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These five papers are all major advances in the reverse-mathematical and computa-
bility-theoretic analysis of combinatorial principles related to Ramsey’s Theorem. Re-
verse mathematics seeks to calibrate the strength of theorems provable in the theory Z2

of second-order arithmetic. Typically, given such a theorem T , one endeavors to find
a subsystem S of Z2 that is equivalent to T , in the sense that T is provable in S, but
also each axiom of S is provable from T over a weak base system. This base system is
usually RCA0, which roughly corresponds to the practice of computable mathematics
(and hence lends the area a distinctively computability-theoretic flavor). A celebrated
phenomenon is that there are a few such subsystems that suffice to classify many theo-
rems across mathematics, most famously the “big five” systems RCA0, WKL0, ACA0,
ATR0, and Π1

1-CA0. Furthermore, these systems are linearly ordered by strength.
This is not the full picture, however. Combinatorics has proved to be a particularly

rich source of theorems that fall outside the big five systems. An important example is
Ramsey’s Theorem for Pairs (and two colors), RT2

2, which states that for any coloring
of the unordered pairs of natural numbers into two colors, there is an infinite set H
such that all pairs of elements of H have the same color. (Such a set is said to be
homogeneous. The choice of number of colors does not matter in the context of this
review.) The analogs of this principle for triples and larger tuples are all equivalent to
ACA0, which roughly corresponds to the existence of arithmetic sets, but RT2

2 itself was
shown by Seetapun (in a 1995 paper by Seetapun and Slaman) to be strictly weaker.
(Here and below, all implications and nonimplications are over RCA0.) On the other
hand, Hirst (1987) used a computability-theoretic result of Jockusch (1972), combined
with the low basis theorem, to show that RT2

2 is not provable in WKL0.
Thus it was natural to ask whether RT2

2 implies WKL0. There are several factors
that made this an important question. The computability-theoretic study of versions
of Ramsey’s Theorem has been a fertile field since the work of Specker and especially
Jockusch in the early 1970’s (and in a sense even earlier, in the study of cohesive sets).
Weak König’s Lemma, the axiom added to RCA0 to obtain WKL0, states that every
infinite binary tree has an infinite path. It is a way of expressing the compactness of
spaces like the unit interval, and hence turns out to be equivalent to a host of theorems
that make essential use of compactness arguments. RT2

2 does not have many known
equivalents, but there are several theorems not provable in RCA0, or even in WKL0,
that follow from it, some of which will be discussed below. So establishing the precise
connection between the world of WKL0 and the world below RT2

2 was a major task for
reverse mathematics. While the results mentioned above showed that RT2

2 does not
fit neatly into the big-five picture, they left open the possibility that it might still fit
into the linearly ordered collection of major systems that includes not only the big five
but systems such as WWKL0, which will be discussed below. Furthermore, Seetapun’s
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result required a significant methodological development in the area, as did further
analysis of the strength of RT2

2 by Cholak, Jockusch, and Slaman (2001) and several
others. The general feeling seemed to be that RT2

2 does not imply WKL0, but it soon
became clear that strengthening Seetapun’s result from ACA0 to WKL0 in this way
would likely require another technical breakthrough.

This breakthrough comes in Liu’s 2012 paper, which is likely the best work in com-
putability theory by an undergraduate since the Friedberg-Muchnik Theorem in the
1950’s. Liu’s method is indeed computability-theoretic. It makes use of the separa-
tion of RT2

2 into the principles COH and SRT2
2 (which we will discuss further below)

by Cholak, Jockusch, and Slaman. RT2
2 is equivalent to the conjunction of these two

principles, so it is often possible to obtain results about it by dealing with each of them
separately. Typically, the SRT2

2 case is the more difficult one. In computability theory,
we can think of SRT2

2 as the following problem: Given a ∆0
2 set A, find an infinite

subset of either A or its complement. (See below for more on theorems as problems.)
The PA degrees (i.e., the Turing degrees of completions of Peano Arithmetic) are ex-
actly the ones that can compute infinite paths on every computable infinite binary tree.
Liu shows that if X does not have PA degree and A is any set (hence in particular
any ∆0

2 set), then there is an infinite set G contained in either A or its complement
such that G⊕X still does not have PA degree. The proof requires an intricate forcing
construction, using a considerable elaboration on the notion of Mathias forcing.

An ω-structure in the language of second-order arithmetic (which is really a two-
sorted first-order language) is one whose first-order part is just the standard natural
numbers, and hence is determined by which subsets of N it contains. Such a structure
is an ω-model of RCA0 if and only if it is a Turing ideal, i.e., is closed under joins and
Turing reducibility. By iterating the relativized form of his computability-theoretic
result and combining it with an analog for COH due to Cholak, Jockusch, and Slaman,
Liu constructs an ω-model of RCA0 + RT2

2 that is not a model of WKL0. Building on
this work, in his 2015 paper Liu improves his result to yield an ω-model of RCA0 +RT2

2

that is not a model of WWKL0. The latter system, intermediate in strength between
RCA0 and WKL0, is important in the reverse-mathematical analysis of measure theory
and related areas, and can be thought of as corresponding to the existence of Martin-
Löf random sets. Indeed, Liu’s 2015 paper also contains applications of his methods to
the theory of algorithmic randomness.

The existence of these ω-models of course means that RT2
2 does not imply WKL0, or

even WWKL0, but it is in fact a stronger result. This point is highlighted by considering
the relationship between RT2

2 and SRT2
2. The latter principle is the restriction of RT2

2

to stable colorings of pairs, i.e., colorings c such that limy c({x, y}) exists for all x,
and as mentioned above can also be thought of in terms of subsets of ∆0

2 sets or their
complements. There are several ways to show that the Cohesive Set Principle COH
is strictly weaker than RT2

2, but the question of whether SRT2
2 implies RT2

2 remained
open since it was stated by Cholak, Jockusch, and Slaman. This question attracted
the attention of many researchers, and led to several papers with partial and related
results. One of its intriguing aspects is that there is a computability-theoretic sense in
which SRT2

2 is clearly weaker than RT2
2: It is easy to show that every computable stable

coloring of pairs has a ∆0
2 infinite homogeneous set, but Jockusch showed that this is

not always the case for non-stable colorings. This fact does not suffice to separate the
two principles in the context of reverse mathematics, however, because a proof of RT2

2

from SRT2
2 could use multiple applications of the latter principle. As in the case of the

previous question, it became clear that solving it would likely require a particularly
fine understanding of the combinatorial subtleties of these deceptively simple-sounding
principles.
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The solution comes in Chong, Slaman, and Yang’s paper. An early idea for separating
RT2

2 and SRT2
2 was to try to show that SRT2

2 always has low solutions, i.e., that every ∆0
2

set has a low infinite subset of either it or its complement. Combining the relativization
of this fact with Jockusch’s result that there are computable 2-colorings of pairs with
no Σ0

2 infinite homogeneous sets would then lead to the construction of an ω-model
of RCA0 + SRT2

2 that is not a model of RT2
2. However, Downey, Hirschfeldt, Lempp,

and Solomon (2001) built a ∆0
2 set with no low subset of either it or its complement.

This might have seemed like the end of this approach, but reverse mathematics does
not always reduce to computability theory on the standard natural numbers. RCA0

does not have the full induction axiom scheme, but only its restriction to Σ0
1 formulas

(indeed, its first-order part is Σ1-PA, Peano Arithmetic with induction restricted to
the Σ1 formulas of first-order arithmetic), so it has models with nonstandard first-order
parts. Chong, Slaman, and Yang define a carefully constructed model M of Σ1-PA (and
the principle of Σ2-bounding, which does not hold in Σ1-PA but is weaker than Σ2-
induction) and show that, in the sense of M , every ∆0

2 set does indeed have a low
infinite subset in either it or its complement. (Computability theory over models with
restricted induction is of course different from standard computability theory, but a
small amount of induction suffices to have many of the basic definitions and results
available.)

This result allows Chong, Slaman, and Yang to build a model M of RCA0 + SRT2
2

with first order part M consisting entirely of sets that are low in the sense of M .
Cholak, Jockusch, and Slaman showed that SRT2

2 implies the Σ0
2-bounding principle

BΣ0
2, and Jockusch’s result on Σ0

2 homogeneous sets is provable in RCA0 + BΣ0
2, so

M is not a model of RT2
2. It follows that RCA0 + SRT2

2 0 RT2
2. With some further

work, Chong, Slaman, and Yang show that in fact WKL0 + SRT2
2 0 RT2

2. Whether
RT2

2 and SRT2
2 can be separated in the context of ω-models remains an open question,

and continues to generate significant partial results.
Another important feature ofM is that it does not satisfy the Σ0

2-induction principle
IΣ0

2, and hence SRT2
2 does not imply IΣ0

2. Chong, Slaman, and Yang (to appear)
have since improved this result to show that RT2

2 does not imply IΣ0
2, and Patey and

Yokoyama (to appear) have gone even further by showing that RT2
2 is a Π0

3-conservative
extension of IΣ0

1.
As mentioned above, there are many principles not provable in RCA0 that follow

from RT2
2 (often with quite natural proofs). In addition to SRT2

2 and COH, examples
include the Chain / Antichain Principle CAC, which states that every infinite partial
order has an infinite chain or antichain; the Ascending / Descending Sequence Principle
ADS, which states the every infinite linear order has an infinite ascending or descending
sequence; and the Erdős-Moser Principle EM, which states that every infinite tourna-
ment has an infinite transitive subtournament, i.e. that if T is an irreflexive binary
relation on N such that if x 6= y then exactly one of T (x, y) and T (y, x) holds, then
there is an infinite set S such that the restriction of T to S is transitive.

Principles like these often have complex computability-theoretic and reverse-mathe-
matical relationships, which are in some cases quite difficult to establish. For example,
while it is not difficult to show that CAC implies ADS and that RT2

2 implies EM, it was
not known whether these implications reverse. Existing methods seemed insufficient to
settle these questions, particularly in the latter case.

Lerman, Solomon, and Towsner’s paper answers both questions by producing ω-
models that separate CAC from ADS and RT2

2 from EM. These models are obtained in
a remarkable way, as we now discuss. All of the principles discussed here have the form
∀X(Φ(X)→ ∃Y Ψ(X,Y )), where Φ and Ψ are arithmetic properties. We can think of
such a principle P as a problem, where an instance is an X such that Φ(X) holds, and
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a solution to this instance is a Y such that Ψ(X,Y ) holds. Let P and Q be two such
principles. Typically, to build an ω-model of RCA0 + P that is not a model of Q, one
begins with a computable instance X of Q with no computable solutions. Usually X is
chosen so that its solutions are particularly far from computable in some appropriate
sense. One then shows that each computable instance of P has a solution that does
not compute any solutions to X, often via a forcing argument. Relativizing this result
allows one to build a Turing ideal I in a step-by-step manner, adding to I a solution
to each instance of P in I, without at any point adding a solution to X. This ideal
determines an ω-model of RCA0 + P that is not a model of Q.

This is the procedure followed in Liu’s proof that RT2
2 does not imply WKL0, for

example, with X taken to be a computable infinite binary tree each of whose paths
has PA degree. In both of their proofs, however, Lerman, Solomon and Towsner need
considerably more from the “bad instance” X than just having difficult solutions. In
each case, for their iterated forcing construction to work, they first need to build X
carefully (and noncomputably) using a separate forcing construction. The methods
developed in this paper are likely to continue to be useful, as already demonstrated in
the work of Patey.

The key computability-theoretic result behind Seetapun’s proof that RT2
2 does not

imply ACA0 is that RT2
2 is cone-avoiding, in the sense that if X is an A-computable

instance of RT2
2 and B 
T A, then X has a solution Y such that B 
T A⊕Y . Taking

B = ∅′ and applying the iterative model-building procedure discussed above results in
an ω-model of RCA0 + RT2

2 that does not contain ∅′, and hence cannot be a model of
ACA0. As mentioned above, the versions RTn

2 of Ramsey’s Theorem for n-tuples with
n > 2 are all equivalent to ACA0, and hence are not cone-avoiding. One might expect
similar behavior from other Ramsey-theoretic principles. For example, the Free Set
Theorem for n-tuples, FSn, states that for every coloring c of the unordered n-tuples
of natural numbers into infinitely many colors, there is an infinite set F such that if
x0, . . . , xn−1 are distinct elements of F , then c({x0, . . . , xn−1}) /∈ F \ {x0, . . . , xn−1}.
FSn follows from RTn

2 , so FS2 does not imply ACA0, but the situation for higher
exponents was not clear.

Wang’s paper solves this problem, which was left open in the work of Cholak, Giusto,
Hirst, and Jockusch (2005), by showing that FSn is cone-avoiding for every n, and hence
full FS ≡ ∀nFSn does not imply ACA0. Indeed, Wang shows that FS is strongly cone-
avoiding, in the sense that if B 
T A and X is any instance of FS, then X has a
solution Y such that B 
T A ⊕ Y . The point here is that there is no requirement
that X be A-computable, and hence the cone-avoidance works even for instances X
that compute B. Wang obtains the same results for the Thin Set Theorem, which
was known to follow from from FS, and for the Rainbow Ramsey Theorem, which
he shows also follows FS; as well as for the Achromatic Ramsey Theorem of Erdős,
Hajnal, and Rado. Like FS, each of these principles involves colorings of tuples of
a fixed size. Thus the phenomenon highlighted by Wang—the existence of natural
Ramsey-theoretic principles that are weak in the sense that, unlike Ramsey’s Theorem
itself, their full versions for arbitrarily large tuples fail to imply ACA0—seems quite
widespread. Wang’s arguments use cohesive/stable decompositions like the one for RT2

2

discussed above, and Mathias forcing with the complexity of generic sets controlled by
Π0

1 classes. In addition to settling several open questions in a compelling way, this paper
suggests new computability-theoretic connections between various Ramsey-theoretic
principles that seem well worth exploring.
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