
Degree Spectra of Intrinsically C.E. Relations

Denis R. Hirschfeldt
Department of Mathematics, Cornell University

January 2, 2001

Abstract

We show that for every c.e. degree a > 0 there exists an intrinsically c.e. re-
lation on the domain of a computable structure whose degree spectrum is {0,a}.
This result can be extended in two directions. First we show that for every uni-
formly c.e. collection of sets S there exists an intrinsically c.e. relation on the
domain of a computable structure whose degree spectrum is the set of degrees of
elements of S. Then we show that if α ∈ ω ∪{ω} then for any α-c.e. degree a > 0
there exists an intrinsically α-c.e. relation on the domain of a computable struc-
ture whose degree spectrum is {0,a}. All of these results also hold for m-degree
spectra of relations.

1 Introduction

There has been increasing interest over the last few decades in the study of the effective
content of mathematics. One field whose effective content has been the subject of a large
body of work, dating back at least to the early 1960’s, is model theory. (A valuable
reference is the handbook [7]. In particular, the introduction and the articles by Ershov
and Goncharov and by Harizanov give useful overviews, while the articles by Ash and
by Goncharov cover material related to the topic of this paper.)

Several different notions of effectiveness of model-theoretic structures have been in-
vestigated. In this paper, we are concerned with structures whose functions and relations
are uniformly computable.

The results in this paper are part of the author’s doctoral dissertation, written at Cornell University
under the supervision of Richard A. Shore. The author thanks Professor Shore for many useful com-
ments and suggestions. The author was partially supported by an Alfred P. Sloan Doctoral Dissertation
Fellowship.

Current address: School of Mathematical and Computing Sciences, Victoria University, P.O. Box
600, Wellington, New Zealand.

1



1.1 Definition. A structure A is computable if both its domain |A| and the atomic
diagram of (A, a)a∈|A| are computable. An isomorphism from a structure M to a com-
putable structure is called a computable presentation ofM. (We often abuse terminology
and refer to the image of a computable presentation as a computable presentation.) If
M has a computable presentation then it is computably presentable.

In model theory, we identify isomorphic structures. From the point of view of com-
putable model theory, however, two isomorphic structures might be very different. For
example, it is easy to give two computable presentations of the same group, only one
of which has a computable center. We do not wish to say that these two presentations
are the same. Thus, for our purposes, studying structures up to isomorphism is not
enough. Instead, we study structures up to computable isomorphism. This is reflected
in the following definition.

1.2 Definition. The computable dimension of a computably presentable structure M
is the number of computable presentations of M up to computable isomorphism.

One way in which we may attempt to understand the differences between noncom-
putably isomorphic computable presentations of a structure M is to compare (from a
computability-theoretic point of view) the images in these presentations of a particular
relation on the domain ofM. (Of course, this is only interesting if this relation is not the
interpretation in M of a relation in the language of M.) The study of additional rela-
tions on computable structures began with the work of Ash and Nerode [2] and has been
continued in a large number of papers. (References can be found in the aforementioned
articles in [7].)

Ash and Nerode were concerned with relations that maintain some degree of effec-
tiveness in different computable presentations of a structure.

1.3 Definition. Let U be a relation on the domain of a computable structure A and let
C be a class of relations. U is intrinsically C on A if the image of U in any computable
presentation of A is in C.

In [2], conditions that guarantee that a relation is intrinsically computable or intrin-
sically computably enumerable (c.e.) were given. More recent work has led to a number
of other conditions guaranteeing that a relation is intrinsically C for various classes C
(see [3], for example).

A different way to approach the study of relations on computable structures is to look
at the (Turing) degrees of the images of a relation in different computable presentations
of a structure.

1.4 Definition. Let U be a relation on the domain of a computable structure A. The
degree spectrum of U on A, DgSpA(U), is the set of degrees of the images of U in all
computable presentations of A.
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Ash-Nerode type conditions usually imply that the degree spectrum of a relation
is either a singleton or infinite. Indeed, for various classes of degrees, conditions have
been formulated that guarantee that the degree spectrum of a relation consists of all
the degrees in the given class (see [1], for example). Motivated by these considerations,
as well as by Goncharov’s examples [12] of structures of finite computable dimension,
Harizanov and Millar suggested the study of relations with finite degree spectra.

Harizanov [8] was the first to give an example of an intrinsically ∆0
2 relation with a

two-element degree spectrum that includes 0.

1.5 Theorem (Harizanov). There exist a ∆0
2 but not c.e. degree a and a relation U

on the domain of a computable structure A of computable dimension two such that
DgSpA(U) = {0, a}.

Remark. The existence of a relation that is not intrinsically ∆0
2 and has a two-element

degree spectrum that includes 0 is a direct consequence of the existence of a rigid
structure of computable dimension two. Indeed, suppose that A is such a computable
structure and let R be the binary relation that holds of x, y ∈ |A| if and only if x < y
and for all z ∈ (x, y), z /∈ |A|. Clearly, if B is a computable structure and f : A ∼= B
then deg(f(R)) = deg(f). So the fact that A has computable dimension two implies
that DgSpA(R) = {0, a} for some degree a. However, by a result of Goncharov [10], a
cannot be ∆0

2.
It is also easy to give an example of an intrinsically d.c.e. relation with a two-element

degree spectrum that does not include 0. Let d be a maximal incomplete d.c.e. degree,
as constructed in [5]. (That is, d 6= 0′ is d.c.e. and there are no d.c.e. degrees in (d,0′).)
It is not hard to build computable structures A0 and A1 in the language of directed
graphs and unary relations U0 and U1 on the domains of A0 and A1, respectively, so
that the domains of A0 and A1 are disjoint, DgSpA0

(U0) is the set of d.c.e. degrees, and
DgSpA1

(U1) = {d}. Now let A be the computable structure in the language of directed
graphs plus a unary relation R obtained by taking the union of A0 and A1 and letting
R hold of x if and only if x ∈ |A0|, and let U = U0 ∪ U1. It is easy to check that
DgSpA(U) = {b | d 6 b and b is d.c.e.} = {d,0′}.

Khoussainov and Shore and Goncharov [13],[14] showed the existence of an intrinsi-
cally c.e. relation with a two-element degree spectrum.

1.6 Theorem (Khoussainov and Shore, Goncharov). There exist a c.e. degree a and an
intrinsically c.e. relation U on the domain of a computable structure A of computable
dimension two such that DgSpA(U) = {0, a}.

This left open the question of which degrees can be the nonzero element of a two-
element degree spectrum. In this paper we show that, setting aside the issue of com-
putable dimension, each c.e. degree belongs to some two-element degree spectrum whose
other element is 0.
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1.7 Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation U
on the domain of a computable structure A such that DgSpA(U) = {0, a}.

The proof of this theorem, which will be given in Section 2, uses techniques from [14],
which in turn builds on work of Goncharov [11],[12] and Cholak, Goncharov, Khous-
sainov, and Shore [4].

In [14], Khoussainov and Shore also proved the following theorem.

1.8 Theorem (Khoussainov and Shore). For each computable poset P there exists
an intrinsically c.e. relation U on the domain of a computable structure A such that
〈DgSpA(U),6T〉 ∼= P. If P has a least element then we can pick U and A so that
0 ∈ DgSpA(U).

In Section 3, we show how to modify the proof of Theorem 1.7 to prove the following
extension of Theorem 1.8.

1.9 Theorem. Let {Ai}i∈ω be a uniformly c.e. (u.c.e.) collection of sets. There exists
an intrinsically c.e. relation U on the domain of a computable structure A such that
DgSpA(U) = {deg(Ai) | i ∈ ω}.

Another way in which we can extend Theorem 1.7 is by broadening our focus from
the c.e. degrees to larger classes of degrees. In Section 4, we show that each of a large
class of ∆0

2 degrees belongs to some two-element degree spectrum whose other element
is 0.

1.10 Definition. Let A ⊆ ω be a set. A computable sequence a0, a1, . . . is a ∆0
2

approximation of A if for all x ∈ ω, |{s | as = x}| is finite and x ∈ A⇔ |{s | as = x}| is
odd.

Let n ∈ ω. A is n-c.e. if there exists a ∆0
2 approximation a0, a1, . . . of A such that

|{s | as = x}| 6 n for all x ∈ ω.
A is ω-c.e. if there exist a ∆0

2 approximation a0, a1, . . . of A and a computable function
f such that |{s | as = x}| 6 f(x) for all x ∈ ω.

Let α ∈ ω ∪ {ω}. A degree is α-c.e. if it contains an α-c.e. set. A collection of sets
{Ai}i∈ω is uniformly α-c.e. if

⊕
i∈ω Ai = {〈i, x〉 | x ∈ Ai} is α-c.e..

Remark. The above definition of ω-c.e. is the one that will be useful in Section 4. There
is an equivalent definition which can be generalized to define the concepts of α-c.e. set
and α-c.e. degree for any computable ordinal α (see [6]).

1.11 Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There exists
an intrinsically α-c.e. relation V on the domain of a computable structure B such that
DgSpB(V ) = {0,b}.

The structure B will be an extension of the structure A constructed in the proof of
Theorem 1.7 for an appropriate c.e. degree a.
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Remark. One interesting consequence of Theorem 1.11 is that there exists a minimal
degree b such that {0,b} is realized as the degree spectrum of a relation on the domain
of a computable structure.

Theorems 1.9 and 1.11 can be conflated to produce the following theorem, which
can be proved by combining the modifications to the proof of Theorem 1.7 presented in
Sections 3 and 4.

1.12 Theorem. Let α ∈ ω∪{ω} and let {Ai}i∈ω be a uniformly α-c.e. collection of sets.
There exists an intrinsically α-c.e. relation V on the domain of a computable structure
B such that DgSpB(V ) = {deg(Ai) | i ∈ ω}.

It is also interesting to consider degree spectra of relations with respect to other
reducibilities.

1.13 Definition. Let r be a reducibility, such as many-one reducibility (m-reducibility)
or truth-table reducibility. Let U be a relation on the domain of a computable structure
A. The r-degree spectrum of U on A, DgSpr,A(U), is the set of r-degrees of the images
of U in all computable presentations of A.

It will be clear from their proofs that Theorems 1.7 and 1.11 are both true with
“degree” replaced by “m-degree” and “DgSpA(U)” replaced by “DgSpm,A(U)”. Thus, for
any reducibility r weaker than m-reducibility, both theorems remain true with “degree”
replaced by “r-degree” and “DgSpA(U)” replaced by “DgSpr,A(U)”. The same holds of
Theorems 1.9 and 1.12 if we require that Ai 6= ∅ and Ai 6= ω for all i ∈ ω.

2 Proof of Theorem 1.7

1.7. Theorem. Let a > 0 be a c.e. degree. There exists an intrinsically c.e. relation U
on the domain of a computable structure A such that DgSpA(U) = {0, a}.

Proof. Let A be a c.e. set that is not computable and let a0, a1, . . . be a computable
enumeration of A. Let A[0] = ∅, A[s + 1] = {a0, . . . , as}. We wish to construct com-
putable structures A0 and A1 and unary relations U0 and U1 on the domains of A0 and
A1, respectively, so that the following properties hold.

(2.1) A0 ∼= A1 via an isomorphism that carries U0 to U1.

(2.2) U0 ≡m A and U1 is computable.

(2.3) If G ∼= A0 is a computable structure then the image of U0 in G is either com-
putable or m-equivalent to A.

Our structures will be directed graphs. We begin by defining our basic building
blocks.
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2.1 Definition. Let n ∈ ω. The directed graph [n] consists of nodes x0, x1, . . . , xn+2

with an edge from x0 to itself, an edge from xn+2 to x1, and an edge from xi to xi+1 for
each i 6 n+ 1. We call x0 the top and xn+2 the coding location of [n].

Let S ⊂ ω. The directed graph [S] consists of one copy of [s] for each s ∈ S, with
all the tops identified.

Figure 2.1 shows [2] and [{2, 3}] as examples.

•�� ��top // //• // //• // //• coding location// //•hhhh

•�� ��top // //

�� ��

• // //• // //• coding location// //•hhhh

• // //• // //• // //• coding location// //•jjjj

Figure 2.1: [2] and [{2, 3}]

Remark. It is convenient to use directed graphs in this proof and in the ones presented
in Sections 3 and 4, but in all three cases it would be possible to use undirected graphs
(that is, graphs whose edge relations are symmetric) instead. This fact becomes useful
in the following situation. Suppose that we wish to prove for a particular theory T
that a theorem such as Theorem 1.7 still holds if we require that the structure A be a
model of T . One way of doing this is to show that we can code a computable graph
that satisfies the given theorem into a computable model A of T in a way that preserves
enough of the properties of the graph to allow us to conclude that the theorem holds of
A. However, it will often be easier to code an undirected graph into a model of T than
a directed graph. See [9] for details.

Now let us consider how we could go about satisfying (2.1) and (2.2) above. We
build A0 and A1 in stages. We begin by letting A0

0 and A1
0 be computable structures

with co-infinite domains, each consisting of one copy of [k] for each k ∈ ω. If at each
stage s+ 1 we enumerate the coding location of the copy of [3as] in A0

0 into U0 then we
will have ensured that U0 ≡m A. However, we also wish to make U1 computable while
guaranteeing that A0 ∼= A1 via an isomorphism that carries U0 to U1. To describe how
we can do this, we need two more definitions.

2.2 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. G consists of the disjoint union of a number of connected
components, which from now on we will just call the components of G.
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Suppose that G has components K and L isomorphic to [B] and [C], respectively,
where B,C ⊂ ω are finite. We define the operation K · L, which takes G to a new
computable structure extending G, as follows. Extend K to be a copy of [B ∪ C] using
numbers not in the domain of G. Leave every other component of G (including L)
unchanged.

We will also use the notation K · L to denote the graph [B ∪ C]. It should always
be clear which meaning of K · L is being used.

Given a finite sequence of operations, each of which can be applied to G, so that no
two operations in the sequence affect the same component of G, we can apply all of the
operations in the sequence simultaneously to G to get a structure extending G. In this
case we will say that we have applied the sequence of operations to G.

2.3 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite and let X0, . . . , Xn be components of G such that for each
i 6 n, Xi is isomorphic to [Si] for some finite Si ⊂ ω. We define two operations, each of
which takes G to a new computable structure extending G.

• The L-operation L(X0, . . . , Xn) consists of applying the sequence of operations
X0 ·X1, X1 ·X2, . . . , Xn ·X0 to G.

• The R-operation R(X0, . . . , Xn) consists of applying the sequence of operations
X0 ·Xn, X1 ·X0, . . . , Xn ·Xn−1 to G.

Note that if H is the structure obtained by applying L(X0, . . . , Xn) to G and H′ is
the structure obtained by applying R(X0, . . . , Xn) to G then H ∼= H′.

We can now proceed as follows. At stage s + 1, let X i
s, Y

i
s , and Zi

s be the copies in
Ais of [3as], [3as + 1], and [3as + 2], respectively. Perform L(Y 0

s , X
0
s , Z

0
s ) on A0

s to get
A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s ) on A1

s to get A1
s+1. (In order to ensure that A0 and

A1 are computable, the new numbers added to their domains at this stage are assumed
to be greater than s.) Put the coding location of the old copy of [3as] in A0

s+1 (that
is, the copy that was already in A0

0) into U0 and put the coding location of the new
copy of [3as] in A1

s+1 into U1. (Figure 2.2 pictures what happens on either side of the
construction. For each i = 0, 1, the copy of [3as] whose coding location enters U i is
underlined.)

Now let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. It is easy to show, by induction using
the definition of the L- and R-operations, that for each s, A0

s
∼= A1

s via an isomorphism
that carries U0[s] to U1[s]. (Here U i[s] is the set of all numbers that have entered U i

by the end of stage s.) Furthermore, whenever a component of Ais participates in an
operation at stage s + 1, so does the isomorphic component of A1−i

s . Since A0 and A1

have no infinite components, it follows that A0 ∼= A1 via an isomorphism that carries
U0 to U1.

Furthermore, it is still true that U0 ≡m A, since a number is in U0 if and only if it
is the coding location of the copy of [3a] in A0

0 for some a ∈ A. On the other hand, any
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[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as] [3as] · [3as + 2] [3as + 2] · [3as + 1]

[3as + 1]

��

[3as]

��

[3as + 2]

��
[3as + 1] · [3as + 2] [3as] · [3as + 1] [3as + 2] · [3as]

Figure 2.2: The Basic Coding Strategy (top: A0 / bottom: A1)

number put into U1 at a stage s + 1 is a new number, and is therefore greater than s.
Thus U1 is computable.

So we see that the above construction is enough to satisfy (2.1) and (2.2). We now
consider how to satisfy (2.3). Let us begin by attempting to satisfy this property for a
particular computable structure G. That is, we want to ensure that if G ∼= A0 then the
image of U0 in G is either computable or m-equivalent to A. The way in which we do
this is based on the following observation.

Let U be the image of U0 in G and let G[s] denote the stage s approximation to G.
Assume that for all s ∈ ω, A0

s, A1
s, and G[s] have no non-trivial automorphisms.

Suppose that at some stage s, A0
s has components X0

s , Y 0
s , Z0

s , and S0
s , A1

s has
isomorphic components X1

s , Y 1
s , Z1

s , and S1
s , respectively, and G[s] has isomorphic com-

ponents Xs, Ys, Zs, and Ss, respectively. Now suppose we perform L(Y 0
s , X

0
s , Z

0
s , S

0
s )

on A0
s to get A0

s+1 and perform R(Y 1
s , X

1
s , Z

1
s , S

1
s ) on A1

s to get A1
s+1. Then A0

s+1 has
components isomorphic to S0

s · Y 0
s , Y 0

s ·X0
s , X0

s ·Z0
s , and Z0

s · S0
s , and these are the only

components of A0
s+1 that contain copies of X0

s , Y 0
s , Z0

s , or S0
s . So if Xs, Ys, Zs, and Ss

do not grow into isomorphic copies of the aforementioned components of A0
s+1 then we

can win immediately by not involving these components in any further operations, thus
guaranteeing that G � A0.

So if G ∼= A0 then there are only two possibilities. The first is that Ss grows into
a copy of Ss · Ys, Ys grows into a copy of Ys ·Xs, Xs grows into a copy of Xs · Zs, and
Zs grows into a copy of Zs · Ss. In this case we will say that G “goes to the left”. The
other possibility is that Ys grows into a copy of Ss · Ys, Ss grows into a copy of Zs · Ss,
Zs grows into a copy of Xs ·Zs, and Xs grows into a copy of Ys ·Xs. In this case we will
say that G “goes to the right”.

Now, if the coding location of X0
s is put into U0 and the coding location of the new

copy of X1
s is put into U1 then the coding location of the copy of Xs that is part of
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the component isomorphic to Xs · Zs is in U . In other words, if G goes to the left then
the coding location of Xs in G[s] is in U , while if G goes to the right then the coding
location of the copy of Xs in G − G[s] is in U . It is easy to conclude from this that if
G goes to the left at all but finitely many stages then U ≡m A, while if G goes to the
right at all but finitely many stages then U is computable.

So it is enough to ensure that G either almost always goes to the left or almost always
goes to the right. This can be done by always using the same component of G, which
we will call the special component of G, as Ss.

That is, we first pick some component of G to be its special component. Say we pick
the one that extends the first copy of [0] to appear in G. (Let us assume that 0 /∈ A.)
At stage 0, we define Ai0 as above and wait until a copy of [0] is enumerated into G. We
also define r0 to be 0. The value of rs will code whether G goes to the left or to the
right at stage s.

At stage s + 1, we let X i
s, Y

i
s , and Zi

s be the copies in Ais of [3as], [3as + 1], and
[3as + 2], respectively, and let Sis be the isomorphic copy in Ais of the special component
Ss of G[s]. We wait until copies of X i

s, Y
i
s , and Zi

s are enumerated into G[s] and then
perform the same operations as before. We then wait until copies of Ss · Ys, Ys · Xs,
Xs · Zs, and Zs · Ss are enumerated into G. Either the copy of Ss · Ys or that of Zs · Ss
will extend Ss. Whichever one it is now becomes Ss+1. If Ss+1

∼= Ss · Ys then rs+1 = 0;
otherwise rs+1 = 1.

The above construction ensures that if G ∼= A0 then the special component of G is
infinite. On the other hand, it is not hard to check that it also guarantees that if G
changes direction infinitely often (that is, if rs does not have a limit) then no component
of A0 is infinite, so that G � A0. This is because, for each s ∈ ω, the copy of the special

component of G[s + 1] in A1−rs+1

s+1 is a component that participates in an operation for
the first time at stage s+ 1.

However, there are two problems with this construction. First of all, it is easy to
check that if G almost always goes to the left then no component of A1 is infinite, while
if G almost always goes to the right then no component of A0 is infinite. In either case,
(2.1) no longer holds.

We solve this by re-using components in operations. The idea is roughly as follows.
Instead of using four components in our operations, we use six. That is, at stage s+1, in
addition to the components mentioned above, we pick two other components B0

s and C0
s

of A0
s and isomorphic components B1

s and C1
s of A1

s, perform L(Y 0
s , X

0
s , Z

0
s , B

0
s , S

0
s , C

0
s )

on A0
s to get A0

s+1, and perform R(Y 1
s , X

1
s , Z

1
s , B

1
s , S

1
s , C

1
s ) on A1

s to get A1
s+1. (In order

to accommodate the extra components, X i
s will be the copy of [6as] in Ais. A similar

change will be made for the other components.)
As long as G is going in the same direction, we designate every other stage as an

isomorphism recovery stage. At such a stage s + 1, if rs = 0 then we let C0
s be the

component of A0
s that extends B0

s−1 and let C1
s be the isomorphic component of A1

s. On
the other hand, if rs = 1 then we let B1

s be the component of A1
s that extends C1

s−1 and
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let B0
s be the isomorphic component of A0

s. Whenever G changes direction, we restart
this isomorphism recovery process.

It is straightforward to check that this strategy guarantees that if rs has a limit
then the copies of the special component of G in A0 and A1 are isomorphic, while still
ensuring that if rs does not have a limit then no component of A0 or A1 is infinite. We
will give an example below to illustrate isomorphism recovery.

Another problem that we must face in the full construction is that, in general, we can
not know in advance whether a given computable structure G is isomorphic to A0. So it
is not possible to wait at each stage until the appropriate components are enumerated
into G. To get around this, we introduce the notion of a recovery stage.

At stage s+ 1, where we would have waited for G to provide components Ys, Xs, Zs,
Bs, and Cs, we now simply do not involve copies of the special component of G in our
operations unless these components are provided. (That is, if these components are not
in G[s] then we perform L(Y 0

s , X
0
s , Z

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s )

on A1
s to get A1

s+1.) Furthermore, where we would have waited for Ys, Xs, Zs, Bs, Ss,
and Cs to grow into copies of Ys · Xs, Xs · Zs, Zs · Bs, Bs · Ss, Ss · Cs, and Cs · Ys, we
now just declare that we are waiting for these copies to appear in G.

A recovery stage is then a stage s+ 1 such that

1. G[s] contains copies of all the components for which we are currently waiting and

2. for each j /∈ A[s] that is less than or equal to the number of recovery stages before
stage s + 1, G[s] contains components that can be used as Yt, Xt, Zt, Bt, and Ct
if at = j for some t > s.

(These conditions will be made more precise in the full construction, which will be
presented shortly.)

Now suppose that G ∼= A0. Say that G is active at a given stage if isomorphic copies
of its special component participate in the operations performed at that stage. We want
there to be infinitely many recovery stages. This will happen as long as there is a bound
on how often G can be active while waiting for recovery.

Let P be the set of all j ∈ ω that do not enter A before the jth recovery stage. Let
M be the set of all coding locations of copies of [6j], j ∈ P , in G and let N be the set
of all coding locations of copies of [6j], j /∈ P , in G. By the definition of recovery stage,
G will be active at each stage s + 1 such that as ∈ P . We make it a rule that G is not
active at any other stage. This clearly provides the desired bound on the number of
times G can be active while waiting for recovery.

Arguing as before, we conclude that if G almost always goes to the left then U∩M ≡m

A, while if G almost always goes to the right then U ∩M is computable. But P , N ,
and U ∩N are computable, since if we wait until the jth recovery stage then we can tell
whether j ∈ P , and if j /∈ P then j ∈ A. So if G almost always goes to the left then
U ≡m A, while if G almost always goes to the right then U is computable. Thus (2.3) is
satisfied for this G.

10



We remark that the modification to the construction that we have just described
makes the definition of isomorphism recovery stage a little more complicated, in that
we will not want a stage to be an isomorphism recovery stage unless it is a first stage,
that is, the first stage at which G is active after a recovery stage. We will discuss this
further below.

Before proceeding, let us look at two examples. The first one illustrates what happens
when G recovers. Suppose that s < t < u < v are such that s+1 is a first stage, rs+1 = 0,
v + 1 is the next recovery stage after stage s+ 1, and t+ 1 and u+ 1 are the only two
stages between stages s + 1 and v + 1 at which G is active. Figure 2.3 pictures what
happens on the A0 side of the construction. In this figure and in the next one, the
notation Ri

s is used in place of Sis, since this is the notation that we will adopt in the full
construction. This change is made because Ri

w might not be isomorphic to the special
component of G[w] if w + 1 is not a recovery stage.

Note that, by the definition of recovery stage, the special component of G[s] is iso-
morphic to R0

s and, for each w = s, t, u, G[s] has components Yw, Xw, Zw, Bw, and Cw
isomorphic to Y 0

w , X0
w, Z0

w, B0
w, and C0

w, respectively.
Since G recovers at stage v + 1, there are two possibilities. The first one is that the

special component of G[v] is isomorphic to one of B0
s ·R0

s, B
0
t ·R0

s ·C0
s , or B0

u ·R0
s ·C0

s ·C0
t .

In this case, rv+1 = 1.
The second possibility is that the special component of G[v] is isomorphic to R0

s ·C0
s ·

C0
t ·C0

u. In this case, the component of G[v] that extends Cu must be the one isomorphic
to C0

u · Y 0
u . From this it follow that the component of G[v] that extends Yu must be the

one isomorphic to Y 0
u ·X0

u. Proceeding in this fashion, we see that for each w = s, t, u,
the component of G[v] that extends Xw is the one isomorphic to X0

w · Z0
w.

Notice that in the previous argument it is crucial that no component of A0 other
than the one that extends R0

s participates in operations more than once in the interval
(s, v]. This is the reason for requiring that isomorphism recovery happen only at first
stages.

Our second example illustrates isomorphism recovery. Suppose that s < t < u <
v < w are such that s+ 1 and v + 1 are first stages, t+ 1 and u+ 1 are the only stages
between s+1 and v+1 at which G is active, and w+1 is the first stage after stage v+1
at which G is active. Suppose further that rs+1 = rt+1 = ru+1 = rv+1 = rw+1 = 0.
Figure 2.4 pictures what happens on either side of the construction. The key point to
notice here is that if R0

t
∼= R1

t then R0
w extends R0

t , R
1
w extends R1

t , and R0
w
∼= R1

w. This
pattern would allow us to prove by induction that if rs has a limit then each Ai has a
unique infinite component Si and S0 ∼= S1.

In the full construction, we will of course need to satisfy (2.3) for every computable
directed graph. Let G0,G1, . . . be a standard enumeration of all partial computable
directed graphs. In our construction, we will define the concepts of n-recovery stage,
n-isomorphism recovery stage, and so forth.

Let us first clarify what we mean by a partial computable directed graph. (Here we

11
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u C0
u · Y 0
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Figure 2.3: Recovery

use standard notation, as in [15].) A partial computable directed graph G consists of
two 0, 1-valued partial computable functions Φe and Φi, the former unary and the latter
binary, such that if Φe,s(x)↓= Φe,s(y)↓= 1 then Φi,s(x, y)↓. The graph G (resp. G[s]) is
the graph whose domain has characteristic function Φe (Φe,s) and whose edge relation
has characteristic function Φi (Φi,s).

We will be able to satisfy (2.3) for each Gn independently. We first need some
notation to allow us to distinguish the components that are used to satisfy (2.3) for a
particular Gn. Fix some one-to-one function from ω×ω onto ω and let 〈a, b〉 denote the
image under this function of the ordered pair consisting of a ∈ ω and b ∈ ω.

2.4 Definition. Let G be a directed graph. We denote by (G)n the subgraph of G
consisting of those components C of G that satisfy both of the following conditions.

1. C is not isomorphic to [x] for any x ∈ ω.

2. C contains either a copy of [6n + 3] or a copy of [6〈n, j〉 + l] for some j ∈ ω,
l ∈ {1, 2, 4, 5}.

The idea is that the components of (Ai)n are the ones used in the construction
to satisfy (2.3) for Gn, and that (Ais)n is the subgraph of Ais consisting of all such
components that have participated in operations before stage s+ 1.

We also need new L- and R-operations in order to involve components of (Ai)n for
different n’s in operations at the same stage.
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Figure 2.4: Isomorphism Recovery (top: A0 / bottom: A1)
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2.5 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. Let K0, K1, . . . , Kn and L be components of G isomorphic
to [y0], [y1], . . . , [yn] and [x], respectively, where y0, y1, . . . , yn, x ∈ ω. We define two
operations, each of which takes G to a new computable structure extending G.

• The operation (K0, K1, . . . , Kn) ·L consists of performing the following steps, and
otherwise leaving G unchanged. Create a new copy of [x] using numbers not in
the domain of G. For each i 6 n, add an edge from the top of this new copy of [x]
to the top of Ki.

• The operation L · (K0, K1, . . . , Kn) consists of performing the following steps, and
otherwise leaving G unchanged. For each i 6 n, create a new copy of [yi] using
numbers not in the domain of G. For each i 6 n, add an edge from the top of L
to the top of the new copy of [yi].

For example, suppose that L, K0, and K1 are copies of [2], [3], and [4], respectively.
Then the operation (K0, K1) · L consists of extending K0 ∪K1 to a copy of the graph
shown in Figure 2.5, while the operation L · (K0, K1) consists of extending L to a copy
of that same graph.

•�� ��top // //

�� ��

����

• // //• // //• coding location// //•hhhh

•OOOOtop // //• // //• // //• // //• coding location// //•jjjj

•?? ??
top

// //• // //• // //• // //• // //• coding location// //•kkkk

Figure 2.5: The result of either of the operations ([3], [4]) · [2] or [2] · ([3], [4])

2.6 Definition. Let G be a computable structure in the language of directed graphs
whose domain is co-infinite. We say that a component C of G is a set component if it
is isomorphic to [T ] for some finite T ⊂ ω. If T is a singleton then we say that C is a
singleton component.

Let Y0, . . . , Yn, X, Z0, . . . , Zn, B0, . . . , Bn, S0, . . . , Sn, and C0, . . . , Cn be components
of G such that for each i 6 n, X, Yi, and Zi are singleton components and Bi, Si,
and Ci are set components. We define two operations, each of which takes G to a new
computable structure extending G.

• The L-operation

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)
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consists of applying the following sequence of operations to G.

(Y0, . . . , Yn) ·X, X · (Z0, . . . , Zn), Z0 ·B0, . . . , Zn ·Bn,

B0 · S0, . . . , Bn · Sn, S0 · C0, . . . , Sn · Cn, C0 · Y0, . . . , Cn · Yn

• The R-operation

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

consists of applying the following sequence of operations to G.

Y0 · C0, . . . , Yn · Cn, C0 · S0, . . . , Cn · Sn, S0 ·B0, . . . , Sn ·Bn,

B0 · Z0, . . . , Bn · Zn, (Z0, . . . , Zn) ·X, X · (Y0, . . . , Yn)

Note that if H is the structure obtained by applying

L(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

to G and H′ is the structure obtained by applying

R(Y0, . . . , Yn;X;Z0, . . . , Zn;B0, S0, C0; . . . ;Bn, Sn, Cn)

to G then H ∼= H′.

We now proceed with the construction of A0, A1, U0, and U1. For each i = 0, 1, we
first define a computable structure Ai0. At each stage s + 1, we perform an operation
on Ais to get Ais+1 ⊃ Ais and add an element of the domain of Ais+1 to U i. We then let
Ai =

⋃
s∈ωAis. In order to guarantee that Ai is computable, we make it a convention

that all numbers added to the domain of Ais at stage s+ 1 to get Ais+1 are greater than
s.

Let t > s. We say that a component L of Ait or Ai (resp. Gn[t] or Gn) extends a
component K of Ais (Gn[s]) if the domain of K is contained in the domain of L, and that
L properly extends K if this containment is proper. (Note that “L extends K” means
more than just that K can be embedded in L, though it of course implies the latter.)
If L extends K but not properly then we say that L is a component of Ais (Gn[s]).

It will be the case that if K and L are distinct components of A0
s and K is not a

copy of [6k + 1] or [6k + 2] for any k ∈ ω then K and L are not extended by the same
component of A0. Thus, since we are not interested in Gn unless it is isomorphic to A0,
we can assume without loss of generality that, for each n, s ∈ ω, there is an embedding
of Gn[s] into A0

s such that if K and L are distinct components of Gn[s] and K is not
a copy of [6k + 1] or [6k + 2] for any k ∈ ω then K and L are mapped into distinct
components of A0

s.
Suppose there is a least stage s such that Gn[s] has a component K isomorphic to

[6n + 3] and let t > s. We call the component of Gn[t] (resp. Gn) that extends K the
special component of Gn[t] (Gn).

It will be easy to check as we go along that the following are properties of the
construction.
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1. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable in another
component of Ais.

2. Let t < s. No component of Ait isomorphic to one of [6as] or [6〈n, as〉 + l], l ∈
{1, 2, 4, 5}, n ∈ ω, participates in an operation at stage t+ 1.

stage 0. Let A0
0 and A1

0 be computable structures with co-infinite domains, each con-
sisting of one copy of [k] for each k ∈ ω. For each n ∈ ω, let rn,0 = 0.

stage s+1. For each n < s+1, say that s+1 is an n-recovery stage if all of the following
conditions hold.

1. Gn[s] has a special component isomorphic to some component of A0
s.

2. (Gn[s])n ∼= (A0
s)n.

3. Let j /∈ A[s] be less than or equal to the number of n-recovery stages before
stage s + 1. There is a component of Gn[s] isomorphic to [6j] and for each l ∈
{1, 2, 4, 5} there is a component of Gn[s] isomorphic to [6〈n, j〉+ l].

If s+ 1 is an n-recovery stage then, for i = 0, 1, let Sin,s be the component of Ais that
is isomorphic to the special component of Gn[s]. If s + 1 is the first n-recovery stage
then let rn,s+1 = 0. Otherwise, proceed as follows. Let i = rn,s and let t+ 1 be the last
n-recovery stage before stage s+1. If Sin,s extends Sin,t then let rn,s+1 = i, and otherwise
let rn,s+1 = 1− i.

If s+ 1 is not an n-recovery stage then let rn,s+1 = rn,s.
Now let n0, n1, . . . , nm be all the numbers nj such that as is less than the number of

nj-recovery stages less than or equal to s+ 1. We say that each nj, j 6 m, is active at
stage s + 1. For i = 0, 1 and j 6 m, let X i

s, Y
i
nj ,s

, and Zi
nj ,s

be the components of Ais
isomorphic to [6as], [6〈nj, as〉+ 1], and [6〈nj, as〉+ 2], respectively.

For each j 6 m, let tj + 1 6 s + 1 be the last nj-recovery stage. We say that s + 1
is an nj-first stage if it is the first stage after stage tj at which nj is active.

We say that s+ 1 is an nj-change stage if it is an nj-first stage and either tj + 1 was
the first nj-recovery stage or rnj ,tj+1 6= rnj ,tj .

We say that s + 1 is an nj-isomorphism recovery stage if it is an nj-first stage but
not an nj-change stage and one of the following conditions holds.

1. The last nj-first stage before stage s+ 1 was an nj-change stage.

2. There has been at least one stage at which nj was active after the last nj-
isomorphism recovery stage and before stage s+ 1.

For each j 6 m we define components Bi
nj ,s

and Ci
nj ,s

, i = 0, 1. There are two cases.
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1. s+1 is an nj-isomorphism recovery stage. If the first condition in the definition of
nj-isomorphism recovery stage holds then let t + 1 be the last nj-first stage, and
otherwise let t + 1 be the first stage after the last nj-isomorphism recovery stage
at which nj was active. There are two subcases.

(a) If rnj ,s+1 = 0 then let C0
nj ,s

be the component of A0
s that extends B0

nj ,t
and let

C1
nj ,s

be its isomorphic image in A1
s. For i = 0, 1, let Bi

nj ,s
be the component

of Ais isomorphic to [6〈nj, as〉+ 4].

(b) If rnj ,s+1 = 1 then let B1
nj ,s

be the component of A1
s that extends C1

nj ,t
and let

B0
nj ,s

be its isomorphic image in A0
s. For i = 0, 1, let Ci

nj ,s
be the component

of Ais isomorphic to [6〈nj, as〉+ 5].

2. s + 1 is not an nj-isomorphism recovery stage. For i = 0, 1, let Bi
nj ,s

be the

component of Ais isomorphic to [6〈nj, as〉 + 4] and let Ci
nj ,s

be the component of

Ais isomorphic to [6〈nj, as〉+ 5].

For each j 6 m, proceed as follows. Let i = rnj ,s+1 and let t+ 1 6 s+ 1 be the last
nj-recovery stage. Let Ri

nj ,s
be the component of Ais that extends Sinj ,t

and let R1−i
nj ,s

be

its isomorphic image in A1−i
s .

Now perform

L(Y 0
n0,s

, . . . , Y 0
nm,s;X

0
s ;Z0

n0,s
, . . . , Z0

nm,s;B
0
n0,s

, R0
n0,s

, C0
n0,s

;

B0
n1,s

, R0
n1,s

, C0
n1,s

; . . . ;B0
nm,s, R

0
nm,s, C

0
nm,s)

on A0
s to get A0

s+1 and perform

R(Y 1
n0,s

, . . . , Y 1
nm,s;X

1
s ;Z1

n0,s
, . . . , Z1

nm,s;B
1
n0,s

, R1
n0,s

, C1
n0,s

;

B1
n1,s

, R1
n1,s

, C1
n1,s

; . . . ;B1
nm,s, R

1
nm,s, C

1
nm,s)

on A1
s to get A1

s+1. (If no n is active at stage s+ 1 then, for j = 0, 1, let Y j
s and Zj

s be
the components of Ajs isomorphic to [6〈0, as〉+1] and [6〈0, as〉+2], respectively. Perform
L(Y 0

s , X
0
s , Z

0
s ) on A0

s to get A0
s+1 and perform R(Y 1

s , X
1
s , Z

1
s ) on A1

s to get A1
s+1.)

Put the coding location of the copy of [6as] in A0
0 into U0 and put the coding location

of the copy of [6as] in A1
s+1 −A1

s into U1.

This completes the construction. Let A0 =
⋃
s∈ωA0

s and A1 =
⋃
s∈ωA1

s. Since for
each s ∈ ω and i = 0, 1, all numbers in Ais+1 − Ais are greater than s, A0 and A1 are
computable. We now wish to argue that properties (2.1)–(2.3) are satisfied. Theorem 1.7
will then follow immediately.

Property (2.2) is easy to establish, so we deal with it first.

2.7 Lemma. U0 ≡m A and U1 is computable.

17



Proof. The numbers in U0 are all coding locations of components of A0
0 of the form [6j],

j ∈ ω, and the coding location of the copy of [6j] in A0
0 is in U0 if and only if j ∈ A.

Since given any number we can computably determine whether it is a coding location
in A0

0 and if so, for what [k], this means that U0 ≡m A.
Any number put into U1 at a stage s + 1 is a new number, that is, one not in the

domain of A1
s, and hence is greater than s. Thus U1 is computable.

In showing that (2.1) and (2.3) are satisfied, we will need a few facts about the
construction. The more obvious ones are given without proof, while the remaining ones
are broken down into easily checked properties of the construction. Figures 2.3 and 2.4
should be helpful here.

We say that a component of Ai participates in an operation at stage s+1 if it extends
a component of Ais that participates in an operation at stage s+ 1.

2.8 Lemma. Let G ∼= A0 be computable. Given x in the domain of G, we can computably
determine if x is the coding location of a copy of some [k], k ∈ ω, and if so, for what k.
In particular, the set of coding locations of copies of [6j], j ∈ ω, in G is computable.

2.9 Lemma. Let K and L be distinct components of Ais such that K is not a copy of
[6k+ 1] or [6k+ 2] for any k ∈ ω. K and L are not extended by the same component of
Ai.

Lemma 2.9 will be used without explicit mention several times below.

2.10 Lemma. A component of Ai is infinite if and only if it participates in operations
infinitely often.

2.11 Lemma. Let k, n ∈ ω. Any component of Ai containing a copy of [6k], [6〈n, k〉+1],
or [6〈n, k〉 + 2] can participate in an operation at most once. Any component of Ai
containing a copy of [6n+ 3], [6〈n, k〉+ 4], or [6〈n, k〉+ 5] can participate in operations
only at stages at which n is active.

2.12 Lemma. Suppose that rn,s = i 6= rn,s+1. Of all the components of (Ai)n that
participate in operations before stage s + 1, the only one that can participate in an
operation after stage s is the one that extends Sin,s.

Proof. Suppose that a component of (Ai)n participates in operations at stages t < u
and does not participate in an operation at any stage in (t, u), and let v be the last
n-change stage before stage u. It is not hard to check that it must then be the case that
t > v.

Now let t be the first stage after stage s at which n is active. Then t is an n-
change stage, and hence not an n-isomorphism recovery stage. It follows that, of all the
components of (Ai)n that participate in operations before stage s+ 1, the only one that
participates in an operation at stage t is the one that extends Sin,s. The lemma now
follows by induction, using the fact mentioned in the previous paragraph.
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2.13 Lemma. For each s ∈ ω, A0
s
∼= A1

s and no component of Ais is embeddable
in another component of Ais. Furthermore, if a component of Ais participates in an
operation at stage s+ 1 then so does the (unique) isomorphic component of A1−i

s .

2.14 Lemma. Suppose that rn,s = i for all s > t and n is active at stages s0 + 1 and
s1 + 1, where s1 > s0 > t. Then Ri

n,s1
extends Ri

n,s0
.

2.15 Lemma. Let s+ 1 be an n-recovery stage that is not the first such stage. Let t+ 1
be the last n-recovery stage before stage s + 1. If rn,s = 0 6= rn,s+1 then S0

n,s extends
B0
n,u for some u ∈ [t, s). Similarly, if rn,s = 1 6= rn,s+1 then S1

n,s extends C1
n,u for some

u ∈ [t, s).

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
Since S0

n,s contains a copy of S0
n,t and rn,t+1 = rn,s = 0, either S0

n,s extends S0
n,t or

S0
n,s extends B0

n,u for some u such that t 6 u < s. But it cannot be the case that S0
n,s

extends S0
n,t, since that would imply that rn,s+1 = 0.

2.16 Lemma. Suppose that rn,t = 0 (resp. rn,t = 1) for all t > s0. Then no component
of (A0)n ((A1)n) can participate in an operation more than twice after stage s0 unless it
extends R0

n,t (R1
n,t) for some t > s0, while no component of (A1)n ((A0)n) can participate

in an operation more than twice after stage s0 unless it extends C1
n,t (B0

n,t) for some
t > s0 such that t+ 1 is an n-isomorphism recovery stage.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
Suppose that component K of (A0)n participates in operations at stages s + 1 <

t + 1 < u + 1, where s + 1 > s0, but not at any stage in (t + 1, u + 1). Then either
K extends R0

n,u or u + 1 is an n-isomorphism recovery stage and K extends C0
n,u. We

claim that the latter case cannot hold. Indeed, if K extends C0
n,u then K extends B0

n,v

for some v ∈ ω. Since K does not participate in operations at any stage in (t+ 1, u+ 1),
v = t. But since rn,t+1 = 0, B0

n,t is a singleton component. Thus K does not participate
in an operation at stage s+ 1, contrary to hypothesis.

Now suppose that component L of (A1)n participates in operations at stages s+ 1 <
t + 1 < u + 1, where s + 1 > s0, but not at any stage in (t + 1, u + 1). Then either L
extends R1

n,t or t+ 1 is an n-isomorphism recovery stage and L extends C1
n,t. But in the

former case, u+ 1 is an n-isomorphism recovery stage and, since K does not participate
in operations at any stage in (t+ 1, u+ 1), L extends C1

n,u.

2.17 Lemma. Suppose that s < t < v are such that s+ 1 is an n-isomorphism recovery
stage, rn,u = rn,s+1 for all u > s, t + 1 is the next stage after stage s + 1 at which n
is active, and v + 1 is the next n-isomorphism recovery stage after stage s + 1. For
i = 0, 1, let Bi, Ri, and Ci be the components of Ait+1 that extend Bi

n,t, R
i
n,t, and Ci

n,t,

respectively, and let B̂i, R̂i, and Ĉi be the components of Aiv that extend Bi, Ri, and Ci,

respectively. If rn,s+1 = 0 then B̂0 ∼= B0 and R̂1 ∼= R1, while if rn,s+1 = 1 then Ĉ1 ∼= C1

and R̂0 ∼= R0.
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Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0. It is enough
to show that the components of (A0)n and (A1)n that extend B0 and R1, respectively,
do not participate in operations at any stage in (t+ 1, v + 1).

Suppose that component K of (A0)n participates in operations at stages t + 1 and
u + 1, where t < u < v. Since no stage in (t + 1, v + 1) is an n-isomorphism recovery
stage, K extends R0

n,u, which in turn extends R0
n,t. Thus K does not extend B0.

Now suppose that component L of (A1)n participates in operations at stages t + 1
and u + 1, where t < u < v. Again, no stage in (t + 1, v + 1) is an n-isomorphism
recovery stage, so L extends R1

n,u, which in turn extends C1
n,t. Thus L does not extend

R1.

2.18 Lemma. Let x be the coding location of a copy of [6as] in component K of Ai.
Either K contains a copy of [6〈n, as〉 + 1] for some n ∈ ω, in which case x /∈ U i, or K
contains a copy of [6〈n, as〉+ 2] for some n ∈ ω, in which case x ∈ U i.

We now wish to show that (2.1) holds. It follows from Lemmas 2.10, 2.13, and 2.18
that it is enough to show that for each infinite component of Ai there is a corresponding
isomorphic component of A1−i. The first step in establishing this result is characterizing
the infinite components of Ai.

2.19 Lemma. If rn,s does not have a limit then no component of (Ai)n is infinite.

Proof. Suppose that rn,s = 0 6= rn,s+1 and let t + 1 be the last n-recovery stage before
stage s + 1. By Lemma 2.12, of all the components of (A0)n that have participated in
operations before stage s + 1, the only one that can participate in an operation after
stage s is the component L that extends S0

n,s. By Lemma 2.15, L extends B0
n,u for some

u ∈ [t, s). But the fact that rn,t+1 = 0 means that for all u ∈ [t, s), B0
n,u is a singleton

component, and hence did not participate in an operation at any stage before stage t+1.
Thus no component of (A0)n that participates in an operation before stage t + 1

can do so again after stage s. A similar argument shows that if rn,s = 1 6= rn,s+1 and
t + 1 is the last n-recovery stage before stage s + 1 then no component of (A1)n that
participates in an operation before stage t+ 1 can do so again after stage s. The lemma
now follows from Lemma 2.10.

Thus the only components of Ai that can be infinite are those components that are
in (Ai)n for some n such that rn,s has a limit and n is active infinitely often. So, by
the comments preceding Lemma 2.19, to establish that (2.1) holds, it is enough to show
that if rn,s has a limit and n is active infinitely often then, for each i = 0, 1, there is
exactly one infinite component Sin of (Ai)n and S0

n
∼= S1

n. This is what we do in the next
few lemmas.

2.20 Lemma. There are infinitely many n-recovery stages if and only if n is active
infinitely often.
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Proof. By definition, n is active at a stage s+1 if and only if as is less than the number of
n-recovery stages less than or equal to s+ 1. Thus, if there are finitely many n-recovery
stages then n cannot be active infinitely often.

For the other direction, suppose that there are infinitely many n-recovery stages but
only finitely many stages at which n is active. Let s be the last stage at which n is
active. Now given x ∈ ω, let t + 1 be the first stage after stage s by which there have
been x + 1 many n-recovery stages. Then x ∈ A ⇔ x ∈ A[t], since if x were equal to
au for some u > t then n would be active at stage u + 1. But this means that A is
computable, contrary to hypothesis.

2.21 Lemma. If n is active infinitely often and rn,s has a limit then there are infinitely
many n-isomorphism recovery stages.

Proof. If n is active infinitely often then, by Lemma 2.20, there are infinitely many
n-recovery stages, and thus infinitely many n-first stages. The fact that rn,s has a limit
implies that only finitely many of these can be n-change stages. The lemma now follows
directly from the definition of n-isomorphism recovery stage.

2.22 Lemma. Suppose that n is active infinitely often and s and i are such that rn,t =
rn,s = i for all t > s. By Lemma 2.21, there are infinitely many n-isomorphism recovery
stages. Let s0 + 1 < s1 + 1 < · · · be the n-isomorphism recovery stages after stage s.
For each j ∈ ω, let tj + 1 be the next stage after stage sj + 1 at which n is active. (Note
that tj < sj+1 for all j ∈ ω.) For t > t0, let K l

t be the component of Alt that extends
Rl
n,t0

. Then K l
tj

= Rl
n,tj

for all j ∈ ω.

Proof. The two cases, i = 0 and i = 1, are similar. We do the case i = 0.
That K0

tj
= R0

n,tj
for all j ∈ ω follows from Lemma 2.14.

Now assume by induction that K1
tj

= R1
n,tj

. Let B be the component of A0
tj+1 that

extends B0
n,tj

. By construction, B ∼= K1
tj+1. Since sj+1 + 1 is an n-isomorphism recovery

stage, C0
n,sj+1

extends B. Thus, by Lemma 2.17, C0
n,sj+1

∼= B. By the same lemma,

K1
sj+1

∼= K1
tj+1, so C0

n,sj+1

∼= K1
sj+1

, and thus C1
n,sj+1

= K1
sj+1

. Let R be the component

of A0
sj+1+1 that extends R0

n,sj+1
. Then R ∼= K1

sj+1+1. But, by Lemma 2.11, R0
n,tj+1

∼= R

and K1
tj+1

∼= K1
sj+1+1, so K1

tj+1

∼= R0
n,tj+1

, and hence K1
tj+1

= R1
n,tj+1

.

For the next two lemmas, we assume the hypotheses of Lemma 2.22 and adopt its
notation. Let Sln be the component of Al that extends Rl

n,s0
.

2.23 Lemma. Sln is the only infinite component of (Al)n.

Proof. This follows immediately from Lemmas 2.10, 2.16, and 2.22 and the observation
that, for all j ∈ ω, if i = 0 in the hypotheses of Lemma 2.22 then R1

n,tj
extends C1

n,sj
,

while if i = 1 then R0
n,tj

extends B0
n,sj

.

2.24 Lemma. S0
n
∼= S1

n.
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Proof. This follows immediately from Lemma 2.22, since, by definition, R0
n,tj
∼= R1

n,tj
for

all j ∈ ω, and Sin =
⋃
j∈ω R

i
n,tj

for i = 0, 1.

As we have argued above, Lemmas 2.23 and 2.24 suffice to establish that (2.1) holds.

2.25 Lemma. A0 ∼= A1 via an isomorphism that carries U0 to U1.

We are left with showing that (2.3) holds. This will break down into three steps.
Suppose that Gn ∼= A0 and let U be the image of U0 in Gn.

1. We show that rn,s reaches a limit rn.

2. Let t be such that for all u > t, rn,u = rn. Let A′ be the set of all as such that
either s < t or the number of n-recovery stages less than or equal to s + 1 is less
than or equal to as. Let N be the set of all x ∈ Gn such that x is the coding
location of a copy of [6a], a ∈ A′. We show that A′, N , and U ∩N are computable.

3. Let C be the set of coding locations of copies of graphs of the form [6j], j ∈ ω, in
Gn and let M = C −N . Note that M is computable. We show that

(a) if rn = 0 then an element x of M is in U if and only if, for some j ∈ A, x is the
coding location of the first copy of [6j] to appear in Gn, so that U ∩M ≡m A,
while

(b) if rn = 1 then an element x of M is in U if and only if, for some j ∈ ω, x is
the coding location of the second copy of [6j] to appear in Gn, so that U ∩M
is computable.

Since U = (U ∩N) ∪ (U ∩M), this is enough to establish that (2.3) holds.

2.26 Lemma. If Gn ∼= A0 then there are infinitely many n-recovery stages, and hence
the special component of Gn is infinite.

Proof. If Gn ∼= A0 then Gn has a special component. Now suppose that there are only
m many n-recovery stages. Let s0 be the last n-recovery stage. (If there are no n-
recovery stages then let s0 be the first stage at which Gn has a special component.) By
Lemma 2.20, there is a stage s1 > s0 such that n is not active at any stage t > s1. If
m = au for some u > s1 then let s = u+ 1; otherwise let s = s1.

Consider the components of A0 that contain a copy of the special component of
Gn. By Lemma 2.11, each such component is finite. Thus, if the first condition in the
definition of n-recovery stage is not eventually satisfied after stage s then the special
component of Gn is not isomorphic to any component of A0.

Now consider (A0)n. Again by Lemma 2.11, (A0)n is finite. So if the second condition
in the definition of n-recovery stage is not eventually satisfied after stage s then (Gn)n �
(A0)n.
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Finally, let j /∈ A[s], j 6 m, and l ∈ {1, 2, 4, 5} and consider the components of A0

that contain a copy of [6〈n, j〉 + l]. By the choice of s, j /∈ A[s] ⇒ j /∈ A, so there is
only one such component and it is isomorphic to [6〈n, j〉 + l]. Similarly, there is only
one component that contains a copy of [6j] and it is isomorphic to [6j].

Thus, if the third condition in the definition of n-recovery stage is not eventually
satisfied after stage s then there is a component of A0 that is not isomorphic to any
component of Gn.

In any case, Gn cannot be isomorphic to A0, contradicting the hypothesis of the
lemma. So there are infinitely many n-recovery stages.

Now, given any two n-recovery stages t + 1 < u + 1 such that there is a stage in
(t, u] at which n is active, the special component of Gn[u] properly extends the special
component of Gn[t]. But, by Lemma 2.20, n is active at infinitely many stages. This
establishes the second part of the lemma.

2.27 Lemma. If Gn ∼= A0 then rn = lims rn,s is well-defined.

Proof. This follows immediately from Lemmas 2.19 and 2.26.

2.28 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this isomorphism.
By Lemma 2.27, rn = lims rn,s is well-defined. Let t be such that for all u > t, rn,u = rn.
Let A′ be the set of all as such that either s < t or the number of n-recovery stages less
than or equal to s + 1 is less than or equal to as. Let N be the set of all x ∈ Gn such
that x is the coding location of a copy of [6a], a ∈ A′. Then A′, N , and U ∩ N are
computable.

Proof. By Lemma 2.8, given x in the domain of Gn, we can computably determine if x
is the coding location of a copy of some [k], k ∈ ω, and if so, for what k.

By Lemma 2.26, there are infinitely many n-recovery stages, so the set of all as such
that the number of n-recovery stages less than or equal to s+ 1 is less than or equal to
as is computable. Thus A′ and N are computable.

Now, if x ∈ N then x is the coding location of a copy of [6as] for some s ∈ ω. Let K
be the component of Gn that contains x. By Lemma 2.18, K contains either a copy of
[6〈m, as〉+ 1] for some m ∈ ω or a copy of [6〈m, as〉+ 2] for some m ∈ ω, but not both,
and x ∈ U ∩N if and only if K contains a copy of [6〈m, as〉+ 2] for some m ∈ ω. Thus
U ∩N is computable.

2.29 Lemma. Suppose that s + 1 is an n-recovery stage, but not the first such stage,
and that rn,s+1 = rn,s = i. Let t + 1 be the last n-recovery stage before stage s + 1 and
let s0 + 1 < s1 + 1 < · · · < sm + 1 be the stages in the interval (t, s] at which n is active.
For each k 6 m, let Yk, Xk, Zk, Bk, Rk and Ck be Y i

n,sk
, X i

sk
, Zi

n,sk
, Bi

n,sk
, Ri

n,sk
, and

Ci
n,sk

, respectively, and let Y ′k, X ′k, Z ′k, B′k, R
′
k and C ′k be the components of Ais that

extend Yk, Xk, Zk, Bk, Rk and Ck, respectively. Then the following hold.
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1. For every k 6 m, Yk, Xk, Zk, Bk, and Ck are components of Ait, and so is R0.
For every k, l 6 m, R′k = R′l.

2. There exists a component R̂0 of Gn[t] such that R̂0
∼= R0 and, for each k 6 m, there

exist components Ŷk, X̂k, Ẑk, B̂k, and Ĉk of Gn[t] such that Ŷk ∼= Yk, X̂k
∼= Xk,

Ẑk ∼= Zk, B̂k
∼= Bk, and Ĉk ∼= Ck.

3. Let R̂′0 be the component of Gn[s] that extends R̂0 and, for each k 6 m, let Ŷ ′k,

X̂ ′k, Ẑ ′k, B̂′k, and Ĉ ′k be the components of Gn[s] that extend Ŷk, X̂k, Ẑk, B̂k, and

Ĉk, respectively. R̂′0
∼= R′0 and, for each k 6 m, Ŷ ′k

∼= Y ′k, X̂ ′k
∼= X ′k, Ẑ

′
k
∼= Z ′k,

B̂′k
∼= B′k, and Ĉ ′k

∼= C ′k.

Proof. The first part of the lemma follows from the way Y i
n,sk

, X i
sk

, Zi
n,sk

, Bi
n,sk

, Ri
n,sk

,
and Ci

n,sk
are defined and Lemma 2.14. The second part of the lemma follows from the

definition of n-recovery stage. We prove the third part of the lemma.
The two cases, i = 0 and i = 1, are similar. We do the case i = 0. Figure 2.3 might

be helpful here.
By definition, R̂0 and R̂′0 are the special components of Gn[t] and Gn[s], respectively.

Thus, since rn,s+1 = rn,s = 0 and s+1 is an n-recovery stage, R̂′0
∼= R′0. We now proceed

by reverse induction, beginning with m.
It follows from the construction and the first part of the lemma that if K is taken

from among R̂′0, Ŷ
′
k , X̂

′
k, Ẑ

′
k, B̂

′
k, and Ĉ ′k, k 6 m, and L 6= K is taken from among R̂′0,

Ŷ ′l , X̂
′
l , Ẑ

′
l , B̂

′
l, and Ĉ ′l , l 6 m, then K � L. Furthermore, if K is one of Ŷ ′k , X̂

′
k, Ẑ

′
k, B̂

′
k,

or Ĉ ′k, and L is a component of A0
s such that K ∼= L then L is one of R′0, Y

′
l , X

′
l , Z

′
l ,

B′l, or C ′l , l > k.

Thus, since we assume by induction that for all j > k, Ŷ ′j
∼= Y ′j , X̂

′
j
∼= X ′j, Ẑ

′
j
∼= Z ′j,

B̂′j
∼= B′j, and Ĉ ′j

∼= C ′j, we may assume that if K is one of Ŷ ′k , X̂
′
k, Ẑ

′
k, B̂

′
k, or Ĉ ′k and L

is a component of A0
s such that K ∼= L then L is one of R′0, Y

′
k , X

′
k, Z

′
k, B

′
k, or C ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ĉk are

R′0 and C ′k. Since R̂′0
∼= R′0, it must be the case that Ĉ ′k

∼= C ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ŷk are

C ′k and Y ′k . Since Ĉ ′k
∼= C ′k, it must be the case that Ŷ ′k

∼= Y ′k .

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of X̂k

are Y ′k and X ′k. Since Ŷ ′k
∼= Y ′k , it must be the case that X̂ ′k

∼= X ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of Ẑk are

X ′k and Z ′k. Since X̂ ′k
∼= X ′k, it must be the case that Ẑ ′k

∼= Z ′k.

The only components among R′0, Y
′
k , X

′
k, Z

′
k, B

′
k, or C ′k that contain copies of B̂k

are Z ′k and B′k. Since Ẑ ′k
∼= Z ′k, it must be the case that B̂′k

∼= B′k.

2.30 Lemma. Suppose that s + 1 is an n-recovery stage such that rn,s+1 = rn,s. Let
t+1 be the last n-recovery stage before stage s+1 and let j ∈ A[s]−A[t] be less than the
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number of n-recovery stages less than or equal to t + 1. By the definition of n-recovery
stage, there is a unique component K of Gn[t] isomorphic to [6j]. Let L be the component
of Gn that extends K. Then L contains a copy of [6〈n, j〉+ 2] if and only if rn,s+1 = 0.

Proof. Let i = rn,s+1. Let u be such that j = au. Since t+ 1 6 u < s and j is less than
the number of n-recovery stages less than or equal to t+1, n is active at stage u+1. So,
adopting the notation of Lemma 2.29, K = X̂k for some k. By Lemma 2.11, L ∼= X̂ ′k.
Thus, by Lemma 2.29, L ∼= X ′k. But X ′k is the component of Ais that extends X i

u, so,
by construction, X ′k contains a copy of [6〈n, j〉+ 2] if and only if i = 0.

2.31 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this isomorphism.
Then either U is computable or U ≡m A.

Proof. Let N be as in Lemma 2.28. Let C be the set of coding locations of copies
of graphs of the form [6j], j ∈ ω, in Gn and let M = C − N . By Lemmas 2.8 and
2.28, C and N are computable, and hence so is M . By Lemma 2.28 and the fact that
U = (U ∩ N) ∪ (U ∩M), it is enough to show that either U ∩M ≡m A or U ∩M is
computable.

But, combining Lemmas 2.18 and 2.30, we conclude that

1. if rn = 0 then an element x of M is in U if and only if, for some j ∈ A, x is the
coding location of the first copy of [6j] to appear in Gn, so that U ∩M ≡m A, while

2. if rn = 1 then an element x of M is in U if and only if, for some j ∈ ω, x is
the coding location of the second copy of [6j] to appear in Gn, so that U ∩M is
computable.

Theorem 1.7 follows from Lemmas 2.7, 2.25, and 2.31. �

3 Proof of Theorem 1.9

1.9. Theorem. Let {Ai}i∈ω be a uniformly c.e. (u.c.e.) collection of sets. There exists
an intrinsically c.e. relation U on the domain of a computable structure A such that
DgSpA(U) = {deg(Ai) | i ∈ ω}.

Proof. Let {Ai}i∈ω be a u.c.e. collection of sets. Let A =
⊕

i∈ω Ai = {〈i, x〉 | x ∈ Ai} and
let a0, a1, . . . be a computable enumeration of A. Let A[0] = ∅, A[s+ 1] = {a0, . . . , as}.
For a ∈ ω, π(a) will denote the first coordinate of the ordered pair coded by a. That is,
if a = 〈i, x〉 then π(a) = i.

We wish to construct computable structures Ai, i ∈ ω, and for each such structure
a corresponding unary relation U i on the domain of Ai, so that for all i, j ∈ ω, the
following properties hold.

25



(3.1) Ai ∼= Aj via an isomorphism that carries U i to U j.

(3.2) U i ≡m Ai.

(3.3) If G ∼= A0 is a computable structure then the image of U0 in G is m-equivalent
to Ak for some k ∈ ω.

The construction will be similar to the one in Section 2, as will the proof that the
above properties hold. In this section, we restrict ourselves to pointing out the necessary
changes.

We assume without loss of generality that, for all i ∈ ω, Ai 6= ∅ and Ai 6= ω. We also
assume that A is not computable. (If A is computable then {deg(Ai) | i ∈ ω} = {0},
and it is obvious that there exists a relation on the domain of a computable structure
with degree spectrum {0}.)

The basic idea is the following. Suppose that at stage s+1 we perform an L-operation
involving copies of [6as] and appropriate special components on Aπ(as)s and perform the
corresponding R-operation on each Ajs, j 6= π(as), and that we then put the coding

location of the old copy of [6as] in Aπ(as)s into Uπ(as) and, for each j 6= π(as), we put the
coding location of the new copy of [6as] in Ajs into U j. Then the coding location x of a
copy of [6〈i, k〉], k ∈ ω, in Ai is in U i if and only if x ∈ Ai0 and k ∈ Ai. On the other
hand, the coding location of a copy of [6〈j, k〉], k ∈ ω, j 6= i, is in U i if and only if it is
not in Ai0. Thus (3.2) is satisfied.

However, there is a problem in defining the isomorphism recovery mechanism used
to satisfy (3.1), due to the fact that both L- and R-operations are applied to a given Ai
during the construction. We deal with this by separating the stages at which elements
enter the U i from the stages at which isomorphism recovery can happen, reserving the
even stages for the former purpose and the odd ones for the latter. (As before, we will
say that n is active at a stage if copies of the special component of Gn participate in
operations at that stage, but the conditions that must be satisfied for this to happen
will depend on whether the stage is even or odd.)

We now give the full description of the construction of the Ai and U i.

stage 0. Let each Ai0, i ∈ ω, be a computable structure with co-infinite domain, consist-
ing of one copy of [k] for each k ∈ ω. For each n ∈ ω, let rn,0 = 0.

stage 2s + 1. For each n < s + 1, say that 2s + 1 is an n-recovery stage if all of the
following conditions hold.

1. Gn[2s] has a special component isomorphic to some component of A0
2s. (Here

“special component” has the same meaning as in the previous section.)

2. (Gn[2s])n ∼= (A0
2s)n.
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3. Let j /∈ A[s] be less than or equal to the number of n-recovery stages before
stage 2s+ 1. There is a component of Gn[2s] isomorphic to [6j], for each l ∈ {1, 2}
there is a component of Gn[2s] isomorphic to [6〈n, j〉+ l], and for each l ∈ {10, 11}
there is a component of Gn[2s] isomorphic to [12〈n, j〉+ l].

4. Let c be the number of n-recovery stages before stage 2s + 1. For each l ∈ {4, 5}
there is a component of Gn[2s] isomorphic to [12〈n, c〉+ l].

If 2s + 1 is an n-recovery stage then, for i ∈ ω, let Sin,2s be the component of Ai2s
that is isomorphic to the special component of Gn[2s]. If 2s + 1 is the first n-recovery
stage then let rn,2s+1 = 0. Otherwise, proceed as follows. Let i = rn,2s and let 2t+ 1 be
the last n-recovery stage before stage 2s + 1. If Sin,2s extends Sin,2t then let rn,2s+1 = i.
Otherwise, let c be the number of n-change stages (defined below) before stage 2s + 1
and let rn,2s+1 = π(c).

If 2s+ 1 is not an n-recovery stage then let rn,2s+1 = rn,2s.
We say that 2s+ 1 is an n-change stage if it is the first n-recovery stage or rn,2s+1 6=

rn,2s. We say that 2s+ 1 is an n-isomorphism recovery stage if it is an n-recovery stage
but not an n-change stage and one of the following conditions holds.

1. The last n-recovery stage before stage 2s+ 1 was an n-change stage.

2. There has been at least one stage at which n was active after the last n-isomor-
phism recovery stage and before stage 2s+ 1.

Let n0, n1, . . . , nm be all the numbers nk such that 2s+1 is an nk-recovery stage. We
say that each nk, k 6 m, is active at stage 2s+ 1. For each k 6 m, proceed as follows.
Let i = rnk,2s+1 and let 2t+ 1 6 2s+ 1 be the last nk-recovery stage. Let Ri

nk,2s
be the

component of Ai2s that extends Sink,2t
and, for each j 6= i, let Rj

nk,2s
be the isomorphic

image of Ri
nk,2s

in Aj2s. Let ck be the number of nk-recovery stages before stage 2s+ 1.

For each k 6 m, we define components Bj
nk,2s

and Cj
nk,2s

, j ∈ ω. There are two cases.

1. 2s+ 1 is an nk-isomorphism recovery stage. If the first condition in the definition
of nk-isomorphism recovery stage holds then let t+1 be the last nk-recovery stage,
and otherwise let t + 1 be the first stage after the last nk-isomorphism recovery
stage at which nk was active. Let Ci

nk,2s
be the component of Ai2s that extends

Bi
nk,t

and, for j 6= i, let Cj
nk,2s

be the isomorphic image of Ci
nk,2s

in Aj2s. For j ∈ ω,

let Bj
nk,2s

be the component of Aj2s isomorphic to [12〈nk, ck〉+ 4].

2. 2s + 1 is not an nk-isomorphism recovery stage. For j ∈ ω, let Bj
nk,2s

and Cj
nk,2s

be the components of Aj2s isomorphic to [12〈nk, ck〉 + 4] and [12〈nk, ck〉 + 5], re-
spectively.

For each i ∈ ω, we define operations Oi
0, . . . ,O

i
m as follows. If i = rnk,2s+1 then let

Oi
k = L(Bi

nk,2s
, Ri

nk,2s
, Ci

nk,2s
). Otherwise, let Oi

k = R(Bi
nk,2s

, Ri
nk,2s

, Ci
nk,2s

).
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For each i ∈ ω, perform the sequence of operations Oi
0, . . . ,O

i
m on Ai2s to get Ai2s+1.

stage 2s+ 2. For each n ∈ ω, let rn,2s+2 = rn,2s+1.
Let l = π(as). Let n0, n1, . . . , nm be all the numbers nj such that as is less than

the number of nj-recovery stages before stage 2s + 2. We say that each nj, j 6 m, is
active at stage 2s + 2. For i ∈ ω and j 6 m, let X i

2s+1, Y
i
nj ,2s+1, Z

i
nj ,2s+1, B

i
nj ,2s+1, and

Ci
nj ,2s+1 be the components of Ai2s+1 isomorphic to [6as], [6〈nj, as〉 + 1], [6〈nj, as〉 + 2],

[12〈nj, as〉+ 10], and [12〈nj, as〉+ 11], respectively.
For each k 6 m, proceed as follows. Let i = rnk,2s+2 and let 2t + 1 be the last nk-

recovery stage before stage 2s+ 2. Let Ri
nk,2s+1 be the component of Ai2s+1 that extends

Sink,2t
and, for each j 6= i, let Rj

nk,2s+1 be the isomorphic image of Ri
nk,2s+1 in Aj2s+1.

Now perform

L(Y l
n0,2s+1, . . . , Y

l
nm,2s+1;X

l
2s+1;Z

l
n0,2s+1, . . . , Z

l
nm,2s+1;B

l
n0,2s+1, R

l
n0,2s+1, C

l
n0,2s+1;

Bl
n1,2s+1, R

l
n1,2s+1, C

l
n1,2s+1; . . . ;B

l
nm,2s+1, R

l
nm,2s+1, C

l
nm,2s+1)

on Al2s+1 to get Al2s+2 and, for each j 6= l, perform

R(Y j
n0,2s+1, . . . , Y

j
nm,2s+1;X

j
2s+1;Z

j
n0,2s+1, . . . , Z

j
nm,2s+1;B

j
n0,2s+1, R

j
n0,2s+1, C

j
n0,2s+1;

Bj
n1,2s+1, R

j
n1,2s+1, C

j
n1,2s+1; . . . ;B

j
nm,2s+1, R

j
nm,2s+1, C

j
nm,2s+1)

on Aj2s+1 to get Aj2s+2. (If no n is active at stage 2s + 2 then, for each i ∈ ω, let Y i
2s+1

and Zi
2s+1 be the components of Ai2s+1 isomorphic to [6〈0, as〉 + 1] and [6〈0, as〉 + 2],

respectively. Perform L(Y l
2s+1, X

l
2s+1, Z

l
2s+1) on Al2s+1 to get Al2s+2 and, for each j 6= l,

perform R(Y j
2s+1, X

j
2s+1, Z

j
2s+1) on Aj2s+1 to get Aj2s+2.)

Put the coding location of the copy of [6as] in Al0 into U l and, for each j 6= l, put
the coding location of the copy of [6as] in Aj2s+2 −A

j
2s+1 into U j.

This completes the construction. For each i ∈ ω, let Ai =
⋃
s∈ωAis. As previously

remarked, the proof that (3.1)–(3.3) are satisfied is similar to what we did in Section 2.
We begin by showing that (3.2) is satisfied.

3.1 Lemma. For each i ∈ ω, U i ≡m Ai.

Proof. If k is the coding location of a copy of [6〈i, x〉] in Ai then k ∈ U i if and only if
k ∈ Ai0 and x ∈ Ai. On the other hand, if k is the coding location of a copy of [6〈j, x〉]
in Ai for some x ∈ ω, j 6= i, and k enters U i at stage s + 1 then k is a new number at
that stage, and hence is greater than s.

Lemmas 2.8, 2.9, 2.10, 2.11, 2.12, 2.14, and 2.18 still hold, as do the following versions
of Lemmas 2.13, 2.15, 2.16, and 2.17. In all cases, the reasoning is basically the same
as in Section 2.
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3.2 Lemma. Let i, j, s ∈ ω. Ais ∼= Ajs and no component of Ais is embeddable in another
component of Ais. Furthermore, if a component of Ais participates in an operation at
stage s+ 1 then so does the (unique) isomorphic component of Ajs.

3.3 Lemma. Let 2s+1 be an n-recovery stage that is not the first such stage. Let 2t+1
be the last n-recovery stage before stage 2s + 1 and suppose that rn,2t+1 = i 6= rn,2s+1.
Then for some u ∈ [t, s), Sin,2s extends one of Bi

n,2u, Bi
n,2u+1, or Ci

n,2u+1.

3.4 Lemma. Suppose that rn,t = i for all t > s. Then no component of (Ai)n can
participate in an operation more than twice after stage s unless it extends Ri

n,t for some
t > s, while for j 6= i, no component of (Aj)n can participate in an operation more
than twice after stage s unless it extends Ci

n,t for some t > s such that t + 1 is an
n-isomorphism recovery stage.

3.5 Lemma. Suppose that s < t < v are such that s+ 1 is an n-isomorphism recovery
stage, rn,u = rn,s+1 for all u > s, t + 1 is the next stage after stage s + 1 at which n is
active, and v + 1 is the next n-isomorphism recovery stage after stage s+ 1. For j ∈ ω,
let Bj and Rj be the components of Ajt+1 that extend Bj

n,t and Rj
n,t, respectively, and let

B̂j and R̂j be the components of Ajv that extend Bj and Rj, respectively. Then B̂i ∼= Bi

and, for j 6= i, R̂j ∼= Rj.

We now wish to show that (3.3) is satisfied. Lemma 2.20 still holds, and hence so
does Lemma 2.26. In both cases the proofs are essentially the same as in Section 2.
Using Lemma 3.3 in place of Lemma 2.15, we can prove Lemma 2.19 in much the same
way as before. (Notice that the way we define rn,2s+1 guarantees that if rn,s does not
have a limit then for each i ∈ ω there are infinitely many stages s such that rn,s = i.)
Now Lemma 2.27 follows, as before, from Lemmas 2.19 and 2.26.

Lemmas 2.28 and 2.29 still hold, with essentially the same proofs as in Section 2,
provided that, in the latter lemma, we make the obvious changes arising from the fact
that if n is active at stage 2s+1 then the components Bi

n,2s, R
i
n,2s, and Ci

n,2s are defined
but the components Y i

n,2s, X
i
2s, and Zi

n,2s are not.
Now the following lemma can be proved in basically the same way as Lemma 2.30.

3.6 Lemma. Suppose that 2s + 1 is an n-recovery stage such that rn,2s+1 = rn,2s. Let
2t + 1 be the last n-recovery stage before stage 2s + 1 and let j ∈ A[s] − A[t] be less
than the number of n-recovery stages less than or equal to 2t + 1. By the definition of
n-recovery stage, there is a unique component K of Gn[2t] isomorphic to [6j]. Let L be
the component of Gn that extends K. Then L contains a copy of [6〈n, j〉+ 2] if and only
if rn,2s+1 = π(j).

The previous lemma allows us to establish that (3.3) is satisfied.

3.7 Lemma. Suppose that Gn ∼= A0. Let U be the image of U0 under this isomorphism.
Then U ≡m Ai for some i ∈ ω.
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Proof. Let N and M be as in the proof of Lemma 2.31. By Lemma 2.28, it is enough to
show that U ∩M ≡m Ai for some i ∈ ω. By Lemma 2.27, rn,s has a limit i. Let M0 be
the set of elements of M that are coding locations of copies of graphs of the form [6n],
π(n) = i, and let M1 = M −M0. Note that M0 and M1 are computable.

Now, combining Lemmas 2.18 and 3.6, we see that

1. an element x of M0 is in U if and only if, for some j ∈ Ai, x is the coding location
of the first copy of [6〈i, j〉] to appear in Gn, while

2. an element x of M1 is in U if and only if, for some k ∈ ω, x is the coding location
of the second copy of [6k] to appear in Gn.

So U ∩M0 ≡m Ai and U ∩M1 is computable, and thus U ∩M ≡m Ai.

We are left with showing that (3.1) is satisfied. Lemma 2.21 still holds, with basically
the same proof as before. Lemma 2.22 still holds, but the proof needs to be slightly
modified, so we restate the lemma and give the new proof.

3.8 Lemma. Suppose that n is active infinitely often and s and i are such that rn,t =
rn,s = i for all t > s. By Lemma 2.21, there are infinitely many n-isomorphism recovery
stages. Let s0 + 1 < s1 + 1 < · · · be the n-isomorphism recovery stages after stage s.
For each j ∈ ω, let tj + 1 be the next stage after stage sj + 1 at which n is active. (Note
that tj < sj+1 for all j ∈ ω.) For t > t0, let K l

t be the component of Alt that extends
Rl
n,t0

. Then K l
tj

= Rl
n,tj

for all j ∈ ω.

Proof. That Ki
sj

= Ri
n,sj

for all j ∈ ω follows from Lemma 2.14.

Now let l 6= i and assume by induction that K l
tj

= Rl
n,tj

. Let B be the component

of Aitj+1 that extends Bi
n,tj

. By construction, B ∼= K l
tj+1. Since sj+1 + 1 is an n-

isomorphism recovery stage, Ci
n,sj+1

extends B. Thus, by Lemma 3.5, Ci
n,sj+1

∼= B. By

the same lemma, K l
sj+1

∼= K l
tj+1, so Ci

n,sj+1

∼= K l
sj+1

, and hence C l
n,sj+1

= K l
sj+1

. Let R be

the component ofAisj+1+1 that extends Ri
n,sj+1

. Then R ∼= K l
sj+1+1. But, by Lemma 2.11,

Ri
n,tj+1

∼= R and K l
tj+1

∼= K l
sj+1+1, so K l

tj+1

∼= Ri
n,tj+1

, and hence K l
tj+1

= Rl
n,tj+1

.

If we assume the hypotheses of Lemma 3.8 and let Sln be the component of Al
that extends Rl

n,s0
then we can prove Lemma 2.23 in the same way as before, using

Lemma 3.4 in place of Lemma 2.16. Furthermore, the following version of Lemma 2.24
follows directly from Lemma 3.8.

3.9 Lemma. Assume the hypotheses of Lemma 3.8 and let Sln be the component of Al
that extends Rl

n,s0
. Then Skn

∼= Sln for all k, l ∈ ω.

By the same reasoning as in Section 2 (using Lemma 3.2 in place of Lemma 2.13),
Lemmas 2.23 and 3.9 suffice to establish that (3.1) is satisfied.

3.10 Lemma. For each i, j ∈ ω, Ai ∼= Aj via an isomorphism that carries U i to U j.

Theorem 1.9 follows from Lemmas 3.1, 3.7, and 3.10. �
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4 Proof of Theorem 1.11

1.11. Theorem. Let α ∈ ω ∪ {ω} and let b > 0 be an α-c.e. degree. There exists
an intrinsically α-c.e. relation V on the domain of a computable structure B such that
DgSpB(V ) = {0,b}.

Proof. Let α ∈ ω ∪ {ω} and let B be an α-c.e. set that is not computable. It follows
immediately from Definition 1.10 that there exist a computable sequence b0, b1, . . . ∈ ω
and a function f such that

1. either α < ω and f(x) = α for all x ∈ ω or α = ω and f is computable,

2. |{s | bs = x}| 6 f(x) for all x ∈ ω, and

3. x ∈ B ⇔ |{s | bs = x}| ≡ 1 mod 2.

Since the α = 0 case is trivial, we may assume without loss of generality that f(x) > 0
for all x ∈ ω.

We wish to construct computable structures B0 and B1 and unary relations V 0 and
V 1 on the domains of B0 and B1, respectively, so that the following properties are
satisfied.

(4.1) B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

(4.2) V 0 ≡m B and V 1 is computable.

(4.3) If G ∼= B0 is a computable structure then the image of V 0 in G is either com-
putable or m-equivalent to B.

For each s ∈ ω, let cs = |{t < s | bt = bs}| and let as = 〈bs, cs〉. Let A = {a0, a1, . . .}.
A is clearly c.e. but not computable, so we can follow the construction in Section 2 to
obtain computable structures A0 and A1 and relations U0 and U1 on the domains of A0

and A1, respectively, satisfying properties (2.1)–(2.3). (We assume that the construction
has been carried out in such a way that the domains of A0 and A1 are co-infinite.)

Now, for i = 0, 1, proceed as follows. Add a node to Ai and add an edge from
this node to each node of Ai. For each j ∈ ω and each sequence of components
L0, L1, . . . , Lf(j)−1 such that each Lk contains a copy of [6〈j, k〉], add an element x
(which will be said to be a j-coding node) to the domain of Ai and, for each k < f(j),
add an edge from x to the coding location of the copy of [6〈j, k〉] in Lk. The resulting
graph is Bi.

Clearly, we can build each Bi so that it is a computable graph. We now define a
relation V i on the domain of Bi. Let Ki be the set of coding nodes in Bi.

Let j ∈ ω and let x be a j-coding node in Bi. By construction, there exist components
L0, . . . , Lf(j)−1 of Ai such that, for each k < f(j), Lk contains a copy of [6〈j, k〉] whose
coding location yk is attached to x. Let ci(x) be the least k < f(j) such that yk /∈ U i,
if such a k exists, and let ci(x) = f(j) otherwise. Now let V i = {x ∈ Ki | ci(x) is odd}.
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4.1 Lemma. B0 ∼= B1 via an isomorphism that carries V 0 to V 1.

Proof. By (2.1), A0 ∼= A1 via an isomorphism that carries U0 to U1. It is straightforward
to extend this isomorphism to an isomorphism h : B0 ∼= B1. The fact that h(U0) = (U1)
implies that if x ∈ K0 then c0(x) = c1(h(x)). Thus h(V 0) = V 1.

4.2 Lemma. Suppose that G is computable and h : B0 ∼= G. Let U = h(U0) and
V = h(V 0). If U is computable then so is V , while if U ≡m A then V ≡m B.

Proof. Let G ′ = h(A0) and K = h(K0). Note that both G ′ and K are computable. Let
j ∈ ω and let x be a j-coding node in G, by which we mean that x = h(z) for some
j-coding node z in A0. By construction, there exist components L0, . . . , Lf(j)−1 of G ′
such that, for each k < f(j), Lk contains a copy of [6〈j, k〉] whose coding location yk is
attached to x. Let c(x) be the least k < f(j) such that yk /∈ U , if such a k exists, and
let c(x) = f(j) otherwise. Note that, by the definition of V 0, x ∈ V if and only if c(x)
is odd.

By (2.3), either U is computable or U ≡m A. First suppose that U is computable.
Then there is a computable procedure for determining c(x) given x ∈ K, and thus V is
computable.

Now suppose that U ≡m A. Let M be as defined in the proof of Lemma 2.31. Let
x ∈ K and let y0, . . . , yf(j)−1 be as above. Let d(x) be the least k such that, for all
m > k, ym ∈ M and ym is the coding location of the first copy of [6〈j,m〉] to appear
in G, if such a k exists, and let d(x) = f(j) otherwise. Note that there is a computable
procedure for determining d(x) given x ∈ K.

If d(x) > 0 then clearly 〈j, d(x)−1〉 ∈ A. But this means that, in fact, 〈j, k〉 ∈ A for
all k < d(x). It follows that we can computably determine whether yk ∈ U for k < d(x).
So S = {x ∈ K | c(x) < d(x)}, T = K − S, and V ∩ S are computable.

Now let x ∈ T be a j-coding node and let y0, . . . , yf(j)−1 be as above. By the definition
of T , y0, . . . , yd(x)−1 ∈ U , so 〈j, k〉 ∈ A for all k < d(x). But, by the definition of d(x),
for each k > d(x), yk ∈ U if and only if 〈j, k〉 ∈ A. So c(x) = |{k | 〈j, k〉 ∈ A}| =
|{t | bt = j}|. Thus x ∈ V if and only if j ∈ B, and hence V ∩ T ≡m B. Since
V = (V ∩ S) ∪ (V ∩ T ), it follows that V ≡m B.

4.3 Corollary. V 0 ≡m B and V 1 is computable.

4.4 Corollary. Suppose that G is computable and h : B0 ∼= G, and let V = h(V 0). Then
either V is computable or V ≡m B.

Theorem 1.11 follows from Lemma 4.1 and Corollaries 4.3 and 4.4. �

As mentioned in Section 1, the modifications to the proof of Theorem 1.7 presented
in this section can be combined with those presented in Section 3 to yield the following
result.
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1.12. Theorem. Let α ∈ ω ∪ {ω} and let {Ai}i∈ω be a uniformly α-c.e. collection
of sets. There exists an intrinsically α-c.e. relation V on the domain of a computable
structure B such that DgSpB(V ) = {deg(Ai) | i ∈ ω}.
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