now require

that X be of the form [k]+, k ∈ ω.

Fix a computable one-to-one function from 2<ω onto ω − {0} and let pσq denote the

image under this function of the string σ.

2.8 Definition. Let G be a directed graph. We denote by (G)σ the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] or [x]+ for any x ∈ ω.

2. C contains a copy of [6〈pσq, j〉 + 3], j ∈ ω, or a copy of [6〈pσq, j, k〉 + l], j, k ∈ ω,

l ∈ {1, 2, 4, 5}.
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Define (G)⊇σ =
⋃
τ⊇σ(G)τ .

For σ, τ ∈ 26ω, σ 6L τ means that either σ ⊆ τ or there exists an n < |σ| , |τ | such

that σ(m) = τ(m) for all m < n, σ(n) = 0, and τ(n) = 1. If σ 6L τ and σ * τ then we

say that σ is to the left of τ and that τ is to the right of σ.

For each i = 0, 1, we will first define a computable structure Ai0. At each stage s+1,

we will perform an operation on Ais to get Ais+1 ⊃ Ais and add an element of the

domain of Ais+1 to U i. We will then let Ai =
⋃
s∈ωAis. In order to guarantee that Ai

is computable, we make it a convention that all numbers added to the domain of Ais at

stage s+ 1 to get Ais+1 are greater than s.

Let t > s. We say that a component L of Ait or Ai (resp. Gn[t] or Gn) extends a

component K of Ais (Gn[s]) if the domain of K is contained in the domain of L, and that

L properly extends K if this containment is proper. (Note that saying that L extends

K means more than just that K can be embedded in L, though it of course implies

the latter.) If L extends K but not properly then we say that L is a component of Ais
(Gn[s]).

It will be the case that if K and L are distinct components of A0
s and K is not a

copy of [6k + 1] or [6k + 2] for any k ∈ ω then K and L are not extended by the same

component of A0. Thus, since we are not interested in Gn unless it is isomorphic to A0,

we may assume without loss of generality that, for each n, s ∈ ω, there is an embedding

of Gn[s] into A0
s such that if K and L are distinct components of Gn[s] and K is not

a copy of [6k + 1] or [6k + 2] for any k ∈ ω then K and L are mapped into distinct

components of A0
s.

Let k be the number of times σ has been initialized (defined below) before stage t.

Suppose there is a least stage s 6 t such that G|σ|[s] has a component K isomorphic to

[6〈pσq, k〉+ 3]. We call the component of G|σ|[t] that extends K the σ-special component

of G|σ|[t]. If σ is initialized only finitely often, say k many times, and there is a least

stage s such that G|σ|[s] has a component K isomorphic to [6〈pσq, k〉 + 3] then we call

the component of G|σ| that extends K the σ-special component of G|σ|.

2.5 The Construction

We now proceed with the construction of A0, A1, U0, and U1. It will be easy to check

as we go along that the following are properties of the construction.

1. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable in another
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component of Ais.

2. Let t < s. No component of Ait isomorphic to one of [6as]
+ or [6〈j, as, k〉 + l],

j, k ∈ ω, l ∈ {1, 2, 4, 5}, participates in an operation at stage t+ 1.

stage 0. Let A0
0 and A1

0 be computable structures with co-infinite domains, each con-

sisting of one copy of [6k + l] and one of [6k]+ for each k ∈ ω and 0 < l < 6. For each

σ ∈ 2<ω, let rσ,0 = 0.

stage s + 1. For σ ∈ 2<ω, let recov(σ, s) be the number of σ-recovery stages before

stage s+1, let init(σ, s) be the number of times σ has been initialized before stage s+1,

and let c(σ, s) = max(recov(σ, s), init(σ, s)).

Define the string σ[s+ 1] ∈ 2[0,s] by recursion as follows, beginning with n = 0. Let

σ = σ[s + 1] � n. Say that s + 1 is a σ-recovery stage if all of the following conditions

hold.

1. Every τ such that τa0 ⊆ σ has recovered at least |σ|+ 1 many times.

2. Gn[s] has a σ-special component isomorphic to some component of A0
s.

3. If τ ⊇ σa0 has not yet recovered since the last time it was initialized and |τ | 6
recov(σ, s) then Gn[s] has a component isomorphic to [6〈pτq, init(τ, s)〉+ 3].

4. (Gn[s])σ ∼= (A0
s)σ.

5. (Gn[s])⊇σa0
∼= (A0

s)⊇σa0.

6. Let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s). Let j /∈ A[s]

be less than or equal to recov(τ, s). There is a component of Gn[s] isomorphic to

[6j]+ and, for each l ∈ {1, 2, 4, 5}, there is a component of Gn[s] isomorphic to

[6〈pτq, j, c(τ, s)〉+ l].

If s+ 1 is a σ-recovery stage then let σ[s+ 1](n) = 0. Otherwise, let σ[s+ 1](n) = 1.

For each σ such that s+ 1 is a σ-recovery stage, proceed as follows. For i = 0, 1, let

Siσ,s be the component of Ais that is isomorphic to the σ-special component of G|σ|[s]. If

s + 1 is either the first σ-recovery stage ever or the first σ-recovery stage since the last

time σ was initialized then let rσ,s+1 = 0. Otherwise, proceed as follows. Let i = rσ,s

and let t+ 1 be the last σ-recovery stage before stage s+ 1. If Siσ,s extends Siσ,t then let

rσ,s+1 = i, and otherwise let rσ,s+1 = 1− i.
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For each σ ∈ 2<ω such that s+ 1 is not a σ-recovery stage, let rσ,s+1 = rσ,s.

Declare each σ to the right of σ[s+1] to have been initialized. For each σ 6L σ[s+1],

if there has been a σ-recovery stage since the last time σ was initialized, as > |σ|, and

as is less than the number of σ-recovery stages less than or equal to s+ 1 then say that

σ is active at stage s+ 1.

For i = 0, 1, let X i
s be the component of Ais isomorphic to [6as]

+.

Let σ0, . . . , σm be all the strings that are active at stage s + 1. For i = 0, 1 and

j 6 m, let Y i
σj ,s

and Zi
σj ,s

be the components of Ais isomorphic to [6〈pσjq, as, c(σj, s)〉+1]

and [6〈pσjq, as, c(σj, s)〉+ 2], respectively.

For each j 6 m, let tj +1 6 s+1 be the last σj-recovery stage. We say that s+1 is a

σj-first stage if it is the first stage after stage tj at which σj is active. We say that s+ 1

is a σj-change stage if it is a σj-first stage and one of the following holds: tj + 1 was the

first σj-recovery stage ever, tj + 1 was the first σj-recovery stage since the last time σj

was initialized, or rσj ,tj+1 6= rσj ,tj . We say that s+ 1 is a σj-isomorphism recovery stage

if it is a σj-first stage but not a σj-change stage and one of the following conditions

holds.

1. The last σj-first stage before stage s+ 1 was a σj-change stage.

2. There has been at least one stage at which σj was active after the last σj-

isomorphism recovery stage and before stage s+ 1.

For each j 6 m we define components Bi
σj ,s

and Ci
σj ,s

, i = 0, 1. There are two cases.

1. s+ 1 is a σj-isomorphism recovery stage. If the first condition in the definition of

σj-isomorphism recovery stage holds then let t + 1 be the last σj-first stage, and

otherwise let t + 1 be the first stage after the last σj-isomorphism recovery stage

at which σj was active. There are two subcases.

(a) If rσj ,s+1 = 0 then let C0
σj ,s

be the component of A0
s that extends B0

σj ,t
and let

C1
σj ,s

be its isomorphic image in A1
s. For i = 0, 1, let Bi

σj ,s
be the component

of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 4].

(b) If rσj ,s+1 = 1 then let B1
σj ,s

be the component of A1
s that extends C1

σj ,t
and let

B0
σj ,s

be its isomorphic image in A0
s. For i = 0, 1, let Ci

σj ,s
be the component

of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 5].
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2. s+ 1 is not a σj-isomorphism recovery stage. For i = 0, 1, let Bi
σj ,s

be the compo-

nent of Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 4] and let Ci
σj ,s

be the component of

Ais isomorphic to [6〈σj, as, c(σj, s)〉+ 5].

For each j 6 m, proceed as follows. Let i = rσj ,s+1 and let t+ 1 6 s+ 1 be the last

σj-recovery stage. Let Ri
σj ,s

be the component of Ais that extends Siσj ,t and let R1−i
σj ,s

be

its isomorphic image in A1−i
s .

Now perform

L(Y 0
σ0,s

, . . . , Y 0
σm,s;X

0
s ;Z0

σ0,s
, . . . , Z0

σm,s;B
0
σ0,s

, R0
σ0,s

, C0
σ0,s

;

B0
σ1,s

, R0
σ1,s

, C0
σ1,s

; . . . ;B0
σm,s, R

0
σm,s, C

0
σm,s)

on A0
s to get A0

s+1 and perform

R(Y 1
σ0,s

, . . . , Y 1
σm,s;X

1
s ;Z1

σ0,s
, . . . , Z1

σm,s;B
1
σ0,s

, R1
σ0,s

, C1
σ0,s

;

B1
σ1,s

, R1
σ1,s

, C1
σ1,s

; . . . ;B1
σm,s, R

1
σm,s, C

1
σm,s)

on A1
s to get A1

s+1. (If no σ is active at stage s+ 1 then, for j = 0, 1, let Y j
s , Zj

s , B
j
s , R

j
s,

and Cj
s be the components ofAjs isomorphic to [6〈0, as, s〉+1], [6〈0, as, s〉+2], [6〈0, as, s〉+

4], [6〈0, s〉 + 3], and [6〈0, as, s〉 + 5], respectively. Perform L(Y 0
s ;X0

s ;Z0
s ;B0

s ;R
0
s;C

0
s ) on

A0
s to get A0

s+1 and perform R(Y 1
s ;X1

s ;Z1
s ;B1

s ;R
1
s;C

1
s ) on A1

s to get A1
s+1.)

Put the coding location of the copy of [6as] in A0
0 into U0 and put the coding location

of the copy of [6as] in A1
s+1 −A1

s into U1.

This completes the construction. Let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. Define

the true path TP of the construction to be the leftmost path of 2ω such that there are

infinitely many stages s with σ[s] ∈ TP .

2.6 Verification

Since, for each s ∈ ω and i = 0, 1, all numbers in Ais+1 −Ais are greater than s, A0 and

A1 are computable. We will now argue that properties (2.1)–(2.5) hold. Theorem 1.10

will then follow immediately.

Properties (2.2) and (2.5) are easy to establish, so we deal with them first.

2.9 Lemma. U0 ≡m A and U1 is computable.
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Proof. The numbers in U0 are all coding locations of components of A0
0 of the form [6j],

j ∈ ω, and the coding location of the copy of [6j] in A0
0 is in U0 if and only if j ∈ A.

Since given any number we can computably determine whether it is a coding location

in A0
0 and if so, for what [k], this means that U0 ≡m A.

Any number put into U1 at a stage s + 1 is a new number, that is, one not in the

domain of A1
s, and hence is greater than s. Thus U1 is computable.

2.10 Lemma. If G is a c.e. presentation of A0 with computable equality relation then

G is computable.

Proof. Since the equality relation in G is computable, we can assume without loss of

generality that the enumeration of G is such that, for all s, w, x, y, z ∈ ω, if w, x, y, z ∈
|G[s]| and the pairs (w, x) and (y, z) satisfy the equality relation in G then there is an

edge from w to y in G[s] if and only if there is an edge from x to z in G[s]. Let x0, x1 ∈ G.

Wait until a stage s in the enumeration of G such that, for each i = 0, 1, xi is in a copy

of either [ni] for some ni 6≡ 0 mod 6 or [ni]
+ for some ni ≡ 0 mod 6. It is easy to check

from the definition of A0 that, for each i = 0, 1, there is an edge from xi to x1−i if and

only if there already is such an edge at stage s.

In showing that (2.1), (2.3), and (2.4) are satisfied, we will need a few facts about

the construction. The more obvious ones are given without proof, while the remaining

ones are broken down into easily checked properties of the construction. Figures 2.4

and 2.5 should be helpful here.

We say that a component of Ai participates in an operation at stage s+1 if it extends

a component of Ais that participates in an operation at stage s+ 1.

2.11 Lemma. Let G ∼= A0 be computable. Given x in the domain of G, we can com-

putably determine if x is the coding location of a copy of some [k], k ∈ ω, and if so,

for what k. In particular, the set of coding locations of copies of [6j], j ∈ ω, in G is

computable.

2.12 Lemma. Let K and L be distinct components of Ais such that K is not a copy of

[6k+ 1] or [6k+ 2] for any k ∈ ω. K and L are not extended by the same component of

Ai.

Lemmas 2.11 and 2.12 will be used without explicit mention several times below.

2.13 Lemma. Each component of Ai is rigid and contains at most one copy of [k] for

each k ∈ ω.
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2.14 Lemma. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable

in another component of Ais. Furthermore, if a component of Ais participates in an

operation at stage s+ 1 then so does the (unique) isomorphic component of A1−i
s .

2.15 Lemma. A component of Ai is infinite if and only if it participates in operations

infinitely often.

2.16 Lemma. Let k, j ∈ ω and σ ∈ 2<ω. Any component of Ai containing a copy of

[6k] or [6〈pσq, j, k〉 + l], l ∈ {1, 2}, can participate in an operation at most once. Any

component of Ai containing a copy of [6〈pσq, j〉 + 3] or [6〈pσq, j, k〉 + l], l ∈ {1, 2, 4, 5},
can participate in operations only at stages at which σ is active.

2.17 Lemma. Let x be the coding location of a copy of [6as] in component K of Ai.
Either K contains a copy of [6〈n, as, k〉+ 1] for some n, k ∈ ω, in which case x /∈ U i, or

K contains a copy of [6〈n, as, k〉+ 2] for some n, k ∈ ω, in which case x ∈ U i.

2.18 Lemma. If a component K of (Ai)σ participates in operations at stages s < t+ 1

but does not participate in an operation at any stage in the interval (s, t] then there are

no σ-change stages or σ-isomorphism recovery stages in (s, t].

Proof. Let w be the last σ-first stage before stage t + 1. If K extends Ri
σ,t then it is

easy to check that K must have participated in an operation in the interval [w, t], which

means that w 6 s. Since every σ-change or σ-isomorphism recovery stage is a σ-first

stage, in this case we are done.

Otherwise, t is an isomorphism-recovery stage and either rσ,t+1 = 0 and K extends

Ci
σ,t or rσ,t+1 = 1 and K extends Bi

σ,t. Suppose for a contradiction that there is at

least one σ-change stage or σ-isomorphism recovery stage in (s, t], and let u be maximal

among such stages.

If u is a σ-change stage then it must be the last σ-first stage before stage t + 1,

since the next σ-first stage after a σ-change stage is either a σ-change stage or a σ-

isomorphism recovery stage. In this case, by the way components that participate in an

operation at an isomorphism-recovery stage are chosen, K participated in an operation

at stage u.

If u is a σ-isomorphism recovery stage then there must be at least one stage at which

σ is active in the interval (u, t], since otherwise t + 1 could not be a σ-isomorphism

recovery stage. Let v be the least stage in (u, t] at which σ is active. In this case, again

by the way components that participate in an operation at an isomorphism-recovery

stage are chosen, K participated in an operation at stage v.
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In either case, we have a contradiction.

2.19 Lemma. Suppose that rσ,s = i 6= rσ,s+1. Of all the components of (Ai)σ that

participate in operations before stage s + 1, the only one that can participate in an

operation after stage s is the one that extends Siσ,s.

Proof. Let t be the first stage after stage s at which σ is active. Then t is a σ-change

stage, and hence not a σ-isomorphism recovery stage. It follows that, of all the com-

ponents of (Ai)σ that participate in operations before stage s + 1, the only one that

participates in an operation at stage t is the one that extends Siσ,s. The lemma now

follows from Lemma 2.18.

2.20 Lemma. Suppose that rσ,s = i for all s > t, σ is not initialized at any stage after

stage t, and σ is active at stages s0 + 1 and s1 + 1, where s1 > s0 > t. Then Ri
σ,s1

extends Ri
σ,s0

.

2.21 Lemma. Let u be a stage after which σ is never initialized. Let s + 1 and t + 1

be σ-recovery stages such that s+ 1 > t+ 1 > u and there is no σ-recovery stage in the

interval (t + 1, s + 1). If rσ,s = 0 6= rσ,s+1 then S0
σ,s extends B0

σ,v for some v ∈ [t, s).

Similarly, if rσ,s = 1 6= rσ,s+1 then S1
σ,s extends C1

σ,v for some v ∈ [t, s).

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.

Since S0
σ,s contains a copy of S0

σ,t and rσ,t+1 = rσ,s = 0, either S0
σ,s extends S0

σ,t or

S0
σ,s extends B0

σ,u for some u such that t 6 u < s. But it cannot be the case that S0
σ,s

extends S0
σ,t, since that would imply that rσ,s+1 = 0.

2.22 Lemma. Suppose that rσ,t = 0 (resp. rσ,t = 1) for all t > s0. Then no component

of (A0)σ ((A1)σ) can participate in an operation more than twice after stage s0 unless it

extends R0
σ,t (R1

σ,t) for some t > s0, while no component of (A1)σ ((A0)σ) can participate

in an operation more than twice after stage s0 unless it extends C1
σ,t (B0

σ,t) for some t > s0

such that t+ 1 is a σ-isomorphism recovery stage.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.

Suppose that component K of (A0)σ participates in operations at stages s + 1 <

t + 1 < u + 1, where s + 1 > s0, but not at any stage in (t + 1, u + 1). Then either K

extends R0
σ,u or u+ 1 is a σ-isomorphism recovery stage and K extends C0

σ,u. We claim

that the latter case cannot hold. Indeed, if K extends C0
σ,u then K extends B0

n,v for

some v ∈ ω. Since K does not participate in operations at any stage in (t + 1, u + 1),
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v = t. But since rσ,t+1 = 0, B0
σ,t is a singleton component, which means that K does

not participate in an operation at stage s+ 1, contrary to hypothesis.

Now suppose that component L of (A1)σ participates in operations at stages s+ 1 <

t + 1 < u + 1, where s + 1 > s0, but not at any stage in (t + 1, u + 1). Then either L

extends R1
σ,t or t+ 1 is a σ-isomorphism recovery stage and L extends C1

σ,t. But in the

former case, u+ 1 is a σ-isomorphism recovery stage and, since K does not participate

in operations at any stage in (t+ 1, u+ 1), L extends C1
σ,u.

2.23 Lemma. Let s0 be a stage after which σ is never initialized. Suppose that s0 6

s < t < v are such that s + 1 is a σ-isomorphism recovery stage, rσ,u = rσ,s+1 for all

u > s, t + 1 is the next stage after stage s + 1 at which σ is active, and v + 1 is the

next σ-isomorphism recovery stage after stage s + 1. For i = 0, 1, let Bi, Ri, and Ci

be the components of Ait+1 that extend Bi
σ,t, R

i
σ,t, and Ci

σ,t, respectively, and let B̂i, R̂i,

and Ĉi be the components of Aiv that extend Bi, Ri, and Ci, respectively. If rσ,s+1 = 0

then B̂0 ∼= B0 and R̂1 ∼= R1, while if rσ,s+1 = 1 then Ĉ1 ∼= C1 and R̂0 ∼= R0.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0. It is enough

to show that the components of (A0)σ and (A1)σ that extend B0 and R1, respectively,

do not participate in operations at any stage in (t+ 1, v + 1).

Suppose that component K of (A0)σ participates in operations at stages t + 1 and

u + 1, where t < u < v. Since no stage in (t + 1, v + 1) is a σ-isomorphism recovery

stage, K extends R0
σ,u, which in turn extends R0

σ,t. Thus K does not extend B0.

Now suppose that component L of (A1)σ participates in operations at stages t + 1

and u+1, where t < u < v. Again, no stage in (t+1, v+1) is a σ-isomorphism recovery

stage, so L extends R1
σ,u, which in turn extends C1

σ,t. Thus L does not extend R1.

2.24 Lemma. If σ is to the left of TP then (Ai)⊇σ is finite.

2.25 Lemma. If σ is initialized at stage s + 1 then no components of (Ai)σ that par-

ticipate in operations at stages before stage s + 1 can participate in an operation after

stage s. Thus if σ is to the right of TP then (Ai)σ has no infinite components.

Proof. Let t be the first stage after stage s at which σ is active. (If there are no such

stages then we are done.) Then t is a σ-change stage, and hence not a σ-isomorphism

recovery stage. It is easy to check that, together with the fact that σ is initialized

at stage s + 1, this implies that none of the components of (Ai)σ that participate in

operations before stage s + 1 can participate in an operation at stage t. Thus the first
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part of the lemma follows from Lemma 2.18. The second part of the lemma now follows

from Lemma 2.15.

We are now ready to show that (2.1) holds. In the course of doing so, we will also

be able to show that (2.4) holds. It follows from Lemmas 2.14, 2.15, and 2.17 that, to

show that (2.1) holds, it is enough to show that for each infinite component of Ai there

is a corresponding isomorphic component of A1−i. The first step in establishing this

result is characterizing the infinite components of Ai. Clearly, each infinite component

of Ai is in (Ai)σ for some σ ∈ 2<ω. By Lemmas 2.24 and 2.25, if σ is not on TP then

no component of (Ai)σ is infinite. By Lemmas 2.15 and 2.16, if σ is not active infinitely

often then no component of (Ai)σ is infinite. Thus we can restrict our attention to the

components of (Ai)σ, σ ∈ TP , such that σ is active infinitely often.

2.26 Lemma. Let σ ∈ TP . If rσ,s does not have a limit then no component of (Ai)σ is

infinite.

Proof. Suppose that rσ,s = 0 6= rσ,s+1 and let t + 1 be the last σ-recovery stage before

stage s + 1. By Lemma 2.19, of all the components of (A0)σ that have participated in

operations before stage s + 1, the only one that can participate in an operation after

stage s is the component L that extends S0
σ,s. By Lemma 2.21, L extends B0

σ,u for some

u ∈ [t, s). But the fact that rσ,t+1 = 0 means that, for all u ∈ [t, s), B0
σ,u is a singleton

component, and hence did not participate in an operation at any stage before stage t+1.

Thus no component of (A0)σ that participates in an operation before stage t + 1

can do so again after stage s. A similar argument shows that if rσ,s = 1 6= rσ,s+1 and

t + 1 is the last σ-recovery stage before stage s + 1 then no component of (A1)σ that

participates in an operation before stage t+ 1 can do so again after stage s. The lemma

now follows from Lemma 2.15.

Thus the only components of Ai that can be infinite are those that are in (Ai)σ for

some σ ∈ TP such that rσ,s has a limit and σ is active infinitely often. So, by the

comments preceding Lemma 2.26, to establish that (2.1) holds it is enough to show that

if σ ∈ TP , rσ,s has a limit, and σ is active infinitely often, then there is exactly one

infinite component Siσ of (Ai)σ for each i = 0, 1, and S0
σ
∼= S1

σ. Together with the fact

that no two infinite components of Ai are isomorphic, this will also be enough to show

that (2.4) holds.

2.27 Lemma. Let σ ∈ TP . There are infinitely many σ-recovery stages if and only if

σ is active infinitely often.
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Proof. By definition, σ is not active at a stage s+ 1 unless as is less than the number of

σ-recovery stages less than or equal to s+ 1. Thus, if there are finitely many σ-recovery

stages then σ cannot be active infinitely often.

For the other direction, suppose that there are infinitely many σ-recovery stages but

only finitely many stages at which σ is active. Let s be a stage after which σ is never

active or initialized and such that there has been a σ-recovery stage since the last time

σ was initialized. Now, given x > |σ|, let t+ 1 be the first stage after stage s by which

there have been x+ 1 many σ-recovery stages. Then x ∈ A⇔ x ∈ A[t], since if x were

equal to au for some u > t then σ would be active at stage u+ 1. But this means that

A is computable, contrary to hypothesis.

2.28 Lemma. If σ ∈ TP is active infinitely often and rσ,s has a limit then there are

infinitely many σ-isomorphism recovery stages.

Proof. If σ is active infinitely often then, by Lemma 2.27, there are infinitely many

σ-recovery stages, and thus infinitely many σ-first stages. The fact that rσ,s has a limit

and that σ is initialized only finitely often implies that only finitely many of these can be

σ-change stages. The lemma now follows directly from the definition of σ-isomorphism

recovery stage.

2.29 Lemma. Suppose that σ ∈ TP is active infinitely often and s and i are such that

σ is not initialized after stage s and rσ,t = rσ,s = i for all t > s. By Lemma 2.28, there

are infinitely many σ-isomorphism recovery stages. Let s0 + 1 < s1 + 1 < · · · be the

σ-isomorphism recovery stages after stage s. For each j ∈ ω, let tj + 1 be the next stage

after stage sj + 1 at which σ is active. (Note that tj < sj+1 for all j ∈ ω.) For t > t0,

let K l
t be the component of Alt that extends Rl

σ,t0
. Then K l

tj
= Rl

σ,tj
for all j ∈ ω.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.

That K0
tj

= R0
σ,tj

for all j ∈ ω follows from Lemma 2.20. Now assume by induction

that K1
tj

= R1
σ,tj

. Let B be the component of A0
tj+1 that extends B0

σ,tj
. By construction,

B ∼= K1
tj+1. Since sj+1+1 is a σ-isomorphism recovery stage, C0

σ,sj+1
extends B. Thus, by

Lemma 2.23, C0
σ,sj+1

∼= B. By the same lemma, K1
sj+1

∼= K1
tj+1, so C0

σ,sj+1

∼= K1
sj+1

, and

hence C1
σ,sj+1

= K1
sj+1

. Let R be the component of A0
sj+1+1 that extends R0

σ,sj+1
. Then

R ∼= K1
sj+1+1. But, by Lemma 2.16, R0

σ,tj+1

∼= R and K1
tj+1

∼= K1
sj+1+1, so K1

tj+1

∼= R0
σ,tj+1

,

and hence K1
tj+1

= R1
σ,tj+1

.

Now assume the hypotheses of Lemma 2.29 and adopt its notation. For l = 0, 1, let

Slσ be the component of Al that extends Rl
σ,s0

.
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2.30 Lemma. Slσ is the only infinite component of (Al)σ.

Proof. This follows immediately from Lemmas 2.15, 2.22, and 2.29 and the observation

that, for all j ∈ ω, if i = 0 in the hypotheses of Lemma 2.29 then R1
σ,tj

extends C1
σ,sj

,

while if i = 1 then R0
σ,tj

extends B0
σ,sj

.

2.31 Lemma. S0
σ
∼= S1

σ.

Proof. This follows immediately from Lemma 2.29, since, by definition, R0
σ,tj
∼= R1

σ,tj
for

all j ∈ ω, and Siσ =
⋃
j∈ω R

i
σ,tj

for i = 0, 1.

As we have argued above, Lemmas 2.30 and 2.31 suffice to establish that (2.1) holds.

2.32 Lemma. A0 ∼= A1 via an isomorphism that carries U0 to U1.

To show that (2.4) holds, we need to check that if σ 6= τ and (Ai)σ and (Ai)τ have

infinite components Siσ and Siτ , respectively, then Siσ � Siτ . This is a consequence of the

following lemma, which will also be useful later on.

2.33 Lemma. No component of Ai is embeddable in another component of Ai.

Proof. For finite components this follows from Lemma 2.14. For infinite components it

follows from Lemma 2.30 and the fact that if (Ai)τ has an infinite component Siτ then

Siτ contains a copy of [6〈pσq, k〉+ 3] for some k ∈ ω if and only if τ = σ.

2.34 Lemma. A0 is rigid.

Proof. By Lemma 2.13, it is enough to show that no two components of A0 are isomor-

phic. By Lemma 2.14, for each s ∈ ω, no component of A0
s is embeddable in another

component of A0
s, which implies that no two finite components of A0 are isomorphic.

Since the only infinite components of A0 are the S0
σ defined above and, by Lemma 2.33,

S0
σ
∼= S0

τ if and only if τ = σ, it is also the case that no two infinite components of A0

are isomorphic.

We are left with showing that (2.3) holds. This is where this proof differs most

significantly from that of Theorem 1.9. We begin by showing that if σ ∈ TP and

G|σ| ∼= A0 then lims rσ,s is well-defined.

2.35 Lemma. If σ ∈ TP and G|σ| ∼= A0 then there are infinitely many σ-recovery

stages, and hence the σ-special component of G|σ| is infinite.
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Proof. Assume for a contradiction that there are only m many σ-recovery stages and

let s0 be the last σ-recovery stage. (If m = 0 then let s0 = 0.) By Lemma 2.27, there

is a stage s1 > s0 such that σ is not active at any stage t > s1. By the definition of

TP and the hypothesis that G|σ| ∼= A0, there is a stage s2 > s1 satisfying the following

conditions: every τ such that τa0 ⊆ σ has recovered at least |σ| + 1 many times by

stage s2, G|σ|[s2] has a σ-special component, and σ is not initialized at any stage greater

than or equal to s2. If m = au for some u > s2 then let s = u+ 1; otherwise, let s = s2.

By the definition of s, the first condition in the definition of σ-recovery stage is met

at every stage greater than or equal to s.

Consider the components of A0 that contain a copy of the σ-special component of

G|σ|. By Lemma 2.16, each such component is finite. Thus, if the second condition in the

definition of σ-recovery stage is not eventually satisfied after stage s then the σ-special

component of G|σ| is not isomorphic to any component of A0.

Since we are assuming that σa0 is to the left of TP , there is a stage t > s after

which no τ such that τ ⊇ σa0 is initialized. Any such τ that has not recovered since

the last time it was initialized never again recovers, and hence there is a component

of A0 isomorphic to [6〈pτq, init(τ, t)〉 + 3]. Since there are only finitely many τ such

that |τ | 6 recov(σ, s), if the third condition in the definition of σ-recovery stage is not

eventually satisfied after stage s then G|σ| � A0.

Now consider (A0)σ. Again by Lemma 2.16, (A0)σ is finite. So if the fourth condition

in the definition of σ-recovery stage is not eventually satisfied after stage s then (G|σ|)σ �
(A0)σ.

Since we are assuming that there are only finitely many σ-recovery stages, σa1 ∈ TP .

Thus, by Lemma 2.24, (A0
s)⊇σa0 is finite. So if the fifth condition in the definition of

σ-recovery stage is not eventually satisfied after stage s then (G|σ|)⊇σa0 � (A0)⊇σa0.

Finally, let τ be such that either τ = σ or both τ ⊇ σa0 and |τ | 6 recov(σ, s).

Let j /∈ A[s] be less than or equal to recov(τ, s). Clearly, c(τ, t) reaches a limit c(τ).

By the choice of s, j /∈ A[s] ⇒ j /∈ A. So, for each l ∈ {1, 2, 4, 5}, there is a unique

component of A0 that contains a copy of [6〈pτq, j, c(τ)〉 + l], and it is isomorphic to

[6〈pτq, j, c(τ)〉 + l]. Similarly, there is a unique component of A0 that contains a copy

of [6j]+, and it is isomorphic to [6j]+. Thus, if the last condition in the definition of

σ-recovery stage is not eventually satisfied after stage s then there is a component of

A0 that is not isomorphic to any component of G|σ|.
In any case, G|σ| cannot be isomorphic to A0, contrary to hypothesis. So there are

infinitely many σ-recovery stages.
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Now let v be a stage after which σ is never initialized. Given any two σ-recovery

stages v < t + 1 < u + 1 such that there is a stage in (t, u] at which σ is active, the σ-

special component of G|σ|[u] properly extends the σ-special component of G|σ|[t]. Since,

by Lemma 2.27, σ is active at infinitely many stages, this establishes the second part of

the lemma.

2.36 Lemma. If σ ∈ TP and G|σ| ∼= A0 then lims rσ,s is well-defined.

Proof. This follows immediately from Lemmas 2.26 and 2.35.

Now fix σ ∈ TP such that G|σ| ∼= A0 and let n = |σ|. By Lemma 2.36, r = lims rσ,s is

well-defined. We wish to show that Gn is computably isomorphic to Ar. The two cases,

r = 0 and r = 1, are symmetrical, so we will assume that r = 0.

Let f : A0 ∼= Gn. Since A0 is rigid, f is the unique isomorphism from A0 to Gn, so

we need to show that f is computable. As outlined at the beginning of this section,

our strategy will be to break up the domain of A0 into a finite number of c.e. sets and

show that the restriction of f to each of these sets is computable. (If P is c.e. then we

say that f � P is computable if there exists a partial computable function Φ such that

x ∈ P ⇒ Φ(x)↓= f(x).) We will need the following definition.

2.37 Definition. Let k, s ∈ ω. We denote by (k) and (k)s the components of A0 and

A0
s, respectively, that extend the unique copy of [k] in A0

0.

For D ⊆ ω, let PD =
⋃
k∈D(k).

Note that, for any k, s ∈ ω, (k)s is finite. Note also that, since every component

of A0 extends some component of A0
0,
⋃
k∈ω(k) = A0; similarly,

⋃
k∈ω(k)s = A0

s. It is

not the case that k 6= l ⇒ (k) 6= (l), but, as we will see, this will not matter for our

purposes.

2.38 Lemma. Let D0, . . . , Dm be computable subsets of ω such that
⋃m
i=0Di = ω. If

f � PDi
is computable for each i 6 m then f is computable.

Proof. Since D0, . . . , Dm are computable, PD0 , . . . , PDm are c.e.. Since
⋃m
i=0Di = ω,⋃m

i=0 PDi
= A0. Thus, to compute f(x) for some x ∈ A0, all we need to do is wait until

x is enumerated into some PDi
and then compute (f � PDi

)(x).

We will partition ω into the pairwise disjoint computable sets D0, . . . , D6 shown in

Table 1. (The corresponding PDi
will not be pairwise disjoint, but this does not matter,

since it was not required to prove Lemma 2.38.) We will then show that, for each i 6 6,
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Table 1: D0, . . . , D6

D0

{
6〈0, k〉+ 3, 6〈0, j, k〉+ l | j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
D1

{
6〈pτq, k〉+ 3, 6〈pτq, j, k〉+ l | τ to the left of σ or τa1 ⊆ σ,

j, k ∈ ω, l ∈ {1, 2, 4, 5}
}

D2

{
6〈pτq, k〉+ 3, 6〈pτq, j, k〉+ l | τ to the right of σa0, j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
D3

{
m ∈ ω | (m) is the unique infinite component of some (A0)τ , τ

a0 ⊆ σ
}

D4

{
6〈pτq, j〉+ 3, 6〈pτq, j, k〉+ l | τa0 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
−D3

D5

{
6k | k < n

}
∪
{

6as | as > recov(σ, s+ 1) or s is less than

the first σ-recovery stage after the last time σ is initialized
}

D6

{
6〈pτq, j〉+ 3, 6〈pτq, j, k〉+ l | τ = σ or σa0 ⊆ τ, j, k ∈ ω, l ∈ {1, 2, 4, 5}

}
∪{

6k | k ∈ ω
}
−D5

f � PDi
is computable, which will enable us to apply Lemma 2.38 to conclude that f is

computable. The following two lemmas provide a useful tool for our task.

2.39 Lemma. Let k ∈ ω and suppose there is a stage s such that, for each t > s, (k)t

does not participate in an operation at stage t+ 1. Then (k) ∼= (k)s.

Proof. Clearly, if (k)t does not participate in an operation at stage t+ 1 then (k)t+1
∼=

(k)t. So, by induction, (k)t ∼= (k)s+1 for all t > s. Since (k) =
⋃
t∈ω(k)t, the lemma

follows.

2.40 Lemma. Let both D ⊆ ω and h : D → ω be computable. Suppose that, for each

k ∈ D and t > h(k), (k)t does not participate in an operation at stage t + 1. Then

f � PD is computable.

Proof. Let x ∈ PD and let k ∈ D be such that x ∈ (k). By Lemma 2.39, (k)h(k) ∼= (k),

so (k) is finite. By Lemma 2.33, there is a unique finite set T ⊂ Gn such that there is

an isomorphism gx : (k) ∼= T . Clearly, gx can be extended to an isomorphism from A0

to Gn. By the uniqueness of f , f(x) = gx(x). Since gx can be computably determined

given x ∈ PD, this implies that f � PD is computable.

2.41 Lemma. Let D0 consist of all numbers of the form 6〈0, k〉 + 3 or 6〈0, j, k〉 + l,

j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD0 is computable.
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Proof. Let m be of the form 6〈0, k〉+ 3 or 6〈0, j, k〉+ l, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Recall

that, for all τ ∈ 2<ω, pτq 6= 0. Thus the only time (m) can participate in an operation

is at stage k + 1. (This happens if no element of 2<ω is active at stage k + 1.) So if we

define h(m) = k + 1 then the hypotheses of Lemma 2.40 are satisfied for D = D0.

2.42 Lemma. There exists a stage s such that if τ is either to the left of σ or such that

τa1 ⊆ σ then τ is not active after stage s.

Proof. Let T be the set of all τ which are either to the left of σ or such that τa1 ⊆ σ.

Since σ ∈ TP , only finitely many elements of T ever recover, and those that do recover,

do so only finitely often. But, by definition, no τ ∈ 2<ω can be active at a stage t + 1

unless at is less than the number of τ -recovery stages less than or equal to t + 1, and

hence no τ can be active more often than it recovers.

2.43 Lemma. Let D1 be the set of all numbers of the form 6〈pτq, k〉+3 or 6〈pτq, j, k〉+l,
τ to the left of σ or τa1 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD1 is computable.

Proof. Let s be as in Lemma 2.42. By Lemma 2.16, for each m ∈ D1 and t > s, (m)t

does not participate in an operation at stage t+ 1. So if we let h(m) = s for all m ∈ D1

then the hypotheses of Lemma 2.40 are satisfied for D = D1.

2.44 Lemma. Let τ be to the right of σa0. Let m be of the form 6〈pτq, k〉 + 3 or

6〈pτq, j, k〉 + l, l ∈ {1, 2, 4, 5}. Let s + 1 be a stage by which by τ has been initialized

k + 1 many times. Then (m) does not participate in an operation after stage s.

Proof. If a singleton component of A0
t of the form [6〈pτq, p〉 + 3] participates in an

operation at a stage t + 1 > s then p = init(τ, t) > k + 1. If a singleton component of

A0
t of the form [6〈pτq, j, p〉 + l], l ∈ {1, 2, 4, 5}, participates in an operation at a stage

t + 1 > s then p = c(τ, t) > init(τ, t) > k + 1. So if (m) does not participate in an

operation before stage s+ 1 then it does not participate in an operation after stage s.

On the other hand, if (m) participates in an operation before stage s+1 then the fact

that it does not participate in an operation after stage s follows from Lemma 2.25.

2.45 Lemma. Let D2 be the set of all numbers of the form 6〈pτq, k〉+3 or 6〈pτq, j, k〉+l,
τ to the right of σa0, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD2 is computable.

Proof. If m ∈ D2 is of the form 6〈pτq, k〉 + 3 or 6〈pτq, j, k〉 + l then define h(m) to be

the first stage by which τ has been initialized k + 1 many times (which exists, since
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σa0 ∈ TP ). Then, by Lemma 2.44, the hypotheses of Lemma 2.40 are satisfied for

D = D2.

If τa0 ⊆ σ and rτ,s has a limit then, by Lemma 2.30, (A0)τ has a unique infinite

component. On the other hand, if τa0 ⊆ σ and rτ,s does not have a limit then, by

Lemma 2.26, all components of (A0)τ are finite. Let D3 be the set of all m ∈ ω such

that (m) is the unique infinite component of some τa0 ⊆ σ such that rτ,s has a limit.

Note that D3 is finite.

2.46 Lemma. f � PD3 is computable.

Proof. Let T = {x0, . . . , xm} be the tops of the components of PD3 . Let x ∈ PD3 − T .

By Lemma 2.13, there is a unique k such that x is in a copy K of [k]. The top of K

is xi for some i 6 m. Let L be the unique copy of [k] in Gn with top f(xi) and let gx

be the unique isomorphism form K to L. By the uniqueness of f , f(x) = gx(x). Since

gx can be computably determined given x ∈ PD3 − T and T is finite, this implies that

f � PD3 is computable.

2.47 Lemma. Let D4 be the set of all numbers not in D3 that are of the form 6〈pτq, j〉+3

or 6〈pτq, j, k〉+ l, τa0 ⊆ σ, j, k ∈ ω, l ∈ {1, 2, 4, 5}. Then f � PD4 is computable.

Proof. Let m ∈ D4. If m is of the form 6〈pτq, j, k〉+ l, l ∈ {1, 2, 4, 5}, then let s be the

first stage by which τ has recovered k + 1 many times. If (m) has not participated in

an operation before stage s then, by the same reasoning as in the proof of Lemma 2.44,

it does not participate in an operation after stage s. In this case, let h(m) = s.

Now suppose that m is of the form 6〈pτq, j〉+ 3. Let init(τ) = lims init(τ, s), which

exists since τ ∈ TP . If j < init(τ) then let s be the least stage by which τ has been

initialized k + 1 many times. Arguing as in the proof of Lemma 2.44, we see that

(m) does not participate in an operation after stage s. In this case, let h(m) = s. If

j > init(τ) then (m) never participates in an operation. In this case, let h(m) = 0.

If h(m) has not yet been defined then (m) participates in an operation at least once.

However, since (m) is finite, (m) participates in operations only finitely often, so there

exist stages s < t such that (m) does not participate in an operation in the interval

(s, t] and there is a τ -isomorphism recovery stage in (s, t]. By Lemma 2.18, (m) does

not participate in an operation after stage t. In this case, let h(m) = t.

Now the hypotheses of Lemma 2.40 are satisfied for D = D4.
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2.48 Lemma. Let D′5 be the set of all numbers of the form 6k, k < n. Let D′′5 be set

of all numbers of the form 6as such that as > recov(σ, s + 1) or s is less than the first

σ-recovery stage after the last time σ is initialized. Let D5 = D′5 ∪D′′5 . Then f � PD5 is

computable.

Proof. By Lemma 2.16, there is a stage t such that no (6k), k < n, participates in an

operation after stage t. For k < n, let h(6k) = t. For 6as ∈ D′′5 , let h(6as) = s+1. Again

by Lemma 2.16, (6as) does not participate in an operation after stage h(6as). Since D′5
is finite, h is computable, and hence the hypotheses of Lemma 2.40 are satisfied for

D = D5.

Let D′6 be the set of all numbers of the form 6〈pτq, j〉 + 3 or 6〈pτq, j, k〉 + l, τ = σ

or σa0 ⊆ τ , j, k ∈ ω, l ∈ {1, 2, 4, 5}. Let D′′6 be the set of all numbers of the form 6k

that are not in D5. Let D6 = D′6 ∪D′′6 . In order to show that f is computable, we are

left with showing that f � PD6 is computable. Roughly speaking, the idea is to show

that, once rσ,s has reached its final value, Gn and A0 always go in the same direction at

stages at which components of PD6 participate in operations.

2.49 Lemma. Let τ be such that τ = σ or σa0 ⊆ τ . Let u be a stage after which σ is

never initialized and such that, for all s > u, rσ,s = 0. Let s+ 1 and t+ 1 be σ-recovery

stages such that s+1 > t+1 > u and there is no σ-recovery stage in the interval (t+1, s],

and let s0 + 1 < s1 + 1 < · · · < sm + 1 be the stages in the interval (t, s] at which τ is

active. For each k 6 m, let Yk, Xk, Zk, Bk, Rk and Ck be Y 0
τ,sk

, X0
sk

, Z0
τ,sk

, B0
τ,sk

, R0
τ,sk

,

and C0
τ,sk

, respectively, and let Y ′k, X ′k, Z ′k, B
′
k, R′k and C ′k be the components of A0

s that

extend Yk, Xk, Zk, Bk, Rk and Ck, respectively. Then the following hold.

1. For every k 6 m, Yk, Xk, Zk, Bk, and Ck are components of A0
t , and so is R0.

If rτ,t+1 = 0 then, for every k, l 6 m, R′k = R′l. If rτ,t+1 = 1 then, for every

0 < k 6 m, R′k = B′k−1.

2. There exists a component R̂0 of Gn[t] such that R̂0
∼= R0 and, for each k 6 m, there

exist components Ŷk, X̂k, Ẑk, B̂k, and Ĉk of Gn[t] such that Ŷk ∼= Yk, X̂k
∼= Xk,

Ẑk ∼= Zk, B̂k
∼= Bk, and Ĉk ∼= Ck.

3. Let R̂′0 be the component of Gn[s] that extends R̂0 and, for each k 6 m, let Ŷ ′k,

X̂ ′k, Ẑ ′k, B̂′k, and Ĉ ′k be the components of Gn[s] that extend Ŷk, X̂k, Ẑk, B̂k, and

Ĉk, respectively. R̂′0
∼= R′0 and, for each k 6 m, Ŷ ′k

∼= Y ′k, X̂ ′k
∼= X ′k, Ẑ

′
k
∼= Z ′k,

B̂′k
∼= B′k, and Ĉ ′k

∼= C ′k.
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Proof. There are no τ -recovery stages in the interval (t+ 1, s], which implies that if τ is

initialized in the interval (t, s] then this initialization happens after stage sm + 1. So the

first part of the lemma follows from the way Y 0
τ,sk

, X0
sk

, Z0
τ,sk

, B0
τ,sk

, R0
τ,sk

, and C0
τ,sk

are

defined. The second part of the lemma follows from the definition of σ-recovery stage.

We prove the third part of the lemma. Figures 2.7–2.9 might be helpful here.

We begin with the τ = σ case.

By definition, R̂0 and R̂′0 are the special components of Gn[t] and Gn[s], respectively.

Thus, since rσ,s+1 = rσ,s = 0 and s+ 1 is a σ-recovery stage, R̂′0
∼= R′0. We now proceed

by reverse induction, beginning with m.

It follows from the construction and the first part of the lemma that if K is taken

from among R̂′0, Ŷ
′
k , X̂

′
k, Ẑ

′
k, B̂

′
k, and Ĉ ′k, k 6 m, and L 6= K is taken from among R̂′0,

Ŷ ′l , X̂
′
l , Ẑ

′
l , B̂

′
l, and Ĉ ′l , l 6 m, then K � L. Furthermore, if K is one of Ŷ ′k , X̂

′
k, Ẑ

′
k, B̂

′
k,

or Ĉ ′k, and L is a component of A0
s such that K ∼= L then L is one of R′0, Y

′
l , X

′
l , Z

′
l ,

B′l, or C ′l , l > k.

Thus, since we assume by induction that, for all j > k, Ŷ ′j
∼= Y ′j , X̂

′
j
∼= X ′j, Ẑ

′
j
∼= Z ′j,

B̂′j
∼= B′j, and Ĉ ′j

∼= C ′j, we may assume that if K is one of Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, or Ĉ ′k and L

is a component of A0
s such that K ∼= L then L is one of R′0, Y

′
k , X

′
k, Z

′
k, B

′
k, or C ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ĉk are

R′0 and C ′k. Since R̂′0
∼= R′0, it must be the case that Ĉ ′k

∼= C ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ŷk are

C ′k and Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of X̂k

are Y ′k and X ′k. Since Ŷ ′k
∼= Y ′k , it must be the case that X̂ ′k

∼= X ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ẑk are

X ′k and Z ′k. Since X̂ ′k
∼= X ′k, it must be the case that Ẑ ′k

∼= Z ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of B̂k

are Z ′k and B′k. Since Ẑ ′k
∼= Z ′k, it must be the case that B̂′k

∼= B′k.

This completes the τ = σ case. We now handle the τ ⊇ σa0 case. There are two

subcases.

First suppose that rτ,t+1 = 0.

Let k 6 m. Since σ is active whenever τ is active, it follows from the τ = σ case

that X̂ ′k
∼= X ′k.

The only components of A0
s that contain copies of Ẑk are X ′k and Z ′k. Since X̂ ′k

∼= X ′k,

it must be the case that Ẑ ′k
∼= Z ′k.

The only components of A0
s that contain copies of B̂k are Z ′k and B′k. Since Ẑ ′k

∼= Z ′k,
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it must be the case that B̂′k
∼= B′k.

The only components of A0
s that contain copies of R̂0 are R′0 and B′0, . . . , B

′
m. We

have shown that, for every k 6 m, B̂′k
∼= B′k. Thus it must be the case that R̂′0

∼= R′0.

We now proceed by reverse induction, beginning with m. Let k 6 m. Assume by

induction that, for all j > k, Ŷ ′j
∼= Y ′j , X̂

′
j
∼= X ′j, Ẑ

′
j
∼= Z ′j, B̂

′
j
∼= B′j, and Ĉ ′j

∼= C ′j. As

in the τ = σ case, we may assume that if K is one of Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, or Ĉ ′k and L is a

component of A0
s such that K ∼= L then L is one of R′0, Y

′
k , X

′
k, Z

′
k, B

′
k, or C ′k.

We have already seen that X̂ ′k
∼= X ′k, Ẑ

′
k
∼= Z ′k, B̂

′
k
∼= B′k, and R̂′0

∼= R′0.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ĉk are

R′0 and C ′k. Since R̂′0
∼= R′0, it must be the case that Ĉ ′k

∼= C ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ŷk are

C ′k and Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .

This completes the rτ,t+1 = 0 case. Now suppose that rτ,t+1 = 1.

As before, it follows from the τ = σ case that X̂ ′k
∼= X ′k for all k 6 m.

We first proceed by reverse induction, beginning with m, to show that Ẑ ′k
∼= Z ′k,

B̂′k
∼= B′k, and R̂′0

∼= R′0. Let k 6 m. We may assume by induction that, for all

k < j 6 m, B̂′j
∼= B′j.

The only components of A0
s that contain copies of Ẑk are X ′k and Z ′k. Since X̂ ′k

∼= X ′k,

it must be the case that Ẑ ′k
∼= Z ′k.

The only components of A0
s that contain copies of B̂k are Z ′k, and B′j, k 6 j 6 m.

Since Ẑ ′k
∼= Z ′k and, for all k < j 6 m, B̂′j

∼= B′j, it must be the case that B̂′k
∼= B′k.

The only components of A0
s that contain copies of R̂0 are R′0 and B′0, . . . , B

′
m. We

have shown that, for every k 6 m, B̂′k
∼= B′k. Thus it must be the case that R̂′0

∼= R′0.

Now let 0 < k 6 m. The only components of A0
s that contain copies of Ĉk are B′k−1

and C ′k. Since B̂′k−1
∼= B′k−1, it must be the case that Ĉ ′k

∼= C ′k.

The only components of A0
s that contain copies of Ĉ0 are R′0 and C ′0. Since R̂′0

∼= R′0,

it must be the case that Ĉ ′0
∼= C ′0.

Let k 6 m. The only components of A0
s that contain copies of Ŷk are C ′k and Y ′k .

Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .

This completes the rτ,t+1 = 1 case.

The following lemma can be easily checked from the way components that participate

in operations in the construction are chosen.

2.50 Lemma. Let m ∈ ω be of the form 6〈pτq, j〉+3 or 6〈pτq, j, k〉+l, τ = σ or σa0 ⊆ τ ,

j, k ∈ ω, l ∈ {1, 2, 4, 5}. If (m)s participates in an operation at stage s+ 1 then it is one
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of Y 0
τ,s, Z

0
τ,s, B

0
τ,s, R

0
τ,s, or C0

τ,s.

Let m ∈ D′′6 . If (m)s participates in an operation at stage s+ 1 then it is X0
s and σ

is active at stage s+ 1.

2.51 Lemma. Let u be a stage after which σ is never initialized and such that, for all

s > u, rσ,s = 0. Let s+ 1 > u be a σ-recovery stage and let t+ 1 be the next σ-recovery

stage after stage s + 1. Let m ∈ D6. Suppose there exists a component L of Gn[s] that

is isomorphic to (m)s. Then the component L′ of Gn[t] that extends L is isomorphic to

(m)t.

Proof. If (m) does not participate in an operation in the interval (s, t] then (m)t ∼= (m)s.

Since L′ ⊇ L, (m)t is not embeddable in another component of A0
t , and, by convention

(see page 30), Gn[t] is embeddable in A0
t , this means that L′ ∼= (m)t.

Otherwise, the lemma follows from Lemmas 2.49 and 2.50.

2.52 Lemma. Let x ∈ PD6 and let u be a stage after which σ is never initialized and

such that, for all s > u, rσ,s = 0. There exists a σ-recovery stage s + 1 > u such that

x is contained in (k)s for some k ∈ D6 and Gn[s] has a component L ∼= (k)s. For any

such s, if we let g be the unique isomorphism from (k)s to L then f(x) = g(x).

Proof. If x is contained in a finite component of A0 then the existence of s follows from

the fact that Gn ∼= A0. Otherwise, there are t > s > u such that s + 1 is a σ-recovery

stage, there are no σ-recovery stages in the interval (s + 1, t + 1], x is contained in

(k)t, k ∈ D6, and (k)t is involved in an operation at stage t + 1. Now it follows from

Lemma 2.49 that x is contained in (k)s and Gn[s] has a component L ∼= (k)s.

Let s + 1 = s0 + 1 < s1 + 1 < · · · be the σ-recovery stages greater than or equal to

s+ 1. Let Li be the component of Gn[si] that extends L and let L′ be the component of

Gn that extends L. Using Lemma 2.51 and induction, we see that, for each i > 0, there

exists a unique isomorphism gi : (k)si
∼= Li. Furthermore, if j > i then gj extends gi.

Thus the limit g′ of the gi is well-defined and is an isomorphism from (k) to L′. By the

uniqueness of f , f(x) = g′(x) = g0(x) = g(x).

2.53 Lemma. f � PD6 is computable.

Proof. Let u be a stage after which σ is never initialized and such that, for all s > u,

rσ,s = 0. Given x ∈ PD6 , find the least σ-recovery stage s + 1 > u such that x is

contained in a component (m)s, m ∈ D6, of A0
s and there exists a component L of

Gn[s] isomorphic to (m)s. Such a stage exists by Lemma 2.52. Let gx be the unique
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isomorphism from (m)s to L. Again by Lemma 2.52, f(x) = gx(x). Since gx can be

computably determined given x ∈ PD6 , f � PD6 is computable.

By Lemmas 2.41, 2.43, 2.45, 2.46, 2.47, 2.48, and 2.53, f � PDi
is computable for

each i 6 6. As can be easily checked by referring to Table 1, D0, . . . , D6 are computable

and
⋃6
i=0Di = ω. Thus, by Lemma 2.38, we have the following result.

2.54 Lemma. The unique isomorphism f : A0 ∼= Gn is computable.

Theorem 1.10 follows from Lemmas 2.9, 2.10, 2.32, 2.34, and 2.54. �

3 Proof of Theorem 1.12

In this section we prove the following theorem, using a construction similar to that of

Section 4 of [18].

1.12. Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There exists an

intrinsically α-c.e. relation V on the domain of a computable structure B of computable

dimension 2 such that DgSpB(V ) = {0,b}. In addition, B can be picked so that every

c.e. presentation of B is computable, which implies that B has c.e. dimension 2.

Proof. Let α ∈ ω ∪ {ω} and let B be an α-c.e. set that is not computable. It follows

immediately from Definition 1.11 that there exist a computable sequence b0, b1, . . . ∈ ω
and a function f such that

1. either α < ω and f(x) = α for all x ∈ ω or α = ω and f is computable,

2. |{s | bs = x}| 6 f(x) for all x ∈ ω, and

3. x ∈ B ⇔ |{s | bs = x}| ≡ 1 mod 2.

Since the α = 0 case is trivial, we may assume without loss of generality that f(x) > 0

for all x ∈ ω.

We wish to construct computable structures B0 and B1 and unary relations V 0 and

V 1 on the domains of B0 and B1, respectively, so that the following properties hold.

(3.1) B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

(3.2) V 0 ≡m B and V 1 is computable.
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(3.3) If G ∼= B0 is a computable structure then G is computably isomorphic to either

B0 or B1.

(3.4) B0 is rigid.

(3.5) Every c.e. presentation of B0 with computable equality relation is computable.

For each s ∈ ω, let cs = |{t < s | bt = bs}| and let as = 〈bs, cs〉. Let A = {a0, a1, . . .}.
A is clearly c.e. but not computable, so we can follow the construction in Section 2 to

obtain computable structures A0 and A1 and relations U0 and U1 on the domains of A0

and A1, respectively, satisfying properties (2.1)–(2.5). (We assume that the construction

has been carried out in such a way that the domains of A0 and A1 are co-infinite.)

Now, for i = 0, 1, proceed as follows. Add an element, which we will call the

identifying node of Bi, to the domain of Ai and add an edge from this node to each

node of Ai. For each j ∈ ω and each sequence of components L0, L1, . . . , Lf(j)−1 such

that each Lk contains a copy of [6〈j, k〉], add an element x (which will be said to be a

j-coding node) to the domain of Ai, add an edge from x to the coding location of the

copy of [6〈j, k〉] in Lk for each k < f(j), and add an edge from x to the identifying node

of Bi. The resulting graph is Bi.
Clearly, we can build each Bi so that it is a computable graph, and the following

lemma can be easily checked, using the fact that A0 is rigid.

3.1 Lemma. B0 is rigid.

It is also not hard to establish that (3.5) holds.

3.2 Lemma. If G is a c.e. presentation of B0 with computable equality relation then G
is computable.

Proof. Let z be the image of the identifying node of B0 in G. Let G ′ be the subgraph of

G consisting of all elements y of G such that there is an edge from z to y, and let G ′′ be

the subgraph of G consisting of all elements y of G such that there is an edge from y to

z. Since |G ′| ∩ |G ′′| = ∅ and |G ′| ∪ |G ′′| ∪ {z} = |G|, both |G ′| and |G ′′| are computable.

Since G ′ ∼= A0, it follows from (2.5) that G ′ is computable.

For each element x ∈ G, there is either an edge from z to x or an edge from x to

z, but not both. Furthermore, there are no edges between elements of G ′′ or from an

element of G ′ to an element of G ′′. Thus it suffices to show that there is an effective

procedure for determining, given x ∈ G ′′ and y ∈ G ′, whether there is an edge from x to

y.
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Fix x and y as above. Then x is a j-coding node for some j ∈ ω, and this j can

be found effectively. There are exactly f(j) many elements w 6= z of G for which there

is an edge from x to w. Since f is computable, we can find these elements and check

whether y is among them.

We now define a relation V i on the domain of Bi. Let Ki be the set of coding nodes

in Bi. Let j ∈ ω and let x be a j-coding node in Bi. By construction, there exist

components L0, . . . , Lf(j)−1 of Ai such that, for each k < f(j), Lk contains a copy of

[6〈j, k〉] whose coding location yk is attached to x. Let ci(x) be the least k < f(j) such

that yk /∈ U i, if such a k exists, and let ci(x) = f(j) otherwise. Now let V i = {x ∈ Ki |
ci(x) is odd}.

3.3 Lemma. B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

Proof. By (2.1), A0 ∼= A1 via an isomorphism that carries U0 to U1. It is straightforward

to extend this isomorphism to an isomorphism h : B0 ∼= B1. The fact that h(U0) = (U1)

implies that if x ∈ K0 then c0(x) = c1(h(x)), which in turn implies that h(V 0) = V 1.

3.4 Lemma. V1 is computable and V0 ≡m B.

Proof. Since U1 is computable, there is a computable procedure for determining c(x)

given x ∈ K1, and thus V1 is computable.

Let x ∈ K0. By construction, there exist components L0, . . . , Lf(j)−1 of A0 such that,

for each k < f(j), Lk contains a copy of [6〈j, k〉] whose coding location yk is attached to

x. Let d(x) be the least k such that, for all m > k, ym is the coding location of the copy

of [6〈j,m〉] in A0
0, if such a k exists, and let d(x) = f(j) otherwise. Note that there is a

computable procedure for determining d(x) given x ∈ K0.

If d(x) > 0 then clearly 〈j, d(x) − 1〉 ∈ A. But this means that, in fact, 〈j, k〉 ∈ A
for all k < d(x). It follows that we can computably determine whether yk ∈ U0 for

k < d(x). So if we define S = {x ∈ K0 | c(x) < d(x)} and T = K0 − S then S, T , and

V 0 ∩ S are computable.

Now let x ∈ T be a j-coding node and let y0, . . . , yf(j)−1 be as above. By the definition

of T , y0, . . . , yd(x)−1 ∈ U0, so 〈j, k〉 ∈ A for all k < d(x). But, by the definition of d(x),

for each k > d(x), yk ∈ U0 if and only if 〈j, k〉 ∈ A. So c(x) = |{k | 〈j, k〉 ∈ A}| =

|{t | bt = j}|. Thus x ∈ V 0 if and only if j ∈ B, and hence V 0 ∩ T ≡m B. Since

V 0 = (V 0 ∩ S) ∪ (V 0 ∩ T ), it follows that V 0 ≡m B.
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3.5 Lemma. If G ∼= B0 is a computable structure then G is computably isomorphic to

either B0 or B1.

Proof. Let z be the image of the identifying node of B0 in G. Let G ′ be the computable

subgraph of G consisting of all elements y of G such that there is an edge from z to y.

By the definition of B0, G ′ ∼= A0. Thus, by (2.3), there exists a computable isomorphism

h : Ai ∼= G ′ for some i 6 1.

To extend this isomorphism to a computable isomorphism ĥ : Bi ∼= G, we first

define ĥ � Ai ≡ h and ĥ(u) = z, where u is the identifying node of Bi. Now let

x ∈ Bi− (Ai ∪{u}). Then x is a j-coding node for some j ∈ ω, and we can computably

determine the f(j) many coding locations y0, . . . , yf(j)−1 attached to x. There is a unique

w ∈ G − G ′ attached to h(y0), . . . , h(yf(j)−1). Define ĥ(x) = w. It is now easy to check

that ĥ is a computable isomorphism from Bi to G.

Theorem 1.12 follows from Lemmas 3.1, 3.2, 3.3, 3.4, and 3.5. �
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