
Reverse Mathematics of the Nielsen-Schreier Theorem

Rodney G. Downey
Denis R. Hirschfeldt

Steffen Lempp
Reed Solomon ∗

School of Mathematical and Computing Sciences
Victoria University of Wellington

Post Office Box 600
Wellington

New Zealand

Department of Mathematics
University of Wisconsin-Madison

Madison, WI 53706
USA

Abstract

The Nielsen-Schreier Theorem states that every subgroup of a free group is free.
To formalize this theorem in weak subsystems of second order arithmetic, one has to
choose between defining a subgroup in terms of a set of group elements and defining
it in terms of a set of generators. We show that if subgroups are defined by sets, then
the Nielsen-Schreier Theorem is provable in RCA0, while if subgroups are defined by
generators, the theorem is equivalent to ACA0.

1 Introduction

The fundamental question in reverse mathematics is to determine which set existence axioms
are required to prove particular theorems of ordinary mathematics. In this article, we consider
the Nielsen-Schreier Theorem that every subgroup of a free group is free. While this section
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provides some background material on reverse mathematics, the reader who is unfamiliar with
this area is referred to [4] or [1] for more details.

Reverse mathematics uses subsystems of second order arithmetic to gauge the proof the-
oretic strength of a theorem. Here, we are concerned with only two subsystems: RCA0 and
ACA0. RCA0 contains the ordered semiring axioms for the natural numbers, plus ∆0

1 com-
prehension, Σ0

1 formula induction, and the set induction axiom

∀X
((

0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X)
)
→ ∀n(n ∈ X)

)
.

The ∆0
1 comprehension scheme consists of all axioms of the form

∀n
(
ϕ(n)↔ ψ(n)

)
→ ∃X ∀n

(
n ∈ X ↔ ϕ(n)

)
where ϕ is a Σ0

1 formula, ψ is a Π0
1 formula, and X does not occur freely in either ϕ or ψ.

In this scheme, ϕ may contain free set variables other than X as parameters. We use N to
denote the set defined by the formula x = x. The Σ0

1 formula induction scheme contains the
following axiom for each Σ0

1 formula ϕ:(
ϕ(0) ∧ ∀n

(
ϕ(n)→ ϕ(n+ 1)

))
→ ∀n

(
ϕ(n)

)
.

Although it is not contained in the axioms, induction over Π0
1 formulas also holds in RCA0.

A model for RCA0 is a two sorted first order structure A which satisfies these axioms. If
the first order part of A is isomorphic to ω, then A is called an ω-model. In this case, A is
often denoted by the subset of P(ω) which specifies the second order part of the model.

The computable sets form the minimum ω-model of RCA0, and any ω-model of RCA0 is
closed under both Turing reducibility and the Turing join. RCA0 is strong enough to prove
the existence of a set of unique codes for the finite sequences of elements from any set X. We
use FinX to denote this set of codes. Also, we use 〈a, b〉, or more generally 〈x0, . . . , xn〉, to
denote pairs, or longer sequences, of elements of N. For any sequences σ and τ , we denote the
length of σ by lh(σ), the kth element of σ by σ(k), and the concatenation of σ and τ by στ .

ACA0 consists of RCA0 plus the comprehension scheme over all arithmetic formulas. Any
ω-model of ACA0 is closed under the Turing jump, so the arithmetic sets form the minimum
ω-model of ACA0.

We use RCA0 as our base system, which means that if we cannot find a proof of a theorem
T in RCA0, but do find a proof of T in ACA0, then we try to show that RCA0 +T suffices to
prove the extra comprehension axioms in ACA0. When proving such a reversal, the following
well-known result is extremely useful (see [4]).

Theorem 1.1. (RCA0) The following are equivalent.

1. ACA0.

2. The range of every one-to-one function exists.

Given the characterizations of the ω-models of RCA0 and ACA0 in terms of Turing degrees,
it is not surprising that equivalences in reverse mathematics have immediate consequences
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in computable mathematics. Any theorem provable in RCA0 is effectively true, while the
effective version of any theorem equivalent to ACA0 does not hold.

The first question one has to decide when developing a branch of mathematics in second
order arithmetic is how to define the relevant objects. In most cases the choice is straightfor-
ward, but in the case of combinatorial group theory, some variation is possible. It is natural to
define a free group in terms of a set of generators and the trivial relations on those generators.
The elements of the free group are the reduced words over the set of generators and their
inverses, and multiplication is defined by concatenation followed by free reduction.

Moving away from free groups, the choices become more complicated. In combinatorial
group theory, a group is often given by a presentation; however, RCA0 cannot go from a
presentation with unsolvable word problem to the set of elements in the group. Therefore,
the difference between defining a group in terms of a presentation and defining a group by
the set of elements is significant. In this article, we explore the proof theoretic strength of
the Nielsen-Schreier Theorem using each of these definitions for a subgroup. If we require
that the subgroup be given by a set, the result is provable in RCA0. However, if we allow the
subgroup to be defined by a presentation, the theorem is equivalent to ACA0.

In Section 2, we give the formalism for free groups in RCA0 and introduce notation that
will be used throughout the article. In Section 3, we use a known proof of the Nielsen-Schreier
Theorem to show that whenever a subgroup of a free group is given by its set of elements,
RCA0 suffices to prove that it is free. The proof that ACA0 is required if a subgroup is defined
in terms of its generators is presented in Section 4.

2 Free Groups

Our approach to free groups follows [2]. To define the free group on a set of generators A ⊆ N,
it is convenient to think of the elements of A as distinct symbols in some alphabet. Let a1

stand for the pair 〈a, 1〉 and a−1 stand for the pair 〈a,−1〉. Here, ε will always denote either
1 or −1, and hence aε is either 〈a, 1〉 or 〈a,−1〉.

Definition 2.1. (RCA0) If A ⊆ N, then the set of words over A, denoted by WordA, is the
set of finite sequences of pairs 〈a, ε〉, where a ∈ A and ε ∈ {+1,−1}. The empty sequence in
WordA is denoted by 1A.

In keeping with standard mathematical notation, we write aε11 · · · a
εk
k for the sequence

σ ∈ WordA with σ(i) = aεii for 1 ≤ i ≤ k. We write w1w2 for the concatenation of the
sequences w1 and w2 in WordA, and we abbreviate the sequence ww · · ·w of length k by wk.

A sequence x ∈WordA is called reduced if there is no place in the sequence where a1 and
a−1 appear next to each other for any a ∈ A.

Definition 2.2. (RCA0) The set of reduced words over A, denoted by RedA, contains all
x ∈WordA such that

∀i < (lh(x)− 1)
(
π1(x(i)) 6= π1(x(i+ 1)) ∨ π2(x(i)) = π2(x(i+ 1))

)
,

where π1 and π2 are the standard projection functions on pairs.
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The definitions of both WordA and RedA use Σ0
0 formulas, so RCA0 suffices to prove these

sets exist. Two words are called 1-step equivalent if either they are the same sequence or one
results from the other by deleting a pair of elements a1 and a−1 that appear next to each
other.

Definition 2.3. (RCA0) Two words x, y ∈ WordA are 1-step equivalent, denoted x ∼1 y,
if one of the following conditions holds.

1. x = y.

2. lh(x) = lh(y) + 1 and

∃i < lh(x)
(
∀j < i

(
x(j) = y(j)

)
∧

∧ ∀j ≥ i
(
j < lh(y)→ y(j) = x(j + 2)

)
∧

∧ π1(x(i+ 1)) = π1(x(i)) ∧ π2(x(i+ 1)) + π2(x(i)) = 0
)
.

3. Same as 2 with the roles of x and y switched.

The conditions in this definition are Σ0
0, so RCA0 proves the existence of the set of all

pairs 〈x, y〉 with x ∼1 y.

Definition 2.4. (RCA0) Two words x, y ∈WordA are freely equivalent, denoted x ∼ y, if
there is a finite sequence σ of elements of WordA such that

1. σ(0) = x,

2. σ(lh(σ)− 1) = y, and

3. σ(i) ∼1 σ(i+ 1) for all i < lh(σ)− 1.

Notice that the condition in this definition is Σ0
1. To prove the existence of the set of pairs

〈x, y〉 with x ∼ y in RCA0, we use the function ρ : WordA → RedA defined by recursion:
ρ(1A) = 1A, ρ(aε) = aε for a ∈ A and ε ∈ {−1,+1}, and if ρ(u) = aε11 · · · a

εk
k , then

ρ(uaε) =

{
aε11 · · · a

εk
k a

ε if a 6= ak or a = ak ∧ εk + ε 6= 0

aε1i · · · a
εk−1

k−1 if a = ak ∧ εk + ε = 0.

Lemma 2.5. (RCA0) The following properties hold of ρ for all words w, w1 and w2 in WordA
and all a ∈ A.

1. ρ(w) ∈ RedA.

2. ρ(w) ∼ w.

3. w ∈ RedA → ρ(w) = w.

4. ρ(w1w2) = ρ(ρ(w1)w2).
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5. ρ(waεa−ε) = ρ(w).

6. ρ(w1a
εa−εw2) = ρ(w1w2).

Proof. The proofs are all by induction either on the length of w or on the length of w2. To
prove that ρ(w) ∈ RedA, we prove ∀nϕ(n) by induction, where ϕ(n) is the Σ0

0 formula

(w ∈WordA ∧ lh(w) = n)→ ρ(w) ∈ RedA.

The only element of WordA with length 0 is 1A. Since ρ(1A) = 1A, we have that ϕ(0) holds. If
lh(w) = 1, then w = aε for some a ∈ A. By the definition of ρ, ρ(aε) = aε, and so ϕ(1) holds.
In the case when lh(w) > 1, we write w as the concatenation w = uaε. By the induction
hypothesis, ρ(u) ∈ RedA. Assume ρ(u) = aε11 · · · a

εk
k , and split into two cases.

If ak 6= a, or if ak = a but εk + ε 6= 0, then by definition ρ(w) = aε11 · · · a
εk
k a

ε and
ρ(w) ∈ RedA. If ak = a and εk + ε = 0, then ρ(w) = aε11 · · · a

εk−1

k−1 . Again, since ρ(u) ∈ RedA,
we have ρ(w) ∈ RedA. This proves Property 1.

To prove ρ(w) ∼ w, we use Σ0
1 induction on lh(w). Formally, we use induction to show

∀nϕ(n), where ϕ(n) is the Σ0
1 formula

(w ∈WordA ∧ lh(w) = n)→ ρ(w) ∼ w.

If lh(w) = 0 or lh(w) = 1, then the argument is the same as for Property 1. Assume
lh(w) > 1 and w = uaε with u ∼ ρ(u) = aε11 · · · a

εk
k . Let σ be the sequence which shows the

free equivalence of u and ρ(u). Split into the same two cases as in the proof of Property 1. If
ρ(w) = aε11 · · · a

εk
k a

ε, then σ̃ gives the free equivalence of w and ρ(w), where σ̃ is defined from
σ by σ̃(i) = σ(i)aε. If ρ(w) = aε11 · · · a

εk−1

k−1 , then σ̃ gives the free equivalence of w and ρ(w),
where σ̃ is defined by

∀i < lh(σ)(σ̃(i) = σ(i)aε)

and σ̃(lh(σ)) = ρ(w).

The proofs of the remaining properties involve similar case analysis, except for Property
6, which is a direct consequence of the earlier properties. For more details, see [2].

Lemma 2.6. (RCA0) If x ∼ y, then ρ(x) = ρ(y).

Proof. ¿From the definition of 1-step equivalence and Property 6 of Lemma 2.5, it follows
that if x ∼1 y, then ρ(x) = ρ(y). Assume x ∼ y, and let σ be the sequence that shows
x ∼ y. Since σ(i) ∼1 σ(i + 1) for all i < (lh(σ) − 1), we have ρ(σ(i)) = ρ(σ(i + 1)). Thus,
ρ(σ(0)) = ρ(σ(lh(σ)− 1)), and so ρ(x) = ρ(y).

Proposition 2.7. (RCA0) For every x ∈WordA, there is a unique y ∈ RedA such that x ∼ y.

Proof. Since ρ(x) ∈ RedA and x ∼ ρ(x), we know that there is at least one y ∈ RedA such that
x ∼ y. It remains to show that if x ∼ y and y ∈ RedA, then y = ρ(x). Because x ∼ y implies
that ρ(x) = ρ(y) and y ∈ RedA implies that ρ(y) = y, we have ρ(x) = y as required.
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Because free equivalence is an equivalence relation, it follows that if ρ(x) = ρ(y), then
x ∼ y. Together with Lemma 2.6, this shows that x ∼ y if and only if ρ(x) = ρ(y). The set
of pairs 〈x, y〉 such that x ∼ y can be formed by Σ0

0 comprehension:

{〈x, y〉 | x ∼ y} = {〈x, y〉 | ρ(x) = ρ(y)}.

We can now give the formal definition of the free group on the set of generators A.

Definition 2.8. (RCA0) Let A ⊆ N. The set of elements of the free group on the set of
generators A is RedA. The empty sequence 1A is the identity element, and multiplication
is defined by x · y = ρ(xy).

3 Set subgroups of free groups

In this section, we show that RCA0 proves the Nielsen-Schreier Theorem when the subgroups
are defined by sets. Our proof is a slight variation of the one given in [3], originally due to
A.J. Weir. The main modifications involve proving the existence of a Schreier transversal in
RCA0 and handling various normal closures in RCA0, where they must be treated formally
as Σ0

1 objects.

Definition 3.1. Let F be the free group on X. A set subgroup of F is a set G ⊂ F such
that G is a subgroup of F . Such a set subgroup is denoted by G < F .

Definition 3.2. Let F be the free group on X, and let ρ : WordX → RedX be defined as in
Section 2. A set subgroup G of F is free if there exists B ⊂ G such that

1. ∀g ∈ G∃w ∈ RedB(ρ(w) = g), and

2. If w1 6= w2 ∈ RedB, then ρ(w1) 6= ρ(w2).

Notice that there is a distinction between RedB and RedX , but since B ⊂WordX , we can
apply ρ to elements of RedB. In what follows, we frequently consider the right cosets Gw of
G in F and use the fact that Gw = Gu if and only if wu−1 ∈ G. Notice that RCA0 suffices
to prove that each coset Gw exists, since Gw = {u|wu−1 ∈ G}.

Definition 3.3. A transversal of G < F is a set of unique representatives for the right
cosets of G. That is, T ⊂ F is a transversal for G if for every t1 6= t2 ∈ T , t1t

−1
2 6∈ G, and

for every x ∈ F , there is a t ∈ T such that xt−1 ∈ G. A transversal T is called a Schreier
transversal if for every t ∈ T , all initial segments of the word t are in T .

For any G < F , we can define a transversal for G by choosing the N-least representative
of each coset.

Definition 3.4. Let G < F and D ⊂ F be a finite set. We say that D has the Schreier
property (with respect to G) if D is a finite approximation to a Schreier transversal. For-
mally, we require that for all x 6= y ∈ D, xy−1 6∈ G, and if x ∈ D, then all initial segments of
x are in D.
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Notice that 1F ∈ T for any Schreier transversal T , and so 1F represents the identity coset
of G. Similarly, if D has the Schreier property, then 1F ∈ D.

Lemma 3.5. (RCA0) Let F be the free group on X and G < F . There exists a Schreier
transversal for G.

Proof. We define a primitive recursive function f : F × FinF → F × FinF , where FinF is
the set of all finite subsets of F . The idea is that if f is given an input (w,D), where D
has the Schreier property, then f returns a pair (ŵ, D̂) such that ŵ ∈ D̂, D ⊂ D̂, D̂ has the
Schreier property, and Gw = Gŵ (that is, ŵw−1 ∈ G). Thus, f has extended D to include a
representative for Gw.

Formally, f(w,D) is defined by primitive recursion on lh(w). Let f(1F , D) = (1F , D).
Assume w 6= 1F and proceed as follows.

1. If there is a ŵ ∈ D such that Gw = Gŵ, then f(w,D) = (ŵ,D).

2. Otherwise, let w = vxε for some x ∈ X. Notice that lh(v) < lh(w).

(a) If Gw = Gv, then f(w,D) = f(v,D).

(b) If Gw 6= Gv, then

i. if Gv = Gu for some u ∈ D, then f(w,D) = (uxε, D ∪ {uxε}).
ii. if Gv 6= Gu for all u ∈ D, then f(w,D) = (v̂xε, D̂ ∪ {v̂xε}) where f(v,D) =

(v̂, D̂).

A simple induction establishes that if D has the Schreier property, w ∈ F , and f(w,D) =
(ŵ, D̂), then D̂ has the Schreier property, D ⊂ D̂, ŵ ∈ D̂, and Gŵ = Gw.

We use f to define T : N→ FinF by primitive recursion. Set T (0) = {1F} and

T (n+ 1) =

{
T (n) if n 6∈ F
π2(f(n+ 1, T (n))) if n ∈ F

where π2 is the projection function onto the second component for pairs. Let T = ∪∞i=1T (n).
T exists since for every w ∈ F , there is a ŵ ∈ T (w) such that Gw = Gŵ, and therefore,
w ∈ T if and only if w ∈ T (w). It is clear from the definition of T (n) that T is a Schreier
transversal for G.

Theorem 3.6. (RCA0) Every set subgroup of a free group is free.

Proof. Let F be free on X, G < F , and T be a Schreier transversal for G. Most of this
proof works without the assumption that T has the Schreier property, but we will use this
property near the end. For any w ∈ F , let [w] denote the element of T such that Gw = G[w].
Notice that [1F ] = 1F since 1F ∈ T , that [u] = 1F for all u ∈ G, and that for any u, v ∈ F ,
[u]v[uv]−1 ∈ G.

The outline of the proof is as follows. First, we define an auxiliary free group F̂ and a
homomorphism τ : F̂ → G. Second, we show that τ is onto, and hence G is isomorphic to
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F̂ /ker(τ). Third, we show that ker(τ) is generated by a subset of the generators of F̂ . Hence,
G is isomorphic to the free group on the generators of F̂ which are not in ker(τ).

Let F̂ be the free group on T ×X, and let yix denote the generator corresponding to i ∈ T
and x ∈ X. Define τ : F̂ → G by sending yix 7→ [i]x[ix]−1 and extending across F̂ . Notice
that [i] = i since i ∈ T .

To verify the required properties of τ , we use the map f : T ×F → F̂ defined below. It is
best to think of f as a sequence of maps fi : F → F̂ for i ∈ T . Define f by primitive recursion
on the length of u ∈ F . Set f(i, 1F ) = 1F̂ , f(i, x) = yix for x ∈ X, and f(i, x−1) = y−1[ix−1]x,

also for x ∈ X. For u ∈ F with u = vz, z ∈ X ∪X−1, define f(i, u) = f(i, v)f([iv], z). The
maps fi are not group homomorphisms, but the following three properties can be verified.

∀u, v ∈ RedF (f(i, uv) = f(i, u)f([iu], v)). (1)

∀v ∈ RedF (f(i, v−1) = f([iv−1], v)−1). (2)

∀v ∈ RedF∀i ∈ T (τ(f(i, v)) = [i]v[iv]−1). (3)

Properties (1) and (3) follow by induction on the length of v (for details see [3]), and Property
(2) follows from applying Property (1) with v = u−1.

Next, we define ψ : G → F̂ by ψ(u) = f(1F , u). Properties (1) and (2) guarantee that
ψ is a group homomorphism, and Property (3) shows that τψ : G → G is the identity map.
Therefore, τ is onto (which was our second goal), and ψ is one-to-one.

It remains to examine ker(τ). Let χ = ψτ : F̂ → F̂ . Since ψ is one-to-one, we have
ker(χ) = ker(τ).

Claim. ker(τ) is equal to the normal closure in F̂ of y−1ix χ(yix) for i ∈ T and x ∈ X.

The normal closure of these elements is defined by a Σ0
1 formula, so we cannot immediately

claim that RCA0 proves its existence. Formally we define the normal closure using the function
C : N× N× F̂ → {0, 1} defined as follows.

C(0,m, z) =

{
1 if ∃i, x ≤ m(z = y−1ix χ(yix))
0 otherwise

C(n+ 1,m, z) =


1 if C(n,m, z) = 1 or

C(n,m, z−1) = 1 or
∃a, b ≤ m(C(n,m, a) = 1 ∧ z = b−1ab) or
∃a, b ≤ m(C(n,m, a) = C(n,m, b) = 1 ∧ z = ab)

0 otherwise

We write z ∈ N for ∃n,m(C(n,m, z) = 1) until we prove that N exists in RCA0. RCA0

proves the following properties of N by direct calculation.

∀z ∈ N(z−1 ∈ N)

∀a, b ∈ N(ab ∈ N)

∀a ∈ N ∀w ∈ F̂ (w−1aw ∈ N)

∀i ∈ T ∀x ∈ X(y−1ix χ(yix) ∈ N)

∀z ∈ N ∀w ∈ F̂ ∃ẑ ∈ N(zw = wẑ)
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To show N exists in RCA0, we show that N = ker(τ). First, to see that N ⊂ ker(τ), recall
that τψ : G → G is the identity map. Therefore, we can cancel τψ inside χ2 = ψτψτ to get
χ2 = χ. The following equalities show that y−1ix χ(yix) ∈ ker(χ).

χ(y−1ix χ(yix)) = χ(yix)
−1χ2(yix) = χ(yix)

−1χ(yix) = 1F̂ .

As mentioned above, ker(χ) = ker(τ). Therefore, since ker(τ) is closed under multiplication
and conjugation, it follows by Π0

1 induction that z ∈ N implies z ∈ ker(τ).
To prove the claim, it remains to show that ker(τ) ⊂ N . First, by induction on the

length of w ∈ F̂ , we get w−1χ(w) ∈ N . For the details of this induction, see [3]. Second, if
w ∈ ker(τ), then χ(w) = 1F̂ . We have w−1χ(w) = w−1 ∈ N , and therefore w ∈ N as required.
This statement finishes the proof that N = ker(τ).

Claim. ker(τ) is the normal closure of the elements f(1F , u) for u ∈ T ⊂ F .

As in the first claim, we formalize this statement by defining a function D : N×N× F̂ →
{0, 1} such that z ∈ F̂ is in the normal closure if and only if ∃n,mD(n,m, z) = 1. We write
z ∈ M for ∃n,mD(n,m, z) = 1, and we show M exists in RCA0 by proving it is equal to
ker(τ).

To show that M ⊂ ker(τ), notice that by Property (3) above

τ(f(1F , u)) = [1F ]u[1Fu]−1 = uu−1 = 1G,

for u ∈ T . From here, use induction.
To show that ker(τ) ⊂M , it suffices by the first claim to show that y−1ix χ(yix) ∈M for all

i ∈ T and x ∈ X. Fix i ∈ T and x ∈ X.

χ(yix) = f(1F , τ(yix)) = f(1F , [i]x[ix]−1) = f(1F , [i]x)f([ix], [ix]−1)

= f(1F , [i])f([i], x)f([ix(ix)−1], [ix])−1 = f(1F , [i])yixf(1F , [ix])−1.

Both f(1F , [i]) and f(1F , [ix])−1 are in M . Just as in the first claim, M has the property that

∀z ∈M ∀w ∈ F̂ ∃ẑ ∈M (zw = wẑ).

Therefore, y−1ix χ(yix) ∈M as required. This completes the proof of the second claim.
To finish the proof, we consider the set A of all yix such that yix ∈ ker(τ), and we let S

denote the normal closure of A in F̂ . Of course, as above, we use a function to formalize S
as a Σ0

1 defined object. Clearly, S ⊂ ker(τ), but we also make the following claim (which, as
above, shows that S is a set in RCA0).

Claim. ker(τ) = S.

First, we show why this claim finishes the proof. Let C be the set of yix which are not
in A. Since G is isomorphic to F̂ /ker(τ), we see that G is isomorphic to the subgroup of F̂
generated by C. But, this subgroup is exactly the free group on C, which we denote by H.
Hence, there is an isomorphism ϕ : G→ H.

To see that this fact implies that G is free in the sense of Definition 3.2, let B = ϕ−1(C)
(which exists since ϕ is an isomorphism). Notice that we cannot apply ϕ to an arbitrary
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w ∈ RedB since w might not be X-reduced, and hence might not be a member of G. However,
we can define a map β : WordB →WordC by

β(bε11 b
ε2
2 · · · bεnn ) = ϕ(b1)

ε1ϕ(b2)
ε2 · · ·ϕ(bn)εn

for any B-symbols b1, b2, . . . , bn. The point is that each B-symbol is an element of G, so ϕ
can be applied to it. The following properties of β follow from the definition of B and the
fact that ϕ is an isomorphism.

∀w ∈ RedB (β(w) ∈ RedC ∧ β(w) = ϕ(ρ(w))) (4)

∀u ∈ RedC (β−1(u) ∈ RedB) (5)

∀w1 6= w2 ∈ RedB (β(w1) 6= β(w2)) (6)

To verify Condition 2 in Definition 3.2, suppose w1 6= w2 ∈ RedB, but ρ(w1) = ρ(w2).
Then, by Property (4) above,

β(w1) = ϕ(ρ(w1)) = ϕ(ρ(w2)) = β(w2).

This statement contradicts Property (6). To verify Condition 1 in Definition 3.2, consider any
g ∈ G. We have ϕ(g) ∈ RedC , so β−1(ϕ(g)) ∈ RedB. Let w = β−1(ϕ(g)). By Property (4),
we know β(w) = ϕ(ρ(w)). From the definition of w, we get β(w) = ϕ(g), and hence, since ϕ
is one-to-one, g = ρ(w).

It remains to prove the last claim by showing that ker(τ) ⊂ S. By the second claim above,
it suffices to show that f(1F , u) ∈ S for each u ∈ T . The result then follows by induction.
We show f(1F , u) ∈ S by induction on the length of u. If lh(u) = 1, then u is either x or x−1

for some x ∈ X. Tracing through the definitions, f(1F , x) = y1F x and f(1F , x
−1) = y−1[x−1]x. In

either case, f(1F , u) ∈ ker(τ), so y1F x and y−1[x−1]x are in S as required.

If lh(u) > 1, then either u = vx or u = vx−1, where lh(v) < lh(u) and x ∈ X. Because T
is a Schreier transversal, we know that v ∈ T and so the induction hypothesis applies to v. If
u = vx, then we have

f(1F , u) = f(1F , v)f([v], x),

which means that
f(1F , u)f(1F , v)−1 = y[v]x.

The left side of this equation is in ker(τ), so y[v]x ∈ ker(τ), and hence y[v]x ∈ S. By induction,
f(1F , v) ∈ S, so f(1F , u) ∈ S as required.

The case for u = vx−1 is similar. We have the following equalities.

f(1F , u) = f(1F , v)f([v], x−1).

f(1F , u)f(1F , v)−1 = f([vx−1], x)−1 = y−1[vx−1]x.

The left side of the bottom equation is in ker(τ), so, reasoning as above, f(1F , u) ∈ S, which
finishes the proof.
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4 Presented subgroups of free groups

In this section, we show that ACA0 is equivalent to the Nielsen-Schreier Theorem when
subgroups are defined by generating sets.

Definition 4.1. Let F be the free group on X. Given a set A ⊂ F , the subgroup presented
by A is

〈A〉 = { g ∈ F | ∃w ∈WordA(g = ρ(w)) }.
〈A〉 is free if there is a B ⊂ F such that

1. ∀b ∈ B∃w ∈WordA(ρ(w) = b),

2. ∀w ∈WordA∃ŵ ∈WordB(ρ(w) = ρ(ŵ)), and

3. ∀w1 6= w2 ∈ RedB(ρ(w1) 6= ρ(w2)).

Such a set B is called a set of free generators for 〈A〉.

Theorem 4.2. (RCA0) The following are equivalent.

1. ACA0.

2. Every presented subgroup of a free group is free.

Proof.

Case. (1)⇒ (2)
ACA0 suffices to prove the existence of the set of elements in a presented subgroup.

Theorem 3.6 shows that RCA0 suffices to prove from here that the presented subgroup is free.

Case. (2)⇒ (1)

Let f : N→ N be a one-to-one function. By Theorem 1.1, it suffices to code the range of
f . Pick an infinite set of generators X = {xi|i ∈ N}, let F be the free group on X, and let
ρ : WordX → RedX be as in Section 2. Define A by

A = {x2i |i ∈ N} ∪ {x2s+1
i |f(s) = i},

and let B be a set of free generators for 〈A〉.
Claim. We can form {n |xn ∈ 〈A〉 } in RCA0.

For all n ∈ N, we know that x2n = ρ(w) for some w ∈ RedB. Also, xn ∈ 〈A〉 if and only
if xn = ρ(u) for some u ∈ RedB. Therefore, if such a u exists, then w ∼B u2. Our strategy
is to give a method (eventually formalized by a Σ0

0 formula) for determining from w whether
there is such a u. To do this, we need limits both on the length of u in terms of B-symbols
and on which B-symbols could occur in u.

Assume that lh(u) = n, where the length is measured in B-symbols. We claim that
n < lh(u2) ≤ 2n, where by lh(u2) we mean the length in B-symbols of the B-reduced word
equivalent to u2. To see this fact, consider first the case in which lh(u) = 2m+ 1 for some m.
Then

uu = (b1 · · · bmbm+1bm+2 · · · b2m+1) · (b1 · · · bmbm+1bm+2 · · · b2m+1)
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At worst, the last m symbols of the first w could cancel with the first m symbols of the second
w, leaving us with b1 · · · bm+1bm+1 · · · b2m+1, which has length 2m+ 2 = n+ 1.

Second, consider the case when lh(u) = 2m. If w = b1 · · · b2m, then the maximum amount
of cancellation in u2 would leave us with b1 · · · bmbm+1bmbm+1 · · · b2m. Because w is reduced,
bm and bm+1 do not cancel. Therefore, the shortest possible length for the reduced form of u2

in B-symbols is 2m+ 2 = n+ 2.
If w ∼B u2 and w ∈ RedB, then by this calculation, lh(u) < lh(w), so we have our

required bound on the length of u. This argument also shows that every symbol which occurs
in u occurs in the B-reduced form of u2. However, the B-reduced form of u2 is w, so every
B-symbol which occurs in u also occurs in w.

We can now form the set {n|xn ∈ 〈A〉} using Σ0
0 comprehension, because n is in this set

if and only if there is a u ∈ RedB such that ρ(u) = xn, lh(u) ≤ lh(w) (where w ∈ RedB and
ρ(w) = x2n), and every B-symbol in u occurs in w.

The following claim finishes the proof of the theorem.

Claim. The range of f is equal to {n |xn ∈ 〈A〉 }.
¿From the definition of A, it is clear that if n is in the range of f , then xn ∈ 〈A〉. Before

proving the other direction, we introduce some terminology. Assume w ∈ F and some x ∈ X
occurs in w as a positive symbol (that is, it occurs as x as opposed to as x−1). We say that a
particular occurrence of x has the form xn, for some n ∈ N, if the maximum block of x’s which
includes this occurrence of x has length n. Notice that since w is reduced, all occurrences of
x in this block must be positive. Similarly, if x occurs in w as x−1, then this occurrence has
the form x−n if the maximum block of x−1’s which include this occurrence has length n.

Assume that n is not in the range of f . We need to show that for every w ∈ WordA,
ρ(w) 6= xn (recall that ρ represents reduction in F in terms of X-symbols). To accomplish
this goal, we prove that for every w ∈WordA, if xn occurs as an X-symbol in ρ(w) (either as
xn or as x−1n ), then every occurrence of xn in ρ(w) is of the form x2kn for some integer k. This
fact suffices to finish the proof of the claim, since xn does not occur an even number of times
in xn, and hence ρ(w) 6= xn.

The proof proceeds by induction on the A-length of w. If w ∈ A, then this statement is
clear. Suppose the A-length of w is greater than 1 and w = va, with v ∈WordA and a ∈ A.
We have ρ(va) = ρ(ρ(v)a), and by induction, all occurrences of xn in ρ(v) are of the form
x2kn . If a is not x2n, then a does not mention xn and we are done. If a = x2n, then split into
the case in which ρ(v) ends in x2kn and the case in which it ends in an X-symbol other than
xn. In either case, the claim holds.
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