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Abstract

We construct the set of the title, answering a question of Cholak, Jockusch,

and Slaman [1], and discuss its connections with the study of the proof-theoretic

strength and effective content of versions of Ramsey’s Theorem. In particular, our

result implies that every ω-model of RCA0 + SRT2
2 must contain a nonlow set.

There is a constant and fruitful interplay between the fields of computability theory

and reverse mathematics. In particular, it is often the case that results in computability

theory have reverse-mathematical consequences, or have proofs that can be adapted to

yield results in reverse mathematics. Conversely, questions in reverse mathematics can

suggest interesting problems in computability theory. Examples of these phenomena

abound in the study of the proof-theoretic strength and effective content of versions of

Ramsey’s Theorem. (See [1] for a discussion of the history of this area, as well as several

new results.) In this paper we answer a computability-theoretic question posed in [1].

As we explain below, one consequence of our answer is that a potential approach to a

problem in the reverse mathematics of Ramsey’s Theorem will not work.

This research was carried out while the first and second authors were visiting the third and fourth

authors at the University of Wisconsin. The first and second authors’ research was partially supported

by the Marsden Fund of New Zealand. The third author’s research was partially supported by NSF

grant DMS-9732526.
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We assume the reader is familiar with the basics of reverse mathematics and com-

putability theory, including the method of organizing priority constructions on a tree.

Standard references are [2] and [3], respectively. (Although the motivation for our main

result comes from reverse mathematics, its proof is completely computability-theoretic.)

We begin with a few definitions.

Definition.

• [X]2 = {Y ⊂ X | |Y | = 2}.

• A 2-coloring of [N]2 is a function from [N]2 into {0, 1}.

• A 2-coloring C of [N]2 is stable if for each x ∈ N there exists a y ∈ N and a c < 2

such that C({x, z}) = c for all z > y.

• A set H ⊆ N is homogeneous for a 2-coloring C of [N]2 if C is constant on [H]2.

• RT2
2 is the statement in the language of second order arithmetic that says that

each 2-coloring of [N]2 has an infinite homogeneous set.

• SRT2
2 is the statement in the language of second order arithmetic that says that

each stable 2-coloring of [N]2 has an infinite homogeneous set.

In [1] (Theorem 3.1), Cholak, Jockusch, and Slaman show that for each computable

coloring of [N]2 with finitely many colors there is an infinite low2 homogeneous set.

An adaptation of the proof of this result allows them to establish reverse-mathematical

results concerning RT2
2, such as that RCA0 + IΣ2 + RT2

2 is conservative over RCA0 + IΣ2

for Π1
1 statements, where RCA0 is the standard weak base theory for reverse mathematics

(consisting of the ordered semiring axioms for the natural numbers, ∆0
1-comprehension,

and Σ0
1-induction) and IΣ2 is the Σ0

2-induction scheme.

Since stable colorings are in principle simpler than general colorings, a natural ques-

tion is whether each computable stable 2-coloring of [N]2 has an infinite low homogeneous

set. This question is asked in [1] (Question 13.9), where it is pointed out that it is equiv-

alent to asking whether every ∆0
2 set has an infinite low set entirely contained in either

it or its complement, and also that a positive answer might lead to a proof that SRT2
2 is

strictly weaker than RT2
2 over RCA0, since there exist 2-colorings of [N]2 without infinite

low homogeneous sets. In this paper, we give a negative answer to this question. Besides

its independent computability-theoretic interest, our result shows that this particular
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approach to separating SRT2
2 and RT2

2 over RCA0 will not work, since the result implies

that every ω-model of RCA0 + SRT2
2 must contain a nonlow set.

Before we proceed with the proof of our main result, we make a few remarks.

Another question in [1] (Question 13.10) is whether every ∆0
3 set has an infinite low2

set entirely contained in either it or its complement. The proof of our main result below

is clearly relativizable, and hence shows that for any set B there exists a ∆0,B
2 set A

such that neither A nor A has an infinite subset X with X ′ 6T B
′. Letting B = ∅′, this

implies that there exists a ∆0
3 set A such that neither A nor A has an infinite subset X

with X ′ 6T ∅′′. Since for every low2 set X it is the case that X ′ 6T ∅′′, the relativized

version of our main result gives a negative answer to the above question.

The set A that we construct is ω-c.e., that is, it has a computable approximation

whose number of mind-changes is bounded by a computable function. As pointed out

by Cholak (personal communication), A could not be n-c.e. for any n ∈ ω. (See Exercise

III.3.10 in [3].)

For a degree a, a >> 0′ means that there exists a 2-valued a-computable function

such that f(e) 6= Φ∅
′
e (e) for all e ∈ ω. In [1] (Theorem 12.5) it is shown that there is

a computable 2-coloring of [N]2 for which every infinite homogeneous set has jump of

degree >> 0′. Jockusch (personal communication) asked whether such a coloring can

be stable. He pointed out that, if the diagonalization used in the proof of our main

result to show that (U ⊆ A ∨ U ⊆ A) ∧ U ∈ ∆0
2 ∧ |U | = ω → U ′ 6≡T ∅′ were effective,

then it should be possible to adapt our proof to yield a positive answer to this question.

However, as we shall see, it is an important feature of our proof that this diagonalization

is not effective, and hence the question is still open.

Our notation is for the most part standard. For finite strings σ and τ , we will say

that σ is to the left of τ , and write σ <L τ , if there exists an n < |σ| , |τ | such that

σ(m) = τ(m) for all m < n and σ(n) < τ(n). Here |σ| is the length of σ and σ(n) is

the nth element of σ. We will denote the concatenation of σ and τ by σaτ . Sets of size

n ∈ ω will be called n-sets.

Let P (n) be a computable procedure that, given n ∈ ω as a parameter, lists pairs

of the form 〈e,X〉, e ∈ ω, X ⊂ ω, |X| < ω. For each n ∈ ω, it is easy to find a total

computable one-to-one function Φj(n) with the following property. Let e = Φj(n)(k)

for some k ∈ ω and let U ⊆ ω. Then ΦU
e (e) ↓ (or, in other words, e ∈ U ′) if and

only if X ⊆ U for some X such that 〈e,X〉 is in the list produced by P (n). In fact,

the function n 7→ j(n) can be chosen to be computable. Thus, by Kleene’s Recursion

Theorem (Theorem II.3.1 in [3]), there is an m ∈ ω such that Φj(m) = Φm.
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We think of our construction below as such a procedure P (m), with m a fixed point

as above. The pairs 〈e,X〉 enumerated by our construction will be called axioms. When

we say that we choose an e for which to enumerate axioms for U ′ we mean that we let

e = Φm(k) for the least k such that we have not yet chosen Φm(k) as a number for

which to enumerate axioms. Thus we guarantee that e ∈ U ′ if and only if we eventually

enumerate an axiom 〈e,X〉 such that X ⊆ U .

Theorem. There exists a ∆0
2 set A such that neither A nor A has an infinite low subset.

Proof. We need to satisfy the following requirements for all Σ0
2 sets U and V and all

partial computable binary functions Ψ and Θ:

RU,Ψ : U ⊆ A ∧ U ∈ ∆0
2 ∧ |U | = ω ∧ ∀n(limsΨ(n, s) exists)→ U ′ 6≡ limsΨ(−, s)

and

SV,Θ : V ⊆ A ∧ V ∈ ∆0
2 ∧ |V | = ω ∧ ∀n(limsΘ(n, s) exists)→ V ′ 6≡ limsΘ(−, s).

We begin by describing a strategy for satisfying a single requirement RU,Ψ; the anal-

ogous strategy could be used for satisfying a single S-requirement. Of course, we could

satisfy allR-requirements simultaneously by letting A = ∅. However, we need a strategy

that is more adaptable to the case in which strategies for satisfying S-requirements are

also present. Thus let us suppose that we begin with A[0] = ω.

Our strategy begins by choosing an e ∈ ω. Whenever a number x enters U , it

enumerates the axiom 〈e, {x}〉 for U ′. Whenever it sees that Ψ(e, s)↓= 1 for some new

number s, it puts every x for which it has enumerated an axiom 〈e, {x}〉 into A.

Now if U is ∆0
2 and infinite, and lims Ψ(e, s) exists and is not equal to 1, then

eventually an axiom 〈e, {x}〉 for some x ∈ U is enumerated, in which case U ′(e) = 1 6=
lims Ψ(e, s). On the other hand, if U ⊆ A and lims Ψ(e, s) = 1 then for all axioms

〈e, {x}〉 that are enumerated by our strategy, x is eventually put into A, which implies

that x /∈ U . Thus in this case U ′(e) = 0 6= lims Ψ(e, s).

The above strategy could be used for all R-requirements simultaneously, since it

only requires us to keep certain numbers out of A, and never to keep any numbers in

A. However, strategies for the S-requirements will want certain numbers to remain in

A. This is the source of the conflict that must be resolved in this construction.

Let us consider then how we could satisfy two requirements of opposite kinds, RU,Ψ

and SV,Θ, simultaneously. The basic idea is based on the observation that, if we enu-

merate an axiom 〈e,X〉 for U ′, where X is a finite set of numbers, then to guarantee
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that this axiom does not apply it is enough to guarantee that one of the elements of X

is not in U . Thus if U ⊆ A then it is enough to guarantee that one of the elements of

X is not in A.

Suppose that RU,Ψ has been assigned stronger priority than SV,Θ. The strategy RU,Ψ

for satisfying RU,Ψ acts much as before, but instead of enumerating an axiom involving

a number as soon as the number enters U , it keeps two bins B0 and B1. Whenever at

least one of B0 ∩ U and B1 ∩ U is currently empty and a number x that has not yet

been put into either of the bins enters U , RU,Ψ puts x into Bi for the least i such that

Bi ∩ U is currently empty, provided that x is larger than every number that had been

mentioned in the construction by the last time (if any) that RU,Ψ put a number into A.

(The reason for this proviso will be explained below.) For each pair of numbers x0, x1

such that xi ∈ Bi, RU,Ψ enumerates the axiom 〈e, {x0, x1}〉 for U ′.

Whenever RU,Ψ sees that Ψ(e, s)↓= 1 for some new number s, it proceeds as follows.

For each 2-set X = {x0, x1} such that xi ∈ Bi and it has enumerated an axiom 〈e,X〉,
RU,Ψ claims the elements of X and puts each xi into A and into a claim set Ci. (We

will say that the elements of X are simultaneously claimed by RU,Ψ.) It then puts into

a neutral set N every number that is not in either Ci and is less than or equal to the

largest number seen in the construction so far. Finally, it empties B0 and B1.

Note that any number put into either of the bins from this point on will be larger

than all numbers currently in C0 ∪ C1 ∪ N . This guarantees that C0, C1, and N are

pairwise disjoint, and that, once a number enters C0 ∪C1 ∪N , it is never again claimed

by RU,Ψ.

Now RU,Ψ has two possible outcomes. Its finitary outcome is that it puts numbers

into A only finitely often, its infinitary outcome that it does so infinitely often. By the

same reasoning as before, if the finitary outcome is the correct one then RU,Ψ is satisfied,

while if the infinitary outcome is the correct one then RU,Ψ is satisfied provided that,

for each pair of numbers simultaneously claimed by RU,Ψ, at least one of the numbers

in the pair is eventually permanently in A.

If RU,Ψ has finitary outcome then it does not care which numbers are in A, so the

strategy S1
V,Θ for satisfying SV,Θ below the finitary outcome of RU,Ψ has no real problems,

and can act much as in the one-strategy case. Each time RU,Ψ puts numbers into A,

S1
V,Θ is initialized, which means the following. First S1

V,Θ relinquishes all its current

claims. For any number x whose claim is thus relinquished, if x is also claimed by RU,Ψ

then it is put into A. Then S1
V,Θ picks a new number e1 for which to enumerate axioms,

and makes sure that these new axioms only involve numbers greater than any number
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mentioned so far in the construction. Thus if the finitary outcome of RU,Ψ is indeed

the correct one then S1
V,Θ is eventually allowed to act as if RU,Ψ did not exist, while

otherwise it has no permanent effect on which numbers are in A.

The strategy S0
V,Θ for satisfying SV,Θ below the infinitary outcome of RU,Ψ must

be more careful. It can put numbers into A, but it must do so in a way that does

not injure RU,Ψ. The key observation here is that if RU,Ψ has infinitary outcome then

C0 ∪ C1 ∪ N = ω, and hence if V is infinite then at least one of V ∩ (C0 ∪ N) and

V ∩ (C1∪N) is infinite. If S0
V,Θ knew which of these sets is infinite then it could proceed

as in the one-strategy case, but using only elements from that set. This would guarantee

that, for some i < 2, each x ∈ Ci would never be put back into A after being put into

A by RU,Ψ, which would be enough to guarantee the integrity of RU,Ψ.

However, S0
V,Θ does not have access to this information, so it must adopt a strategy

that works in either case. To do this, S0
V,Θ works with two numbers e0

0 and e0
1. For each

i = 0, 1, whenever a number x enters V ∩ (Ci ∪ N), if x is larger than every number

that had been mentioned by the last time (if any) that S0
V,Θ claimed a number then

S0
V,Θ enumerates the axiom 〈e0

i , {x}〉 for V ′. Whenever S0
V,Θ sees that Θ(e0

1, s)↓= 1 for

some new number s, it claims every x for which it has enumerated an axiom 〈e0
1, {x}〉

and puts it into A. Whenever S0
V,Θ sees that Θ(e0

0, s) ↓= 1 for some new number s, it

proceeds as follows. First it relinquishes all its claims on elements of C1. For any such

number x, if RU,Ψ has a claim on x then x is put into A. Then S0
V,Θ claims every x for

which it has enumerated an axiom 〈e0
0, {x}〉 and puts it into A. Finally, it selects a new

value for e0
1. (Note that it is the last permanent claim on x that decides whether x ∈ A.)

Now there are three possibilities. First suppose that Θ(e0
0, s)↓= 1 for infinitely many

s. Then lims Θ(e0
0, s) = 1, if this limit exists. Furthermore, for every axiom 〈e0

0, {x}〉
enumerated by S0

V,Θ, x is eventually put into A by S0
V,Θ, and it never leaves A after that.

(Since x is already in C0 ∪ N when it is claimed by S0
V,Θ, it is never later claimed by

RU,Ψ.) This means that if V ⊆ A then V ′(e0
0) = 0 6= lims Θ(e0

0, s) (if this limit exists),

and hence SV,Θ is satisfied.

Now suppose that the first case above does not hold, which implies that e0
1 has a final

value, and suppose further that, for this final value, Θ(e0
1, s) ↓= 1 for infinitely many

s. Then lims Θ(e0
1, s) = 1, if this limit exists. Furthermore, for every axiom 〈e0

1, {x}〉
enumerated by S0

V,Θ, x is eventually put into A by S0
V,Θ, and it never leaves A after that,

for the same reason as above. This means that if V ⊆ A then V ′(e0
1) = 0 6= lims Θ(e0

1, s)

(if this limit exists), and hence SV,Θ is satisfied.

Finally, suppose that neither of the cases above holds. If V is not ∆0
2 or is finite then
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SV,Θ is vacuously satisfied, so suppose that V is ∆0
2 and infinite. Then, for each i = 0, 1

and the final value of e0
i , lims Θ(e0

i , s) 6= 1, if this limit exists. On the other hand, the

fact that C0∪C1∪N = ω implies that, for some i = 0, 1, V ∩ (Ci∪N) is ∆0
2 and infinite.

It is easy to check that, for some number x ∈ V ∩ (Ci ∪N) and the final value of e0
i , the

axiom 〈e0
i , {x}〉 is enumerated by S0

V,Θ. Since x ∈ V , V ′(e0
i ) = 1 6= lims Θ(e0

i , s) (if this

limit exists), and hence SV,Θ is satisfied.

In any case, we claim that the action of S0
V,Θ does not injure RU,Ψ. To see this,

suppose that, at some point in the construction, RU,Ψ simultaneously claims a pair of

numbers x0 and x1, putting them in C0 and C1, respectively. If the value of e0
1 ever gets

changed after this point then any claim S0
V,Θ may have made on x1 is relinquished and

never reinstated, since S0
V,Θ never enumerates an axiom 〈e0

1, {x1}〉 for the new value of e0
1.

Otherwise, S0
V,Θ never claims x0. In any case, for every pair of numbers simultaneously

claimed by RU,Ψ, at least one of the numbers in the pair is not permanently claimed by

S0
V,Θ.

So we see that S0
V,Θ succeeds in satisfying SV,Θ while allowing RU,Ψ to succeed in

satisfying RU,Ψ.

Now let us consider the case of a single strategy RU,Ψ with a finite number of levels of

S-strategies below it. RU,Ψ can act much as before but with a bin Bα and a corresponding

claim set Cα for each α ∈ 2n, where n is such that, for every strategy SσV,Θ below RU,Ψ,

|σ| < n. Each axiom enumerated by RU,Ψ is then of the form 〈e, {x0, . . . , x2n−1}〉, with

each xi in a different Bα, and RU,Ψ claims 2n many numbers at a time, it being enough

for RU,Ψ to succeed that at least one element of each such 2n-set be kept out of A.

Instead of taking numbers from C0 ∪N and C1 ∪N as before, a strategy SσV,Θ below

the infinitary outcome of RU,Ψ takes elements from the two sets P0 =
⋃
α(|σ|)=0Cα ∪ N

and P1 =
⋃
α(|σ|)=1Cα ∪ N . As before, we can guarantee that, for every 2n-set X of

numbers simultaneously claimed by RU,Ψ, there is an i = 0, 1 such that the elements of

Pi ∩X are not permanently claimed by SσV,Θ, thus ensuring that, for some α ∈ 2n, the

element of Cα ∩X is not permanently claimed by any S-strategy. (The mechanism of

initialization can be used to ensure that, for each 2n-set X of numbers simultaneously

claimed by RU,Ψ, at most one S-strategy at any given level can permanently claim

elements of X.)

The situation forRU,Ψ with infinitely many S-strategies below it is not much different.

It keeps bins Bα and corresponding claim sets for each α ∈ 2<ω. At any point in the

construction, which bins RU,Ψ fills is determined by the number of times it has had

infinitary outcome. That is, if RU,Ψ has had infinitary outcome n many times then it
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fills the bins Bα for α ∈ 2n+1. If RU,Ψ has infinitary outcome once again then it stops

filling these bins and starts filling the bins Bα for α ∈ 2n+2.

If RU,Ψ has infinitary outcome only finitely often then it eventually acts no differently

from an R-strategy with finitely many levels of S-strategies below it. Since the S-

strategies below the finitary outcome of RU,Ψ do not care what RU,Ψ does, they can

succeed.

On the other hand, if RU,Ψ has infinitary outcome infinitely often then it succeeds

as before. Furthermore, for any n ∈ ω, every sufficiently large number is put into⋃
|α|>nCα ∪ N . Thus a strategy SσV,Θ below the infinitary outcome of RU,Ψ can take

elements from the two sets P0 =
⋃
|α|>|σ|∧α(|σ|)=0Cα∪N and P1 =

⋃
|α|>|σ|∧α(|σ|)=1Cα∪N

and succeed as before.

Now let us consider how an S-strategy SσV,Θ with several R-strategies above it can

act. Let k be the number of R-strategies with infinitary outcome in σ. Instead of

working with two numbers eσ0 and eσ1 as before, SσV,Θ works with a number eσγ for each

γ ∈ 2k.

More specifically, let τ0, . . . , τk−1 be a list in order of length of all strings contained

in σ such that Rτi
U,Ψ is a strategy with infinitary outcome above SσV,Θ. Associated with

each Rτi
U,Ψ are sets Cτi

α and N τi as described above. For each γ ∈ 2k, let Pγ be the set

of all x ∈ ω such that, for each i < k, either x ∈ Cτi
α for some α such that |α| > |σ| and

α(|σ|) = γ(i) or x ∈ N τi . It will also be convenient to have a claim set Cσ,γ for each

γ ∈ 2k.

Whenever a number x enters V ∩Pγ, if x is larger than every number that had been

mentioned by the last time (if any) that SσV,Θ claimed a number then SσV,Θ enumerates

the axiom 〈eσγ , {x}〉 for V ′. Whenever SσV,Θ sees that Θ(eσγ , s)↓= 1 for some new number

s, it acts as follows. First it relinquishes all claims on elements of Cσ,δ, δ >L γ. For

any such number x, if there is a current claim on x and the latest such claim is by an

R-strategy then x is put into A; otherwise, it is put into A. Then SσV,Θ claims every x for

which it has enumerated an axiom 〈eσγ , {x}〉 and puts it into A and into Cσ,γ. Finally,

it selects a new value for each eσδ , δ >L γ.

It is now possible to argue much as before that SσV,Θ can succeed in satisfying SV,Θ
while at the same time ensuring the integrity of each R-strategy above it.

Of course, in general, a given strategy will have several strategies of the opposite kind

above it and infinitely many such strategies below it, and thus will have to combine the

two aspects of the construction described above, working with multiple eγ’s and also

filling bins and keeping claim and neutral sets (one collection of such bins and sets for
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each γ) instead of directly claiming elements as they arrive.

This brings us to our full construction. We establish a priority ordering among

our requirements and place strategies for them, along with these strategies’ possible

outcomes, on a tree in the usual manner. A strategy Rσ
U,Ψ for RU,Ψ (resp. SσV,Θ for SV,Θ)

has as possible outcomes f (for finite) and each binary string of length equal to the

number kσ of S-strategies (resp. R-strategies) with outcome other than f in σ, with f

being the rightmost outcome and the other outcomes, called the infinitary outcomes,

ordered left to right by <L.

Associated with Rσ
U,Ψ or SσV,Θ are sets Bσ,γ

α , Cσ,γ
α , and Nσ,γ, γ ∈ 2kσ , α ∈ 2<ω, as

explained above. Each of these sets begins the construction empty, as does A.

We run our construction on the tree of strategies as usual, with the strategies acting

as described below. At any stage at which a strategy acts, all strategies to its right are

initialized, which means that all of the sets associated with these strategies are emptied

and all of their claims relinquished. For any number x that has a claim on it relinquished,

if there is a current claim on x and the latest such claim is by an R-strategy then x is

put into A; otherwise, it is put into A.

We describe the action of a strategy Rσ
U,Ψ. A strategy SσV,Θ would of course act

in the same way, mutatis mutandis. For any set Y that is approximated during the

construction, Y [s] will denote the (finite) set of numbers that are in Y at the beginning

of stage s. If, on the other hand, we wish to consider the numbers that are in Y at a

specific point in the construction, we will speak of numbers currently in Y .

When it is first active, and following each initialization, Rσ
U,Ψ chooses a new eσγ for

each γ ∈ 2kσ . At a stage s at which it is accessible (which will be called a σ-stage), Rσ
U,Ψ

acts as follows. Let t be the last stage at which Rσ
U,Ψ had infinitary outcome, if such a

stage exists, and let t = 0 otherwise.

Case 1. If for each γ ∈ 2kσ and each u ∈ [t, s] it is the case that either Ψ(eσγ , u)[s]↑
or Ψ(eσγ , u)[s]↓6= 1 then let n be one more than the number of times that Rσ

U,Ψ has had

an infinitary outcome before stage s. Let τ0, . . . , τkσ−1 be a list in order of length of

all strings contained in σ such that SτiV,Θ is a strategy with infinitary outcome δi above

Rσ
U,Ψ. For each γ ∈ 2kσ , let Pγ,s be the set of all x ∈ ω such that, for each i < kσ, either

x ∈ Cτi,δi
β [s] for some β such that |β| > |σ| and β(|σ|) = γ(i) or x ∈ N τi,δi [s].

For each x ∈ U [s], taken in increasing order, if

1. x is greater than |σ| and every number mentioned in the construction by the end

of the last stage (if any) at which the construction was to the left of the f outcome

of Rσ
U,Ψ,
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2. x is not in any Bσ,γ
α [s], γ ∈ 2kσ , α ∈ 2n, and

3. x ∈ Pγ,s for some γ ∈ 2kσ for which Bσ,γ
α ∩ U is currently empty for some α ∈ 2n,

then Rσ
U,Ψ puts x into Bσ,γ

α for the leftmost γaα, γ ∈ 2kσ , α ∈ 2n, such that x ∈ Pγ,s
and Bσ,γ

α ∩ U is currently empty.

For each γ ∈ 2kσ and each 2n-set X such that each element of X is currently in

some Bσ,γ
α , α ∈ 2n, with no two elements in the same Bσ,γ

α , Rσ
U,Ψ enumerates the axiom

〈eσγ , X〉 for U ′.

Finally, Rσ
U,Ψ ends its stage s action with outcome f .

Case 2. If case 1 does not hold then let γ ∈ 2kσ be leftmost such that Ψ(eσγ , u)[s]↓= 1

for some u ∈ [t, s]. For each δ >L γ, Rσ
U,Ψ acts as follows. First it removes all elements

from each Cσ,δ
α , α ∈ 2<ω. For any such element x, Rσ

U,Ψ relinquishes its claim on x. If

there is a current claim on x and the latest such claim is by an R-strategy then x is put

into A; otherwise, it is put into A. Then Rσ
U,Ψ chooses a new eσδ .

For each set X such that 〈eσγ , X〉 has been enumerated by Rσ
U,Ψ and each x ∈ X, if x

is in Bσ,γ
α [s], α ∈ 2<ω, then Rσ

U,Ψ claims x and puts it into Cσ,γ
α and into A. (As before,

we say that the elements of X are simultaneously claimed by Rσ
U,Ψ.) Then Rσ

U,Ψ puts

into Nσ,γ every number that is not currently in some Cσ,γ
α , α ∈ 2<ω, and is less than

or equal to the greatest number seen in the construction so far but larger than every

number mentioned in the construction by the end of the last stage (if any) at which the

construction was to the left of the γ outcome of Rσ
U,Ψ.

Finally, Rσ
U,Ψ empties each Bσ,δ

α , δ >L γ, α ∈ 2<ω, and ends its stage s action with

outcome γ.

This completes the construction; we now verify its correctness. As usual, the true

path of the construction is the leftmost path visited infinitely often. We say that a

strategy Rσ
U,Ψ or SσV,Θ is at level |σ| of the tree of strategies.

We begin by showing that A is ∆0
2. The following auxiliary lemma will also be useful

later on.

Lemma 1. Let x ∈ ω. Only finitely many strategies can ever claim x, and each such

strategy can claim it only finitely often.

Proof. A strategy Rσ
U,Ψ or SσV,Θ will not claim x unless it first puts it into one of its bins

Bσ,γ
α , and this will not happen if |σ| > x. Since there are only finitely many strategies

at each level of the tree of strategies, this proves the first part of the lemma. We now

prove the second part.
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Since a strategy can only make claims at stages at which it is accessible, each strategy

to the left of the true path makes only finitely many claims. When a strategy is initialized

at a stage s, all its bins are emptied and, henceforth, all numbers put into these bins, and

thus all numbers claimed by the strategy after stage s, are greater than every number

mentioned in the construction by stage s. Thus each strategy to the right of the true

path can claim x only finitely often.

Now suppose that Rσ
U,Ψ on the true path claims x at a stage s and let its outcome at

that stage be γ. (The argument for S-strategies is the same.) Notice that Rσ
U,Ψ cannot

claim x at a stage t at which its outcome is γ unless x ∈ Bσ,γ
α [t] for some α ∈ 2<ω.

At stage s, each Bσ,γ
α is emptied. From that point on, no number that has appeared

in the construction by stage u can enter any Bσ,γ
α , which means that x is never again

in any Bσ,γ
α , and hence is never again claimed at a stage at which Rσ

U,Ψ has outcome γ.

Thus Rσ
U,Ψ can claim x at most once for each of its finitely many outcomes.

Since the only times a number is put into A or A are when it is claimed and when

a claim on it is relinquished, we may conclude the following.

Corollary 2. A is ∆0
2.

Notice that the proof of Lemma 1 implies that A is in fact ω-c.e..

Now let U ⊆ A be ∆0
2 and infinite and let Rσ

U,Ψ be the strategy for RU,Ψ on the true

path of the construction. We will argue that, whatever its true outcome, Rσ
U,Ψ succeeds

in satisfying RU,Ψ. (The argument for S-strategies is of course symmetric.)

Lemma 3. If the true outcome of Rσ
U,Ψ is f then Rσ

U,Ψ is satisfied.

Proof. The assumption that the true outcome of Rσ
U,Ψ is f implies that, for all γ ∈ 2kσ ,

eσγ has a final value for which lims Ψ(eσγ , s) 6= 1. Thus to show that RU,Ψ is satisfied it is

enough to show that, for some γ ∈ 2kσ and the final value of eσγ , U ′(eσγ) = 1.

Let n be one more than the number of times that Rσ
U,Ψ has an infinitary outcome.

Let t be the last stage at which the construction is to the left of the f outcome of Rσ
U,Ψ,

if such a stage exists, and let t = 0 otherwise. Let τ0, . . . , τkσ−1 be a list in order of

length of all strings contained in σ such that SτiV,Θ is a strategy with infinitary outcome

δi above Rσ
U,Ψ. For each γ ∈ 2kσ , let Pγ be the set of all x ∈ ω such that, for each i < kσ,

either x ∈ Cτi,δi
β for some β such that |β| > |σ| and β(|σ|) = γ(i) or x ∈ N τi,δi . (So Pγ

is the limit of the sets Pγ,s mentioned in the description of the action of Rσ
U,Ψ.)

For each i < kσ, every sufficiently large number is either in Cτi,δi
β for some β such

that |β| > |σ| or in N τi,δi , so every such number is in Pγ for some γ ∈ 2kσ . Furthermore,
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it is not hard to check that each Pγ is ∆0
2. Thus the assumption that U is ∆0

2 and

infinite implies that, for some γ ∈ 2kσ , U ∩ Pγ is ∆0
2 and infinite. We claim that this

in turn implies that there is a σ-stage s > t such that every (Bσ,γ
α ∩ U)[s], α ∈ 2n,

contains a number xα that does not leave U after stage s. Before verifying this claim,

we note that this suffices to establish the lemma. Indeed, assume the claim is valid. Let

X = {xα | α ∈ 2n}. At stage s, Rσ
U,Ψ enumerates the axiom 〈eσγ , X〉. Since X ⊂ U , this

means that U ′(eσγ) = 1.

So we are left with justifying the claim made in the previous paragraph. If t > 0

then let m be the least number not mentioned in the construction by the end of stage t,

and otherwise let m = 0. If an element enters some Bσ,δ
α ∩U , α ∈ 2n, δ ∈ 2kσ , and never

leaves it, then, from that point on, no new elements can enter Bσ,δ
α ∩ U , so there is a

stage u > t after which every element entering some Bσ,δ
α ∩ U eventually leaves it.

Since U ∩ Pγ is ∆0
2 and infinite, and, by the definition of t, no elements ever leave

any of the Bσ,δ
α after stage t, this implies that there exists a σ-stage v > u and an

x ∈ (U ∩ Pγ)[v], x > m, such that x does not leave U ∩ Pγ during or after stage v and,

for all w > v, x is the least element of (U ∩ Pγ)[w] that is greater than or equal to m

and is not in any of the Bσ,δ
α [w], α ∈ 2<ω, δ ∈ 2kσ .

Let α ∈ 2n. If (Bσ,γ
α ∩ U)[w] is empty for some σ-stage w > v then x is put into

some Bσ,δ
β at stage w, contradicting the choice of x, so (Bσ,γ

α ∩ U)[w] is nonempty for

every σ-stage w > v. But no new elements are added to Bσ,γ
α at a stage w unless w

is a σ-stage and (Bσ,γ
α ∩ U)[w] is empty, so this means that, for every σ-stage w > v,

(Bσ,γ
α ∩U)[w] contains one of the finitely many elements that entered Bσ,γ

α before stage v.

Since Bσ,γ
α ∩ U is ∆0

2, this means that there exists an sα > t and an xα ∈ (Bσ,γ
α ∩ U)[sα]

such that xα does not leave U after stage sα. Letting s = max{sα | α ∈ 2n} completes

the proof.

Lemma 4. If the true outcome of Rσ
U,Ψ is infinitary then Rσ

U,Ψ is satisfied.

Proof. Let γ be the true outcome of Rσ
U,Ψ. We need to show that, for the final value of

eσγ (which exists) and every axiom 〈eσγ , X〉 enumerated by Rσ
U,Ψ, at least one element of

X is not in A. It will then follow that U ′(eσγ) = 0, while the assumption that the true

outcome of Rσ
U,Ψ is γ implies that lims Ψ(eσγ , s) = 1, if this limit exists.

It is enough to show that, if s is a stage by which the construction has stopped

moving to the left of the γ outcome of Rσ
U,Ψ, Rσ

U,Ψ has outcome γ at stage s, and Rσ
U,Ψ

simultaneously claims the elements of a set X at stage s, then at least one x ∈ X is

not permanently claimed by any S-strategy during or after stage s. By Lemma 1, this
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implies that there is a stage after which no S-strategy ever has a claim on x. Since

Rσ
U,Ψ’s claim on x is never relinquished, this means that x ∈ A.

If either SτV,Θ is to the left of the γ outcome of Rσ
U,Ψ or Rσ

U,Ψ is below the f outcome

of SτV,Θ then SτV,Θ makes no claims after stage s. If SτV,Θ is to the right of the true path

then it makes no permanent claims.

If Rσ
U,Ψ is below an infinitary outcome δ of SτV,Θ then any number claimed by Rσ

U,Ψ

at stage s must be in (Cτ,δ
α ∪N τ,δ)[s], so if SτV,Θ claims a number during or after stage s

then this number must be greater than all numbers claimed by Rσ
U,Ψ at stage s, and

hence greater than the elements of X.

Thus it is enough to consider the S-strategies below the γ outcome of Rσ
U,Ψ. Let n

be such that |X| = 2n. Note that each element of X is in a different Cσ,γ
β , β ∈ 2n.

Suppose that SτV,Θ is below the γ outcome of Rσ
U,Ψ and let i be such that Rσ

U,Ψ is the

(i+ 1)th R-strategy with infinitary outcome above SτV,Θ. If |τ | > n then SτV,Θ can never

claim an element of X, so assume that |τ | < n.

If SτV,Θ permanently claims x ∈ X at some stage t > s then let δ be the outcome

of SτV,Θ at stage t. For each possible outcome ε >L δ of SτV,Θ, each Bτ,ε
α is emptied at

stage t, from which it follows that no element of X is ever claimed by SτV,Θ at a stage

after stage t at which its outcome is ε. Furthermore, SτV,Θ can never have outcome to

the left of δ after stage t, since otherwise its claim on x would be relinquished. Thus

we conclude that the only stage greater than or equal to s at which SτV,Θ permanently

claims elements of X is t, and hence every element of X permanently claimed by SτV,Θ
is in Cσ,γ

β for some β ∈ 2n such that β(|τ |) = δ(i).

But if the construction ever moves to the left of SτV,Θ after stage s then SτV,Θ cannot

permanently claim any elements of X, so for each m < n there is at most one S-strategy

at level m that permanently claims elements of X after stage s. Thus for each m < n

there is a jm ∈ {0, 1} such that every element of X permanently claimed by a level m

S-strategy is in Cσ,γ
β for some β ∈ 2n such that β(m) = jm. Let α ∈ 2n be such that

α(m) = 1−jm for all m < n. Then the element of X in Cσ,γ
α is not permanently claimed

by any S-strategy during or after stage s.

Of course, Lemmas 3 and 4 also hold for S-strategies, with symmetric proofs. Com-

bining these with Corollary 2 yields the theorem. �
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