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ABSTRACT. Every computable universal algebra has a finitely pre-
sented expansion, but there are examples of finitely generated,
computably enumerable universal algebras with no finitely pre-
sented expansions. It is natural to ask whether such examples can
be found in well-known classes of algebras such as groups and semi-
groups. In this paper, we build an example of a finitely generated,
infinite, computably enumerable semigroup with no finitely pre-
sented expansions. We also discuss other interesting computability
theoretic properties of this semigroup. This paper is based on the
invited talk given by B. Khoussainov at the Mal’cev meeting 2011
dedicated to the 60th birthday of Professor Sergei Goncharov.

1. INTRODUCTION

The purpose of this paper is to construct a semigroup with certain
properties that are interesting from the point of view of the theory
of effective universal algebra. We begin by outlining some of the basic
notions of this theory. In subsection 1.3, we discuss the most significant
property of our semigroup, namely that it is a solution within the class
of semigroups of the equational specification problem of Bergstra and
Tucker [1, 2] and Goncharov [4].

1.1. Preliminaries. A universal algebra, or simply an algebra, for
short, is a structure A of the form (A; fi,..., fu,c1,...,Cm), Where
A is a nonempty set called the domain of A, each f; is a total func-
tion A% — A called a basic operation of arity k;, and each ¢; is a
distinguished element (or a constant) of A. Constants can be viewed
as functions of arity 0, so we will often suppress particular mention
of them unless we wish to highlight their role. The signature of A
is the sequence fi,..., fn,c1,...,cn of symbols representing the op-
erations and constants. We always assume this signature contains a
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function symbol of arity greater than 0. Note that we used the se-
quence fi,..., fn,C1,...,Cn In two ways: one as representing opera-
tions and elements of the algebra and the other as a sequence of sym-
bols. We will sometimes do the same below, in cases where which
meaning is being used is clear from the context. An ezxpansion of
the algebra A = (A; f1,..., fn,C1,.-.,¢n) is any algebra of the form
A = (A fi, oy fuy b1y oo hi, 1y ..o e). If the by are all constants,
then we say that A’ is an expansion by constants of A. For background
on universal algebras, see [7].

A countable algebra A = (A; f1, ..., fn) is computable if the domain
A is a computable set and each of the operations f; is a computable
function. For simplicity, when we are given such a computable algebra,
we may assume that A is a subset of w; indeed, if A is infinite, we may
assume that A = w. However, when convenient we may also take A to
be a computable subset of any space that can be naturally identified
with w via a standard coding, such as the set of finite binary strings or
the set of sentences in a computable language.

There are many natural examples of computable algebras, for in-
stance arithmetic (w; 0, +, x). There are many other important exam-
ples, however, in which the domain and basic operations can be made
computable only if we are willing to identify elements of the domain
via a computably enumerable equivalence relation. Examples include
the Lindenbaum Boolean algebras of computably enumerable first or-
der theories (such as Peano arithmetic) and finitely presented groups
and semigroups. To capture this class of algebras, we have the notion
of a computably enumerable algebra, which is our main object of study
in this paper. To define it, we begin with a few auxiliary definitions.

Let E be an equivalence relation on a set B. Denote the equivalence
class of x by [z]g, and the set of all such equivalence classes by B/FE.
We say that a function F': B" — B respects E if whenever [z;|p = [yi|g
for all i < n, we have [F(xo,...,2n_1)lg = [F(Yo, .-, Yn—1)]e. In this
case, the function f : (B/E)" — B/E induced by F is the one defined
by f([Il]E7 ey [xn]E) = [F(ZEI, Ce ,ZEn)]E.

Let B = (B; Fy,..., F,) be an algebra. An equivalence relation F
on B is called a congruence relation on B if every basic operation of
B respects E. For a congruence relation E on B, let B/E be the
quotient of B by F, that is, the algebra (B/F; f1,..., fa), where f; is
the function induced by F;.

Definition 1.1. A countable algebra is computably enumerable (c.e.)
if it is of the form B/ E for a computable algebra B and a c.e. congruence
relation £ on the domain of B.
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When we have a fixed c.e. algebra A = B/FE, we often drop the
subscript and write [z] in place of [x]g. We also often speak of the
elements of the domain of B as elements of A, identifying x with [z],
and speaking of E as the equality relation of A. It is easy to see that
we can always assume that the domain of B is infinite, and hence that
it is in fact w (or any other infinite set we identify with w, such as the
set of finite binary strings).

Although we will not study it in this paper, we can also define the
notion of a co-computably enumerable algebra, which is defined as in
Definition 1.1, but with E being co-c.e. A typical example of a co-
computably enumerable algebra is the group generated by a finite num-
ber of computable permutations of w. If g and ¢’ are elements of this
group then their nonequality is confirmed by the existence of an n such
that g(n) # ¢’(n). In Definition 1.1, if E is computable, then B/FE is
a computable algebra. Furthermore, an algebra is computable if and
only if it is both computably enumerable and co-computably enumer-
able. For a modern treatment of computable algebra and computable
model theory, see for instance [5].

We will need the following notion of homomorphism between alge-
bras.

Definition 1.2. Let B = (B; f1,..., fm) and C = (C;91,...,9m) be
algebras with the same signature. Let k; be the arity of f; (and hence
also of ¢;). A homomorphism from B to C is a map h : B — C
such that for each ¢+ = 1,...,m and each by,...,b;, € B, we have
h(fi(b1,...,bx,)) = gi(h(b1),..., h(by,)). If h is surjective, then we say
that C is a homomorphic image of B. An isomorphism is a homomor-
phism that is both injective and bijective.

Note that if A is a homomorphism from B to C then each constant
of B is mapped to the corresponding constant of C.

There is a one-to-one correspondence between the homomorphisms
of an algebra B and its congruence relations: For any congruence re-
lation £ on B, we have a homomorphism from B to B/E defined by
b — [b]g. Conversely, any homomorphism h from B determines the
congruence relation {(x,y) | h(x) = h(y)}. From the definitions above
it is clear that every c.e. algebra is a homomorphic image of a com-
putable algebra.

1.2. Finitely presented algebras. Let ¢ = fi,..., fu,c1,...,¢Cy be
a signature with at least one constant symbol. Let k; be the arity
of f;. Let V be an infinite set of variables. The set T" of terms of
this signature is defined inductively as follows. Each constant symbol
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and each variable is a term. If ¢y,..., %, are terms, then so is the
expression f;(t1,...,t,). We call a term a ground term if it contains
no variables. The set T of ground terms can be turned into an algebra
with signature o as follows. The interpretation of each ¢; is ¢; itself.
For each function symbol f; and tuple of ground terms (1, ..., t,), let
the value of the interpretation of f; on this tuple be f;(¢1,...,t, ). We
call the resulting algebra the term algebra and denote it by Zg.

Let A= (A; Fy,...,F,,aq,...,a,) be an algebra with signature o.
Fix a function s : V' — A, which we think of as an interpretation of the
variables in A. We extend s to a interpretation i(t) of each term t € T
in A by induction as follows. First, for each variable z, let i(z) = s(z),
and for each constant symbol ¢;, let i(¢;) = a;. In the inductive step,
for each basic operation f;, let i(f;(t1,...,tx;)) = Fj(i(t1), ..., i(tx;)).
Note that the value of i(t) depends only on the values of s on variables
occurring in ¢. In particular, if t € T then i(t) does not depend on s,
so we will use the notation i(t) for ground terms ¢ without specifying
a function s. Note also that in the term algebra 75, we have i(t) =t
for all t € Tg.

We say that A is generated by its constants if every element of A
is the interpretation of some ground term, or in other words, if every
element of A can be obtained from its constants by some chain of basic
operations. We say that A is freely generated by its constants if, in
addition, whenever ¢,¢ are different ground terms, i(t) # i(t').

It is not hard to see that the term algebra 75 has the following
properties (see for instance [7]).

(1) The algebra 7¢ is generated by its constants and computable.

(2) Any algebra with signature o that is generated by its constants
is a homomorphic image of 7.

(3) An algebra with the signature o is freely generated by its con-
stants iff it is isomorphic to 7.

Definition 1.3. An algebra A is finitely generated if some expansion
by constants A’ of A is generated by the constants of A’. We call these
constants generators.

Let A and A’ be as in the above definition, where A" has signature o.
Let i(t) be the interpretation of the term ¢ in A’. The word problem for
Aistheset {(t,t') € TexTe | i(t) = i(t')}. Although the word problem
for A depends on the choice of A’ (i.e., on the choice of generators), it is
easy to see that the Turing degree of the word problem is independent
of this choice. If this degree is 0, then we say that the word problem for
A is decidable. If A = B/E is a c.e. algebra, where B is a computable
algebra and F is a congruence relation on B, then the word problem
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for A is Turing equivalent to E. Thus, in this case the word problem
for A is decidable iff E' is computable.
We now define the concept of equational specification.

Definition 1.4. An atomic formula or equation is a formula of the
form ¢ = t', where ¢t and ¢’ are terms (which might contain variables).
An equational specification is a finite set of equations.

We say that an algebra A satisfies an equational specification S if
for all t = ¢’ € S and all functions s : V' — A, we have i(t) = i(t') in
A, where i is defined as above using s.

It is easy to see that if an algebra satisfies a given equational spec-
ification S, then so do all its homomorphic images, and that we can
computably check whether a given finite algebra satisfies 5.

Let S be an equational specification. Let Cn(S) be the set of all
equations that can be deduced from S (in the usual sense of first-order
logic). Note that Cn(S) is c.e. Let

E(S)={(t,t") € Te x Te | t =1 € Cn(S)},
and let
T(S)=1g/E(S).
It is not hard to see that the following facts hold (see for instance [11]).

(1) The algebra 7 (S) is generated by its constants.

(2) The relation E(S) is c.e., so T7(S) is a c.e. algebra.

(3) The algebra 7 (S) satisfies S.

(4) Any algebra A that is generated by its constants and satisfies
S is a homomorphic image of 7(.5).

(5) If B is generated by its constants and satisfies S, and property
(4) remains true with B in place of 7(5), then B is isomorphic
to 7(9).

The following is one of our central definitions.

Definition 1.5. An algebra A is finitely presented if there are an ex-
pansion by constants A’ of A and an equational specification S (in the

language corresponding to the signature of A’) such that A’ is isomor-
phic to 7(5).

Examples of finitely presented algebras include finitely presented
groups, which have been extensively studied in group theory. By prop-
erty (2) above, finitely presented algebras give us natural examples of
c.e. algebras.

Note that if A is finitely presented then it is finitely generated. Let
S be as in the above definition. Then it is easy to see that the word
problem for A is Turing equivalent to the word problem for 7(5). In



6 DENIS R. HIRSCHFELDT AND BAKHADYR KHOUSSAINOV

particular, A has decidable word problem iff 7(.5) does, i.e., iff E(S)
is computable.

1.3. The equational specification problem. Bergstra and Tucker
[1] gave the following simple example: The algebra (w;0,.S,2%), where
S is the successor function, is not finitely presented, but its expansion
(w;0,5,2% +, x) is finitely presented; its equational presentation is
given by the following set of equations:

r+0=2z, 24+ S(y)=Sx+y), tx0=0,
zx S(y) =z xy+z 2°=25(0), 25@ =2 x S(5(0)).

(See [1] for proofs of these facts.) This method of expanding signa-
tures turns out to be quite general. Indeed, Bergstra and Tucker [1]
proved that any computable algebra has a finitely presented expansion.
These observations led Bergstra and Tucker [1, 2], and independently
Goncharov [4], to ask the following question, known as the equational
specification problem: Does every finitely generated c.e. algebra have a
finitely presented expansion?

Kasymov [8] answered this question by constructing an example of
a finitely generated c.e. algebra with no finitely presented expansion.
A similar example, using Kolmogorov complexity, was constructed by
Khoussainov [9]. These examples of c.e. algebras were built for this
specific purpose, and their signatures consist of unary operation sym-
bols only. The methods that construct such examples do not carry
over to to build, for instance, semigroups with no finitely presented
expansions. Hence, it is natural to attempt to find such examples in
the classes of semigroups and groups. In the next section, we build an
example of a finitely generated, infinite c.e. semigroup. We then study
properties of this semigroup, and in particular, prove that it has no
finitely presented expansions. (The semigroup we build has an identity
element, and hence is in fact a monoid.)

We note that the upcoming paper [10] gives an example of a finitely
generated c.e. group with no finitely presented expansions. The proof
uses Golod-Shafarevich algebras and their properties [6].

2. CONSTRUCTION OF THE SEMIGROUP A(Z)

In this section, we construct an infinite, finitely generated c.e. semi-
group whose properties we will analyze in the following section.

Recall that a semigroup is an algebra with exactly one associative
binary operation. Let {z,y}* be the set of all finite strings over the
alphabet {z,y}. We will denote the empty string by A, and the length
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of a string u by |u|. Let - be the concatenation operation on strings.
Then the algebra
A= ({z,y}%")

is a semigroup, namely the free semigroup on the generators x and y.
Every semigroup with two generators is a homomorphic image of A,
which is clearly a computable algebra.

We will construct our semigroup as a quotient of A by an appropriate
congruence relation. We need a few definitions. A string v # A is a
substring of u if we can write u in the form u = ujvu,.

Definition 2.1. Let Z be a subset of {x,y}*. We say that a string u
realizes Z if u contains a substring from Z. Otherwise, we say that u
avoids Z. We denote the set of all strings that realize Z by R(Z).

It is clear that Z C R(Z) for all Z. With each Z C {z,y}* we
associate the equivalence relation

nz=A{p.q) Ip=qV p.acR(Z)}
Each equivalence class of 7y is either a singleton or R(Z). Moreover,
it is not hard to see that 1y is a congruence relation on the free semi-
group A; that is, if (uy,us), (v1,v2) € Nz then (ujvi, usve) € nz. We
denote the quotient semigroup A/nz by A(Z). This quotient semi-
group is finitely generated by the elements [z] and [y]. Furthermore,
the following facts clearly hold.

Lemma 2.2. (1) If Z is c.e. then A(Z) is a c.e. semigroup.
(2) If Z is computable then A(Z) is a computable semigroup.
(3) The semigroup A(Z) is finite iff R(Z) is cofinite.

One of our goals is to ensure that the semigroup A(Z) we build
is infinite. To do so, we need only make Z sufficiently sparse. Cen-
zer, Dashti, and King [3] showed that there is a computable sequence
lo,ly,... such that if Z contains at most one string of each length ;,
and no strings of any other length, then there is an infinite binary
string that avoids all strings in Z, and hence R(Z) is coinfinite. Miller
[13] later showed that we can take I; = i 4+ 5, and we use this fact for
simplicity of notation. Thus we have the following lemma.

Lemma 2.3. Let Z C {x,y}*. If for each k there are at most k many
strings of length < k+ 4 in Z, then R(Z) is coinfinite.

Proof. We can list the elements v, vq,... of Z so that |v;| > i+ 5 for
all 7. Since avoiding a string implies avoiding all its extensions, there
is a set Y containing exactly one string of each length of the form ¢ +5
such that any string that avoids Y also avoids Z. By Miller’s result
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mentioned above, there are infinitely many strings avoiding Y, whence
R(Z) is coinfinite. O

We now need a computability theoretic concept, the notion of a
simple set. A coinfinite c.e. subset of {z,y}* (or of w) is simple if its
complement does not contain any infinite c.e. subsets. Simple sets are
not computable (see [14]), and it follows from the definition that any
coinfinite c.e. set containing a simple set is itself simple. The following
lemma provides the set Z we use to define our semigroup.

Lemma 2.4. There is a simple set Z such that R(Z) is also simple,
which implies that A(Z) is infinite, and that 1y is not computable.

Proof. Let Wy, Wy, ... be a standard enumeration of all c.e. subsets of
{z,y}*. Let Z be the set of all u such that, for some i, the string u is
the first string of length > i + 5 to be enumerated into W;. Clearly, Z
is c.e., and hence so is R(Z).

It follows easily from the definition of Z that for each k, there are at
most k& many strings of length k£ + 4 in Z, so by Lemma 2.3, R(Z) is
coinfinite, and hence A(Z) is infinite.

If W is infinite then it contains a u such that |u| > i+5, so Z contains
an element of W;. Thus the complement of Z does not contain any
infinite c.e. sets, so Z is simple. Since R(Z) is coinfinite and contains
Z, it is also simple.

To show that 71y is not computable, assume otherwise, and let z €
R(Z). Then {u | (u,z) ¢ nz} is an infinite computable subset of the
complement of R(Z), contradicting the simplicity of R(Z). O

From now on, we fix a set Z as in the above lemma. In the next
section, we present several properties of A(Z). In particular, we show
that it has no finitely presented expansions.

3. PROPERTIES OF THE SEMIGROUP A(Z)

3.1. On expansions of A(Z). In this subsection, we prove the main
result of this paper by showing that the semigroup A(Z) has no finitely
presented expansions. To prove this fact, we need a few definitions and
lemmas.

Definition 3.1. An algebra A is residually finite if for any two distinct
elements a and b of A, there is a homomorphism of A onto a finite
algebra such that the images of a and b are distinct.

The following result was first proved by Mal’cev [11].

Lemma 3.2 (Mal'cev [11]). If an algebra A is finitely presented and
residually finite, then the word problem for A is decidable.
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Proof. Let S be as in Definition 1.5. By the comments following that
definition, it is enough to show that F(S) is computable. Since E(S5)
is c.e., it suffices to show that F(S) is also co-c.e. To enumerate the
complement of E(S), we enumerate all finite algebras with the same
signature as A that are generated by their constants and satisfy S. For
each such algebra and each pair of distinct elements b and o' of that
algebra, there are ground terms ¢t and ¢’ such that b and &’ are the inter-
pretations of t and t’, respectively. Let a and o’ be the interpretations
of t and ¢ in A. Then we know that (a,a’) ¢ E(S). The fact that A
is residually finite ensures that every pair of elements of the domain of
A that is not in E is eventually discovered in this fashion. 0

A translation of an algebra A with domain A is a map A — A of
the form x — f(ay,...,a;,.1,%,a;,...,a,_1), where f is an n-ary basic
operation of A and aq,...,a, 1 € A.

Lemma 3.3. Let E be an equivalence relation on the domain of an
algebra A. Then E is a congruence relation on A iff every translation
of A respects E.

Proof. 1t is clear that if E is a congruence relation, then every transla-
tion of A respects E. Now suppose that every translation of A respects
E. Let f be an n-ary basic operation of A and let (a1, b1), ..., (an,b,) €
E. Then (f(ay,az,...,a,), f(bi,as,...,a,)) € E, since the map x +—
f(z,ag,...a,) is a translation of A. By the same argument, we have
(f(by1,a9,as,...,a,), f(b1,bs,as,...,a,)) € E. Continuing this process
and applying transitivity, we have (f(a1,as,...,a,), f(b1,bs,...,b,)) €
E. ]

The following lemma was proved by Kasymov in [8]. Recall that the
equality relation of the semigroup A(Z) is denoted by 7z, and defined

by nz ={(»,q) |p=q V p,q € R(Z)}.

Lemma 3.4 (Kasymov [8]). Any c.e. algebra with equality relation ny
15 residually finite.

Proof. Let B = ({z,y}"/nz;h1,...,h) be a c.e. algebra. Then B =
C/nz for some computable algebra C = ({x,y}*; H1,...,Hy). Note
that the set T of all translations of C is uniformly computable.

Let z € R(Z), and let a and b be any pair of distinct elements of
{z,y}* \ R(Z). We construct a congruence relation F on B so that F
has finitely many equivalence classes, ([z],[a]) ¢ E, ([z],[b]) ¢ E, and
([a], [0]) ¢ E. (In this proof, [u] means [ul,,.) Then B/E is a finite
homomorphic image of B in which the images of [z], [a], and [b] are all
distinct.
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Enumerate a subset D of {z,y}*\ R(Z) as follows. Put a and b into
D. Whenever we find a g € T and a ¢ € {z,y}* such that g(c) # g(2)
and either g(c) € D or g(z) € D, put ¢ into D. It is not hard to see
that D is a c.e. subset of {z,y}*\ R(Z), and hence is finite.

Let £ = {([u],[v]) |l u=v V u,v ¢ D}. Clearly F is an equivalence
relation. Since D is finite, £ has finitely many equivalence classes.
Since a,b € D, we have ([z],[a]) ¢ E, ([z],[b]) ¢ E, and ([a],[b]) & E.
To show that E is a congruence relation on B, it is enough to show
that £ = {u,v | ([u],[v]) € E} is a congruence relation on C. By
Lemma 3.3, it is enough to show that every element of T respects E.
Fix g € T and let (u,v) € E. If [u] = [v] then [g(u)] = [g(v)], so
(g(u),g(v)) € E. Otherwise, u,v ¢ D. If g(z) € D then g(u) = g(v) =
g(2); otherwise, g(u),g(v) ¢ D. In either case, ([g(u)], [g(v)]) € E, so
again (g(u), 9(v)) € E. O

We can now prove the main theorem of this paper.

Theorem 3.5. There exists a computably enumerable, finitely gener-
ated, infinite semigroup with no finitely presented expansions.

Proof. The semigroup A(Z) is c.e., finitely generated, and infinite. Let
B=(A(Z),h1,...,hy) be an expansion of A(Z) that is a c.e. algebra.
By Lemma 3.4, B is residually finite. If it were finitely presented then,
by Lemma 3.2, the word problem for B would be decidable. That is,
1z would be computable, contradicting Lemma 2.4. 0

3.2. Computability theoretic properties of A(Z). Let A be a c.e.
algebra of the form B/E (see Definition 1.1). Recall that elements of
A are E-equivalence classes denoted by [z], where x is an element of B.
Most infinite c.e. algebras are effectively infinite, in the sense that one
can effectively list an infinite sequence of pairwise distinct elements of
the algebra. For example, any infinite computable algebra is clearly
effectively infinite. We formally define this property as follows.

Definition 3.6. The c.e. algebra A = B/FE is effectively infinite if
there is a computable sequence ng,nq,... of elements of B such that
[ni] # [n;] for all @ # j. Otherwise, we say that A is algorithmically
finite.

Clearly, every finite algebra is algorithmically finite. The semigroup
A(Z) constructed in Lemma 2.4 is an example of an infinite but algo-
rithmically finite algebra.

Theorem 3.7. The semigroup A(Z) is an infinite but algorithmically
finite algebra.
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Proof. We have already seen that A(Z) is c.e. and infinite. If ng, nq, ...
are such that (n;,n;) ¢ nz for all i # j, then at most one n; is in R(Z),
SO ng,ni,... cannot be a computable sequence, as the complement of
R(Z) contains no infinite c.e. subsets. O

For G C {z,y}*, let G,, be the set of all strings of length n that are
in G. We say that G is generic if

lim |Gl

n—oo 2N

=1.

Elements of G are sometimes called generic inputs. We say that a
problem P is generically decidable if there is an algorithm satisfying
the following two conditions:

(1) Every output of the algorithm correctly solves P.
(2) There exists a generic set G such that the algorithm halts on
all inputs in G.

Thus, a generically decidable problem always possesses an algorithm
that solves it on a set of generic inputs while never giving a wrong
answer. It turns out that many computationally hard problems, and
even some undecidable problems, are generically decidable in polyno-
mial time. Examples include the halting problem for Turing machines
with a one-sided tape, the Post correspondence problem, the tree sat-
isfiability problem, and the word problem for many finitely generated
groups and semigroups [12]. In contrast, the word problem for the
semigroup A(Z) is not generically decidable.

Theorem 3.8. The word problem for the semigroup A(Z), that is, the
relation nz, is not generically decidable.

Proof. Suppose otherwise. Let G be a generic set, and f an algorithm
such that f(u,v) halts for all u,v € G, and if f(u,v) halts then (u,v) €
nz iff f(u,v) = 1. Fix z € Z. It is easy to see from the construction
of Z that there are infinitely many n for which there exists a w, € G,
with w, ¢ R(Z). For each such n, we have (z,w,) ¢ 1z, so there are
infinitely many w such that f(z,w) halts and is not equal to 1. Since f
is computable, we obtain an infinite computable sequence of pairwise
distinct elements of A(Z), contradicting Theorem 3.7. O
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