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Abstract

We answer a long-standing question of Rosenstein by exhibiting a complete

theory of linear orderings with both a computable model and a prime model, but

no computable prime model. The proof uses the relativized version of the concept

of limitwise monotonic function.

A linear ordering is computable if both its domain and its order relation are com-

putable; it is computably presentable if it is isomorphic to a computable linear ordering.

(There are natural generalizations of these notions to other kinds of structures; see for

instance [10] for details.) There is a large body of research on computable linear or-

derings ([4] gives an extensive overview). Much of this work has been focused on the

relationship between classical and effective order types, but it is also interesting to take

an approach inspired by classical model theory and study the relationship between ef-

fective order types and theories of linear orderings, asking, for instance, what kinds of

computable linear orderings exist within the models of a given theory of linear orderings.

Taking this approach, Rosenstein ended his book Linear Orderings [12] by asking

whether a complete theory of linear orderings with a computable model and a prime

model must have a computable prime model. This question was repeated in the “Prob-

lem Sessions” section of [11] (Problem 7.20), and it has recently been included in [3]

(Question 3.18). In this paper, we give a negative answer to Rosenstein’s question.
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We assume familiarity with basic notions and results from computability theory and

model theory (standard references are [13] and [5], respectively). For structures A and

B in the same language, we will write A ≈k B to mean that player ∃ has a winning

strategy in the Ehrenfeucht-Fräıssé game EFk[A,B] of length k. Recall that if A ≈k B
for all k ∈ ω then A ≡ B. See Section 3.3 of [5] for details.

We will use the following relativized version of a notion due originally to Khisamiev [6].

1 Definition. Let a be a Turing degree. A function f is a-limitwise monotonic if there

exists an a-computable binary function g such that, for all n, s ∈ ω, g(n, s) 6 g(n, s+1)

and limt g(n, t) exists and is equal to f(n). If a = 0 then f is limitwise monotonic.

Limitwise monotonic functions were first used by Khisamiev [6] in studying the

question of which abelian p-groups are computably presentable. Later, in [7], he used

them to obtain the analog of the main result of this paper for abelian groups, namely

that there exists a complete theory of abelian groups with both a computable model

and a prime model, but no computable prime model. (See [8] for a survey of these and

related results.)

Khoussainov, Nies, and Shore [9], who introduced the term “limitwise monotonic”,

used limitwise monotonic functions in the construction of an uncountably categorical

but not countably categorical theory all of whose countable models are computably

presentable except for the prime model. The relativized version given above has been

used by Coles, Downey, and Khoussainov [2] in the construction of a computable linear

ordering with a Π0
2 initial segment that is not computably presentable.

It was shown in [9] that there exists a ∆0
2 set that is not the range of a limitwise

monotonic function. As noted in [2], that proof relativizes, so for any degree a there

exists a set that is ∆0
2 relative to a but is not the range of an a-limitwise monotonic

function. In particular, there exists a ∆0
3 set that is not the range of a 0′-limitwise

monotonic function. We will only need the weaker fact that there exists a Σ0
3 set that

is not the range of a 0′-limitwise monotonic function.

We will also use the following notions.

2 Definition. Let K be the set of all linear orderings with endpoints such that every

element other than the left endpoint has an immediate predecessor and every element

other than the right endpoint has an immediate successor. (K consists of all nonempty

finite linear orderings and all linear orderings of type ω + (ω∗ + ω) · α + ω∗, where α is

any linear ordering.)
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By a block in a linear ordering R we will mean an interval [a, b] ∈ K of R such that,

in R, a has no immediate predecessor and b has no immediate successor. If a block has

order type α then we call it an α-block. (This is not the standard use of the word block,

which is usually reserved for what we call n-blocks, n ∈ ω.) Note that there exists a

formula ϕ(x, y) in the language of linear orderings such that, for any linear ordering R
and a, b ∈ R, R � ϕ(a, b)⇔ [a, b] is a block in R.

Let α0, α1, . . . be order types. The shuffle of {α0, α1, . . .} is the (unique) order type

of a linear ordering obtained by partitioning the rationals into dense sets A0, A1, . . .

and, for each i ∈ ω, replacing each element of Ai by a linear ordering of type αi.

3 Theorem. There exists a complete theory of linear orderings with a computable model

and a prime model, but no computable prime model.

Proof. Let S ⊂ ω − {0, 1} be a Σ0
3 set that is not the range of a 0′-limitwise monotonic

function. Let L and L̂ be linear orderings whose order types are the shuffles of S and

S ∪ {ω + ω∗}, respectively, and let T be the theory of L. We will show that L is the

prime model of T , L̂ is also a model of T , L is not computably presentable, and L̂ is

computably presentable.

4 Lemma. Let L′ be a nonempty linear ordering. The following are equivalent.

1. Each element of L′ is in some block, L′ has no n-blocks for n /∈ S, L′ has neither

a leftmost nor a rightmost block, and, for any pair of distinct blocks in L′ and

n ∈ S, there is an n-block between the two given blocks.

2. L′ is a model of T .

3. L can be elementarily embedded in L′.

Proof. Obviously 3⇒ 2, and 2⇒ 1 since each of the statements in 1 can be expressed

by a sentence in T . We show that 1⇒ 3.

Fix L′ satisfying 1. Clearly, there is an embedding f : L → L′ sending each n-block

of L to an n-block of L′. Let k ∈ ω and let ~a be a tuple of elements of L. For each R ∈ K

and k ∈ ω, R ≈k F for all sufficiently large finite linear orderings F (this is Exercise

6.11 in [12]). Using this fact, it is easy to show that (L,~a) ≈k (L′, f(~a)). (Basically,

the fact that, for each block B in L′, there is a dense set of blocks in L each of which

is ≈kB gives player ∃ an obvious winning strategy in the game EFk[(L,~a), (L′, f(~a))].)

Since k was arbitrary, (L,~a) ≡ (L′, f(~a)). Since ~a was arbitrary, f is an elementary

embedding.
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5 Corollary. L is the prime model of T .

6 Corollary. L̂ is a model of T .

The following lemma was proved in [2].

7 Lemma (Coles, Downey, and Khoussainov). For any computably presentable linear

ordering R obtained by replacing each element of the countable dense linear ordering by

a finite block, the set of all n ∈ ω such that R contains an n-block is the range of a

0′-limitwise monotonic function.

8 Corollary. L is not computably presentable.

In [1], Ash, Jockusch, and Knight used a worker argument to show that if A ⊆ ω−{0}
is Σ0

3 then the shuffle of A∪{ω} is computably presentable. It is not hard to adapt their

proof to show that L̂ is computably presentable; we give a different proof avoiding the

use of workers.

9 Lemma. L̂ is computably presentable.

Proof. We will build a computable linear ordering L = (|L| ,≺) ∼= L̂ in stages, using a

recursive procedure. At each stage we will have a finite collection of pairs of elements

which we currently want to be the endpoints of blocks of given types. Between each pair

of adjacent blocks, we will start a new version of the construction, thus guaranteeing

that any type of block that exists in L exists densely in L. By doing this, we ensure

that all we have to require of our basic construction is that it build an ω+ω∗-block and

that it place each element of L in some block of type n ∈ S or ω + ω∗.

Let Ψ be a computable relation such that S(n)⇔ ∃t∀u∃v(Ψ(n, t, u, v)) for all n ∈ ω.

The idea of the construction is as follows.

We build an ω + ω∗-block. For each n, t ∈ ω, we begin to build an n-block B. For

each u ∈ ω, we start to make B into an ω+ω∗-block, but preserving the original n-block

within it, until we find a v such that Ψ(n, t, u, v). If such a v is found then we declare

the part that has been added to the original n-block in B to be a new ω + ω∗-block,

thus making B again an n-block.

There are two possible fates for B. If ∃u∀v(¬Ψ(n, t, u, v)) then B becomes an ω+ω∗-

block. Otherwise, B remains an n-block in the limit. Thus, if ∃t∀u∃v(Ψ(n, t, u, v)) then

we build at least one n-block, while otherwise we build no n-blocks.

We now proceed with the construction. When we mention new numbers we mean

numbers larger than any that have previously appeared in the construction.
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stage 0. Choose two new numbers x and y, add them to |L|, declare that x ≺ y, and

declare that we want [x, y] to be an ω + ω∗-block.

stage s + 1. For each pair of numbers x and y for which we currently want [x, y] to be

an ω + ω∗-block, if [x, y] currently has n many elements x = a0 ≺ · · · ≺ an−1 = y then

pick a new number z and add it to L between abn/2c and abn/2c+1.

For each 1 < n 6 s, choose new numbers xn,s and yn,s, add them to |L|, declare that

xn,s ≺ yn,s ≺ z for all z already in L, declare that we want [xn,s, yn,s] to be an n-block,

and add n− 2 many new numbers to [xn,s, yn,s].

Let n, t 6 s be such that we currently want [xn,t, yn,t] to be an n-block. If, for some

u 6 s, ¬Ψ(n, t, u, v) for all v 6 s, then, for the least such u, choose a new number zn,t,u,

place it in L immediately to the right of yn,t, declare that we want [xn,t, zn,t,u] to be

an ω + ω∗-block, declare that we no longer want [xn,t, yn,t] to be an n-block, and add

n − 1 many new numbers to [yn,t, zn,t,u]. (Note that this last action ensures that when

numbers are added to [xn,t, zn,t,u] to attempt to make it into an ω + ω∗-block, they will

be added to the right of yn,t.)

Let n, t, u 6 s be such that zn,t,u is defined and we currently want [xn,t, zn,t,u] to be

an ω+ω∗-block. If Ψ(n, t, u, s) then let wn,t,u be the current immediate successor of yn,t,

declare that we want [xn,t, yn,t] to be an n-block, and declare that we want [wn,t,u, zn,t,u]

to be an ω + ω∗-block.

For each x ≺ y ≺ w ≺ z such that we currently want [x, y] and [w, z] to be blocks

and there are currently no elements in (y, w), begin a new version of the construction,

following the steps described above but placing all elements in (y, w). Similarly, for the

≺-least element a currently in L, begin a new version of the construction to the left of a,

and for the ≺-greatest element b currently in L, begin a new version of the construction

to the right of b.

This completes the construction. Since every element we add to L is a new number,

L is computable. Furthermore, each element of L is in some block, each block we build

is either finite or of type ω+ω∗, and we build at least one ω+ω∗-block. Since we repeat

the construction between each pair of blocks, all we have to show to verify that L ∼= L̂
is that we build an n-block if and only if n ∈ S.

Let n, t ∈ ω, n > 1. If ∀v(¬Ψ(n, t, u, v)) holds for some u ∈ ω then, for the least

such u, we eventually define zn,t,u. (This happens at the least stage s > n, t, u such that

∀u′ < u∃v < s(Ψ(n, t, u′, v)).) We declare that we want [xn,t, zn,t,u] to be an ω+ω∗-block,

and we never change our mind, so, in this case, [xn,t, yn,t] is contained in an ω+ω∗-block.

Otherwise, for each zn,t,u we define, we eventually define wn,t,u and [wn,t,u, zn,t,u]
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becomes an ω + ω∗-block. In this case, [xn,t, yn,t] is an n-block.

If n /∈ S, n > 1, then, by the definition of Ψ, ∀t∃u∀v(¬Ψ(n, t, u, v)), so [xn,t, yn,t]

is contained in an ω + ω∗-block for each t ∈ ω, and hence we build no n-blocks. On

the other hand, if n ∈ S then, for some t ∈ ω, ∀u∃v(Ψ(n, t, u, v)), which means that

[xn,t, yn,t] is an n-block. Thus we build an n-block if and only if n ∈ S.

The theorem follows from Corollaries 5, 6, and 8 and Lemma 9. �

We conclude by remarking that sets that are not the range of a limitwise monotonic

function can be used to build other complete theories having both a computable and

a prime model, but no computable prime model. Khisamiev’s construction of such a

theory of abelian groups has already been mentioned; the following is another example.

Let A ⊂ ω − {0} be a Σ0
2 set that is not the range of a limitwise monotonic function.

Let E be the equivalence structure consisting of one equivalence class of size n for each

n ∈ A and let T be the theory of E . It is not hard to check that E is the prime model of

T and is not computably presentable, while the structure consisting of one equivalence

class of size n for each n ∈ A and ℵ0 many equivalence classes of size ℵ0 is also a model

of T and is computably presentable.
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