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Abstract

A Turing degree d is homogeneous bounding if every complete decidable (CD)
theory has a d-decidable homogeneous model A, i.e., the elementary diagram
De(A) has degree d. It follows from results of Macintyre and Marker that ev-
ery PA degree (i.e., every degree of a complete extension of Peano Arithmetic)
is homogeneous bounding. We prove that in fact a degree is homogeneous
bounding if and only if it is a PA degree. We do this by showing that there
is a single CD theory T such that every homogeneous model of T has a PA
degree.

1 Introduction

One of the aims of computable mathematics is to use the tools provided by com-
putability theory to calibrate the strength of theorems and constructions of ordi-
nary mathematics. It is often the case that a given theorem has multiple proofs, all
of which seem to require a particular combinatorial principle that can be charac-
terized in degree theoretic terms. It is then natural to attempt to use the methods
of computable mathematics to show that the use of this principle (or an effectively
equivalent one) is unavoidable. The particular theorem we analyze in this man-
ner is the classical model theoretic result that every countable complete theory
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has a countable homogeneous model. (See Sections 2, 3, and 4 for all definitions.
As usual in computable mathematics, we consider only countable languages and
structures.) Before describing our results, we set them in context by considering
some related results in computable model theory.

It is easy to check that the usual Henkin proof of the completeness theorem
given for instance in Marker [25] can be effectivized, to show every complete
decidable (CD) theory has a decidable model. However, this construction does not
always produce a model that is prime, saturated, or homogeneous. To construct
such models we need to control the types realized in the model as in Vaught’s
epochal 1961 paper [39] on models of complete theories.

A theory T is atomic if every formula consistent with T is contained in a
principal type. Goncharov and Nurtazin [8] and Millar [26] showed that there is a
complete atomic decidable (CAD) theory with no decidable (or even computable)
prime model, and that such a theory can be chosen with types all computable
(TAC), but not uniformly so, because Morley [29] and Millar [26] proved that a
CD theory whose types are uniformly computable has a decidable saturated model
and hence a decidable prime model. Similarly, Millar [26] constructed a CD theory
T with TAC such that T does not have a computable saturated model.

These results raise the question of determining the exact computational com-
plexity of the constructions of prime and saturated models. Goncharov and Nur-
tazin [8] and also Millar [26] noted that the obvious effectivization of Vaught’s
construction [39] of a prime model A of a complete atomic theory T demonstrates
that if the theory is also decidable, then A can be constructed to be 0′-decidable.
Csima [3] strengthened this result by showing that any CAD theory has a prime
model whose elementary diagram has low degree, where a degree d is said to be
low if d′ = 0′. (By degree, we always mean Turing degree.)

A complementary result can be obtained by considering the prime bounding
degrees, which are those degrees d such that every CAD theory has a d-decidable
prime model. Csima, Hirschfeldt, Knight, and Soare [4] showed that a ∆0

2 degree
d is prime bounding if and only if it is nonlow2 (i.e., d′′ > 0′′). (They also noted
that there are low2 prime bounding degrees that are not ∆0

2, but the exact picture
outside the ∆0

2 degrees is not yet clear.)
In the TAC case the situation is simpler. Hirschfeldt [13] showed that a CAD

theory with TAC must have a d-decidable prime model for any d > 0. (This
result had been proved earlier for ∆0

2 degrees d by Csima [3].)
A degree d is saturated bounding if every CD theory with TAC has a d-

decidable saturated model. (The restriction on the complexity of types is essential
here, because a saturated model must realize all the types of its theory. Hence, for
instance, the existence of nonarithmetical types would force the saturated model
to be nonarithmetical.) Macintyre and Marker [23] proved that every PA degree is
saturated bounding (see Section 4). Harris [12] proved that this result also follows
from work of Jockusch [14], as does the fact that every high degree is saturated
bounding. In the other direction, Harris [12] has shown that no c.e. degree d that
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is low or even lown (i.e., d(n) = 0(n)) can be saturated bounding.
Turning finally to homogeneous models, we again have a non-effectivity result.

Goncharov [7] showed that there is a CD ω-stable theory with no computable
homogeneous model. (A theory T is ω-stable if for every M � T and every
countable X ⊆ M , there are only countably many types of T over X.) The
ω-stability of this theory is particularly interesting since uncountably categorical
theories are notable examples of ω-stable theories, but as shown by Harrington
[11] and Khisamiev [17], if T is a decidable uncountably categorical theory, then
every countable model of T has a decidable copy.

One difference between the homogeneous case and the prime and saturated
cases is that there can be only one prime model of a given theory up to isomor-
phism, and similarly for countable saturated models, but this is not the case for
homogeneous models. Indeed, every type of a countable complete theory is real-
ized in some countable homogeneous model, so there is in general no way to bound
the complexity of all homogeneous models of a CD theory (since there are such
theories with continuum many types). There are several results focusing on the
possible degrees of copies of a given homogeneous structure A, presented via its
type spectrum, T(A), the set of types realized in A, as discussed in Section 3.

By analogy with the prime and saturated cases, we call a degree d homoge-
neous bounding if every CD theory has a d-decidable homogeneous model. Thus,
Goncharov’s result in [7] means that 0 is not homogeneous bounding. On the other
hand, as shown by Macintyre and Marker [23], every PA degree is homogeneous
bounding, as we now discuss.

One way to build a homogeneous model of a given theory is via an elementary
chain, or a similar iterated extension argument (see [2] or [25]). It is not hard
to check that such arguments can be made effective, except for the repeated use
of Lindenbaum’s Lemma (which states that every consistent set of sentences can
be extended to a complete theory), or, equivalently, the use of the completeness
theorem for consistent sets of sentences (rather than complete theories). It is
well-known that Lindenbaum’s Lemma can be carried out effectively in a degree
d (in the sense that every consistent computable set of sentences can be extended
to a complete decidable theory) if and only if d is a PA degree. This is because
Lindenbaum’s Lemma is easily seen to be equivalent (degree theoretically but also
in the sense of reverse mathematics) to Weak König’s Lemma (which states that
every infinite binary tree has an infinite path). As we explain in Section 4, d is a
PA degree if and only if every computable infinite binary tree has a d-computable
path.

Another way to build homogeneous models is by using Scott sets, introduced
by Scott [32] to characterize the sets definable in a model of Peano Arithmetic.
We will discuss these in Section 4. Such constructions can be found in Macintyre
and Marker [23] (who deal with models that are saturated with respect to types
coded in a given Scott set) and Ash and Knight [1]. To highlight the interplay
between homogeneous models and models of arithmetic, we also include a version
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in Section 4.
Thus, we see that every PA degree is homogeneous bounding. It also ap-

pears that the use of PA degrees (and hence of combinatorial principles effectively
equivalent to Weak König’s Lemma), is essential to the building of homogeneous
models, but we cannot a priori rule out the possibility that a more clever con-
struction might allow us to sidestep the use of Weak König’s Lemma. That no
such construction exists is part of the import of our main result, which will be
proved in Section 5.

Theorem 1.1. There is a complete decidable theory T such that every countable
homogeneous model of T has a PA degree.

This theorem implies that every homogeneous bounding degree is a PA degree,
but it is in fact stronger, since we build a single theory T such that the use of PA
degrees is necessary to compute even the atomic diagram of a homogeneous model
of T . Together with the converse fact mentioned above, we have the following
consequence.

Corollary 1.2. A degree is homogeneous bounding if and only if it is a PA degree.

In light of Goncharov’s result on ω-stable theories mentioned above, it is worth
pointing out that the theory T in Theorem 1.1 cannot be made ω-stable, or even
atomic (which would be implied by ω-stability). This fact follows from the result
mentioned above that every nonlow2 and ∆0

2 degree is prime bounding. If T is
a CAD theory, then let d be a nonlow2 degree that is not PA (for example, a
nonlow2 incomplete c.e. degree). Any d-decidable prime model of T is an example
of a homogeneous model of T that does not have a PA degree.

2 Definitions, Notation, and Basic Results

For the most part, we include in this section only the definitions, notation, and
basic results that are essential for this paper and that may not be familiar to all
readers. For other definitions and as general references we cite [2] and [25] for
model theory, [36] and more recently [37] for the computability theory used in
computable model theory, and [1, 5, 9, 10, 28] for computable model theory.

We use Φe to denote the eth Turing functional. A degree d is low if its first
jump is the same as that of the least degree 0, that is, d′ = 0′. Similarly, d is
low2 if d′′ = 0′′.

A computable language is a countable language with an effective presentation of
its set of symbols, along with their arities. We consider only countable structures
for computable languages. We denote such structures by calligraphic letters such
as A, and their universes by the corresponding roman letters such as A. The
universe of an infinite countable structure can be identified with ω. As usual, if L
is the language of A and X ⊆ A, then LX is the expansion of L obtained by adding
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a new constant symbol for each a ∈ X, and AX = (A, a)a∈X is the corresponding
expansion of A to LX .

A theory T in L is a consistent set of sentences in L = L(T ) closed under
logical consequence. Let Fn(T ) denote the set of formulas θ(x) of L(T ) with n
free variables so that (∃x)θ(x) is consistent with T , and therefore (∃x)θ(x) ∈ T if
T is complete.

A complete type (or briefly, a type) is a maximal consistent set of formulas in
a certain fixed number of free variables. For each n let Sn(T ) denote the set of
n-types of T and let S(T ) =

⋃
n Sn(T ). These are sometimes called pure types to

distinguish them from types defined with parameters Y ⊆ A for some model A of
T . A type p ∈ S(T ) is realized in a model A of T if there exists an a ∈ A<ω such
that A � θ(a) for every θ(x) ∈ p.

We write A ≡ B to mean that the structures A and B are elementarily equiv-
alent, that is, they have the same theory.

We identify a formula with its Gödel number, and say that a set of formulas
belongs to a given computability theoretic complexity class P if the set of Gödel
numbers of its elements belongs to P. A theory is decidable if it is computable
in this sense. It is clear that a computably axiomatizable complete theory is
decidable.

The atomic (or open) diagram of a structure A, denoted by D(A), is the set
of all atomic sentences and negations of atomic sentences of LA true in AA. The
elementary diagram ofA, denoted byDe(A), is the set of all sentences of LA true in
AA. A structure A is computable if D(A) is computable, and decidable if De(A) is
computable. More generally, for a degree d, a structure A is d-computable if D(A)
is d-computable, and d-decidable if De(A) is d-computable. It is conventional to
define the degree of a structure A to be the Turing degree of the atomic diagram
D(A), not the elementary diagram De(A).

A structure A is automorphically trivial if there is a finite F ⊂ A such that
every permutation of A fixing F pointwise is an automorphism of A. Automor-
phically trivial structures are rather uninteresting from the point of view of com-
putable model theory, since for each such structure A there is a degree d such
that every copy of A (with universe ω) has degree d (and if the language is finite,
then d = 0). Knight [18] showed that if A is not automorphically trivial and has
a d-computable copy, then A has a copy whose degree is exactly d. (This result
was proved earlier for models of Peano Arithmetic by Solovay and Marker [24].)
The same proof yields the analogous result for De(A) in place of D(A).

An important tool for proving completeness and decidability of a theory is
quantifier elimination. A theory T has quantifier elimination if for every formula
ϕ(x) there is a quantifier-free formula ψ(x) such that T ` ϕ(x) ↔ ψ(x). If
T has no constant symbols, then this definition needs to be slightly amended,
since L has no quantifier-free sentences; in this case, for a sentence ϕ, we only
require the existence of a quantifier-free formula ψ(x) of one free variable such
that T ` ϕ ↔ ψ(x). We will use the following well-known criterion for a theory
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having quantifier-elimination.

Theorem 2.1 (See [25, Corollary 3.1.6]). Suppose that for all A,B � T and all
common substructures C of A and B, the structures A and B satisfy the same
existential sentences with parameters from C. Then T has quantifier elimination.

A theory satisfying the hypothesis of Theorem 2.1 is called submodel complete.

3 Homogeneous Structures

Definition 3.1. A countable structure A is homogeneous if it satisfies the follow-
ing property. Let a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) be finite sequences of
elements of A such that

(A, a0, . . . , an−1) ≡ (A, b0, . . . , bn−1) (∗)

(i.e., a and b realize the same n-type). Then

(∀an ∈ A)(∃bn ∈ A)[ (A, a0, . . . , an−1, an) ≡ (A, b0, . . . , bn−1, bn) ].

It is not hard to show that A is homogeneous if and only if for any two se-
quences a and b satisfying (∗) there is an automorphism of A taking a to b. As
mentioned above, every countable complete theory has a countable homogeneous
model. Prime models and countable saturated models are examples of homoge-
neous models.

3.1 Type Spectra and Uniqueness of Homogeneous Models

Definition 3.2. Let T be a theory and let A be a model of T . The type spectrum
T(A) of A is the set of all (pure) types of T realized in A. That is,

T(A) = { p : p ∈ S(T ) ∧ A realizes p }.

We write Tn(A) for T(A) ∩ Sn(T ), the set of n-types of T realized in A.

(Some authors in computable model theory use S(A) in place of T(A), but this
conflicts with the standard usage in ordinary model theory. Given a structure A
and a set Y ⊆ A, Marker [25, p. 115] defines SAn (Y ) to be the set of n-types in
the theory of AY . Our use of T(A) differs from Marker’s for several reasons: (1)
we consider only pure types in the original language and do not allow any extra
constant symbols to be added; (2) we consider only those types actually realized
in A, not merely those consistent with the theory of AY ; and hence (3) Tn(A) is
not necessarily closed, even though SAn (Y ) is always closed in the usual Cantor
set topology on 2<ω. Marker has no notation for our T(A).)

The most pleasing and useful property of homogeneous models and of the set
of pure types T(A) is the following Uniqueness Theorem for Homogeneous Models.
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Theorem 3.3 (Morley and Keisler [30]). Given a countable complete theory T
and homogeneous models A and B of T of the same cardinality,

T(A) = T(B) =⇒ A ∼= B.

See Marker [25, Theorem 4.3.23] for a proof of the general case, and [25, Theo-
rem 4.2.15] for the countable case, which is all we need in this paper.

Remark 3.4. If A is a countable homogeneous model of a theory T then

(i) A is prime iff T(A) = SP (T ), the set of principal types of S(T ); and

(ii) by the Uniqueness Theorem 3.3, A is saturated iff it is weakly saturated (i.e.,
T(A) = S(T )).

3.2 The Five Homogeneity Conditions on a Type Spectrum

If T is a complete theory and C ⊆ S(T ) is a given set of types, what conditions on
C must be satisfied so that there is a homogeneous model A of T with T(A) = C?
Goncharov [6] and Peretyat’kin [31] (see also [5]) gave a set of five conditions that
completely answers this question.

Theorem 3.5 (Goncharov [6], Peretyat’kin [31]). Let T be a complete theory
and C ⊆ S(T ) be a countable set satisfying conditions 1–5 below. Then T has a
countable homogeneous model A with T(A) = C.

1. C is closed under permutations of variables.
If p(x0, . . . , xn−1) ∈ C is an n-type and σ is a permutation of {0, . . . , n− 1},
then p(xσ(0), . . . , xσ(n−1)) ∈ C.

2. C is closed under forming subtypes.
If p(x0, . . . , xn−1) ∈ C and m < n, then p(x0, . . . , xn−1) � {x0, . . . , xm−1}
(the restriction of p to formulas in which only x0, . . . , xm−1 appear free) is
also in C.

3. C is closed under unions of types on disjoint sets of variables.
If p = p(x0, . . . , xn−1) and q = q(x0, . . . , xn−1) are such that p, q ∈ C, then
there is an r = r(x0, ..., x2n−1) ⊇ p(x0, . . . , xn−1) ∪ q(xn, . . . , x2n−1) such
that r ∈ C.

4. C is closed under amalgamation of types.
If p(x0, . . . , xn−1, xn) and q(x0, . . . , xn−1, xn) are such that p, q ∈ C, and p
and q both extend the same n-type s(x0, . . . , xn−1), then there is an r =
r(x0, . . . , xn−1, xn, xn+1) ⊇ p(x0, . . . , xn−1, xn) ∪ q(x0, . . . , xn−1, xn+1) such
that r ∈ C.

5. C is closed under amalgamation of types with formulas.
If p = p(x0, . . . , xn−1) ∈ C and the formula θ(x0, . . . , xn−1, x) is consistent
with p, then there is a q(x0, . . . , xn−1, x) ∈ C such that p ∪ {θ} ⊆ q.
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3.3 Type Spectra of Decidable Homogeneous Structures

Morley [29] asked under what conditions a countable homogeneous model has
a decidable homogeneous (isomorphic) copy. Morley [29] observed the following
obvious implications.

Remark 3.6. If a countable homogeneous model B has a decidable (isomorphic)
copy A (and hence T(A) = T(B)), then:

(i) Every element of T(A) is computable.

(ii) There is a uniformly computable listing of all the types in T(A).

Definition 3.7. Let A be a homogeneous model such that every element of T(A)
is computable and d be a degree. A d-basis for A is a listing {pi}i∈ω of T(A),
possibly with repetitions, along with a d-computable function g such that g(i) is
a ∆0

0 index for pi.

We view g as defining a matrix whose rows are the types pi. It is not sufficient
to have a g that merely uniformly d-computably specifies the rows (i.e., g(i, x) =
pi(x)), all of which are computable, but rather g(i) must specify an index such
that Φg(i) = pi, from which a nonoracle Turing machine can compute pi. Now
Remark 3.6 asserts that if B has a decidable copy then there must exist some
listing of T(B) that forms a 0-basis, although not every listing of T(B) need have
this property.

Morley’s question [29] was whether every countable homogeneous structure
B for which T(B) has a 0-basis must have a decidable copy. This question was
answered negatively by Millar [27], Peretyat’kin [31], and Goncharov [6], who gave
examples of homogeneous structures with uniformly computable type spectra (i.e.,
0-bases) but no computable copy. Lange [20] recently extended this result by
building, for each low2 and ∆0

2 degree d, a homogeneous structure with uniformly
computable type spectrum (i.e., a 0-basis) but no d-computable copy. Lange [19]
showed that her result is the best possible one of this kind for ∆0

2 degrees, by
proving that for every nonlow2 and ∆0

2 degree d and every homogeneous structure
A with uniformly computable type spectrum, A has a d-decidable copy. Lange
[19] also showed that every homogeneous structure with a 0′-basis has a copy
whose elementary diagram has low degree. This result implies the theorem of
Csima [3] mentioned above that every CAD theory has a low prime model. For
further discussion of these results, see [21, 22].

3.4 The Effective Extension Property

Morley’s question does have a positive answer if we require not only that T(B)
have a 0-basis but in addition that the basis have an “effective extension prop-
erty” (EEP), which is the effective analogue of property 5 of Theorem 3.5. This
EEP condition allows us to amalgamate an n-type p and an (n + 1)-ary formula
consistent with p to effectively obtain an (n+ 1)-type extending both.
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Definition 3.8. For an n-type p(x) ∈ Sn(T ) and an (n+ 1)-ary formula θ(x, y) ∈
Fn+1(T ), we say θ is consistent with p if (∃y)θ(x, y) ∈ p(x).

Goncharov [6] and Peretyat’kin [31] gave the following key criterion for the
existence of a decidable copy of a homogeneous structure. Fix a language L and
let {θj}j∈ω be an effective list of all formulas in L, namely of

⋃
n Fn(L). Let x

denote (x0, . . . , xn−1).

Theorem 3.9 (EEP Theorem; Goncharov [6], Peretyat’kin [31]). Let A be a
countable homogeneous structure for L. Then A has a decidable copy if and only
if there exist

1. a 0-basis {pi}i∈ω for T(A), and

2. a computable binary function f such that for all n,

• for every n-type pi(x) ∈ Tn(A) and

• for every (n+1)-ary formula θj(x, xn) ∈ Fn+1(T ) consistent with pi(x),

f gives us an (n+ 1)-type pf(i,j) ∈ Tn+1(A) extending both, that is,

pi(x) ∪ {θj(x, xn)} ⊆ pf(i,j)(x, xn).

If so, we say the 0-basis {pi}i∈ω for T(A) has the effective extension property
(EEP).

The proof of the EEP Theorem 3.9 uses the Uniqueness Theorem 3.3 for Ho-
mogeneous Models. The EEP Theorem can be relativized in the usual way to any
degree d. For example, in Lange’s low basis theorem [19] mentioned above we are
given a homogeneous model A of a CD theory T and a 0′-basis for T(A). Lange
builds a new basis Y for T(A) and simultaneously an extension function f for Y
such that for some low degree d: (1) Y is a d-basis for T(A); (2) f is d-computable;
and (3) f is an extension function for Y as defined in the EEP Theorem. Now
using f and Y , the relativization of the EEP Theorem to d gives us a d-decidable
copy of A. Note that in this case the types in Y are still computable, so we are
relativizing the presentation of the members of Y and the effective extension func-
tion, but not the rows themselves. However, it should be noted that in general it
is not possible to obtain such a basis given a d-decidable homogeneous structure
B; in this case, the EEP theorem guarantees only the existence of a listing {pi}i∈ω
of T(B) along with a d-computable function g such that g(i) is a ∆d

0 index for pi.

4 Models of Peano Arithmetic and Scott Sets

In this section we develop properties of the PA degrees and relate them to Scott
sets. We also give a proof, similar to the one in Macintyre and Marker [23], that
every PA degree is homogeneous bounding.
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4.1 Trees and Π0
1-Classes

A tree is a subset of 2<ω that is closed under initial segments. A path P of a
tree T is a maximal set of nodes of T that is linearly ordered by the containment
relation. Let [T ] denote the set of all infinite paths of T . Let {τn}n∈ω be a fixed
computable 1-1 numbering of 2<ω. We identify each τn with n and in this way
consider trees and paths as subsets of ω.

Definition 4.1. (i) A class C ⊆ 2ω is a Π0
1-class if there is a computable tree

T ⊆ 2<ω such that C is the set of infinite paths through T , that is,

C = { f : (∀n) [ f � n ∈ T ] }.

(ii) A class B ⊆ 2ω is a basis for Π0
1 if for every nonempty Π0

1-class C there exists
a B ∈ B ∩ C.

For example the Low Basis Theorem [15] proves that the sets of low degree
form a basis for Π0

1.

4.2 Characterizations of the PA Degrees

The structure N = (ω,+, ·, S, 0) is computable but has no decidable copy. Peano
Arithmetic (PA) is the effectively axiomatizable (but not decidable) first order
theory containing basic axioms about the arithmetic operations plus an infinite list
of axioms for induction. A standard model of arithmetic is a structure isomorphic
to N , and a model of PA is nonstandard otherwise. Tennenbaum [38] showed that
there is no computable nonstandard model of PA.

As mentioned above, a Turing degree d is a PA degree if it is the degree of a
complete extension of PA. The following well-known equivalent characterizations
of PA degrees were proved by Scott [32], Shoenfield [33], and Jockusch and Soare
[15, 16]. For a discussion see Simpson [34].

Theorem 4.2. The following are equivalent for any Turing degree d.

(i) The d-computable sets form a basis for Π0
1. (That is, every infinite com-

putable binary tree has an infinite d-computable path.)

(ii) If U and V are disjoint c.e. sets, then there is a d-computable set S such
that U ⊆ S and V ∩ S = ∅. (Such a set S is called a separating set for U
and V .)

(iii) The degree d is the degree of a complete extension of PA.

(iv) The degree d is the degree of the elementary diagram De(A) of a nonstandard
model A of PA.
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(v) The degree d is the degree of the atomic diagram D(A) of a nonstandard
model A of PA.

Note that by (iii) and the Low Basis Theorem [15], there are low PA degrees.
We briefly discuss the relationship between these properties. Note that the

classes in (ii) and (iii) are clearly Π0
1, so (i) implies (ii) and (iii). As mentioned

above, Solovay and Marker [24] showed that the degrees in (v) are closed upwards;
this result was generalized by Knight [18], and holds for the degrees in (iv) as well.
It is also easy to show that the degrees in (iii) are closed upwards. From these
facts it follows that (iv) implies (iii) and (v). Furthermore, we can Henkinize
a theory without changing its degree. Hence, we can show that the degrees of
complete extensions of PA correspond to the degrees of elementary diagrams of
nonstandard models of PA, so (iii) implies (iv).

Clearly, (ii) implies (iii) because if U is the set of Gödel numbers of sentences
provable from PA and V is the set of Gödel numbers of sentences refutable from
PA, then U and V are disjoint c.e. sets whose separating sets correspond to com-
pletions of PA. These sets U and V will play a role in our proof of Theorem 1.1
where we construct a CD theory T such that any homogeneous model of T can
compute a separating set for U and V , i.e., can compute a path of the tree of
separating sets.

The power of (v) (which is not directly used in this paper) is revealed in
Definition 4.4 below, with the use of a nonstandard number to code an infinite set
by divisibility with respect to a certain set of primes.

The main remaining implication of Theorem 4.2 is the direction (iii) implies
(i). Let T be a complete extension of PA and T ⊆ 2ω an infinite computable
tree. A node τ ∈ T is extendible (on T ) if there are infinitely many nodes on T
extending τ , or equivalently by compactness if there is some infinite path f ∈ [T ]
that extends τ . It suffices to show that if T has computed an extendible node
τ ∈ T then T can choose an extendible immediate extension τ ′ = τ̂ i for i = 0
or 1.

If node τn ∈ 2<ω is not extendible then for some k there are no nodes on T
of length k that extend τn. Let N(n,k) be the quantifier-free formal statement
in the language of PA that asserts that node τn has no extensions of T of length
k, where n and k are the formal numerals corresponding to integers n and k. If
this statement is true in the standard model N , then PA (and hence T ) proves
N(n,k) and hence (∃x)N(n, x). The main difficulty is that T can add extra
sentences of the form (∃x)N(n, x) that are not in PA and hence lie to us about
the nonextendibility of τn. To overcome this problem we ask T a Rosser style
question,

θ : (∀x)[N(n0, x+ 1) =⇒ N(n1, x)],

where ni is the index of τn̂ i for i = 0 or 1. This sentence θ asserts roughly that
for any string extending τn̂ 1 there is a longer one extending τn̂ 0.
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If τn̂ 0 is nonextendible, then for some k the quantifier-free sentence N(n0,k)
is true in N and provable in PA, and hence is in T . But τn is extendible, so in
this case τn̂ 1 is extendible, and hence θ /∈ T

On the other hand, if τn̂ 1 is nonextendible, then for some k the sentence
N(n1,k) is provable in PA, and hence is in T . But in this case τn̂ 0 is extendible,
so for each j 6 k + 1, the sentence ¬N(n0, j) is provable in PA, and hence is in
T . From this it follows immediately that θ ∈ T .

Thus, if θ ∈ T then τn̂ 0 is extendible, so we can define τ ′n = τn̂ 0. Similarly,
if θ /∈ T , then τn̂ 1 is extendible, so we can define τ ′n = τn̂ 1.

4.3 Scott Sets

Scott [32] introduced Scott sets to classify the collection of sets definable in a model
of Peano Arithmetic. They also play an important role in reverse mathematics,
since they are the ω-models of WKL0, the subsystem of second order arithmetic
consisting of the base system RCA0 plus Weak König’s Lemma. (See [35] for the
relevant definitions.)

Definition 4.3. A nonempty set S ⊆ P(ω) is a Scott set if the following conditions
are satisfied for all A,B ⊆ ω:

(i) [ A ∈ S ∧ B ∈ S ] =⇒ A⊕B ∈ S,

(ii) [ A ∈ S ∧ B 6T A ] =⇒ B ∈ S, and

(iii) [ T ∈ S is an infinite tree ] =⇒ (∃P ∈ S)[ P ∈ [T ] ].

The crucial condition (iii) asserts that S is a basis for the collection of Π0
1-classes

computable in any member A ∈ S. Another way to look at (iii) is that any
consistent set of axioms in S has a completion in S. (This fact follows from the
effective equivalence between Lindenbaum’s Lemma and Weak König’s Lemma
discussed above.)

The collection of arithmetical sets is a Scott set, but there are many others.
One way to obtain Scott sets is to consider nonstandard models of Peano Arith-
metic.

Definition 4.4. Let A be a nonstandard model of PA. The Scott set of A (also
called the standard system of A), denoted by SS(A), is the collection of all sets
of the form

{n ∈ ω : AA � “a is divisible by the nth prime number”}

for a ∈ A.

It can be verified (see [1]) that SS(A) is a Scott set, and that its members are
exactly the subsets of ω that are representable in A, that is, those sets X such
that

X = {n ∈ ω : AA � ψ(c,n)}

12



for some formula ψ(c, x) with parameters c.
An enumeration of a countable set S ⊆ P(ω) is a binary relation ν such that

S = {ν0, ν1, . . .}, where νi is {n : (i, n) ∈ ν}. Let d be a Turing degree. If A is
a nonstandard model of PA of degree d, then clearly SS(A) has a d-computable
enumeration.

Definition 4.5. Let S be a countable Scott set. An effective enumeration of S
is an enumeration ν of S together with binary functions f and g and a unary
function h such that f , g, and h witness the fact that S is a Scott set, in the sense
that for every i, j ∈ ω:

(i) νf(i,j) = νi ⊕ νj ,

(ii) νg(i,e) = Φνi
e , and

(iii) νi is an infinite tree ⇒ νh(i) ∈ [νi].

This effective enumeration is d-computable if ν, f , g, and h are all d-computable.

Macintyre and Marker [23] used the relativized form of Theorem 3.9 to establish
the following result.

Theorem 4.6 (Macintyre and Marker [23]). If a countable Scott set has an enu-
meration that is d-computable, then it has an effective d-computable enumeration.

In particular, if A is a nonstandard model of PA of degree d, then SS(A) has an
effective d-computable enumeration.

4.4 PA Degrees Are Homogeneous Bounding

We can now put the information in the previous sections together to establish the
following result.

Theorem 4.7 (Macintyre and Marker [23]). Every PA degree is homogeneous
bounding.

Proof. Let d be a PA degree. Let A be a nonstandard model of arithmetic of
degree d, and consider the Scott set S = SS(A). Note that S has a d-computable
enumeration. Let T be a complete decidable theory. Recall that the types of T can
be coded by sets of integers in an effective way. Let C be the set of all complete
types of T coded by sets in S. The set C can be viewed as the intersection of
the set of all (codes for) finite complete types of T with S. We can now verify
that C satisfies conditions 1–5 of Theorem 3.5 in the following way: It is clear
that conditions 1–5 hold for the set of all types of T . For C, conditions 1 and
2 are satisfied by property (ii) in the definition of a Scott set. For condition 3
use (ii) to get q(xn, ..., x2n−1) ∈ C from q(x0, ..., xn−1) ∈ C. Then, by (i) and (ii),
p(x0, ..., xn−1) ∪ q(xn, ..., x2n−1) ∈ C, so, by (ii) and the fact that T is decidable,
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the tree of all possible extensions of this partial type is in S, and thus, by (iii),
there is a path of this tree in S. This path is an r ∈ C as required by condition
3. Conditions 4 and 5 hold by similar arguments. Hence, there is a countable
homogeneous model A of T whose type spectrum is C.

By Theorem 4.6, S has an effective d-computable enumeration. In particu-
lar, there is a uniform d-computable procedure for finding paths through trees
in S. Therefore, there is a d-computable procedure that, given an n-type p =
p(x0, . . . , xn−1) in C and a formula θ(x0, . . . , xn−1, x) consistent with p, finds an
(n+ 1)-type extending both p and θ. This is because such an (n+ 1)-type can be
found as a path through a tree in S. Thus, C has the d-effective extension prop-
erty, which, by Theorem 3.9 relativized to d, implies that A has a d-decidable
isomorphic copy B. The model B is a d-decidable homogeneous model of T .

5 Proof of Theorem 1.1

In this section we prove our main result, by building a complete decidable theory
T such that every homogeneous model of T has a PA degree. We describe such a
theory T in the language L with equality, infinitely many unary predicate symbols
Pi, i ∈ ω, infinitely many binary predicate symbols Ri, i ∈ ω, a unary predicate
symbol D, and a binary predicate symbol E. For a formula ϕ, we write ϕ1 for ϕ
and ϕ0 for ¬ϕ. For σ ∈ 2<ω, we write P σx for∧

i<|σ|
P
σ(i)
i x,

and Rσxy for ∧
i<|σ|

R
σ(i)
i xy.

Let U be the set of Gödel numbers of sentences provable from PA and let V
be the set of Gödel numbers of sentences refutable from PA. By Theorem 4.2,
any degree that can compute a separating set for U and V is a PA degree. Fix
computable enumerations {Us}s∈ω and {Vs}s∈ω of U and V , respectively.

The idea of this proof is to define the theory T in such a way that

1. if A � T then EA is an equivalence relation, and if c, d ∈ A are in different
EA-equivalence classes and satisfy exactly the same Pi, then the set {i :
RAi (c, d)} is a separating set for U and V ; and

2. every homogeneous model of T must contain such elements c and d.

These conditions imply that if A � T is homogeneous, then the atomic diagram
of A can compute a separating set for U and V , and hence has a PA degree.

We first describe T informally. The basic axioms for T (axiom groups I–V
below) state that the following facts hold. The binary predicate E is an equivalence
relation dividing the universe into two equivalence classes. The unary predicate D
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holds of exactly two elements a and b, which are in different equivalence classes,
and no other atomic formulas hold of a, b, or pairs involving these elements. For
each σ ∈ 2<ω there are infinitely many x in each equivalence class such that P σx
holds. The binary predicates Ri are symmetric, and can hold of a pair (x, y) only
if x and y are in different equivalence classes.

The heart of T is given by following collection of axioms (axiom group VI
below). For every σ ∈ 2ω and every i, if P σx, P σy, and ¬Exy, then

i ∈ U|σ| ⇒ Rixy

and
i ∈ V|σ| ⇒ ¬Rixy.

What this means is that if P σx, P σy, and ¬Exy, and at stage |σ| we know that i
is in one of U or V , then we require this fact to be coded into the atomic 2-type
of (x, y). We will see that this is enough to ensure that T has the properties
mentioned above.

To ensure completeness and decidability, T also has a collection of axioms
(axiom group VII below) ensuring that anything not ruled out by the previously
described axioms and describable by a quantifier-free formula must hold of some
tuple of elements.

After defining T more formally, we will be able to show that it is consistent,
complete, and decidable. Let A be a homogeneous model of T and let a, b ∈ A be
the elements of DA. It will not be hard to show that a and b have the same 1-type,
so that by homogeneity there is an automorphism f of A such that f(a) = f(b).
Let c ∈ A be such that EAac and let d = f(c). Then c and d are in different
equivalence classes but PAi x ⇔ PAi y for all i. So if i ∈ U then letting σ be such
that i ∈ U|σ| and c and d satisfy P σ, we see that there is an axiom in group VI

ensuring that RAi cd. An analogous argument shows that if i ∈ V then ¬RAi cd. In
other words, {i : RAi (c, d)} is a separating set for U and V , as desired.

We now give a more formal description of T by listing a set of axioms Γ for it,
divided into seven axiom groups for clarity.

Ax I. The relation E is an equivalence relation and splits the universe into two
equivalence classes. That is,

(∀x)Exx,

(∀x, y)[Exy → Eyx],

(∀x, y, z)[Exy ∧ Eyz → Exz], and

(∃x, y)[¬Exy ∧ (∀z)(Exz ∨ Eyz)].

Ax II. For each σ ∈ 2<ω there are infinitely many y in each equivalence class such
that P σy holds. That is, for each σ ∈ 2<ω and n ∈ ω,

(∀x)(∃y0, . . . , yn)[
∧

06i<j6n
(yi 6= yj ∧ Eyix) ∧

∧
i=0,...,n

P σyi].
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Ax III. No x, y in the same E-equivalence class are Ri related for any i. That is, for
each i ∈ ω,

(∀x, y)[Exy → ¬Rixy].

Ax IV. Each Ri is symmetric. That is, for each i ∈ ω,

(∀x, y)[Rixy → Riyx].

Ax V. The relation D holds of exactly two elements, one in each E-equivalence
class. For any such element x, and any y, we have ¬Pix and ¬Rixy for
every i ∈ ω. That is,

(∃x0, x1)[Dx0 ∧Dx1 ∧ (∀z)(Dz → (z = x0 ∨ z = x1)) ∧ ¬Ex0x1]

and for each i ∈ ω,

(∀x)[Dx→ ¬Pix] and

(∀x, y)[Dx→ ¬Rixy].

Ax VI. For each σ ∈ 2ω and each i, if i ∈ U|σ| then we have the following axiom:

(∀x, y)[P σx ∧ P σy ∧ ¬Exy → Rixy],

while if i ∈ V|σ| then we have the following axiom:

(∀x, y)[P σx ∧ P σy → ¬Rixy].

Ax VII. This axiom group essentially says that anything not ruled out by the previous
axioms and describable by a quantifier-free formula must hold of some tuple
of elements. For σ, τ, µ ∈ 2<ω, we say that µ is compatible with σ, τ if for
every i < |µ| and l equal to the length of agreement of σ and τ (that is, the
length of the longest common initial segment of σ and τ),

i ∈ Ul ⇒ µ(i) = 1

and
i ∈ Vl ⇒ µ(i) = 0.

We write σ | τ to mean that there is an i < |σ|, |τ | such that σ(i) 6= τ(i).

Let σ0, . . . , σn, τ, µ0, . . . , µn ∈ 2<ω be such that τ | σk for all k 6 n and µk
is compatible with σk, τ for all k 6 n. Then we have axioms saying that
if x0, . . . , xn are in the same E-equivalence class and D does not hold of
any of them, then there are infinitely many y in the other equivalence class
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such that P τy and Rµkxky for all k 6 n. That is, for each m we have the
following axiom:

(∀x0, . . . , xn)[
∧

k=0,...,n
(Ex0xk ∧ ¬Dxk ∧ P σkxk)→

(∃y0, . . . , ym)(
∧

j=0,...,m
(¬Ex0yj ∧ P τyj) ∧

∧
k=0,...,n
j=0,...,m

Rµkxkyj)].

We denote this axiom by AxVII(σ0, . . . , σn, τ, µ0, . . . , µn,m).

This completes the description of our set of axioms Γ. It is easy to check that Γ is
computable. Let T be the deductive closure of Γ. We now verify that T has the
desired properties.

Lemma 5.1. The set of sentences T is consistent, and hence is a theory.

Proof. We build a model M of Γ as the union of a chain M0 ⊂ M1 ⊂ · · · . Our
construction will not be effective, so M will not be computable, but that is of
course not relevant for this argument. By closing a partial structure we mean
performing the following actions in order for each x, y, z in the structure:

1. If we have not declared that Dx, then declare that ¬Dx.

2. If we have declared that Dx, then declare that ¬Pix and ¬Rixw for all i
and all w in the structure.

3. Declare that Exx.

4. If we have declared that Eεxy, then also declare that Eεyx.

5. If we have declared that Exy and Eyz, then also declare that Exz.

6. If we have declared that Exy, then also declare that ¬Rixy and ¬Riyx for
all i.

7. If we have declared that Rεixy, then also declare that Rεiyx.

It will be clear that every time we close a partial structure, we can do so
consistently (that is, we never declare both ϕ and ¬ϕ for an atomic formula ϕ).

Begin with M0 = {a, b}∪{cnσ, dnσ | σ ∈ 2<ω, n ∈ ω}. Declare that Da, Db, and
¬Eab. For each σ ∈ 2<ω and n ∈ ω, declare that Eacnσ, Ebdnσ, P σcnσ, and P σdnσ,
and for each i > |σ|, that Pic

n
σ and Pid

n
σ. For each c ∈ {cnσ | σ ∈ 2<ω, n ∈ ω} and

d ∈ {dnσ | σ ∈ 2<ω, n ∈ ω}, if i ∈ U then declare that Ricd, and otherwise declare
that ¬Ricd. Now close this partial structure to obtain M0.

Given Mi, build Mi+1 ⊃ Mi as follows. Let C = {c ∈ Mi | EMica ∧ c 6= a}
and D = {d ∈ Mi | EMidb ∧ d 6= b}. Proceed as follows for each p0, . . . , pn ∈
Mi \DMi and each σ0, . . . , σn, τ, µ0, . . . , µn ∈ 2<ω such that for all k 6 n,
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1. τ | σk,

2. µk is compatible with σk, τ ,

3. EMip0pk,

4. P σkpk.

Add infinitely many new elements q0, q1, . . . to Mi+1. For each i, declare that
¬Ep0qi and P τqi, and for each j > |τ |, that Pjqi. For each i and each k 6 n,
declare that Rµkpkqi. We say that we have declared Rµkpkqi for the sake of axiom
group VII. If p0 ∈ C then add each qi to D, and otherwise add each qi to C.

After the above has been done for all tuples of elements and strings, proceed
as follows. For each c ∈ C and d ∈ D, and each i such that we have so far declared
neither that Rεcd nor that Rεdc, if i ∈ U then declare that Ricd, and otherwise
declare that ¬Ricd. Finally, close the resulting partial structure to obtain Mi+1.

Now let M =
⋃
iMi. Because we begin by making D hold of exactly two

elements, one in each E-equivalence class, and we close each Mi, it is easy to
check that M satisfies axiom groups I, III, IV, and V. Because for each σ there
are infinitely many elements of M0 in each E-equivalence class satisfying P σ,
axiom group II is also satisfied by M.

For each i and m, and each σ0, . . . , σn, τ, µ0, . . . , µn ∈ 2<ω such that τ | σk for
all k 6 n and µk is compatible with σk, τ for all k 6 n, we explicitly add elements
to Mi+1 that ensure that Mi+1 satisfies AxVII(σ0, . . . , σn, τ, µ0, . . . , µn,m) with
the universal quantifiers ranging over Mi. This clearly implies that M satisfies
AxVII(σ0, . . . , σn, τ, µ0, . . . , µn,m) itself. Thus, M satisfies axiom group VII.

Finally, the definition of compatibility ensures that whenever we declare Rεixy
for the sake of axiom group VII, we do so in a way that is compatible with axiom
group VI; and in all other cases, we declare Rixy if and only if i ∈ U , which again
is compatible with axiom group VI. Thus, M satisfies axiom group VI.

We now show that T has quantifier elimination. We begin with an auxiliary
lemma, which essentially says that axiom group VII gives us enough freedom in
choosing elements of models of T with particular atomic types to apply Theorem
2.1.

Lemma 5.2. Let A,B � T . Let p0, . . . , pv ∈ A \ DA be elements of the same
EA-equivalence class, and let q0, . . . , qv ∈ B \ DB be elements of the same EB-
equivalence class. Let r ∈ A\DA be in the opposite EA-equivalence class from the
pi. Suppose that for each i 6 v, if there is a k such that A � P εkpi ∧ P

1−ε
k r, then

for the least such k we have B � P εkqi. Then for each N there is an infinite set
S ⊂ B \DB such that if s ∈ S then s is in the opposite EB-equivalence class from
the qi, and for each l < N and each i 6 v,

A � Plr ⇔ B � Pls
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and
A � Rlpir ⇔ B � Rlqis.

Proof. Fix N , and let M > N be such that

1. for each i 6 v, if there is a k such that A � P εkpi∧P
1−ε
k r, then the least such

k is less than M ; and

2. for each i < N , if i ∈ U then i ∈ UM , and if i ∈ V then i ∈ VM .

For each i 6 v, let αi ∈ 2M be such that A � Pαipi.
Let τ ′ ∈ 2M be such that A � P τ ′r. For each i 6 v, let σi ∈ 2M+v+1 be such

that B � P σiqi. We can clearly find τ ∈ 2M+v+1 extending τ ′ such that τ | σi for
all i 6 v.

For i 6 v, let µi ∈ 2N be such that A � Rµipir. By axiom group VI, µi
is compatible with αi, τ

′. If there is a k such that A � P εkpi ∧ P
1−ε
k r then by

hypothesis the length of agreement of σi and τ is no greater than the length of
agreement of αi and τ ′, so µi is compatible with σi, τ . Otherwise, αi = τ ′, so, by
condition 2 in the choice of M and axiom group VI, for all j < N = |µ|,

j ∈ U ⇒ j ∈ UM ⇒ µ(j) = 1

and
j ∈ V ⇒ j ∈ VM ⇒ µ(j) = 0,

and hence µi is compatible with any pair of strings; in particular, µi is compatible
with σi, τ .

Thus, we see that σ0, . . . , σv, τ, µ0, . . . , µv satisfy the hypotheses of axiom group
VII, so there are infinitely many s ∈ B \DB in the opposite EB-equivalence class
from the qi such that B � P τs ∧

∧
i6v R

µiqis. By the choice of τ and µ0, . . . , µv,
the set S of such s has the required properties.

Lemma 5.3. The theory T has quantifier elimination.

Proof. We apply Theorem 2.1. Let A,B � T and let C be a common substructure
of both A and B. We will show that A and B satisfy the same existential sentences
with constants from C. We can assume without loss of generality that DA = DB =
DC . Let d0 and d1 be the elements of DC . For i = 0, 1, let Ai be the elements of
A that are in the same EA-equivalence class as di, and let Bi be the elements of
B that are in the same EB-equivalence class as di.

Suppose that ψ(x, y) is a quantifier-free formula in L such that A � (∃y)ψ(c, y)
for some c ∈ C<ω. We can assume that ψ(c, y) is in disjunctive normal form and
choose a disjunct δ(c, y) of ψ(c, y) such that A � δ(c, a) for some a ∈ A<ω. We
need to find a b ∈ B<ω such that B � δ(c, b). This b will then witness the fact that
B � (∃y)ψ(c, y), as desired.
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So it is enough to show that for any conjunction of literals (that is, atomic
formulas and negated atomic formulas) δ(x, y) and for every c ∈ C<ω such that
A � δ(c, a) for some a ∈ A<ω, there is a b ∈ B<ω such that B � δ(c, b). We proceed
by induction on the length n of a. The case n = 0 is obvious, so assume that we
have proved the statement for n and fix a formula δ(x0, . . . , xm, y0, . . . , yn) and
tuples c = c0, . . . , cm and a = a0, . . . , an as above. Assume that an ∈ A0, the other
case being symmetric.

We can assume that no ai is in C, since otherwise we could add it to c, so in
particular none of the ai are in DA. We can also assume that c0 = d0 and c1 = d1
and that none of the ci for i > 2 are equal to either d0 or d1.

It is also clearly harmless to add to δ any literals satisfied by (c, a), so we
can make the following assumptions. First, for each variable z in δ, either Ex0z
or Ex1z appears in δ. Second, for each 2 6 i 6 m, if there is a k such that
A � P εkci ∧ P

1−ε
k an, then P εkxi is in δ. Finally, for each i < n, if there is a k such

that A � P εkai ∧ P
1−ε
k an, then P εkyi is in δ.

Let δ′(x, y) be the conjunction of the literals in δ(x, y) not involving yn. By
induction, there are b0, . . . , bn−1 ∈ B such that B � δ′(c0, . . . , cm, b0, . . . , bn−1).

If δ contains a literal of the form yn = yi for i < n, then we can take bn = bi,
so we can suppose otherwise.

Let (p0, . . . , pv) be the subsequence of (c2, . . . , cm, a0, . . . , an−1) consisting of
those elements that are in A1, let r = an, and let (q0, . . . , qv) be the subsequence
of (c2, . . . , cm, b0, . . . , bn−1) consisting of those elements that are in B1. It follows
easily from the assumptions on δ that, with these definitions, the hypotheses of
Lemma 5.2 are satisfied. Let N be the maximum of all k such that the symbols Pk
or Rk appear in δ, and let S be the infinite set given by Lemma 5.2 for this value
of N . Let s ∈ S be different from all ci and all bi for i < n, and define bn = s.

Since bn is different from all ci and all other bi, any negated equality involving
yn in δ is satisfied by (c0, . . . , cm, b0, . . . , bn) (and we have assumed that there are
no equalities involving yn in δ). Since bn ∈ B0, any literal in δ involving E and
yn is satisfied by (c0, . . . , cm, b0, . . . , bn). If Piyn is in δ, then A � Pian, so, by our
choice of bn, we have B � Pibn, and similarly if ¬Piyn is in δ.

If Rixkyn is in δ then ck ∈ B1, so B � Rickbn by the choice of bn. If ¬Rixkyn
is in δ then one of the following holds: k < 2, in which case B � ¬Rickbn because
ck = dk; or ck ∈ B0, in which case B � ¬Rickbn because bn ∈ B0; or k > 2 and
ck ∈ B1, in which case B � ¬Rickbn by the choice of bn.

Similarly, if Riykyn is in δ then bk ∈ B1, so B � Ribkbn by the choice of bn. If
¬Riykyn for k < n is in δ then either bk ∈ B0, in which case B � ¬Ribkbn because
bn ∈ B0; or bk ∈ B1, in which case B � ¬Ribkbn by the choice of bn.

So every literal in δ involving yn is satisfied by (c0, . . . , cm, b0, . . . , bn). To-
gether with the fact that B � δ′(c0, . . . , cm, b0, . . . , bn−1), this shows that B �
δ(c0, . . . , cm, b0, . . . , bn), as desired.

Lemma 5.4. The theory T is complete.
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Proof. Let ϕ be a sentence in L consistent with T . We need to show that T ` ϕ.
By quantifier elimination, since there are no constants in L, there is a quantifier-
free formula ψ(x) with a single variable such that T ` ϕ ↔ ψ(x), which implies
that T ` (ϕ ↔ (∃x)ψ(x)). We can write ψ(x) as a disjunction of conjunctions of
literals. Since ϕ is consistent with T , so is (∃x)ψ(x), and hence there is a disjunct
θ(x) of ψ(x) such that (∃x)θ(x) is consistent with T . It is easy to check from the
axioms that the conjuncts of θ(x) can only be of the forms E(x, x), D(x), ¬D(x),
¬Ri(x, x), Pi(x), and ¬Pi(x), where for each i, we cannot have both Pi(x) and
¬Pi(x) present, and if D(x) is present then Pi(x) cannot be present for any i. It
is now easy to check that T ` (∃x)θ(x). So T ` (∃x)ψ(x), and hence T ` ϕ.

Lemma 5.5. The theory T is decidable.

Proof. Since T is computably axiomatizable and complete, it is decidable.

Thus, T is a complete decidable theory. We now finish the proof of Theorem
1.1 with the following lemmas.

Lemma 5.6. Let A � T and let a and b be the two elements of DA. Then a and
b have the same 1-type.

Proof. By quantifier elimination, it is sufficient to show that a and b have the
same atomic 1-type, that is, that they satisfy the same atomic formulas with one
free variable. But the only such formulas are x = x, Exx, Dx, and Pix and Rixx
for i ∈ ω. The first three formulas hold of both a and b, while the last two families
of formulas hold of neither a nor b.

Lemma 5.7. Let A be a countable homogeneous model of T . Then A has a PA
degree.

Proof. Let a and b be the two elements of DA. The elements a and b have the
same 1-type, so, by homogeneity, for any c such that EAac there is a d with the
same 1-type as c such that EAbd. In particular, A contains elements c and d such
that ¬EAcd and (∀i)[PAi c ⇔ PAi d]. It now follows easily from axiom group VI
that if i ∈ U then RAi cd, while if i ∈ V then ¬RAi cd. Thus, {i : RAi cd} separates
U and V , and hence has a PA degree. However, we can compute this set from the
atomic diagram of A, so A has a PA degree.
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