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1 Introduction

How random is a real? Given two reals, which is more random? If we partition
reals into equivalence classes of reals of the “same degrees of randomness”, what
does the resulting structure look like? The goal of this paper is to look at ques-
tions like these, specifically by studying the properties of reducibilities that act as
measures of relative randomness, as embodied in the concept of initial-segment
complexity.

The initial segment complexity of a real is a natural measure of its relative
randomness, and has been implicitly studied by many authors. For instance, by
the work of Schnorr we know that a real o is Martin-Lof random if and only
if its initial segment complexity is roughly speaking as big as it can be. (See
below for the relevant definitions.) That is, if we denote prefix-free Kolmogorov
complexity by H, then « is Martin-Lof random if and only if there is a constant
¢ such that H(« | n) > n — ¢ for all n, where a | n denotes the initial segment
of a of length n. Furthermore, the work of Barzdins [3] shows that if a set is
computably enumerable then its plain Kolmogorov complexity is bounded by
2logn, and this bound can be sharp, as shown by Kummer [30]. Finally, recent
work of Levin, Lutz, Mayordomo, Staiger, and others (e.g., [38, 52, 36, 34]) proves
that effective Hausdorff dimension is essentially intertwined with initial segment
complexity.

We look at reducibilities <z which have the property that if o <y S then
the prefix-free initial segment complexity of « is no greater than that of 8 (up
to an additive constant), and hence act as measures of relative randomness.
One such reducibility, called domination or Solovay reducibility, was introduced
by Solovay [50], and has been studied by Calude, Hertling, Khoussainov, and
Wang [8], Calude [4], Kucera and Slaman [29], and Downey, Hirschfeldt, and
Nies [18], among others. Solovay reducibility has proved to be a powerful tool
in the study of randomness of effectively presented reals. Motivated by certain
shortcomings of Solovay reducibility, which we will discuss below, we introduce
two new reducibilities and study, among other things, the relationships between
these various measures of relative randomness.
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We work in Cantor space 2¢ with basic clopen sets [o] = {oa : o € 2¥} for
strings o € 2<“. The Lebesgue measure of a clopen set [o] is 27171, This space is
measure-theoretically identical with the interval of reals (0, 1), though the two
spaces are not homeomorphic. We identify a real with its binary expansion, which
we may think of as an element of 2, and hence with the set of natural numbers
whose characteristic function is the same as that expansion. (Some reals have
two binary expansions; for such a real, which is always rational, we choose the
nonterminating expansion.) We also identify finite binary strings with rationals.
Our computability-theoretic notation follows the standard of Soare [45].

Our main concern will be reals that are limits of computable increasing se-
quences of rationals. We call such reals computably enumerable (c.e.), though
they have also been called recursively enumerable, left computable (by Ambos-
Spies, Weihrauch, and Zheng [2]), left semicomputable, and lower semicom-
putable. If, in addition to the existence of a computable increasing sequence
qo, q1, - - - of rationals with limit «, there is a total computable function f such
that & — g,y < 27" for all n, then « is called computable. These and related
concepts have been widely studied. In addition to the papers and books men-
tioned elsewhere in this introduction, we may cite, among others, early work of
Rice [41], Lachlan [31], Soare [43], and Ceitin [10], and more recent papers by
Ko [24, 25], Calude, Coles, Hertling, and Khoussainov [7], Ho [23], and Downey
and LaForte [20]. Several of the results mentioned below provide strong evidence
that computably enumerable reals are natural objects in the study of effective
randomness in the same way that computably enumerable sets are natural ob-
jects in classical computability theory.

An alternate definition of c.e. reals can be given as follows.

Definition 1.1. A set A C N is nearly computably enumerable if there is a
computable approximation {As}scw such that A(xz) = limg As(x) for all x and
As(z) > Asqa(z) = Fy < 2(As(y) < Asia(y))-

As shown by Calude, Coles, Hertling, and Khoussainov [7], a real 0.y 4 is c.e.
if and only if A is nearly c.e.. An interesting subclass of the class of c.e. reals is
the class of strongly c.e. reals. A real 0.y 4 is said to be strongly c.e. if A is c.e..
Soare [44] noted that there are c.e. reals that are not strongly c.e..

A computer M is self-delimiting if, for all finite binary strings o and 7 C 7/,
we have M?(7) | = M?(r') 1, where M?(7) | means that the computation
of M on input 7 and using oracle o converges, and M7 (7)1 means that this
computation diverges.

It is not difficult to see that a real is c.e. if and only if it is the measure of
the domain of a self-delimiting machine. This fact is analogous to the statement
that a set is c.e. if and only if it is the domain of a function on N computed by
a Turing machine.

The self-delimiting computer M is universal if for each self-delimiting com-
puter N there is a constant ¢ such that, for all binary strings o and 7, if N7(7)]
then M (u) = N?(7) for some p with |u| < |[7|+c. We call ¢ the coding constant
of N.



Fix a self-delimiting universal computer M. We can define Chaitin’s number

Q= QM via
o= Y 2
M(o))

which is the halting probability of the computer M. The properties of € relevant
to this paper are independent of the choice of M. A c.e. real is an Q-number if
it is Qs for some self-delimiting universal computer M.

The c.e. real  is random in the canonical Martin-Lof sense [37] of c.e. ran-
domness. There are many equivalent formulations of c.e. randomness. The one
that is most relevant to us here is based on prefix-free complexity, which we define
below. (The history of effective randomness is quite rich and involved; references
include van Lambalgen [53], Calude [5], Li and Vitanyi [35], and Ambos-Spies
and Kucera [1].)

Recall that the prefix-free complexity H(7) of a binary string 7 is the length of
the shortest binary string o such that M(c)}= 7. (Often K(7) is used instead
of H(7). The choice of self-delimiting universal computer M does not affect
the prefix-free complexity, up to a constant additive factor.) For n € N, we
write H(n) for H(1™). Most of the statements about H(7) made below also
hold for the plain Kolmogorov complexity C(7). For more on the definitions
and basic properties of H(7) and C(7), see Chaitin [14], Calude [5], Li and
Vitanyi [35], and Fortnow [21]. Among the many works dealing with these and
related topics, and in addition to those mentioned elsewhere in this paper, we
may cite Solomonoff [47-49], Kolmogorov [26-28], Levin [32-34], Zvonkin and
Levin [56], Gdcs [22], Schnorr [42], and Chaitin [11].

A real « is random, or more precisely, 1-random, if there is a constant ¢
such that H(a | n) > n — ¢ for all n. As mentioned earlier, Schnorr showed
that this definition is equivalent to the earlier, measure-theoretical one due to
Martin-Lof [37]. (An earlier article by Levin [34] studied monotone complexity
and proved a similar characterization of 1-randomness.)

Many authors have studied  and its properties, notably Chaitin [12-14]
and Martin-Lof [37]. In the very long and widely circulated manuscript [50] (a
fragment of which appeared in [51]), Solovay carefully investigated relationships
between prefix-free complexity, Kolmogorov complexity, and properties of ran-
dom languages and reals. See Chaitin [12] for an account of some of the results
in this manuscript.

Solovay discovered that several important properties of Q0 (whose definition
is model-dependent) are shared by another class of reals he called Q-like, whose
definition is model-independent. The point here is that when we look at classical
computability we always talk about the halting problem rather than @ halting
problem, even though the actual definition depends on the relevant enumeration
of the partial computable functions. The reason we can do this is that we can
show that all versions of the halting problem are “the same” by showing that
they all have the same m-degree. Solovay’s idea was to define an appropriate
type of reduction to show that all the versions of € are “the same”. Indeed, the
reduction below is a kind of analytic m-reducibility.



Definition 1.2. Let o and B be c.e. reals. We say that a dominates 8 and
that B is Solovay reducible (S-reducible) to «, and write 8 <s «, if there are
a constant ¢ and a partial computable function ¢ : Q — Q such that for each
rational ¢ < o we have (q) 1< B and

B—plq) <cla—q).
We write a =¢ B if a <g 8 and 8 <5 a.

The idea is that, given an approximation to «, we can generate one converging
to [ just as fast. Solovay reducibility is reflexive and transitive, and hence =g is
an equivalence relation on the c.e. reals. Thus we can define the Solovay degree
deg. () of a c.e. real a to be its =4 equivalence class.

Solovay reducibility is naturally associated with randomness due to the fol-
lowing fact.

Theorem 1.3 (Solovay [50]). Let 8 <s « be c.e. reals. There is a constant ¢
such that H(B | n) < H(a [ n) + ¢ for all n.

It is this property of Solovay reducibility (which we will call the Solovay
property), which makes it a measure of relative randomness. This is in contrast
with Turing reducibility, for example, which does not have the Solovay property,
since the complete c.e. Turing degree contains both random and nonrandom
reals.

Solovay observed that {2 dominates all c.e. reals, and Theorem 1.3 implies that
if a c.e. real dominates all c.e. reals then it must be random. This led him to define
a c.e. real to be -like if it dominates all c.e. reals (that is, if it is S-complete).
The point is that the definition of Q-like seems quite model-independent (in the
sense that it does not require a choice of self-delimiting universal computer),
as opposed to the model-dependent definition of 2. However, Calude, Hertling,
Khoussainov, and Wang [8] showed that the two notions coincide, by showing
that if a c.e. real is Q-like, then it is the halting probability of some universal
machine. This circle of ideas was completed recently by Kué¢era and Slaman [29],
who showed that all random c.e. reals are Q-like.

This collection of results gives great insight into the structure of random c.e.
reals and their initial segment complexity. We know that there is a ¢ such that
H(o) < |o| + H(|o]) + ¢ for all 0 € 2<%, and that this upper bound cannot be
improved. It would therefore seem reasonable that there would be many possible
initial segment complexities of random c.e. reals, since to be random a real need
only have its prefix-free initial segment complexity be above n. However, the
results above show that for c.e. reals this is not so. There is essentially only one
c.e. random real, namely ), and all versions of it oscillate in prefix-free initial
segment complexity at essentially the same rate.

For more on c.e. reals and S-reducibility, see for instance Chaitin [12-14],
Calude, Hertling, Khoussainov, and Wang [8], Calude and Nies [9], Calude [4],
Kucera and Slaman [29], and Downey, Hirschfeldt, and Nies [18]. For instance, in
[18], Downey, Hirschfeldt, and Nies proved that the S-degrees of c.e. reals form a



dense distributive uppersemilattice, where the natural join operation is induced
by arithmetical addition. They also showed that if a + (8 is random for c.e. reals
« and B, then one of o and 8 must also be random, but, on the other hand, for
any non-random c.e. real -y, there are c.e. reals a and 8 such that a4+ 5 = v and
a, B <g 7. These facts demonstrate a qualitative difference between random and
non-random c.e. reals, as reflected in the structure of the S-degrees.

Solovay reducibility is an excellent tool in the study of the relative random-
ness of reals, but it has several shortcomings. One such shortcoming is that
S-reducibility is quite ill-behaved outside the c.e. reals. It is not very hard to
construct a noncomputable real that is not S-above the computable reals (in
fact, this real can be chosen to be d.c.e., that is, of the form o — 8 where «
and [ are c.e.). This and similar facts show that S-reducibility is very unnatural
when applied to non-c.e. reals. Another problem with S-reducibility is that it is
uniform in a way that relative initial-segment complexity is not. This makes it
too strong, in a sense, and appears to preclude its having a natural characteriza-
tion in terms of initial-segment complexity. In particular, Calude and Coles [6]
answered a question of Solovay by showing that the converse of Theorem 1.3
does not hold (see below for an easy proof of this fact). Thus, if our goal is to
study relative initial segment complexity of reals, it behooves us to look beyond
S-reducibility.

In this paper, we introduce two new measures of relative randomness that
provide additional tools for the study of the relative randomness of reals, and in-
vestigate their properties and the relationships between them and S-reducibility.
In the same way that m-reducibility is a very refined reducibility in classical
computability theory, and is extended by other reducibilities such as Turing re-
ducibility, so is S-reducibility extended by the new ones we introduce. Our hope
is that these new measures of relative randomness will reveal insights like those
discussed above into the very nature of initial segment complexity. Thus the pur-
pose of this paper is to establish some of their basic properties and relationships,
and hence provide a solid basis for further work in this area. (We will mention
below some of the work that has already been done since the original writing of
this paper.)

We begin with sw-reducibility, which has some nice features but also some
shortcomings. It is related to a reducibility recently studied by Soare [46] and
Csima [15] in connection with computability-theoretic notions arising from the
work of Nabutovsky and Weinberger [39] in differential geometry. Informally, sw-
reducibility says that there is a natural way, with little compression, to produce
the bits of one real from another. It agrees with Solovay reducibility on strongly
c.e. reals but is in general different. Recently, Yu and Ding [54] have proven a
number of interesting results about sw-reducibility, one of which is that there
is no maximum sw-degree of c.e. reals, meaning that while Solovay complete-
ness captures l-randomness, there is no such characterization based on uniform
reductions between initial segments of similar lengths.

We then move on to the very interesting rH-reducibility, which shares many of
the best features of S-reducibility, while not being restricted to the c.e. reals, and



can also be seen as a less uniform version of sw-reducibility. This nonuniformity
allows us to circumvent the problems with sw-reducibility, such as the lack of
a maximum degree among c.e. reals. Furthermore, rH-reducibility has a very
nice characterization, in terms of relative initial-segment complexity, which can
be seen as a partial converse to the Solovay property. (Indeed, rH stands for
“relative H”.) More specifically, we prove that a <,y £ if and only if there is
a constant ¢ such that, for all n, the initial segment complexity of a [ n given
B | n is less than or equal to c. We also prove that <,y is well-behaved on the
c.e. reals. For instance, we show that the rH-degrees of c.e. reals form a dense
uppersemilattice with top degree that of 2 and join induced by addition.

We remark that, since the original writing of this paper, there have been
quite a number of subsequent investigations into the notion of relative random-
ness via initial segment complexities. These have yielded significant insights into
the nature of randomness and have seen nice applications in other arenas. For
instance, it has recently been shown that constructing a c.e. set A for which there
is a ¢ with H(A | n) < H(n) + ¢ for all n gives a simple priority-free solution to
Post’s problem (see [17,19,40]). There appears to be a strong potential in this
area for the development of a complex theory paralleling and interacting with
the theory of measures of relative complexity studied in classical computability
theory.

2 Strong Weak Truth Table Reducibility

Solovay reducibility has many attractive features, but it is not the only interest-
ing measure of relative randomness. In this section, we introduce another such
measure, sw-reducibility, which is more explicitly derived from the idea of ini-
tial segment complexity, and which is in some ways nicer than S-reducibility. In
particular, sw-reducibility is much better adapted to dealing with non-c.e. reals.
Furthermore, sw-reducibility is also helpful in the study of S-reducibility, as we
will indicate below, and provides a motivation for the definition of rH-reducibility
in the next section, since rH-reducibility is a kind of “sw-reducibility with ad-
vice”.

Recall that a Turing reduction I'* = B is called a weak truth table (wtt)
reduction if there is a computable function ¢ such that the use function ~y(z) is
bounded by ¢(z).

Definition 2.1. Let A,B C N. We say that B is strongly weak truth table
reducible (sw-reducible) to A, and write B <,,, A, if there are a constant ¢ and
a wtt reduction I' such that B = I'* and Vx(y(z) < x +¢).

For reals a« = 0.x4 and B = 0.xp, we say that B is sw-reducible to o, and
write 8 <., a, if B <., A.

Since sw-reducibility is reflexive and transitive, we can define the sw-degree
deg_ (@) of a real « to be its sw-equivalence class.

Solovay [50] noted that for each k there is a constant ¢ such that for all n > 1
and all binary strings o, 7 of length n, if 0.0 —0.7| < k27" then |H (1) — H(0)| <



c. Using this result, it is easy to check that sw-reducibility has the Solovay
property.

Proposition 2.2. Let § <., a be c.e. reals. There is a constant ¢ such that
H(BIn)<H(a|n)+c foralncw.

Theorem 2.5 below shows that the converse of Proposition 2.2 does not hold
even for c.e. reals.

We now explore the relationship between S-reducibility and sw-reducibility
on the c.e. and strongly c.e. reals. We begin by noting the following lemma,
implicit in Solovay [50].

Lemma 2.3. Let a and 8 be c.e. reals, and let ag,aq,... and By, B1,... be
computable increasing sequences of rationals converging to o and B, respectively.
Then o <g B if and only if there are a constant ¢ and a total computable function
[ such that for all n € w we have o — gy < (B — Bn).

Proof. First suppose that a <g 8 and let c and ¢ be as in Definition 1.2. For each
n let f(n) be the least s such that as = ©(3,). Then a — af,) < a —@(B,) <
C(B - ﬁs)

For the converse, suppose that ¢ and f are as above. For each rational ¢, if
there is a stage s, such that Bs, > ¢ then let p(q) = ay(,,), and otherwise let
©(q) 1. Then ¢ is defined on all rationals less than 3, and for any such rational
q we have o — p(q) = a — aps,) < (B — Bs,) < (B —q). Thus a <5 8. O

Whenever we mention a c.e. real a below, we assume that we have chosen a
computable increasing sequence g, a1, ... converging to a. The previous lemma
guarantees that, in determining whether one c.e. real dominates another, the
particular choice of such sequences is irrelevant.

In general, neither of the reducibilities under consideration implies the other.

Theorem 2.4. There exist c.e. reals a <., § such that o s . Moreover, «
can be chosen to be strongly c.e..

Proof. We must build a and S so that a <, f and « is strongly c.e., while
satisfying the following requirements for each e, c € w.

Re,c : 3q € Q(C(ﬁ - Q) f>§ o — ée(q))a

where &, is the eth partial computable function. We do this with a straightfor-
ward finite injury argument.

We discuss the strategy for a single requirement R. .. Let k be such that
¢ < 2. We must make the difference between 3 and some rational g quite small
while making the difference between a and @, (q) relatively large. At a stage t we
pick a new big number d. For the sake of R. ., we will control the first d + & + 3
places of (the binary expansion of) 8 and a; for s > t. We set S;(x) =1 for all
x with d < < d+ k + 2, while at the same time keeping as(z) = 0 for all such
x. We let ¢ = ;. Note that, since we are restraining the first d + k + 3 places of



Bs, we know that, unless this restraint is lifted, 35 can only change on positions
greater than or equal to d 4+ k + 3, and hence 3 — ¢ < 27(@+5+3) This means
that, unless we lift the restraint, ¢(f — ¢) < 2F2~(¢+k+3) — 9=(d+3)

We now need do nothing until we come to a stage s > ¢ such that @, s(q) |
and 0 < ay — . s(q) < 2713 Our action then is the following. First we
add 27(@+k+2) t5 3. Then we restrain 3, for u > s + 1 on its first d + k + 3
places. Assuming that this restraint is successful, it follows that ¢(8 — q) <
27(d+3) +27(d+2) < 27(d+1).

Finally we win by our second action, which is to add 27¢ to as,;. Then
a—as =271 s0oa—d.(q) =274 > c(B - q), as required.

The theorem now follows by a simple application of the finite injury priority
method.

It is easy to see that o <,,, 3. When we add 2~ (@+++2) to 3, since 3,(z) = 1
for all z with d < = < d+ k + 2, the effect is to make position d — 1 of 8 change
from 0 to 1. On the « side, the only change is that position d — 1 changes from 0
to 1. Hence we keep A <,,, B (with constant 0). It is also clear that « is strongly
c.e.. O

We note that, since sw-reducibility has the Solovay property, the previous
result gives a quick proof of the theorem, due to Calude and Coles [6], that the
converse of Theorem 1.3 does not hold. This is one example of the usefulness of
sw-reducibility in the study of S-reducibility.

Theorem 2.5. There exist c.e. reals o <s 3 such that o £.,, B (in fact, even
a %y B). Moreover, 8 can be chosen to be strongly c.e..

Proof. The proof is a straightforward diagonalization argument, similar to the
previous proof, but even easier. The strategy is described below. We build sets A
and B and let « = 0.y 4 and 8 = 0.xp. We must meet the following requirements.

Re,c : If I, has use = + c then FEB %+ A.

The idea is quite simple. We need only make B “sparse” and A “sometimes
thick”. That is, for the sake of R. ., we set aside a block of ¢ + 2 positions of
the binary expansion of 3, say n,n+1,...,n + ¢+ 1. Initially we have none of
these numbers in B, but we put allof n+1,...,n+c+ 1 into A. If we ever see
a stage s where I f; (n) = 0 with use n + ¢, we can satisfy the requirement by
adding 2= (+¢+1) t0 both a, and B, the effect being that B,(n +c+ 1) changes
from 0 to 1, As(n+1) for 1 <4 < ¢+ 1 changes from 1 to 0, and A4(n) changes
from 0 to 1.

It is easy to check that a <s 8 and that (8 is strongly c.e.. O

The counterexamples above can be jazzed up with relatively standard degree
control techniques to prove the following result.

Theorem 2.6. Let a be a nonzero c.e. Turing degree. There exist c.e. reals «
and (3 of degree a such that o is strongly c.e., « <., 3, and o %s B. There
also exist c.e. reals v and § of degree a such that § is strongly c.e., v <g 9, and

Y o 0.



On the strongly c.e. reals, however, S-reducibility and sw-reducibility coin-
cide. Since sw-reducibility is sometimes easier to deal with than S-reducibility,
this fact makes sw-reducibility a useful tool in the study of S-reducibility on
strongly c.e. reals. An example of this phenomenon is Theorem 2.10 below,
which is most easily proved using sw-reducibility, as the proof included below
illustrates.

Theorem 2.7. If 8 is strongly c.e. and « is c.e. then a <, B implies a <g 5.

Proof. Let A and B be such that a = 0.x4 and 8 = 0.xp, and suppose that
I'B = A with use z 4+ ¢. We may assume that we have the approximations of
A and B sped up so that every stage is expansionary. That is, for all stages s
and all z < s, we have I'5:(2) = A,(2). We may also assume that if z enters
A at stage s then s > z. Now if z enters A at stage s then some number less
than or equal to z + ¢ must enter B at stage s. Since B is c.e., this means
that s — Bs—1 > 2~ (*19). But z entering A corresponds to a change of at most
27% in the value of «, so 8; — Bs-1 = 27 (s — as—1). Thus for all s we have
a —ag < 2(8 — Bs), and hence, by Lemma 2.3, o <5 3. O

Theorem 2.8. If « is strongly c.e. and (3 is c.e. then o <g B implies a <., 5.

Proof. Let A and B be such that o = 0.x4 and 8 = 0.xp. Note that, since «
is strongly c.e., for all k£ and s we have A [ k = Ag [ k if and only if & — a5 <
2~ (k+1) | Tet f and ¢ be as in Lemma 2.3 and let k be such that ¢ < 2k=2,
To decide whether z € A using the first  + k bits of B, find the least stage
s such that By |  +k = B | = + k. We claim that z € A if and only if
x € Ay(s). To verify this claim, first note that 8 — 8, < 2~ (@+k) since otherwise
Bs would have to change on one of its first x + k places after stage s. Thus
o — ape < 207227 (@+R) = 2=(@+2) "and hence, as noted above, A has stopped
changing on the numbers 0, ...,z by stage f(x). O

Corollary 2.9. If o and 5 are strongly c.e. then o <g B if and only if a <., 5.

There is a greatest S-degree of c.e. reals, namely that of €2, but the situation
is different for strongly c.e. reals.

Theorem 2.10. Let o be strongly c.e.. There is a strongly c.e. real that is not
sw-below a, and hence not S-below .

Proof. The argument is nonuniform, but is still finite injury. Since sw-reducibility
and S-reducibility coincide for strongly c.e. reals, it is enough to build a strongly
c.e. real that is not sw-below a. Let A be such that & = 0.x4. We build c.e. sets
B and C' to satisfy the following requirements.

Rei:TA 4BVt +£C,

where I, is the eth wtt reduction with use less than z + e. It will then follow
that either 0.xp %o @ or 0.x¢ %eow O



The idea for satisfying a single requirement R.; is simple. Let I(e,i,s) =
max{z : Vy < (T2 (y) = Bs(y)/\f';z“ = Cs(y))}. Pick a large number k >> e, i
and let R, ; assert control over the interval [k, 3k] in both B and C, waiting until
a stage s such that (e, ,s) > 3k.

First work with C. Put 3k into C, and wait for the next stage s’ where
l(e,i,s") > 3k. Note that some number must enter A, — As below 3k + i. Now
repeat with 3k — 1, then 3k — 2,..., k. In this way, 2k numbers are made to
enter A below 3k + i. Now we can win using B, by repeating the process and
noticing that, by the choice of the parameter k, A cannot respond another 2k
times below 3k + e.

The theorem now follows by a standard application of the finite injury
method. a

Some structural properties are much easier to prove for sw-reducibility than
for S-reducibility. One example is the fact that there are no minimal sw-degrees
of c.e. reals, that is, that for any noncomputable c.e. real « there is a c.e. real
strictly sw-between a and the computable reals. The analogous property for
S-reducibility was proved by Downey, Hirschfeldt, and Nies [18] with a fairly
involved priority argument.

Definition 2.11. Let A be a nearly c.e. set. The sw-canonical c.e. set A* as-
sociated with A is defined as follows. Begin with Af = (. For all x and s, if
either v ¢ As and © € Asq1, orx € As and x ¢ Asy1, then for the least j with

(z,]) & A5, put (x,7) into A7 .
Lemma 2.12. A* <, A and A <,, A*.

Proof. Since A is nearly c.e., (z, j) enters A* at a given stage only if some y < x
enters A at that stage. Such a y will also be below (z, j). Hence A* <_,, A with
use x. Clearly, z € A if and only if A* has an odd number of entries in row
x, and furthermore, since A is nearly c.e., the number of entries in this row is
bounded by x. Hence A <,, A*. a

Corollary 2.13. If A is nearly c.e. and noncomputable then there is a noncom-
putable c.e. set A* <., A.

Corollary 2.14. There are no minimal sw-degrees of c.e. reals.

Proof. Let A be nearly c.e. and noncomputable. Then A* <, A is noncom-
putable, and we can c.e. Sacks split A* into two disjoint c.e. sets A} and Aj of
incomparable Turing degree. Note that AF <, A*. (To decide whether z € A,
ask whether z € A* and, if the answer is yes, then run the enumerations of A}
and A% to see which set x enters.) So ) <,,, A} <., 4* <.., A. a

Actually, while the above proof yields more than just nonminimality, there
is an easier proof that the sw-degrees of c.e. reals have no minimal members.
Given a c.e. real A = 0.a1as ..., consider the c.e. real B = 0.a10a200a3000ay4 . . ..
It is easy to prove that if A is noncomputable then so is B. But it is also easy



to see that B <,,, A, and that if it were the case that A <,,, B then A would be
computable. Hence ) <_, B <., A.

One thing we can get out of the proof of Corollary 2.14 is that every c.e.
real has a noncomputable strongly c.e. real sw-below it. The same is not true
for S-reducibility.

Theorem 2.15. There is a noncomputable c.e. real o such that all strongly c.e.
reals dominated by o are computable.

Proof. We begin by noting the following lemma, proved in [18].

Lemma 2.16. Let § <5 « be c.e. reals. There are a c.e. real v and a positive
c € Q such that o = ¢+ 7.

A ce.set A C{0,1}* presents a c.e. real « if A is prefix-free and

a=>Y 27l

c€A

In [20], Downey and LaForte constructed a noncomputable c.e. real « such that
if A presents « then A is computable. We claim that, for this «, if § <g «a is
strongly c.e. then § is computable.

To verify this claim, let § <g a be strongly c.e.. By Lemma 2.16, there is a
positive ¢ € Q such that o = ¢ + . Let k € w be such that 27% < ¢ and let
8§ =~+ (c—27%)3. Then § is a c.e. real such that o = 2% 4 6.

It is easy to see that there exist computable sequences of natural numbers
bo, b1, ... and do, dq,... such that 27%8 = Yicw 2-b and § = Yicw 2-%i  Fur-
thermore, since /3 is strongly c.e., so is 27%3, and hence we can choose by, by, . ..
to be pairwise distinct, so that the nth bit of the binary expansion of 27%f3 is 1
if and only if n = b; for some 1.

Since ¢, 27bi 4 D icw 274 =27k3 4+ § = o < 1, Kraft’s inequality tells us
that there is a prefix-free c.e. set A = {0y, 01, ...} such that |og| = bo, |o1| = do,
loa| = by, |og| = di, ete.. Now > 27170 =3 270 457, 274 = o, and
thus A presents a.

By our choice of «, this means that A is computable. But now we can compute
the binary expansion of 27%3 as follows. Given n, compute the number m of
strings of length n in A. If m = 0 then b; # n for all 4, and hence the nth bit
of binary expansion of 27%3 is 0. Otherwise, run through the b; and d; until
either b; = n for some i or d;, = --- = d;,, = n for some j; < --- < j,. By the
definition of A, one of the two cases must happen. In the first case, the nth bit of
the binary expansion of 27%3 is 1. In the second case, b; # n for all 4, and hence
the nth bit of the binary expansion of 27%3 is 0. Thus 27% 4 is computable, and
hence so is 5. ad

As we have seen, in some ways the sw-degrees are nicer than the S-degrees.
Unfortunately, the theorem below shows that this is not always the case. There
is a simple join operator, arithmetic addition, which induces a join operation on
the S-degrees. No such operation exists for the sw-degrees.



Theorem 2.17. There exist nearly c.e. sets A and B such that for all nearly
c.e. W 2., A, B there is a nearly c.e. Q with A,B <_,, Q but W £, Q. Thus
the sw-degrees of c.e. reals do not form an uppersemilattice.

Proof. We build A, B, and W in stages, to meet the following requirements.
Re: (I =ANAYe = B) = 3Q.(A, B <., Qe AW, £.., Qc).

Here we assume that each I, and A, is an sw procedure with use bounded by
x+e, and that the triples (I, Ae, We) run through all triples consisting of a pair
of such procedures together with a nearly c.e. set W,. The above requirements
are broken into subrequirements

Rei: (IVe = AN AYe = B) = 3Q.(A, B <... Qe AP £ W),

where each @; is an sw procedure with use bounded by x ++4 and the &; run over
all such procedures.

Actually, the argument is nonuniform. We really construct sets Q. together
with backup sets Q). ; and meet the requirements

Rei: (I =ANAY=B)=
(A, B <o Qe NA,B <., Qe A (D7 = We = 075 £ W,)).

These naturally have subrequirements R. ; ; trying to make @iQ‘“‘ # W, or @?“ #*
We. '

The argument is a finite injury one, and hence it suffices to give the strategy
for a single R ; ;. The idea is the following. For a single R.; ;, one picks a
killing point n, which is large and fresh. If this happens at stage s then choosing
n = s would suffice with the standard use conventions. We may assume that
e,i,j <<nande<i<}j.

Now the idea is that R, ;; will control the region [n, (2j + 1)n?] of both A
and B. We assume by priorities that the regions below n have ceased changing.

The key observation is the following. Suppose that we wish to kill @iQe =W,
or @? = W,. We need to have a situation where, through our changing A or
B, we cause W, to have to change on some m, while @), or Q. ; changes only on
k > m+i or k > m+j, respectively. However, W, is not really under our control.
But suppose that using only B changes we can get to a situation where W, has a
block of 2j + 1 consecutive 1’s. That is, at stage s, we have (@zQ (2) = We(2))][s]
and ((15]@“(2) =We(2))[s] for all z < m+j+1, where [m—j,m—+j+1] C We,.
(Here, m is the central number in the interval.) Further assume that the stage
is e-expansionary, that is, I(e, s) > max{l(e,t) : t < s} and l(e,s) > m + j + 1,
where

l(e,s) = max{z : ¥y < 2((I7"(y) = Aly) A A (y) = B(y))[s]}-

Then we can win as follows.



Step 1. First we put some small number p << m — i into Q.[s+ 1] and take all
the numbers bigger than p (including, in particular, the interval [m—i, m+i+1])
out of Q.[s + 1]. We do not, however, change Q. ;.

Step 2. Then we wait for the length of agreement to recover. That is, we wait
for an e-expansionary stage t > s such that (';PZQe (z) = We(2))[t] and (@?E(z) =
We(2))[t] for all z < m+ j + 1. Since we have not changed Q. ; between stages
s and t, we have W,[s] [m+j+1=W,[t] I m+j+1.

We can now win by putting m into A, Q., and Q. ;. Since W, is supposedly
above both A and B via I, and A, respectively, W, must change below m+e <
m+7j. Because W, is nearly c.e. and contains the whole interval [m—j, m+j+1],
such a change can only occur below m — j. Thus some p < m — j must enter
W,. But supposedly &9« (p) = W,(p). Therefore Q. should have changed in the
region below p + j, which it did not.

The conclusion is that one of the equalities is wrong.

Thus if we ever see a situation where, at some e, 7, j expansionary stage, W
contains a full interval [j — m,m + j + 1] with the end points between n and
(2j + 1)n? then we are done.

We must now deal with the case in which such a good block never occurs.
We think of the argument to follow as an entropy one. The idea is that if W,
never contains a block of the appropriate size then it cannot change as often as
we can change B, and hence we can ensure that W, is not sw-above B.

We cycle through B configurations as follows, using the B changes to induce
changes in W,. At an e-expansionary stage s, we put by = (2j + 1)n? — j into
B. We wait until the next e-expansionary stage s; > s. Note that W, must
have changed between stages s and s1, and indeed a number must have entered
W, below (2j + 1)n? — j + e, and hence below (25 + 1)n%. Now we can repeat.
We put b; — 1 into B, take b; out of B, and wait for the next e-expansionary
stage so > s1, at which point there will have been another change in W, below
(2j + 1)n?. We keep repeating this: we next put b; into B again; at the next
e-expansionary stage, we put by — 2 into B and take out by — 1 and b;. We
continue until we have put the whole block [n + j, (25 + 1)n? — j] into B. Our
assumption is that, throughout this entire procedure, we never get a large block
of consecutive 1’s in W,.

To keep A, B <, Qe¢, Qe,i, We copy what we do to B into Q. and Q. ;. These
will be the only changes to these sets below (25 + 1)n?, unless we see the desired
block of 1’s in W,. Notice also that W, will not change below n throughout this
procedure, since otherwise the e, i, j computations could not recover. (Any p < n
entering W, would require a change in the @ sets below p+ j < n+ j.)

The above procedure allows us to make 2(2/ +1)n?—n—2; changes to B between
n+j and (25 + 1)n? — j. If W, is sw-above B then it must change in response
to each of these changes. We compute an upper bound on how many times W,
can change in the interval [n, (25 + 1)n?], assuming that it has no block of 2j + 1
many 1’s in that interval.

We can split [n, (27 + 1)n?] into less than n? consecutive blocks of size 2j + 1.
For each W, configuration at an e-expansionary stage, each of these intervals



must contain at least one 0. For each such interval, it follows that there are only
227 possible configurations of that interval that can be realized. This gives W, a
maximum of (22j)”2 = 221’7 possible configurations in the interval [n, (27+1)n2].
But since n >> j, which implies that n? > n — 25, we have 2n?j < (25 +1)n? —
n — 2j. This means that W, cannot change as often in the interval [n, (2] + 1)n?]
as we can change B in the interval [n+ 7, (25 + 1)n? — j], and hence we can force
it to be the case that B £.,, We.

A standard application of the finite injury priority method completes the
proof. ad

The lack of a join operation leads to difficulties in exploring the structure of
the sw-degrees beyond what is done here, and is one of the motivations for the
introduction of rH-reducibility in the following section.

3 Relative H Reducibility

Both S-reducibility and sw-reducibility are uniform in a way that relative initial-
segment complexity is not. This makes them too strong, in a sense, and it is
natural to wish to investigate nonuniform versions of these reducibilities. Moti-
vated by this consideration, as well as by the problems with sw-reducibility, we
introduce another measure of relative randomness, called relative H reducibil-
ity, which can be seen as a nonuniform version of both S-reducibility and sw-
reducibility, and which combines many of the best features of these reducibilities.
Its name derives from a characterization, discussed below, which shows that there
is a very natural sense in which it is an ezact measure of relative randomness.

Definition 3.1. Let a and § be reals. We say that 3 is relative H reducible
(rH-reducible) to «, and write 8 <.n «, if there are a constant k and a partial
computable binary function f such that for each n there is a j < k for which

flaTn,j)i=p1n.

Since rH-reducibility is reflexive and transitive, we can define the rH-degree
deg . («) of a real a to be its rH-equivalence class.

There are several characterizations of rH-reducibility, each revealing a differ-
ent facet of the concept. We mention three, beginning with a “relative entropy”
characterization whose proof is quite straightforward. For a c.e. real 8 and a
fixed computable approximation Sy, 1,... of 8, we will let the mind-change
function m(3,n, s,t) be the cardinality of {u € [s,t] : B, [ n # But1 [ n}.

Proposition 3.2. Let o and B be c.e. reals. The following condition holds if
and only if B <.z a. There are a constant k and computable approximations
g, a1, ... and By, b1, ... of a and B, respectively, such that for alln and t > s,
if ar [ n=as [ n then m(B,n,s,t) < k.

The following is a more analytic characterization of rH-reducibility, which
clarifies its nature as a nonuniform version of both S-reducibility and sw-reduc-
ibility.



Proposition 3.3. For any reals a and 3, the following condition holds if and
only if B <,u a. There are a constant ¢ and a partial computable function ¢ such
that for each n there is a 7 of length n + ¢ with |a — 7| < 27" for which o(7) ]
and |8 — p(r) < 27"

Proof. First suppose that § <,y a and let f and k be as in Definition 3.1. Let
¢ be such that 2° > k and define the partial computable function ¢ as follows.
Given a string o of length n, whenever f(o,j)J for some new j < k, choose a
new 7 2 o of length n + ¢ and define ¢(7) = f(o,J). Then for each n there is
a7 2 « | nsuch that p(r) = B | n. Since |a — 7| < |a —a | n| < 27" and
|8 — B 1 n| <27, the condition holds.

Now suppose that the condition holds. For a string o of length n, let S, be
the set of all u for which there is a 7 of length n + ¢ with |0 — 7| < 277! and
| — (7)) < 27"FL Tt is easy to check that there is a k such that |S,| < k for
all 0. So there is a partial computable binary function f such that for each o
and each pu € S, there is a j < k with f(o,7)|= p. But, since for any real v and
any n we have |y —~ | n| <277, it follows that for each n we have 8 | n € Supy.
Thus f and k witness the fact that 8 <.y a. a

The most interesting characterization of rH-reducibility (and the reason for
its name) is given by the following result, which shows that there is a very natural
sense in which rH-reducibility is an exact measure of relative randomness. Recall
that the prefix-free complexity H(7 | o) of 7 relative to o is the length of the
shortest string pu such that M7(u) = 7, where M is a fixed self-delimiting
universal computer.

Theorem 3.4. Let « and [ be reals. Then [ <.y « if and only if there is a
constant ¢ such that H(B [ n | a | n) < c for all n.

Proof. First suppose that § <,; « and let f and k be as in Definition 3.1.
Let m be such that 2™ > k and let 7g,...,7om_1 be the strings of length m.
Define the prefix-free machine N to act as follows with ¢ as an oracle. For all
strings u of length not equal to m, let N9 (u) 1. For each i < 2™, if f(o,i) |
then let N?(7;) J= f(o,i), and otherwise let N?(7;) 1. Let e be the coding
constant of N and let ¢ = e + m. Given n, there exists a j < k for which
f(a [ n,j)l= B | n. For this j we have N*I"(7;) = 3 | n, which implies that
H@B [ nlaln)<|nl+e<e

Now suppose that H(8 [ n | a | n) < ¢ for all n. Let 79, ..., 7; be a list of all
strings of length less than or equal to ¢ and define f as follows. For a string o
and a j < k, if M7(7;)] then f(o,j)l= M?(7;), and otherwise f(o,j)1. Given
n, since H(B [ n | a | n) < ¢, it must be the case that M*I"(7;) = B | n for
some j < k. For this j we have f(a [ n,j){= 0 [ n. Thus 8 <4 a. O

An immediate consequence of this result is that rH-reducibility satisfies the
Solovay property.

Corollary 3.5. If 8 <.u « then there is a constant ¢ such that H(8 | n) <
H(a | n)+c for all n.



On the other hand, the converse of this corollary is not true even for strongly
c.e. reals. This follows from Theorem 3.10 below and a result of Zambella [55],
who showed, using a technique due to Solovay [50], that there is a noncomputable
strongly c.e. real 3 such that for some ¢ we have H (S [ n) < H(n) + ¢ for all n.

The next two results, which show that rH-reducibility is a common weakening
of S-reducibility and sw-reducibility, follow easily from Proposition 3.3.

Proposition 3.6. Let o and B be c.e. reals. If B <s a then 5 <,y «.
Corollary 3.7. A c.e. real o is rH-complete if and only if it is random.
Proposition 3.8. If 8 <., a then § <.4 «.

Theorems 2.4 and 2.5 show that the converses of Propositions 3.6 and 3.8
do not hold, but even among strongly c.e. reals, where S-reducibility and sw-
reducibility agree, rH-reducibility is not equivalent to its stronger counterparts.

Theorem 3.9. There exist strongly c.e. reals o and B such that § <.; « but
B %o v (equivalently, 8 &s «).

Proof. We build c.e. sets A and B to satisfy the following requirements.
Re: I # B,

where I, is the eth wtt reduction with use less than = + e. We think of o and
B as 0.x4 and 0.xp, respectively, and we build A and B in such as way as to
enable us to apply Proposition 3.2 to conclude that 8 <.z a.

The construction is a standard finite injury argument. We discuss the satis-
faction of a single requirement R.. For the sake of this requirement, we choose
a large n, restrain n from entering B, and restrain n + e + 1 from entering A. If
we find a stage s such that ng‘g (n)}= 0 then we put n into B, put n+e+ 1 into
A, and restrain the initial segment of A of length n 4 e. Unless a higher priority
strategy acts at a later stage, this guarantees that I'*(n) # B(n).

Furthermore, it is not hard to check that, because of the numbers that we
put into A, for each n and ¢t > s, if oy [ n = a5 [ n then m(8,n, s, t) < 2 (where
m(B,n, s, t) is as defined before Proposition 3.2). Thus, by Proposition 3.2, 8 <,x
Q. O

It is interesting to note that, despite the nonuniform nature of its definition,
rH-reducibility implies Turing reducibility. Since any computable real is obvi-
ously rH-reducible to any other real, this implies that the computable reals form
the least rH-degree.

Theorem 3.10. If 5 <,y a then 8 <1 .

Proof. Let k be the least number for which there exists a partial computable
binary function f such that for each n there is a j < k with f(« [ n,j)l= 8 | n.
There must be infinitely many n for which f(a | n,j) ] for all j < k, since
otherwise we could change finitely much of f to contradict the minimality of



k. Let ng < my < --- be an a-computable sequence of such n. Let T be the
a-computable subtree of 2% obtained by pruning, for each i, all the strings of
length n; except for the values of f(« [ n;,j) for j < k.

If v is a path through T then for all ¢ there is a j < k such that ~ extends
f(a [ ng, 7). Thus there are at most k& many paths through T, and hence each
path through 7T is a-computable. But § is a path through T, so 8 < «. a

On the other hand, by Theorem 2.5, S-reducibility does not imply wtt-
reducibility, even among c.e. reals, and hence rH-reducibility does not imply
wtt-reducibility.

Structurally, the rH-degrees of c.e. reals are nicer than the sw-degrees of c.e.
reals.

Theorem 3.11. The rH-degrees of c.e. reals form an uppersemilattice with least
degree that of the computable sets and highest degree that of Q). The join of the
rH-degrees of the c.e. reals o and [ is the rH-degree of o + f3.

Proof. All that is left to show is that addition is a join. Since «, 8 <s « + £,
it follows that «, 5 <.z a + B. Let v be a c.e. real such that o, <,z 7. Then
Proposition 3.2 implies that a + 8 <.,; 7, since for any n and s < t we have
m(a+ B,n,s,t) < 2(m(a,n,s,t) + m(B,n,s,t)) + 1. O

In [18], Downey, Hirschfeldt, and Nies studied the structure of the S-degrees
of c.e. reals. As mentioned in the introduction, they showed that the S-degrees
of c.e. reals are dense. They also showed that every incomplete S-degree splits
over any lesser degree, while the complete S-degree does not split at all. The
methods of that paper can easily be adapted to prove the analogous results for
rH-degrees of c.e. reals.

Theorem 3.12. For any rH-degrees a < b of c.e. reals there is an rH-degree c
of c.e. reals such that a < ¢ < b.

Theorem 3.13. For any rH-degrees a < b < deg,,,(Q) of c.e. reals, there are
rH-degrees co and cy1 of c.e. reals such that a < cg,c1 < b and cgVecy =Db.

Theorem 3.14. For any rH-degrees a,b < deg,,(Q) of c.e. reals, aV b <
deg, ().

Thus we see that rH-reducibility shares many of the nice structural properties
of S-reducibility on the c.e. reals, while still being a reasonable reducibility on
non-c.e. reals. Together with its various characterizations, especially the one in
terms of relative H-complexity of initial segments, this makes rH-reducibility a
tool with great potential in the study of the relative randomness of reals.
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