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Abstract

We show that for every computable tree T with no dead ends and all paths

computable, and every D >T ∅, there is a D-computable listing of the isolated

paths of T . It follows that for every complete decidable theory T such that all the

types of T are computable and every D >T ∅, there is a D-decidable prime model

of T . This result extends a theorem of Csima and yields a stronger version of the

theorem, due independently to Slaman and Wehner, that there is a structure with

presentations of every nonzero degree but no computable presentation.

1 Introduction

There have been several recent examples of constructions that cannot be performed

computably, but can be performed D-computably for any noncomputable D (or every

noncomputable D in a particular class, such as the ∆0
2 sets). A well-known instance of

this phenomenon is due independently to Slaman [8] and Wehner [9]. A presentation of

a countable structureM is a structure A ∼=M with universe ω. The degree of A is the

Turing degree of the atomic diagram of A.

1.1 Theorem (Slaman; Wehner). There is a structure with presentations of every

nonzero degree but no computable presentation.
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In Corollary 2.5 below, we show that a strong version of this result can be ob-

tained by considering prime models of complete decidable theories all of whose types

are computable. Thus this paper fits into an ongoing program of fine analysis of the

computable content of Vaughtian model theory (that is, the study of special models

such as prime, homogeneous, and saturated models), which includes work by Csima [1];

Csima, Hirschfeldt, Knight, and Soare [3]; and Csima, Harizanov, Hirschfeldt, and Soare

[2]. One of the themes of this program is that the model-theoretic properties of a special

model M can often be used to build a copy A of M with some desired computability-

theoretic property without explicitly defining an isomorphism betweenM and A. This

theme is reflected in Theorem 2.1 below and its corollaries.

Another example of a “barely noneffective” construction can be obtained from the

following results of Csima [1] and of Goncharov and Nurtazin [4] and independently

Millar [7]. For a set D, a structure A is D-decidable if the elementary diagram of A is

D-computable.

1.2 Theorem (Csima). Let T be a complete decidable theory such that all the types of

T are computable and let D be such that ∅ <T D 6T ∅′. Then T has a D-decidable

prime model.

1.3 Theorem (Goncharov and Nurtazin; Millar). There is a complete decidable theory

T such that all the types of T are computable but T has no computable prime model.

1.4 Corollary. There is a complete decidable theory T such that all the types of T are

computable and

1. T has no computable prime model but

2. T has a D-decidable prime model for every D such that ∅ <T D 6T ∅′.

It is natural to ask whether Theorem 1.2 can be extended to all noncomputable D.

We give a positive answer to this question in Corollary 2.3 below.

In [1], Theorem 1.2 was obtained as a corollary to the following omitting types

theorem.

1.5 Theorem (Csima). Let T be a complete decidable theory, let S be a uniformly

computable set of partial types of T , and let D be such that ∅ <T D 6T ∅′. Then T has

a D-decidable model that omits all nonprincipal types in S.
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The extension of this result to non-∆0
2 degrees is quite different from that of Theorem

1.2. Theorem 1.5 can be extended to all D of hyperimmune degree, but there is a

complete decidable theory T and a uniformly computable set S of partial types of T

such that any model of T that omits all nonprincipal types in S has hyperimmune

degree. These results and their reverse-mathematical consequences will appear in an

upcoming paper by Csima, Hirschfeldt, and Shore.

There is a tight connection between complete decidable theories and computable

trees with no dead ends. On the one hand, if T is a complete decidable theory, then

for each n the tree Sn(T ) of n-types of T is a computable tree with no dead ends, and

these trees can be glued together to form a single tree S(T ). On the other hand, any

computable tree with no dead ends can be coded into a complete decidable theory. For

more details, see Harizanov [5].

The following definition captures those trees that correspond to theories whose types

are all computable. (Here [T ] is the set of all paths of the tree T .)

1.6 Definition. A tree T ⊂ 2<ω is a PAC tree if it is a computable tree with no dead

ends and every path in [T ] is computable. (PAC stands for paths all computable.)

There is also a tight connection between the effectiveness of prime models of a

complete decidable atomic theory T and the effectiveness of listings of the principal

types of T , and hence with the effectiveness of listings of the isolated paths of S(T ).

1.7 Definition. Let S ⊂ 2ω and let D be a set. A D-computable listing of S is a

uniformly D-computable sequence f0, f1, . . . ∈ 2ω such that S = {fn : n ∈ ω}. (Note

that it might be the case that fn = fm for some n 6= m.)

If S is a set of types of some theory T , then the concept of a D-computable listing

of S can be defined analogously.

1.8 Theorem (Goncharov and Nurtazin [4]; Harrington [6]). Let T be a complete de-

cidable theory and let D be a set. Then T has a D-decidable prime model if and only if

there is a D-computable listing of the principal types of T , or equivalently, if and only

if there is a D-computable listing of the isolated paths in [S(T )].

Theorem 1.3 can be restated in terms of PAC trees as follows.

1.9 Theorem (Goncharov and Nurtazin; Millar). There is a PAC tree T such that

there is no computable listing of the isolated paths in [T ].
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2 New Results

The following theorem has a simple proof, but as we will see, it can be combined with

some of the results mentioned in the previous section to yield several interesting corol-

laries, including an extension of Theorem 1.2 and a new, simple proof of a strong form

of Theorem 1.1.

2.1 Theorem. Let T be a PAC tree and let D >T ∅. There is a D-computable listing

of the isolated paths in [T ].

Proof. Let σ0, σ1, . . . be a computable enumeration of the elements of T . We build a

D-computable listing f0, f1, . . . of the isolated paths in [T ] so that σn ⊂ fn for all n.

Note that if g is an isolated path in [T ], then there is some n such that g is the unique

extension of σn in [T ], so if σn ⊂ fn and fn is a path in [T ], then fn = g. So by ensuring

that σn ⊂ fn ∈ [T ] for all n, we ensure that every isolated path in [T ] is on our listing.

Thus our only problem is to guarantee that each fn is isolated.

The intuitive idea is to use D to pick the path fn. We extend σn until we find a split

on T (if ever). We continue along the right node of this split if 0 ∈ D, and along the

left node if 0 /∈ D. We then proceed along T until we find another split (if ever). We

continue along the right node of this split if 1 ∈ D, and along the left node if 1 /∈ D. We

continue defining fn along T in this manner, using D to choose which direction to take

every time we hit a fork in the road. This ensures that fn is D-computable (and indeed,

that all fn are uniformly D-computable). But it also ensures that if we hit infinitely

many splits along the way while defining fn, then D can be computed from fn, which is

impossible since fn is in [T ], and hence is computable, and D is not computable. Thus

there are only finitely many splits along fn, and hence fn is an isolated path.

The formal definition of fn is by recursion. Let m0
n = 0 and τ 0n = σn. (The counter

mi
n keeps track of how many splits have been encountered by step i of the definition.)

If τ in has only one immediate successor µ on T , then let τ i+1
n = µ and mi+1

n = mi
n.

Otherwise, let τ i+1
n = τ in

aD(mi
n) and mi+1

n = mi
n + 1.

Let fn =
⋃

i τ
i
n. It is clear that the fn are uniformly D-computable, and each

fn ∈ [T ]. Also, σn ⊂ fn for all n, and hence, as explained above, every isolated path in

T is fn for some n. So all that is left to show is that each fn is isolated.

Suppose that fn is not isolated. Then there are infinitely many i such that τ in has

two immediate successors. Let i0 < i1 < · · · be all such i. Note that this list is

4



computable, and mik
n = k for all k. Furthermore, for each k, the last element of τ ik+1

n is

D(mik
n ) = D(k). Thus D 6T fn. But T is a PAC tree, so fn 6T ∅, and hence D 6T ∅,

contradicting the choice of D.

Applying Theorem 1.9, we obtain the following corollary.

2.2 Corollary. There is a PAC tree T such that there is no computable listing of the

isolated paths of T , but for every D >T ∅, there is a D-computable listing of the isolated

paths of T .

By Theorem 1.8, the following extension of Theorem 1.2 is another consequence of

Theorem 2.1.

2.3 Corollary. Let T be a complete decidable theory such that all the types of T are

computable and let D >T ∅. Then T has a D-decidable prime model.

Combining this result with Theorem 1.3, we obtain the following corollaries, which

extend Corollary 1.4 and Theorem 1.1, respectively.

2.4 Corollary. There is a complete decidable theory T such that all the types of T are

computable and

1. T has no computable prime model but

2. T has a D-decidable prime model for every D >T ∅.

2.5 Corollary. There is a structure A that has no computable presentation but has a

D-decidable presentation for every D >T ∅. Furthermore, A is the prime model of a

complete decidable theory T such that all the types of T are computable.

One way in which the structures built by Slaman and by Wehner in proving Theorem

1.1 differ is that Wehner’s structure is elementarily equivalent to a computable structure,

while Slaman’s is not. The structure in Corollary 2.5 is thus more similar to Wehner’s

structure than to Slaman’s, since it is a model of a complete decidable theory, and hence

is elementarily equivalent to a decidable structure.
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