
Uniformity in Computable Structure Theory∗

Rod G. Downey1

Denis R. Hirschfeldt1

Bakhadyr Khoussainov2

1 School of Mathematical and Computing Sciences, Victoria University of Wellington

2 Department of Computer Science, University of Auckland

Abstract

We investigate the effects of adding uniformity requirements to concepts in

computable structure theory such as computable categoricity (of a structure) and

intrinsic computability (of a relation on a computable structure). We consider

and compare two different notions of uniformity, previously studied by Kudinov

and by Ventsov. We discuss some of their results and establish new ones, while

also exploring the connections with the relative computable structure theory of

Ash, Knight, Manasse, and Slaman and Chisholm and with previous work of Ash,

Knight, and Slaman on uniformity in a general computable structure-theoretical

setting.

1 Introduction

Analyzing the effective content of theorems of classical model theory is part of the work

of computable model theory. Another part, which can be termed computable structure

theory, consists of studying properties of structures that are particular to the computable

setting. One of the important trends in this study has been the discovery of an increasing

number of computable structures with “pathological” computable properties that make

∗The authors’ research was partially supported by the Marsden Fund of New Zealand. Hirschfeldt’s

current affiliation is: Department of Mathematics, University of Chicago. The authors thank the

anonymous referee for providing valuable references to the literature.

1

them quite different from the more natural examples that initially motivated definitions

in the field. As an example, let us consider the number of different computable versions

of a given structure.

It has long been known that isomorphic computable structures can behave quite

differently from a computability-theoretic point of view. For example, if L is a linear

ordering of type ω and S is the successor relation on L then there is a computable copy

of L in which the image of S is computable, namely ω with its standard ordering. But

there are also computable copies of L in which the images of S are not computable

(see [8] for details). This leads to the following definitions. (We will always assume we

are working with computable languages.)

1.1 Definition. A structure A is computable if both its domain |A| and the atomic

diagram of (A, a)a∈|A| are computable.

An isomorphism from a structure A to a computable structure is called a computable

presentation of A. We often abuse terminology and refer to the image of a computable

presentation as a computable presentation.

The computable dimension of a computable structure A is the number of computable

presentations of A up to computable isomorphism.

A structure of computable dimension 1 is said to be computably categorical.

It is easy to give examples of computably categorical structures (for instance, ω with

successor) and of structures of infinite computable dimension (for instance, ω as a linear

ordering). On the other hand, structures of finite computable dimension greater than 1

are quite hard to come by (they were first shown to exist by Goncharov [10]), and all

such structures built so far have required rather elaborate constructions.

Even computably categorical structures are not immune from having surprising prop-

erties involving computable dimension. As shown by Cholak, Goncharov, Khoussainov,

and Shore [7], there exist computably categorical structures that, when expanded by a

single constant, are no longer computably categorical. Such structures can be thought

of as having structures of computable dimension greater than 1 hiding in them.

One approach to dealing with pathologies like the ones described above is to find

conditions under which they cannot occur. For example, suppose that the existential

diagram of the computable structureA is computable. Then, as shown by Goncharov [9],

the computable dimension of A is either 1 or ω. Furthermore, if A is computably

categorical then, as shown by Millar [19], so is every expansion of A by finitely many

constants.

2

Another approach is to try to pinpoint the source of the pathologies and eliminate

them by altering the relevant definitions. One example of this approach is relative

computable structure theory, originated independently by Ash, Knight, Manasse, and

Slaman [2] and Chisholm [6]. The idea there is to consider all presentations of a struc-

ture, rather than just computable ones.

1.2 Definition. An isomorphism from a structure M to a structure A with |A| ⊆ ω

is called a presentation of M. As in the computable case, we often refer to A as a

presentation of M. The degree deg(A) of this presentation is the join of the (Turing)

degrees of |A| and the atomic diagram of (A, a)a∈|A|.

A structure is relatively computably categorical if any two of its presentations are

isomorphic via a map computable in the join of the degrees of the presentations.

Relatively computably categorical structures are quite well-behaved. In particu-

lar, any expansion of such a structure by finitely many constants remains relatively

computably categorical. This is a consequence of the fact that relative computable

categoricity corresponds to a very natural syntactic notion.

1.3 Definition. Let A be a structure. A Scott family for A is a computably enumerable

(c.e.) set S of existential formulas in the language of A expanded by finitely many

constants from A such that every tuple of elements of A satisfies at least one formula in

S and any two tuples of elements of A satisfying the same formula in S are automorphic.

1.4 Theorem (Ash, Knight, Manasse, and Slaman; Chisholm). A computable structure

is relatively computably categorical if and only if it has a Scott family.

More recently, McCoy [18] has shown that, for a natural notion of relative computable

dimension introduced by Goncharov and Ventsov, no computable structure has finite

relative computable dimension greater than 1.

It should be noted that all known natural examples of computably categorical struc-

tures are also relatively computably categorical, where by natural examples we mean

ones that do not require elaborate constructions specifically exploiting the fact that the

definition of computable categoricity mentions only computable structures. Such ex-

amples include linear orderings with finitely many pairs of adjacent elements, Boolean

algebras with finitely many atoms, algebraically closed fields of finite transcendence

degree, and many others.

Another possible explanation for the surprising examples that have arisen in the

study of computable structures is the lack of uniformity requirements in the relevant

3

definitions. For example, if a computable structure A is computably categorical then

we know that, for every computable structure B ∼= A, there exists a computable isomor-

phism from B to A, but producing such an isomorphism given B might be hard, since

it might depend on properties of B that are not uniformly effective over computable

structures isomorphic to A.

On the other hand, the natural examples of computably categorical structures men-

tioned above are all clearly uniformly computably categorical (in any reasonable sense

of uniformity), provided we allow expansion by finitely many constants. (For example,

ω with successor is not uniformly computably categorical, but becomes so if we add a

constant for 0.)

The purpose of this paper is to study the effects of adding uniformity requirements to

some definitions in computable structure theory. As we will see, depending on what we

mean by uniformity, these effects can be the same as those produced by relativization.

Previous work in this direction has been done by Kudinov [14, 15, 16] and by

Ventsov [23, 24], as we discuss below. Ash, Knight, and Slaman [3] worked in a general

context and considered both relativization and one of the notions of uniformity discussed

below. We will elaborate on the connections with their work in the next section.

For basic notions of computability theory and model theory, the reader is referred

to [22] and [11], respectively. In particular, we will often appeal to Kleene’s Recursion

Theorem (Theorem II.3.1 in [22]), arguing informally and leaving the details to the

reader (although we do provide some of these details in the footnote to the proof of

Theorem 2.2). Unless otherwise noted, Φ0,Φ1, . . . is a standard list of all unary partial

computable functions.

As in the case of computable functions, the computable structures in a given language

cannot be effectively listed. This leads us to consider partial computable structures. It

will not matter for our purposes precisely how these are defined, but only that, for any

computable language L, there is a computable list of all partial computable structures

in L, and this list includes all the computable structures in L. We do assume, however,

that the partial computable structures in L are encoded as subsets of ω in an effective

manner, so that when we mention a partial computable operator Ψ on partial computable

structures in L, we have in mind a Turing functional Ψ̂ acting on the corresponding

encodings; that is, for a partial computable structure M in L, if S is the encoding of M

as a subset of ω then Ψ(M) denotes Ψ̂(S). A similar interpretation is intended for c.e.

operators on partial computable structures.

We should also mention that by a partial structure in a language L we mean a

4

structure that does not necessarily contain assignments for all the constant symbols in

L and such that function symbols in L may be assigned to partial functions. Given a

structureA with |A| ⊆ ω and n ∈ ω, the partial structureA � n is obtained by restricting

the domain of A to |A| ∩ {0, . . . , n − 1} and restricting its constants, functions, and

relations in the obvious way. (This of course means that some constants might become

unassigned and some functions might become partial.)

2 Uniform Computable Categoricity

The first concept we study is computable categoricity. There are at least two natural

ways to define the concept of uniform computable categoricity. In computability theory,

uniformity is usually defined in terms of indices. From a model-theoretic viewpoint,

however, it seems more natural to require the existence of an effective procedure for

producing the desired isomorphisms that takes structures, rather than indices for struc-

tures, as input. These two different approaches are reflected in the following definitions.

2.1 Definition. Let A be a computable structure and let M0,M1, . . . be a computable

list of all partial computable structures in the language of A.

A is weakly uniformly computably categorical (weakly u.c.c.) if there is a total com-

putable f such that Me
∼= A ⇒ Φf(e) : Me

∼= A.

A is uniformly computably categorical (u.c.c.) if there is a partial computable oper-

ator Ψ such that Me
∼= A ⇒ Ψ(Me) : Me

∼= A (that is, the function x 7→ Ψ(Me;x) is an

isomorphism from Me to A).

A is (weakly) u.c.c. with parameters if there are finitely many elements a0, . . . , an ∈
|A| such that (A, a0, . . . , an) is (weakly) u.c.c..

Remark. For each partial computable g there exists a total computable f such that

g(e) ↓⇒ Φf(e) = Φg(e). Thus for A to be weakly u.c.c. it is enough that there exist a

partial computable g such that Me
∼= A ⇒ g(e)↓ ∧Φg(e) : Me

∼= A.

Uniform computable categoricity (with parameters) was studied by Ventsov [23].

Weak uniform computable categoricity (with parameters) was studied by Kudinov [14,

16], who also defined a different notion of index-based uniformity in [15].

The difference between the two notions defined above can be understood from a

programming perspective. A computable structure A is weakly u.c.c. if there is a com-

putable procedure that, given a program P outputting a structure B isomorphic to A,

5

produces an isomorphism between B and A possibly using information about P . On the

other hand, A is u.c.c. if there is a computable procedure that, given a computable struc-

ture B isomorphic to A, produces an isomorphism between B and A without knowledge

of the particular program that is outputting B. Thus another way to think of uniform

computable categoricity is as on-line categoricity.

We will prove several facts relating the notions defined above to each other and to the

notions of computable categoricity and relative computable categoricity. We summarize

these as follows. Consider the following statements about a computable structure A.

C: A is computably categorical.

W: A is weakly uniformly computably categorical.

WP: A is weakly uniformly computably categorical with parameters.

U: A is uniformly computably categorical.

UP: A is uniformly computably categorical with parameters.

R: A is relatively computably categorical.

The following implications hold, and no other implications except the ones implied

by transitivity hold in general.

U +3

��

UP ks +3

��

R

W +3WP +3 C

All the arrows in this diagram are obvious except for the equivalence of UP and R, which

will be discussed below. If we let A be ω with successor then it is easy to check that

UP holds (and hence so does WP), but W does not hold (and hence neither does U).

This justifies the lack of arrows from WP to W and from UP to U. The other missing

arrows will be justified below.

If A is rigid (that is, has no nontrivial automorphisms), or even if it has only finitely

many automorphisms, then we will see that the picture is the following.

U +3
KS

��

UP ks +3
KS

��

R

W +3WP +3 C

6

(Notice that the example of ω with successor given above still works in this case.)

It might seem that relativizing uniform computable categoricity could yield a stronger

notion, but we will see below that this is not the case. It might also seem that there

could be other natural notions of uniformity strictly between weak uniform computable

categoricity and uniform computable categoricity, but we will argue below that this is

also not the case. We will also discuss the issue of preservation of these notions under

expansion by finitely many constants.

Uniform computable categoricity is a special case of a notion introduced by Ash,

Knight, and Slaman in [3], as we now explain.

In [1], Ash and Knight considered the following question. Given a structure A and

an infinitary sentence ψ in the language of A expanded by a new relation symbol R,

when is it the case that for every B ∼= A there is a deg(B)-computable relation RB on

B such that (B, RB) � ψ? As they pointed out, the problem of determining when a

structure is relatively computably categorical is a special case of this question.

Indeed, given a structure A, we can form the cardinal sum Â of A with itself (es-

sentially two disjoint copies of A in a language expanded by two new unary predicate

symbols to distinguish the copies). Then there exists a computable infinitary Π0
2 sen-

tence ψ in the language of Â expanded by a new binary relation symbol R such that

A is relatively computably categorical if and only if for every B ∼= Â there is a deg(B)-

computable relation RB on B such that (B, RB) � ψ. (Basically, ψ says of R that it is

an isomorphism between the two halves of its underlying structure viewed as a cardinal

sum; ψ needs to be infinitary only if the language of A is infinite. See [1] for details.)

This line of research was continued by Ash, Knight, and Slaman in [3]. As they

pointed out, instead of requiring the existence of an appropriate RB for every B ∼= A,

we could restrict our attention to computable B; in the special case of the sentence

ψ discussed in the previous paragraph, this corresponds to studying computable cate-

goricity. Another possibility considered in [3] is to require that RB be given effectively

(in the operator sense) from B, and this is the notion that, with the same ψ as above,

corresponds to the study of uniform computable categoricity.

We will comment further on what we can conclude about uniform computable cat-

egoricity from the results in [3] below, but first we show that uniform computable cat-

egoricity can still be viewed as uniformity with respect to indices, but a particularly

strong, extensional form of uniformity, in which we are not allowed to cheat by treating

two programs with identical outputs in different ways.

There is a similarity between certain aspects of the subject matter of this paper

7

and the study of type 2 computability (that is, computability of operations of type

(ω → ω) → ω), as noted by Ventsov [24]. In particular, the following result can be

seen as an analog of the fundamental theorems of Myhill and Shepherdson [20] and

Kreisel, Lacombe, and Shoenfield [13] on the relationship between effective operations

and computable functionals. (See Section 15.3 of Rogers [21] for the statements of these

theorems as well as a discussion of related concepts and results.)

2.2 Theorem. Let A be a computable structure and let M0,M1, . . . be a computable list

of all partial computable structures in the language of A. If there is a total computable

f such that Me
∼= A ⇒ Φf(e) : Me

∼= A and Me = Mi
∼= A ⇒ Φf(e) = Φf(i) then A is

u.c.c..

Proof. Let f be as in the statement of the theorem. Use the Recursion Theorem to

define a binary computable function g such that, for each x ∈ ω, gx ≡ λy(g(x, y)) is

such that the partial computable structures Mgx(i), i ∈ ω, are given by the following

procedure.1

1Readers inexperienced in the use of the Recursion Theorem may find the following more formal

definition of g helpful, though it is recommended that the description of g in the body of the proof be

read first.

Define the total computable function d so that the partial computable structures MΦd(e)(x,2i) and the

values Φd(e)(x, 2i + 1), e, x, i ∈ ω, are given by the following procedure. (Φd(e)(x, 2i + 1) is used as a

flag; its computation converges when MΦd(e)(x,2i) enters its phase 4, as described below.)

The computation of each MΦd(e)(x,2i) begins its phase 1 by emulating Mi. If it is ever the case that,

for some se,x,i ∈ ω, Φe(x, 2i)[se,x,i]↓ and Φf(Φe(x,2i))(x)[se,x,i]↓= Φf(i)(x)[se,x,i]↓, then the computation

of MΦd(e)(x,2i) enters its phase 2.

During phase 2, the computation of MΦd(e)(x,2i) waits until an embedding of MΦe(x,2i)[se,x,i] into A
is found (if ever), and then enters its phase 3.

Whenever i 6= j and a stage s are found such that

1. Φe(x, 2i)[s]↓ and Φe(x, 2j)[s]↓,

2. there are embeddings of MΦe(x,2i)[s] and MΦe(x,2j)[s] into A,

3. Φe(x, 2i + 1)[s]↑ and Φe(x, 2j + 1)[s]↑,

4. MΦe(x,2i)[si] ⊆MΦe(x,2j)[sj], and

5. Φf(Φe(x,2i))(x) 6= Φf(Φe(x,2j))(x),

then the computations of MΦd(e)(x,2i) and MΦd(e)(x,2j) enter phase 4, during which they act as follows.

First they search for the least embedding h (in some standard ordering of finite maps) of MΦe(x,2j)[se,x,j]

into A, if any. Then both structures are made to have domain ω and be isomorphic to A via the

isomorphism k ⊃ h that sends the nth element of ω− dom(h) to the nth element of |A|− rng(h), if this

8

The computation of each Mgx(i) begins its phase 1 by emulating Mi. If it is ever

the case that, for some si ∈ ω, Φf(gx(i))(x)[si]↓= Φf(i)(x)[si]↓, then the computation of

Mgx(i) enters its phase 2.

During phase 2, the computation of Mgx(i) waits until an embedding of Mgx(i)[si] into

A is found (if ever), and then enters its phase 3.

Whenever i 6= j are found such that the computations of Mgx(i) and Mgx(j) are both

in phase 3, Mgx(i)[si] ⊆ Mgx(j)[sj] and Φf(gx(i))(x) 6= Φf(gx(j))(x) then the computations

of Mgx(i) and Mgx(j) enter phase 4, during which, for the least embedding h (in some

standard ordering of finite maps) of Mgx(j)[sj] into A, both structures are made to have

domain ω and be isomorphic to A via the isomorphism k ⊃ h that sends the nth element

of ω − dom(h) to the nth element of |A| − rng(h).

This completes the definition of g. We compute Ψ(M ;x) as follows, where M is

a partial structure in the language of A. First, ask whether x ∈ |M |. If not then

make Ψ(M ;x) diverge. Otherwise, search for i, s ∈ ω such that Φf(gx(i))(x)[s] ↓ and

Mgx(i)[s] = M �
∣∣Mgx(i)[s]

∣∣. If such i and s are found then let Ψ(M ;x) = Φf(gx(i))(x).

Clearly, Ψ is a partial computable operator. Let Me
∼= A. We need to show that

Ψ(Me) : Me
∼= A.

Consider Mgx(e). If the computation of this structure never reaches its second phase

then Mgx(e) = Me, so we have Mgx(e)
∼= A, x ∈

∣∣Mgx(e)

∣∣, but not Φf(gx(e))(x)↓= Φf(e)(x)↓,
which contradicts the definition of f . So the computation of Mgx(e) reaches its second

phase, which implies that it reaches its third phase, since Me
∼= A.

However, for all i ∈ ω, the computation of Mgx(i) cannot reach its fourth phase,

since that would mean that there exists a j ∈ ω such that Mgx(i) = Mgx(j)
∼= A but

Φf(gx(j)) 6= Φf(gx(i)), which again contradicts the definition of f .

So the computation of Mgx(e) reaches its third phase but never leaves it, which

means that Mgx(e) is finite. So there must exist i, s ∈ ω such that Φf(gx(i))(x)[s] ↓
and Mgx(i)[s] = Me �

∣∣Mgx(i)[s]
∣∣. (We can take i = e, for example.) Since we now

define Ψ(M ;x) = Φf(gx(i))(x) for the first such i and s that we find, it is enough to

show that Φf(gx(i))(x) = Φf(e)(x) for any such i. But if Φf(gx(i))(x) 6= Φf(e)(x) then,

since the fact that the computation of Mgx(e) reaches its second phase implies that

Φf(gx(e))(x) = Φf(e)(x), it follows that Φf(gx(i))(x) 6= Φf(gx(e))(x), which implies that at

is possible (otherwise, both structures stop growing). Finally, Φd(e)(x, 2i + 1) and Φd(e)(x, 2j + 1) are

both made to converge at stage s.

By the Recursion Theorem, there is an e ∈ ω such that Φe = Φd(e). For such an e, define g(x, i) =

Φe(x, 2i). It is now straightforward to check that g behaves as described in the body of the proof.

9

least one of the computations of Mgx(e) and Mgx(i) reaches its fourth phase, which we

have already argued is not the case.

One consequence of Theorem 2.2 is that there does not appear to be any natural

notion of uniformity strictly between weak uniform computable categoricity and uniform

computable categoricity. Another consequence is that these two notions agree on rigid

structures; the following is a stronger version of this fact.

2.3 Corollary. Let A be a structure with only finitely many automorphisms. Then A
is weakly u.c.c. (with parameters) if and only if it is u.c.c. (with parameters).

Proof. It is enough to prove the parameter-free version of the corollary. Let M0,M1, . . .

be a computable list of all partial computable structures in the language of A and let

f be as in the definition of weakly u.c.c.. We will build a total computable function f̂

satisfying the hypothesis of Theorem 2.2.

Let g0, . . . , gn be the automorphisms of A. Let S be the set of all j 6 n such that

gj is computable. Note that if Me = Mi but Φf(e) 6= Φf(i) then Φf(e) ◦ (Φf(i))
−1 = gj for

some j 6 n, and in this case j ∈ S. Clearly there exist a finite D ⊂ |A| and pairwise

distinct functions h0, . . . , hn : D → |A| such that, for each i 6 n, gi extends hi. Let

d0 < · · · < dm be the elements of D.

Define f̂ so that Φf̂(e) is given by the following procedure. First, wait until all hj(D),

j ∈ S, appear in the range of Φf(e). For each j ∈ S and i 6 m, let xji be such that

Φf(e)(x
j
i) = hj(di). Choose a j ∈ S that minimizes the tuple 〈xj0, . . . , xjm〉 in some fixed

ordering of tuples. Now emulate gj ◦ Φf(e).

Clearly f̂ can be chosen to be total computable, and if Me
∼= A then Φf̂(e) ≡ gj ◦Φf(e)

for some j ∈ S, which implies that Φf̂(e) : Me
∼= A. Finally, if Me = Mi

∼= A then it is

easy to check that Φ−1
f̂(e)

(D) = Φ−1
f̂(i)

(D), which implies that Φf(e) ◦ (Φf(i))
−1 � D is the

identity, and hence that Φf(e) = Φf(i). By Theorem 2.2, A is u.c.c..

The following is a consequence of the results in [3] for computable infinitary Π0
2

sentences, and also follows from Theorem 2.5 below.

2.4 Corollary. A computable structure is u.c.c. with parameters if and only if it is

relatively computably categorical.

It now follows from Theorem 1.4 that a computable structure is u.c.c. with parame-

ters if and only if it has a Scott family. The following more general result of Ventsov [23]

is also a consequence of results in [3]. We include a proof for the sake of establishing

Corollary 2.6 below.

10

2.5 Theorem (Ventsov). A computable structure is u.c.c. if and only if it has a Scott

family without parameters, and is u.c.c. with parameters if and only if it has a Scott

family.

Proof. It is enough to prove the first part of the theorem, from which the second part fol-

lows immediately. Let A be a computable structure and let M0,M1, . . . be a computable

list of all partial computable structures in the language of A.

If A is u.c.c. then let Ψ be as in Definition 2.1. Given ~x = (x0, . . . , xk) ∈ |A|k+1,

let Me(~x) be a finite substructure of A such that, for every i 6 k, xi ∈
∣∣Me(~x)

∣∣ and

Ψ(Me(~x);xi) ↓. Let y0, . . . , yn be the elements of
∣∣Me(~x)

∣∣ other than x0, . . . , xk and let

δ(~x, y0, . . . , yn) be the conjunction of the finitely many elements of the atomic diagram

of Me(~x). Define θ~x ≡ ∃y0, . . . , yn(δ(~x, y0, . . . , yn)).

We claim that {θ~x | ~x ∈ |A|<ω} is a Scott family. It is enough to show that if

A � θ~x(~y) then ~y is in the orbit of ~x. If A � θ~x(~y) then there is an i and a g such

that g : A ∼= Mi, g(~y) = ~x, and Me(~x) is a substructure of Mi. It is easy to check that

(Ψ(A))−1 ◦Ψ(Mi) ◦ g is an automorphism of A taking ~y to ~x.

For the other direction, we can use the standard proof that a structure with a Scott

family is computably categorical, since this proof produces computable isomorphisms

uniformly.

Suppose that A has a Scott family without parameters {θn | n ∈ ω}. The operator

Ψ acts as follows on a structure B.

Assuming that x ∈ |B|, Ψ(B; y) has been defined for all y ∈ |B| � x, and Ψ(B;x)

has not yet been defined, Ψ searches for a θn such that B � θn(x0, . . . , xk−1, x), where

x0 < · · · < xk−1 are the elements of |B| � x. If such a formula is found then Ψ searches

for a z ∈ |A| such that A � θn(Ψ(B;x0), . . . ,Ψ(B;xk−1), x). If such a z is found then

Ψ(B;x) = z.

Now Ψ finds the least w ∈ |A| that is not currently in the range of Ψ(B), searches for

a θm such that A � θm(Ψ(B;x0), . . . ,Ψ(B;xk−1), z, w), and then searches for a v ∈ |B|
that is not yet in the domain of Ψ(B) such that B � θm(x0, . . . , xk−1, x, v). If such a v

is found then Ψ(B; v) = w.

It is easy to check, using the definition of Scott family, that if B ∼= A then this

procedure guarantees that Ψ(B) is an isomorphism from B to A.

In the second half of the proof of Theorem 2.5, there is no need for B to be com-

putable. This allows us to conclude that relativizing the notion of uniform computable

categoricity does not make it any stronger.

11

2.6 Corollary. If A is u.c.c. then there is a partial computable operator Ψ such that,

for any presentation B of A, Ψ(B) : B ∼= A.

Another consequence of Theorem 2.5 is that uniform computable categoricity, unlike

computable categoricity, is always preserved under expansion by finitely many constants.

(This is because if a structure has a Scott family then so does any expansion by finitely

many constants; see [12] for details.)

2.7 Corollary. If A is u.c.c. (with parameters) and a ∈ |A| then (A, a) is u.c.c. (with

parameters).

Putting together Theorem 2.5 with Corollary 2.3 and the following result of Khous-

sainov and Shore [12], allows us to conclude that weak uniform computable categoricity

is a strictly stronger notion than computable categoricity, a result originally due to

Kudinov [14].

2.8 Theorem (Khoussainov and Shore). There is a rigid computably categorical struc-

ture with no Scott family.

2.9 Corollary (Kudinov). There is a computably categorical structure that is not weakly

u.c.c. with parameters.

We have yet to show that weak uniform computable categoricity and uniform com-

putable categoricity are different notions. This has been done by Kudinov [16], using a

result of V’yugin [25]. We give a direct construction below.

2.10 Theorem (Kudinov). There is a weakly u.c.c. structure with no Scott family.

Proof. For each n ∈ ω, let [n] be the directed graph consisting of n + 3 many nodes

x0, x1, . . . , xn+2 with an edge from x0 to itself, an edge from xn+2 to x1, and an edge

from xi to xi+1 for each i 6 n+ 1. We call x0 the top of [n].

For each S ⊂ ω, the directed graph [S] consists of one copy of [s] for each s ∈ S,

with all the tops identified.

Now let D0, D1, . . . be a standard list of all finite non-empty sets and let Bn
0 , B

n
1 , . . .

be the nth uniformly c.e. (u.c.e.) collection of sets in some standard ordering of such

collections. We will build a u.c.e. collection of finite sets A0, A1, . . . with the following

properties.

1. There is no c.e. set W such that every Ai contains Dk for some k ∈ W and

(k ∈ W ∧Dk ⊆ Ai, Aj)⇒ Ai = Aj.

12

2. Let N be the set of all i ∈ ω such that Ai is non-empty. There is a partial

computable binary function h with the following property. For each n ∈ ω, if

there is a 1–1 and onto map g : ω → N such that, for all i ∈ ω, Bn
i = Ag(i), then

hn ≡ λi(h(n, i)) is such a map.

Suppose we have built A0, A1, . . . with these properties and let A be a computable

directed graph consisting of the disjoint union of the graphs [Ai], i ∈ ω. It is not hard to

check that the first property above implies that A has no Scott family, while the second

property implies that A is weakly u.c.c..

We now proceed with the construction of A0, A1, We assume that if s < 〈n, i〉
then Bn

i [s] = ∅. Since we are only interested in collections of sets B0, B1, . . . for which

there is a 1–1 and onto map g : ω → N such that, for all i ∈ ω, Bi = Ag(i), we also

assume without loss of generality that for each n, i, s ∈ ω there is a j ∈ ω such that

Bn
i [s] ⊆ Aj[s]. For each e ∈ ω, let k(e) be such that Dk(e) = {2e}. We begin with Ai = ∅

for all i ∈ ω. At stage s, we proceed as follows.

1. Enumerate 2s into A〈s,0〉.

2. Search for the least e 6 s (if any) such that k(e) ∈ We and A〈e,0〉 = {2e}. If such

an e is found then enumerate 2〈e, 0〉+1 into A〈e,0〉 and enumerate 2e and 2〈e, 1〉+1

into A〈e,1〉. Say that e is active at stage s.

3. For each e 6 s, check if there exist n, i ∈ ω such that 〈n, i〉 6 s, e has never

caught-up for the sake of n before (defined below), 2e ∈ Bn
i [t], where t 6 s is a

stage at which e is active, and Bn
i [s] 6= {2e}. If so then proceed as follows. For

each i 6 s such that 2e /∈ A〈e,i〉[s], enumerate 2e into A〈e,i〉. For each i, j 6 s such

that 2〈e, j〉 + 1 /∈ A〈e,i〉[s], enumerate 2〈e, j〉 + 1 into A〈e,i〉. Enumerate 2e and

2〈e, s+ 1〉+ 1 into A〈e,s+1〉. Say that e catches-up for the sake of n at stage s.

This completes the construction. We now check that A0, A1, . . . have the desired

properties. Clearly, A0, A1, . . . are u.c.e.. Each e ∈ ω can be active at most once, since

e cannot be active unless A〈e,0〉 is a singleton, and once e is active this is no longer the

case. Furthermore, if e is active at stage s then e can only catch-up at most once for

each n such that 2e ∈ Bn
i [s] for some i ∈ ω, which implies that e catches-up only finitely

often. Since no numbers are enumerated into any A〈e,i〉, i ∈ ω, at any stage at which e

is neither active nor catches-up, this means that each Ai is finite.

Fix e ∈ ω. If k(e) /∈ We then e is never active, so A〈e,0〉 = {2e}, which means that

there is no k ∈ We such that Dk ⊆ A〈e,0〉. On the other hand, if k(e) ∈ We then either

13

e never catches-up, in which case both A〈e,0〉 and A〈e,1〉 contain Dk(e) but A〈e,0〉 6= A〈e,1〉,

or e catches-up for the last time at some stage s, in which case, both A〈e,0〉 and A〈e,s+1〉

contain Dk(e) but A〈e,0〉 6= A〈e,s+1〉. Thus there is no c.e. set W such that every Ai

contains Dk for some k ∈ W and (k ∈ W ∧Dk ⊆ Ai, Aj)⇒ Ai = Aj.

Now define the map h as follows. Given n, i ∈ ω, assume that h(n, j) has already

been defined for all j < i. Wait until a stage s such that Bn
i [s] is non-empty and equal

to Ak[s] for some k /∈ rng(h � i) and define h(n, i) = k. Clearly, h is partial computable.

Fix n ∈ ω for which there is a 1–1 and onto map g : ω → N such that, for all i ∈ ω,

Bn
i = Ag(i). (Note that this implies that each Bn

i is non-empty.) To complete the proof,

we need to show that hn ≡ λi(h(n, i)) is a 1–1 map from ω onto N such that, for all

i ∈ ω, Bi = Ahn(i).

Clearly, if hn is defined for all i ∈ ω then it is 1–1 and onto. (The surjectivity of hn

follows from the fact that, for each e ∈ ω, there are only finitely many k ∈ ω such that

2e ∈ Ak.) Suppose that, for all j < i, hn(j) is defined and Bn
j = Ahn(j). Then hn(i)

must be defined, since otherwise there could be no 1–1 and onto map g : ω → N such

that, for all l ∈ ω, Bn
l = Ag(l).

So we are left with showing that, for all i ∈ ω, Bn
i = Ahn(i). Fix i ∈ ω and let

k = hn(i). First suppose that s in the definition of h(i) is such that Bn
i [s] = Ak[s] is

not a singleton. It is easy to check from the construction that if Al and As share two

elements then they are equal, so we have Bn
i = Ag(i) = Ak.

Now suppose that s in the definition of h(i) is such that Bn
i [s] = Ak[s] is a singleton.

Then it must be the case that, for some e ∈ ω, Bn
i [s] = {2e} and k = 〈e, 0〉. If e is never

active then Bn
i = {2e} = Ak. Otherwise, every Al that contains 2e has at least two

elements, and thus so does Bn
i . But this means that, at some stage t > s, e catches-up

for the sake of n. It is easy to check that this means that Al ⊇ Bn
i [t] if and only if

l = 〈e, u〉, u 6 t. But it is also the case that A〈e,u〉 = A〈e,v〉 for all u, v 6 t, so in fact

Al = Bn
i [t] if and only if l = 〈e, u〉, u 6 t. In particular, Bn

i = Ak.

2.11 Corollary. There is a weakly u.c.c. structure that is not u.c.c. with parameters.

Theorem 2.10 raises the possibility that, unlike uniform computable categoricity,

weak uniform computable categoricity might not always be preserved under expansion

by finitely many constants. The next result shows that, if so, then the constants by

which we expand our structure cannot have simple orbits. In particular, it implies that

we cannot hide a structure of finite computable dimension greater than 1 within a weakly

u.c.c. structure in the same way that we can in some computably categorical structures.

14

2.12 Theorem. If A is weakly u.c.c. (with parameters) and the orbit of a ∈ |A| is

computable then (A, a) is weakly u.c.c. (with parameters).

Proof. It is enough to prove the parameter-free version of the theorem. Let M0,M1, . . .

be a computable list of all partial computable structures in the language of (A, a). Since

A is weakly u.c.c., there is a total computable f such that if Me
∼= (A, a) then, for some

b in the orbit of a, Φf(e) : Me
∼= (A, b). We define a partial computable function f̂

such that if Me
∼= (A, a) then f̂(e)↓ and Φf̂(e) : Me

∼= (A, a). By the remark following

Definition 2.1, this is enough to show that (A, a) is weakly u.c.c..

Given e ∈ ω, build Mi as follows, using the Recursion Theorem. Begin by copying A.

Whenever a c ∈ |Mi| is found such that Φf(i)(c) = Φf(e)(a
Me), stop building Mi and ask

whether c is in the orbit of a. If not then continue to copy A. Otherwise, search for an

embedding g of the currently enumerated part of Mi into A such that g(c) = a. If such

an embedding is found then continue to build Mi to be isomorphic to A via a computable

isomorphism h extending g and define f̂(e) to be such that Φf̂(e) ≡ h ◦ (Φf(i))
−1 ◦Φf(e).

Clearly, f̂ is partial computable. If Me
∼= A then Φf(e)(a

Me) is in the orbit of a, and

hence the building of Mi goes through the full procedure described above. That is, c is

found and is in the orbit of a, g is found, and f̂(e) is defined. It is easy to check that

this implies that Φf̂(e) is an isomorphism from Me to (A, a).

It is not hard to modify the proof of Theorem 2.12 to show that we can replace

computable by Σ0
2 in the statement of that theorem, but the following question is open.

2.13 Question. If A is weakly u.c.c. and a ∈ |A| then must (A, a) be weakly u.c.c.?

3 Relations on Computable Structures

We now turn our attention to relations on computable structures. Although we are no

longer in the framework of [3], we will discuss results that are quite similar to those of

the previous section. (We will summarize these results at the end of this section.)

The study of relations on computable structures began with the work of Ash and

Nerode [4], who were concerned with relations that maintain some degree of effectiveness

in different computable presentations of a structure.

3.1 Definition. Let U be a relation on the domain of a computable structure A and let

C be a class of relations. U is intrinsically C on A if the image of U in any computable

presentation of A is in C.

15

Throughout this section, we will restrict ourselves to invariant relations, that is,

relations preserved under all automorphisms of the underlying structure, since there

do not seem to be reasonable notions of uniformity when dealing with noninvariant

relations.

We begin by considering the uniform analog of intrinsic computability. As we will

see, in this case our two notions of uniformity coincide.

3.2 Definition. Let A be a computable structure and let M0,M1, . . . be a computable

list of all partial computable structures in the language of A. Let U be an invariant

k-ary relation on A and let Φ0,Φ1, . . . be a standard list of all k-ary partial computable

functions.

U is uniformly intrinsically computable if there is a total computable f such that

Me
∼= A ⇒ Φf(e) = UMe .

U is uniformly intrinsically computable with parameters if there are finitely many

elements a0, . . . , an ∈ |A| such that U is uniformly intrinsically computable when con-

sidered as a relation on (A, a0, . . . , an).

The above definition is similar to one in Ventsov [24] (and is in fact equivalent to

Ventsov’s definition, by results in that paper and Corollary 3.9 below).

3.3 Theorem. Let A be a computable structure and let M0,M1, . . . be a computable

list of all partial computable structures in the language of A. Let U be an invariant

k-ary relation on A. If U is uniformly intrinsically computable then there is a partial

computable operator Ψ such that Me
∼= A ⇒ Ψ(Me) = UMe.

Proof. Repeat the proof of Theorem 2.2 using the function f given in Definition 3.2.

Note that, since U is invariant, it is automatically the case that Me = Mi
∼= A ⇒

Φf(e) = Φf(i).

Turning now to the concept of intrinsic computable enumerability, we find that once

again we have two different notions of uniformity.

3.4 Definition. Let A be a computable structure and let M0,M1, . . . be a computable

list of all partial computable structures in the language of A. Let U be an invariant

k-ary relation on A and let W0,W1, . . . be a standard list of all c.e. sets of k-tuples.

U is weakly uniformly intrinsically c.e. if there is a total computable f such that

Me
∼= A ⇒ Wf(e) = UMe .

16

U is uniformly intrinsically c.e. if there is a c.e. operator W such that Me
∼= A ⇒

W (Me) = UMe .

U is (weakly) uniformly intrinsically c.e. with parameters if there are finitely many

elements a0, . . . , an ∈ |A| such that U is (weakly) uniformly intrinsically c.e. when

considered as a relation on (A, a0, . . . , an).

Ventsov [23] studied uniform intrinsic computable enumerability (with parameters).

Ventsov [24] also studied a notion similar to weak uniform intrinsic computable enumer-

ability (with parameters).

It is interesting to note that a finite relation need not be weakly uniformly intrin-

sically c.e. (though it is, of course, always uniformly intrinsically computable with pa-

rameters). An example of such a relation is the unary relation on ω with successor that

holds only of 0.

The following is a consequence of Theorem 3.3.

3.5 Corollary. Let U be a relation on a computable structure A. The following are

equivalent.

1. U is uniformly intrinsically computable (with parameters).

2. Both U and its complement are weakly uniformly intrinsically c.e. (with parame-

ters).

3. Both U and its complement are uniformly intrinsically c.e. (with parameters).

As in the case of computable categoricity, the operator notion of uniformity corre-

sponds to a strengthened index-based uniformity.

3.6 Theorem. Let A be a computable structure and let M0,M1, . . . be a computable list

of all partial computable structures in the language of A. Let U be an invariant k-ary

relation on A and let Φ0,Φ1, . . . be a standard list of all (k + 1)-ary partial computable

functions. If there is a total computable f such that Me
∼= A ⇒ (Φf(e) total ∧ {~x |

∃n(Φf(e)(~x, n) = 1)} = UMe) and Me = Mi
∼= A ⇒ Φf(e) = Φf(i) then U is uniformly

intrinsically c.e..

Proof. The proof is essentially the same as that of Theorem 2.2. Instead of building

a binary function g, we build a (k + 2)-ary function g defined by specifying structures

Mg~x,n(i), where g~x,n ≡ λy(g(~x, n, y)), much as before, with certain obvious changes which

we leave to the reader.

17

To enumerate W (M), we search for ~x, n, i, and s such that Φf(g~x,n(i))(~x, n)[s] ↓= 1

and Mg~x,n(i)[s] = M �
∣∣Mg~x,n(i)[s]

∣∣. Whenever such numbers are found, we enumerate ~x

into W (M).

We can now show as before that if Me
∼= A then, for each ~x and n, there exist i and

s such that Φf(g~x,n(i))(~x, n)[s]↓ and Mg~x,n(i)[s] = M �
∣∣Mg~x,n(i)[s]

∣∣, and that, for any such

i, Φf(g~x,n(i))(~x, n) = Φe(~x, n), which implies that W (Me) = UMe .

As was the case with uniform computable categoricity, uniform intrinsic computabil-

ity and uniform intrinsic computable enumerability correspond to natural syntactic no-

tions, in this case ones originally formulated by Ash and Nerode [4]. This was shown by

Ventsov [23]. We include a proof below for completeness.

3.7 Definition. A k-ary relation U on a computable structure A is formally c.e. if

there is a c.e. sequence θ0, θ1, . . . of existential formulas in the language of A expanded

by finitely many constants from A such that, for every ~x ∈ ωk, U(~x)⇔ A �
∨

n∈ω θn(~x).

A relation U on a computable structure is formally computable if both it and its

complement are formally c.e..

3.8 Theorem (Ventsov). An invariant relation on a computable structure is uniformly

intrinsically c.e. if and only if it is formally c.e. without parameters, and is uniformly

intrinsically c.e. with parameters if and only if it is formally c.e..

Proof. It is enough to prove the first part of the theorem. Let U be an invariant relation

on a computable structure A and let k be its arity. Let M0,M1, . . . be a computable list

of all partial computable structures in the language of A.

If U is uniformly intrinsically c.e. then let W be as in Definition 3.4. For each

~x ∈ |A|k, search for an e(~x) such that Me(~x) is a finite substructure of A, ~x ∈
∣∣Me(~x)

∣∣k,

and ~x ∈ W (Me(~x)). If such an e(~x) is found, which will happen if and only if ~x ∈ U ,

then let y0, . . . , yn be the elements of
∣∣Me(~x)

∣∣ other than the elements of ~x and let

δ(~x, y0, . . . , yn) be the conjunction of the finitely many elements of the atomic diagram

of Me(~x). Define θ~x ≡ ∃y0, . . . , yn(δ(~x, y0, . . . , yn)).

We claim that U(~y) ⇔ A �
∨

~x∈U θ~x(~y). Clearly, U(~y) ⇒ A �
∨

~x∈U θ~x(~y). On the

other hand, if A � θ~x(~y) then there is an i and a g such that g : A ∼= Mi, g(~y) = ~x, and

Me(~x) is a substructure of Mi. It is easy to check that ~x ∈ W (Me(~x)) ⇒ ~x ∈ W (Mi) ⇒
UMi(~x)⇒ U(~y).

As in Theorem 2.5, for the other direction we can adapt the standard proof. Suppose

that U is formally c.e. as witnessed by the existential formulas {θn | n ∈ ω}. The

operator W acts as follows on a structure B.

18

Given ~x ∈ |B|k, W searches for a θn such that B � θn(~x). If such a formula is found

then W enumerates ~x into W (B). It is easy to check that if B ∼= A then this procedure

guarantees that W (B) = UB.

Combining Corollary 3.5 and Theorem 3.8, we have the following result.

3.9 Corollary. An invariant relation on a computable structure is uniformly intrin-

sically computable if and only if it is formally computable without parameters, and is

uniformly intrinsically computable with parameters if and only if it is formally com-

putable.

There are natural relativized versions of the notions we are considering.

3.10 Definition. Let U be a relation on the domain of a structure A. U is relatively

intrinsically computable (resp. c.e.) on A if the image of U in any presentation of A is

computable (resp. c.e.) in the degree of the presentation.

Combining Theorem 3.8 and Corollary 3.9 with the following result from [2] and [6],

we see that, in this context also, relativization and the operator version of uniformity

(with parameters) have the same effect.

3.11 Theorem (Ash, Knight, Manasse, and Slaman; Chisholm). A relation on a struc-

ture is relatively intrinsically c.e. if and only if it is formally c.e..

3.12 Corollary. An invariant relation on a computable structure is uniformly intrin-

sically c.e. with parameters if and only if it is relatively intrinsically c.e., and it is uni-

formly intrinsically computable with parameters if and only if it is relatively intrinsically

computable.

As in the case of computable categoricity, the fact that, in the second half of the

proof of Theorem 3.8, we did not need to require that B be computable allows us to

conclude that relativizing the notions of uniform intrinsic computability and uniform

intrinsic computable enumerability does not make them any stronger.

3.13 Corollary. If an invariant k-ary relation U on the domain of a computable struc-

ture A is uniformly intrinsically c.e. then there is a c.e. operator W such that, for any

presentation B of A, W (B) = UB.

If an invariant k-ary relation U on the domain of a computable structure A is uni-

formly intrinsically computable then there is a partial computable operator Ψ such that,

for any presentation B of A, Ψ(B) = UB.

19

We have yet to show that intrinsic computability does not imply weak uniform

intrinsic computable enumerability with parameters and that weak uniform intrinsic

computable enumerability does not imply uniform intrinsic computable enumerability

with parameters. Fortunately, this has already been done for us.

Manasse [17] built a relation U on a computable structure such that U is intrinsically

computable but not formally computable. Combining this result with Corollaries 3.5

and 3.9, we see that it cannot be the case that both U and its complement are weakly

uniformly intrinsically c.e. with parameters.

3.14 Corollary. There is a relation on a computable structure that is intrinsically

computable but not weakly uniformly intrinsically c.e. with parameters.

In Theorem III of [5], Chisholm built a relation on a computable structure that is

intrinsically c.e. but not formally c.e.. It is not hard to check from his proof that this

relation is in fact weakly uniformly intrinsically c.e.. Together with Theorem 3.8, this

result allows us to conclude that weak uniform intrinsic computable enumerability and

uniform intrinsic computable enumerability are different notions, which was also shown

directly in Ventsov [24], using a result of V’yugin [25].

3.15 Corollary (Ventsov). There is a relation on a computable structure that is weakly

uniformly intrinsically c.e. but not uniformly intrinsically c.e. with parameters.

We summarize the results of this section as follows. Consider the following statements

about a relation U on a computable structure.

C: U is intrinsically computable.

CE: U is intrinsically c.e..

UC: U is uniformly intrinsically computable.

UCP: U is uniformly intrinsically computable with parameters.

WUCE: U is weakly uniformly intrinsically c.e..

WUCEP: U is weakly uniformly intrinsically c.e. with parameters.

UCE: U is uniformly intrinsically c.e..

UCEP: U is uniformly intrinsically c.e. with parameters.

20

RC: U is relatively intrinsically computable.

RCE: U is relatively intrinsically c.e..

The following implications hold, and no other implications except the ones implied

by transitivity hold in general.

UC +3

��

UCP ks +3

��

RC +3 C

��

UCE +3

��

UCEP ks +3

��

RCE

WUCE +3WUCEP +3 CE

4 Suggestions for Further Work

In addition to Question 2.13 and open questions mentioned in [3], there are several

directions in which further work on uniformity in computable structure theory might be

carried out. One obvious one is to look for other notions whose uniform versions might

be of interest. For instance, are there natural notions of uniform computable dimension?

Even along the lines of what was done in the previous sections, there might be further

interesting questions. Instead of looking at uniform computable categoricity, one might

look at the uniform analogs of C categoricity for other classes of degrees C (for example,

∆0
2 categoricity). Similarly, one might look at the uniform analogs of intrinsic C-ness

for classes of relations C other than computable and c.e. relations. In both cases, there

may well be notions of uniformity intermediate between the index-based and operator

notions.

Two final possibilities are to investigate further the connections with type 2 com-

putability mentioned in the paragraph preceding Theorem 2.2 and to examine the index-

based notion of uniformity in the general context of [3].

References

[1] C. J. Ash and J. F. Knight, Relatively recursive expansions I, Fund. Math. 140

(1992) 137–155.

[2] C. J. Ash, J. F. Knight, M. S. Manasse, and T. A. Slaman, Generic copies of

countable structures, Ann. Pure Appl. Logic 42 (1989) 195–205.

21

[3] C. J. Ash, J. F. Knight, and T. A. Slaman, Relatively recursive expansions II, Fund.

Math. 142 (1993) 147–161.

[4] C. J. Ash and A. Nerode, Intrinsically recursive relations, in J. N. Crossley (ed.),

Aspects of Effective Algebra (Clayton, 1979) (Upside Down A Book Co., Yarra

Glen, Australia, 1981) 26–41.

[5] J. Chisholm, The complexity of intrinsically r.e. subsets of existentially decidable

models, J. Symbolic Logic 55 (1990) 1213–1232.

[6] J. Chisholm, Effective model theory vs. recursive model theory, J. Symbolic Logic

55 (1990) 1168–1191.

[7] P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore, Computably cate-

gorical structures and expansions by constants, J. Symbolic Logic 64 (1999) 13–37.

[8] R. G. Downey, Computability theory and linear orderings, in Y. L. Ershov, S. S.

Goncharov, A. Nerode, and J. B. Remmel (eds.), Handbook of Recursive Math-

ematics, vol. 138–139 of Stud. Logic Found. Math. (Elsevier, Amsterdam, 1998)

823–976.

[9] S. S. Goncharov, The quantity of nonautoequivalent constructivizations, Algebra

and Logic 16 (1977) 169–185.

[10] S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations,

Algebra and Logic 19 (1980) 401–414.

[11] W. Hodges, Model Theory, vol. 42 of Encyclopedia Math. Appl. (Cambridge Uni-

versity Press, Cambridge, 1993).

[12] B. Khoussainov and R. A. Shore, Computable isomorphisms, degree spectra of

relations, and Scott families, Ann. Pure Appl. Logic 93 (1998) 153–193.

[13] G. Kreisel, D. Lacombe, and J. R. Shoenfield, Partial recursive functionals and

effective operations, in A. Heyting (ed.), Constructivity in Mathematics: Proceed-

ings of the Colloquium held at Amsterdam, 1957 (North–Holland Publishing Co.,

Amsterdam, 1957) 195–207.

[14] O. V. Kudinov, An autostable 1-decidable model without a computable Scott family

of ∃-formulas, Algebra and Logic 35 (1996) 255–260.

22

[15] O. V. Kudinov, Some properties of autostable models, Algebra and Logic 35 (1996)

384–391.

[16] O. V. Kudinov, A description of autostable models, Algebra and Logic 36 (1997)

16–22.

[17] M. S. Manasse, Techniques and Counterexamples in Almost Categorical Recursive

Model Theory, PhD Thesis, University of Wisconsin, Madison, WI (1982).

[18] C. F. D. McCoy, Finite computable dimension does not relativize, Arch. Math.

Logic 41 (2002) 309–320.

[19] T. Millar, Recursive categoricity and persistence, J. Symbolic Logic 51 (1986) 430–

434.

[20] J. Myhill and J. C. Shepherdson, Effective operations on partial recursive functions,

Z. Math. Logik Grundlag. Math. 1 (1955) 310–317.

[21] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, 2nd ed.

(MIT Press, Cambridge, Mass., 1987).

[22] R. I. Soare, Recursively Enumerable Sets and Degrees, Perspect. Math. Logic

(Springer–Verlag, Heidelberg, 1987).

[23] Y. G. Ventsov, Effective choice for relations and reducibilities in classes of construc-

tive and positive models, Algebra and Logic 31 (1992) 63–73.

[24] Y. G. Ventsov, Effective choice operations on constructive and positive models,

Algebra and Logic 32 (1993) 23–28.

[25] V. V. V’yugin, On some examples of upper semilattices of computable enumera-

tions, Algebra and Logic 12 (1973) 287–296.

23

