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Abstract. Several notions of computability-theoretic reducibility be-
tween Π1

2 principles have been studied. This paper contributes to the
program of analyzing the behavior of versions of Ramsey’s Theorem
and related principles under these notions. Among other results, we
show that for each n > 3, there is an instance of RTn

2 all of whose so-
lutions have PA degree over ∅(n−2), and use this to show that König’s
Lemma lies strictly between RT2

2 and RT3
2 under one of these no-

tions. We also answer two questions raised by Dorais, Dzhafarov, Hirst,
Mileti, and Shafer [2016] on comparing versions of Ramsey’s Theorem
and of the Thin Set Theorem with the same exponent but different
numbers of colors. Still on the topic of the effect of the number of
colors on the computable aspects of Ramsey-theoretic properties, we
show that for each m > 2, there is an (m + 1)-coloring c of N such
that every m-coloring of N has an infinite homogeneous set that does
not compute any infinite homogeneous set for c, and connect this re-
sult with the notion of infinite information reducibility introduced by
Dzhafarov and Igusa [ta]. Next, we introduce and study a new notion
that provides a uniform version of the idea of implication with respect
to ω-models of RCA0, and related notions that allow us to count how
many applications of a principle P are needed to reduce another prin-
ciple to P . Finally, we fill in a gap in the proof of Theorem 12.2 in
Cholak, Jockusch, and Slaman [2001].
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1. Introduction

Many of the mathematical principles that have been analyzed in the
setting of reverse mathematics have the form

∀X [Θ(X) → ∃Y Ψ(X, Y )],

where X and Y range over sets of natural numbers and Θ and Ψ are
arithmetic. We think of a true sentence of this form as a problem. An
instance of this problem is an X such that Θ(X) holds and a solution
to this instance is a Y such that Ψ(X, Y ) holds. From a computability-
theoretic point of view, several ways of comparing the relative strength of
two such problems have been studied. These are different ways to formalize
the idea of reducing a problem P to a problem Q, and each of them can
give us interesting information within the broad program of analyzing the
computability-theoretic content of mathematics.

Definition 1.1. Let P and Q be problems.

(1) Recall that a Turing ideal is a nonempty collection of sets closed under
join and closed downward under Turing reducibility. A problem R
holds in a Turing ideal I if for every instance X ∈ I of R, there is a
solution Y ∈ I to X. We write P 6ω Q to mean that for every Turing
ideal I, if Q holds in I then so does P . In the language of reverse
mathematics, this definition says that every ω-model of RCA0 + Q is
a model of P .
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(2) We say that P is computably reducible to Q, and write P 6c Q, if

for every instance X of P , there is an X-computable instance X̂ of Q

such that, for every solution Ŷ to X̂, there is an X ⊕ Ŷ -computable
solution to X.

(3) We say that P is strongly computably reducible to Q, and write P 6sc

Q, if for every instance X of P , there is an X-computable instance X̂

of Q such that, for every solution Ŷ to X̂, there is a Ŷ -computable
solution to X.

(4) We say that P is Weihrauch reducible to Q, and write P 6W Q, if
there are Turing functionals Φ and Ψ such that, for every instance X

of P , the set X̂ = ΦX is an instance of Q, and for every solution Ŷ to

X̂, the set Y = ΨX⊕bY is a solution to X.

(5) We say that P is strongly Weihrauch reducible to Q, and write P 6sW

Q, if there are Turing functionals Φ and Ψ such that, for every instance

X of P , the set X̂ = ΦX is an instance of Q, and for every solution Ŷ

to X̂, the set Y = Ψ
bY is a solution to X.

Note that all of these notions are transitive.

Remark 1.2. The reducibility 6ω is equivalent to a special case of the
notion of computable entailment discussed by Shore [52], which is defined
as follows: if Φ, Ψ are sentences of second order arithmetic, then Ψ com-
putably entails Φ if every ω-model of RCA0 + Ψ is a model of Φ.

Weihrauch reducibility has also been called uniform reducibility in this
context. It is a more general notion, first introduced by Weihrauch [59, 60]
in the context of computable analysis, and widely studied since. It was
used for the kind of computability-theoretic comparison of mathematical
principles we are engaged here by Gherardi and Marcone [22], Brattka
and Gherardi [2, 3], and several other researchers since then. Dzhafarov
[15] introduced the notion of computable reducibility. Dorais, Dzhafarov,
Hirst, Mileti, and Shafer [12] then uniformized this notion, yielding the
definition of Weihrauch reducibility given above. This definition is dif-
ferent from the one given in the aforementioned papers coming from the
computable analysis tradition, but it was proved to be equivalent to (a
special case) of the latter in Appendix A of [12].

If P and Q are the trivial problems ∀X ∃Y [Y = X] and ∀X ∃Y [Y = ∅],
respectively, then P 6W Q but P 
sc Q. Intuitively, we would probably
want to think of P as reducible to any problem, so 6sc and 6sW may seem
a bit suspect. Nevertheless, they can still give us useful information. To
give an example, and for future use, we define some well-known versions
of Ramsey’s Theorem and related concepts.
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Definition 1.3. For a set X, let [X]n be the collection of n-element subsets
of X. We refer to an element of [X]n as an n-tuple, although these elements
are unordered. A k-coloring of [X]n is a map c : [X]n → k. We write
c(x1, . . . , xn) for c({x1, . . . , xn}). A set H ⊆ X is homogeneous for c if
there is an i < k such that c(s) = i for all s ∈ [H]n. We also say that H
is homogeneous to i. A set A ⊆ X is prehomogeneous for c if the color of
an element of [A]n depends only on its least n− 1 many elements.

Ramsey’s Theorem for n-tuples and k colors RTn
k is the statement that

every k-coloring of [N]n has an infinite homogeneous set. RTn
<∞ is the

statement ∀k RTn
k . RT is the statement ∀n ∀k RTn

k .
A coloring c : [N]2 → 2 is stable if limy c(x, y) exists for all x (in other

words, for each x, there is an i < 2 such that c(x, y) = i for all sufficiently
large y). Stable Ramsey’s Theorem for Pairs SRT2

2 is the statement that
every stable 2-coloring of [N]2 has an infinite homogeneous set.

Let D2
2 be the statement that for every stable 2-coloring of pairs c there

is an infinite set H that is limit-homogeneous in the sense that there is
an i < 2 such that for all x ∈ H, if y is a sufficiently large element
of H then c(x, y) = i. The principles SRT2

2 and D2
2 are closely related.

Indeed, D2
2 captures the way computability theorists generally think of

SRT2
2, by considering the task of computing an infinite homogeneous set

given a computable stable 2-coloring of pairs to be equivalent to that of
computing a subset of A or its complement A given a ∆0

2 set A. SRT2
2

trivially implies D2
2 (indeed, D2

2 6sW SRT2
2), and it was shown by Chong,

Lempp, and Yang [9, Theorem 1.4] that RCA0 ` D2
2 → SRT2

2. (Their proof
involved showing that D2

2 implies Σ0
2-bounding over RCA0, thus justifying

a hidden use of Σ0
2-bounding in the proof of Lemma 7.10 in [7].) It is also

easy to see that SRT2
2 6c D2

2. However, Dzhafarov [16] has shown that
SRT2

2 
W D2
2 (see also [5, Corollary 6.12]) and SRT2

2 
sc D2
2, so we regard

SRT2
2 and D2

2 as separate principles. We can of course also define SRT2
k,

SRT2
<∞, D2

k, and D2
<∞ in the obvious ways.

A set C is cohesive for a collection of sets R0, R1, . . . if C is infinite and
for each i, either C ⊆∗ Ri or C ⊆∗ Ri (where X ⊆∗ Y means that X ∩ Y
is finite). The Cohesive Set Principle COH is the statement that every
countable collection of sets has a cohesive set.

Remark 1.4. In reverse mathematics, we work in the setting of second
order arithmetic, where the only first order objects are natural numbers,
and the only second order objects are sets of natural numbers. Thus we
must encode other first order objects, such as tuples of natural numbers
and strings, as natural numbers; and other second order objects, such as
colorings and trees, as sets of natural numbers. For the kinds of objects
we consider in this paper, though, these codings are straightforward. Fur-
thermore, in the computability-theoretic setting, we may argue informally,
and use the fact that it is well understood what is meant by saying, for
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example, that one coloring computes another. Thus, we regard instances
and solutions of a problem P as the actual objects mentioned in the (in-
formal) statement of P . For example, an instance of RT2

2 is a 2-coloring
of [N]2. However, it will also be useful at times to be able to think of the
instances and solutions of our problems as subsets of N, so we identify all
second order objects with subsets of N (or, equivalently, elements of 2ω)
via some reasonable choice of coding (such as the ones in [54]). The exact
choice of coding does not affect any of our results.

Remark 1.5. In almost all cases we consider, it is clear from the informal
description of a problem what its instances and solutions are. The only
exceptions are RTn

<∞, SRT2
<∞, D2

<∞, and RT. One way to formalize RTn
<∞

is to have an instance be a function f : [N]n → N such that rng(f) is
bounded (and a solution to this instance be an infinite set H such that
rng(f � [H]n) is a singleton). Another is to have an instance consist of a
number k together with a function f : [N]n → k. As the second notion
seems closer to the intent of the principle, let us call it RTn

<∞, and let us
call the first notion (RTn

<∞)′. In the nonuniform setting, the two principles
are equivalent, but we do have (RTn

<∞)′ 
W RTn
<∞, with a proof similar

to that of Theorem 3.3 below. However, none of the results in this paper
depend on which of these formalizations we adopt, so we will not treat
(RTn

<∞)′ as a separate principle. The same considerations apply to the
cases of SRT2

<∞, D2
<∞, and RT. (See also Brattka and Rakotoniaina [5],

where RTn
<∞ and (RTn

<∞)′ are denoted by RTn,+ and RTn,N, respectively.)

Dzhafarov [15] showed that COH 
sc D2
2, and has recently improved

this result in [16] to COH 
sc SRT2
2. It is still an open question whether

COH 6c SRT2
2, or, equivalently, whether COH 6c D2

2. Since RT2
2 is equiv-

alent to SRT2
2 + COH over RCA0 (as shown by Mileti [41] and Jockusch

and Lempp [unpublished], see [8, item 2]), answering this question might
be a step toward answering the question of whether RT2

2 6ω SRT2
2. The

latter question has become particularly interesting in light of the proof
by Chong, Slaman, and Yang [10] that RCA0 + SRT2

2 0 RT2
2. Note that

Dzhafarov [16] has also shown that COH 
W SRT2
2.

For any two problems P and Q, we clearly have

P 6W Q
px iiiiiiiiii

P 6ω Q P 6c Qks P 6sW Q.

go VVVVV
VVVVV

ow hhhhhhhhhh

P 6sc Q

fn UUUUU
UUUUU

No implications between these notions hold in general other than the ones
shown or implied by transitivity of implication. We have already seen that
6W does not imply 6sc. For the other cases, we can give examples using
versions of Ramsey’s Theorem.
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Here and below, we adopt standard computability-theoretic notation.
In particular, we use ↓ to indicate that a computation converges, and for
an object X being computably approximated, we write X[s] for the stage
s approximation to X; thus, for a Turing functional Φ, we write ΦX(n)[s]
for the value of the computation of Φ with oracle X on input n at stage
s (which might of course be undefined if this computation has not yet
converged).

If P is RT1
2 and Q is ∀X ∃Y [Y = X] then clearly P 6sc Q. However,

P 
W Q. To see that this is the case, assume that P 6W Q as witnessed
by the functionals Φ and Ψ. Define c : N → 2 as follows. Start defining
c(s) = 0 at each stage s until we find n 6 s such that Ψc⊕Φc

(n)[s]↓ = 1
(adopting the usual convention that the use of this computation must be
at most s). We must eventually find such n and s, since Φc is a solution to
itself as an instance of Q. Then define c(t) = 1 for all t > s. Any solution
to P must consist entirely of numbers greater than s, so Ψc⊕Φc

is not a
solution to P . We will see nontrivial examples of this kind of phenomenon
in Section 4.

Jockusch [30, Theorems 5.1 and 5.5] showed that for each n, k > 2, every
computable k-coloring of [N]n has an infinite Π0

n homogeneous set, but
there is a computable k-coloring of [N]n with no infinite Σ0

n homogeneous
set. It follows that RTn+1

k 
c RTn
k . On the other hand, using results

from Jockusch [30, Section 5], Simpson [53, Theorem III.7.6] showed that
if n > 3 and k > 2, then RTn

k is equivalent to ACA0 over RCA0, so for
such n we have RTn+1

k 6ω RTn
k . (RT2

k, on the other hand, is weaker, not
just reverse-mathematically but also in the sense of ω-models, as shown
by Seetapun in Seetapun and Slaman [51, Theorem 3.1].)

It is also worth remarking on the connections between these notions of
reducibility and implication over RCA0. If RCA0 + Q ` P then P 6ω Q,
but the example of RTn+1

k and RTn
k , where n > 3, shows that it is not

necessarily the case that P 6c Q. Conversely, even having P 6sW Q is not
enough to ensure that RCA0 +Q ` P , although it is somewhat more diffi-
cult to find a counterexample. To do so, we consider the principle Π0

1GA,
introduced by Hirschfeldt, Lange, and Shore [27], as a “miniaturization”
of the principle Π0

1G studied by Hirschfeldt, Shore, and Slaman [29].

Definition 1.6. Let D be a property of binary strings. We write σ ∈ D
to mean that D holds of σ. We say that D is dense if for every σ there is
a τ < σ such that τ ∈ D.

Π0
1G is the principle stating that for any X and any uniformly Π0,X

1

collection D0, D1, . . . of dense properties of binary strings, there is a G
such that

∀i∃m [G � m ∈ Di].
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Π0
1GA is the principle stating that for any X and any uniformly Π0,X

1

collection D0, D1, . . . of dense properties of binary strings, there is a se-
quence g0, g1, . . . of sets such that

∀i∃m ∃t∀u > t [gu � m = gt � m ∈ Di].

We can think of Π0
1GA as a problem as follows. An instance of Π0

1GA
is a sequence A0, A1, . . . ⊆ N × 2<ω such that for every σ and i, there is
a τ < σ for which ∀k [〈k, τ〉 ∈ Ai] holds. A solution to this instance is a
sequence g0, g1, . . . of sets such that

∀i∃m ∃t∀u > t∀k [gu � m = gt � m ∧ 〈k, gt � m〉 ∈ Ai].

It is easy to check that Π0
1GA is uniformly computably true, i.e., that

there is a uniform procedure to obtain g0, g1, . . . as above from A0, A1, . . . .
In particular, Π0

1GA 6W WKL. We will see in Proposition 4.9 that this
fact implies that Π0

1GA 6sW WKL. On the other hand, it is shown in [27,
Theorem 3.3] that Π0

1GA implies Σ0
2-induction over RCA0 together with

Σ0
2-bounding. By Hájek [24, Corollary 3.14], WKL is conservative over

Σ0
2-bounding for arithmetic statements, so RCA0 + WKL 0 Π0

1GA.

In this paper, we consider several issues connected with the above no-
tions of reducibility. In Section 2, motivated both by a question about
computable reducibility and by one raised by Liu’s proof in [40] that RT2

2

does not imply Weak König’s Lemma (WKL) over RCA0, we show that for
every n > 3, there is a computable 2-coloring of [N]n such that any infinite
homogeneous set has PA degree over ∅(n−2). Using this result we show that
full König’s Lemma (KL) lies strictly between RT2

2 and RT3
2 under com-

putable reducibility. We also analyze the limits of codability into solutions
of (not necessarily computable) instances of Ramsey’s Theorem and use
this analysis to show that WKL is not strongly computably reducible to
RT, and prove several other results on the relationships between versions
of Ramsey’s Theorem and König’s Lemma with respect to the notions of
reducibility defined above.

In Section 3, we answer two questions raised by Dorais, Dzhafarov, Hirst,
Mileti, and Shafer [12] on Weihrauch reducibility between versions of Ram-
sey’s Theorem and of the Thin Set Theorem with the same exponent but
different numbers of colors. We also show that for each m > 2, there is an
(m + 1)-coloring c of N such that every m-coloring d of N has an infinite
homogeneous set that does not compute any infinite homogeneous set for
c, which strengthens both a theorem of Dzhafarov [15], who established
this result under the assumption that d is hyperarithmetic in c (and hence
showed that RT1

3 
sc RT1
2), and one of Dzhafarov and Igusa [17] on the

notion of infinite information reducibility introduced by them. Our result
demonstrates that, while colorings of N might at first seem uninterest-
ing, once we look at noncomputable colorings, surprising phenomena can
emerge.
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The difference between P 6c Q and P 6ω Q is that the former captures
the idea of solving an instance of P by reducing it to a single instance
of Q, while the latter captures the idea of solving an instance of P by
reducing it to multiple instances of Q (taken in parallel, in series, or in
a combination of both modes). In Section 4, we make this interpretation
of 6ω more precise, in a way that allows us to combine this general form
of reduction with the idea of uniformity, to arrive at a uniform version of
6ω, whose basic properties we study. We also look at ways to count the
number of instances of Q used in reducing P to Q (uniformly or not), and
to extend our notions to non-ω-models.

Section 5 is a summary of some of our results, their context, and some
remaining open questions in the form of diagrams.

In the course of our work on this paper, we found a gap in the proof of
the following result in Cholak, Jockusch, and Slaman [7, Theorem 12.2]:
Let n, k > 2 and let C0, C1, . . . be such that Ci 
T ∅(n−2) for all i. Then
each computable k-coloring of [N]n has an infinite homogeneous set H such
that H ′ �T ∅(n) and Ci 
T H for all i. In the appendix, we show how to
fill in this gap.

We assume familiarity with the basic terminology and notation of com-
putability theory and reverse mathematics, as found for instance in Soare
[55] and Simpson [54], respectively. In Section 3.2, we will also need some
basic facts about the hyperjump (see for instance Sacks [49]). We denote
the eth {0, 1}-valued Turing functional in a fixed effective listing of such
functionals by Φe. A tree is a subset of N<ω that is closed downward under
extension. A tree T is finitely bounded if for each n there is a k such that
σ(n) < k for every σ ∈ T of length n + 1. A binary tree is a tree that is a
subset of 2<ω.

Recall that König’s Lemma KL is the statement that every infinite,
finitely bounded tree has an infinite path, and Weak König’s Lemma WKL
is the statement that every infinite binary tree has an infinite path. Re-
call also that a set has PA degree if it can compute a solution to each
computable instance of WKL. More generally, we say that X has PA de-
gree over Y , and write X � Y , if X can compute a solution to each
Y -computable instance of WKL. It is well known that X � Y if and only
if X computes a completion of the partial function e 7→ ΦY

e (e).
Weak Weak König’s Lemma WWKL, which comes up often in the re-

verse mathematics of measure theory, states that if T is a binary tree such
that

lim inf
n

|{σ ∈ T : |σ| = n}|
2n

> 0,

then T has an infinite path.
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2. Versions of Ramsey’s Theorem and König’s Lemma

In this section we compare various versions of Ramsey’s Theorem (i.e.,
RTn

k , SRT2
k, D2

k, RTn
<∞, SRT2

<∞, D2
<∞, RT, and COH) and König’s Lemma

(i.e., KL, WKL, and WWKL). We leave a discussion of the case of RTn
j

versus RTn
k for j 6= k to the following section. For a summary of our

results and how they fit into a more general picture, see the diagrams in
Section 5. The key new technical result needed here is that there is a
computable 2-coloring of triples such that every infinite homogeneous set
has PA degree over ∅′.

We begin with a reminder of results for 6ω, summarized in Figure 2.1.
Since the number of colors does not matter in this case, the subscript k here
stands for any number greater than 1 or for <∞. No other implications
than the ones shown (or implied by transitivity) hold. For justifications
of these implications and nonimplications, see [25]. There are two arrows
with questions marks, but they represent the same open question, since
RT2

2 is equivalent to SRT2
2 + COH over RCA0.

RT = RT3
k = KL

uullllllllllllllll

((QQQQQQQQQQQQQ

RT2
k

xxppppppppppppp

��

WKL

}}||
||

||
||

||
||

||
||

||
||

||

COH

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX SRT2
k = D2

k

))RRRRRRRRRRRRRRRR

?

OO

?oo

RT1
k

Figure 2.1. Versions of RT and KL under 6ω

Liu [40] showed that RT2
2 does not imply WKL over RCA0. In fact

he showed in his Corollary 1.6 that there is an ω-model of RCA0 + RT2
2

that does not contain any set of PA degree. It follows immediately that
WKL 
ω RT2

2. It also follows immediately that for every computable 2-
coloring of [N]2 there is an infinite homogeneous set whose degree is not
PA. For colorings of exponent n > 3 it is natural to work over ∅(n−2),
since it was shown in Jockusch [30, Lemma 5.9] that there is a computable
2-coloring of [N]n with every infinite homogeneous set computing ∅(n−2).
In particular, one might ask whether Liu’s result above could be extended
by showing that for every n > 2 and every computable coloring of [N]n,
there is an infinite homogeneous set whose degree is not PA over ∅(n−2).
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A closely related question comes from considering the relationship be-
tween RT3

2 and KL. These principles are both equivalent to ACA0 over
RCA0. On the other hand, it is not difficult to see that every computable
instance of KL has a ∆0

3 solution, while by Jockusch [30, Theorem 5.1],
there are computable instances of RT3

2 with no Σ0
3 solution, so RT3

2 
c KL.
We might then ask whether KL 6c RT3

2. Suppose for the moment that
this is so. By Theorem 5 of Jockusch, Lewis, and Remmel [31] (and the

existence of a nonempty Π0,∅′
1 set with all elements of PA degree over ∅′)

there is a computable instance of KL with all solutions of PA degree over
∅′. Hence, by our supposition, there must be a computable instance of RT3

2

with all solutions of PA degree over ∅′. Our next result shows that this is
the case. We then use this result in relativized form to show in Corollary
2.4 that KL 6c RT3

2 and in fact that KL 6W RT3
2, a result which was

obtained independently by Brattka and Rakotoniaina [5].

Theorem 2.1. There is a computable 2-coloring of [N]3 such that any
infinite prehomogeneous set has PA degree over ∅′.

Proof. Let m < s < t. If for all e < m we have Φ
∅′[s]
e (e)[s] = Φ

∅′[t]
e (e)[t]

(which includes the possibility that both sides diverge) then let c(m, s, t) =
1. Otherwise, let c(m, s, t) = 0.

Suppose that A is prehomogeneous for c. Define a function g 6T A as
follows. Given x, let m ∈ A be such that x < m. Search for s, t ∈ A such

that m < s < t and Φ
∅′[s]
e (e)[s] = Φ

∅′[t]
e (e)[t] for all e < m. Such numbers

must exist since there are only finitely many possibilities for the outcomes

of these computations. Let g(x) = Φ
∅′[s]
x (x)[s] if the latter is defined, and

otherwise let g(x) = 0. By prehomogeneity, Φ
∅′[s]
x (x)[s] = Φ

∅′[u]
x (x)[u] for

all u > s in A, so if Φ∅′
x (x)↓ then Φ∅′

x (x) = Φ
∅′[s]
x (x)[s] = g(x). Thus g is an

A-computable completion of the partial function e 7→ Φ∅′
e (e), and hence

A � ∅′. �

In particular, there is a computable 2-coloring of [N]3 such that any
infinite homogeneous set has PA degree over ∅′. We can extend this result
to higher exponents as follows. As in [30], a coloring c is called unbalanced
if all infinite homogeneous sets are homogeneous to the same color. Note
that the coloring constructed in the proof of Theorem 2.1 is unbalanced.

Corollary 2.2. Let n > 3. There is an unbalanced computable 2-coloring
of [N]n such that any infinite homogeneous set has PA degree over ∅(n−2).

Proof. We prove a strong relativized version by induction on n, specifically
the following: For each n > 3 and each set X there is an unbalanced X-
computable 2-coloring of [N]n such that for any infinite homogeneous set
H, the set X ⊕ H has PA degree over X(n−2). The base case n = 3 is
obtained by relativizing Theorem 2.1 to X. Now assume the result for n,
where n > 3, and let X be given. By the inductive hypothesis (for X ′)
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there is an unbalanced X ′-computable 2-coloring c of [N]n such that for
any infinite homogeneous set H, the set X ′⊕H has PA degree over X(n−1).
By [30, Lemma 5.2], relative to X, there is an X-computable 2-coloring d
of [N]n+1 such that every infinite set homogeneous for d is homogeneous
for c. Furthermore, since c is unbalanced, the proof of Lemma 5.2 of
[30] shows that we can take d to be unbalanced. Next, by [30, Theorem
5.7], relative to X, there is an X-computable unbalanced 2-coloring e of
[N]n+1 such that, for every infinite homogeneous set H, the set X ⊕ H
computes X(n−2) and hence computes X ′, since n > 3. By [30, Lemma
5.10], relative to X, there is an unbalanced X-computable 2-coloring f
of [N]n+1 such that the infinite sets homogeneous for f are precisely the
infinite sets homogeneous for both d and e. To complete the induction, it
suffices to show that every infinite homogeneous set H for f is such that
X ⊕ H has PA degree over X(n−1). So assume that H is homogeneous
for f . It follows that H is homogeneous for d and hence for c, so X ′ ⊕H
has PA degree over X(n−1). Since H is homogeneous for e, the set X ⊕H
computes X ′. Hence X ⊕ H >T X ′ ⊕ H, so X ⊕ H has PA degree over
X(n−1) as needed. �

Thus we see that the analog of Liu’s Theorem for higher exponents fails
for each exponent n > 2.

We now consider the relation between König’s Lemma and various ver-
sions of Ramsey’s Theorem. Our first result is a corollary to Theorem
2.1.

Corollary 2.3 (due independently to Brattka and Rakotoniaina [5]).
KL 6W RT3

2.

Proof. We show first that KL 6c RT3
2. Let X be any instance of KL, so X

is an infinite, finitely branching tree. By relativizing Theorem 2.1 to X,
we obtain an X-computable 2-coloring c of [N]3 such that for any infinite
homogeneous set P , the set X ⊕P has PA degree over X ′. It now suffices
to show that, for every such P , the set X ⊕ P computes a solution to X,
i.e. a path through X. This fact is clear because the paths through X are
bounded by a function b 6T X ′, and thus X is essentially a computable
binary tree relative to X ′. In more detail, let b(n) be the greatest value
of σ(n) over all strings σ ∈ X of length n + 1. (There are only finitely
many such strings because X is finitely branching, and at least one such
string because X is infinite.) Clearly b 6T X ′. Thus X is an infinite tree
that is X ′-computable and X ′-computably bounded. As remarked in [35,
page 606], for every computable, computably bounded tree T , there is a
computable tree U ⊆ 2<ω such that the degrees of the paths through T
coincide with the degrees of the paths through U . Relativizing this remark
to X ′ yields the fact that every set C of PA degree over X ′ is such that
C ⊕ X ′ computes a path through X. In particular, if P is an infinite
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homogeneous set for c, then X⊕P is of PA degree over X ′, so X⊕P ⊕X ′

computes a path through X. But X⊕P >T X ′ since X⊕P is of PA degree
over X ′, so X⊕P computes a path through X, as needed to complete the
proof that KL 6c RT3

2.
To show that KL 6W RT3

2, observe that the coloring c obtained from
the proof of (the relativized version of) Theorem 2.1 is such that there is a
uniform procedure taking infinite homogeneous sets for c to completions of
the partial function e 7→ ΦX′

e (e). From such a completion we can uniformly
obtain X ′, and hence uniformly obtain a path through X. �

The following corollary compares the computability-theoretic strength
of König’s Lemma with that of Ramsey’s Theorem for pairs and triples. It
shows that the strength of König’s Lemma should be, fancifully speaking,
roughly that of RT2.5

2 . Of course, P <c Q means that P 6c Q and Q 
c P .

Corollary 2.4. RT2
2 <c KL <c RT3

2.

Proof. The corollary we have just proved shows that KL 6c RT3
2, and we

have already remarked that RT3
2 
c KL. To see that RT2

2 6c KL, note
that in [30, Proposition 4.6], it is shown that for any computable 2-coloring
of pairs there is a finitely branching computable tree T such that every
path through T computes an infinite homogeneous set. (The fact that T
is finitely branching is clear from the proof.) Relativizing the proof of this
result shows that RT2

2 6c KL. Since there is a computable instance of KL
with all solutions computing ∅′ (by [31, Corollary 5.1], for example) but no
computable instance of RT2

2 with all solutions computing ∅′ by Seetapun’s
Theorem ([51, Theorem 2.1]), we have that KL 
c RT2

2. �

The same proof also shows that RT2
<∞ <c KL. We can improve this

result by applying the following fact.

Proposition 2.5. For any problem P , if P 6c KL then P 6sc KL.

Proof. Let X be an instance of P and let T be an X-computable instance
of KL such that for any solution Y to T , there is an (X ⊕ Y )-computable

solution to X. Let T̂ consist of all σ for which there is a τ ∈ T with
σ(2n) = τ(n) for all 2n < |σ| and σ(2n + 1) = X(n) for all 2n + 1 < |σ|.
Then T̂ is also an X-computable instance of KL, and every solution Ŷ

to T̂ computes X ⊕ Y for some solution Y to T , and hence computes a
solution to X. �

Corollary 2.6. RT2
<∞ 6sc KL.

On the other hand, RT2
2 
W KL. We will prove a stronger version of

this result in part (2) of Theorem 2.10 below.
For WKL we have a considerably stronger version of Proposition 2.5.

Proposition 2.7. For any problem P , if P 6ω WKL then P 6sc WKL.
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Proof. Suppose that P 6ω WKL and let X be an instance of P . Let T be
an X-computable infinite binary tree such that every infinite path on T
has PA degree over X. If Z is an infinite path on T then, by the work of
Scott [50], there is a Turing ideal I in which WKL holds such that X ∈ I
and I consists entirely of Z-computable sets. Since P 6ω WKL, X has a
solution in I and hence a Z-computable solution. �

We will prove a uniform version of Proposition 2.7 in Proposition 4.9.
The next result will be used to show that KL 
sc RT3

2, and indeed
WKL 
sc RT.

Theorem 2.8. The following are equivalent for n, k > 2 and X ⊆ N.

(i) There is a k-coloring c of [N]n (not necessarily computable) such that
every infinite homogeneous set computes X.

(ii) X is hyperarithmetic.

Proof. To show that (i) implies (ii), assume (i). Given an infinite set A,
the restriction of c to A has an infinite homogeneous set H ⊆ A. Since H
is also homogeneous for c, it computes X. Thus every infinite set has a
subset that computes X, i.e. X is encodable. It follows from Solovay [56,
Theorem 2.3] that X is hyperarithmetic.

The converse follows from the remark on page 278 of Jockusch [30]
that there is a 2-coloring of [N]2 such that all infinite homogeneous sets
compute all hyperarithmetic sets. We give a proof here for the convenience
of the reader. By Jockusch and McLaughlin [32, Theorem 4.13], there is
an increasing function f such that X 6T f and f 6T g for every function
g that dominates f . Now for x1 < x2 < · · · < xn, let c(x1, . . . , xn) = 1 if
x2 > f(x1) and otherwise let c(x1, . . . , xn) = 0. Then if H is any infinite
homogeneous set for c, it is easily seen that H is homogeneous to 1 and that
pH dominates f , where pH is the function that enumerates H in increasing
order. It follows that X 6T f 6T pH 6T H. �

Note that the above result fails for n = 1. Indeed, Dzhafarov and
Jockusch showed in [18, Lemma 5.2(i)] that if (i) above holds for n = 1
and k = 2, then X is computable.

Corollary 2.9. WKL 
sc RT.

Proof. Let X be any set that is not hyperarithmetic. Then WKL has an
instance whose only solution is X, but there is no instance of RT such that
all solutions compute X. �

Monin and Patey [42] have recently extended this result from WKL to
WWKL, answering a question stated in an earlier version of this paper.
(The weaker version with 6sW in place of 6sc, which had also been a
question in an earlier version of this paper, was answered independently
by Brattka and Rakotoniaina [5].)
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We finish this section with various facts about versions of Ramsey’s
Theorem and of König’s Lemma. Part (4) of the following theorem was
proved independently by Brattka and Rakotoniaina [5].

Theorem 2.10.

(1) RT1
2 
W WKL.

(2) D2
2 
W KL (and hence SRT2

2 
W KL).

(3) RT1
k 6sW D2

k (and hence RT1
k 6sW SRT2

k) for all k > 2. Similarly,
RT1

<∞ 6sW D2
<∞.

(4) RT1
k+1 
W SRT2

k (and hence RT1
k+1 
W D2

k) for all k > 2.

(5) RT1
2 
W COH.

(6) COH 6sW KL.

(7) RT1
<∞ 6sW KL.

(8) RT1
<∞ 6sW RT2

2.

(9) RT1
<∞ 6sc COH.

(10) RT1
2 
sc WWKL.

Proof. (1) Suppose RT1
2 6W WKL as witnessed by Φ and Ψ. Begin build-

ing c : N → 2 by letting c(s) = 0 at stage s, and let T c be the infinite
binary tree coded by Φc. Wait until we find an n and an s such that
T c(σ)[s]↓ for all σ ∈ 2n, and for each such σ for which σ ∈ T c, there is an
m < s such that m ∈ Ψc⊕σ[s]. Such n and s must eventually be found, as
otherwise either T c is not total or, by compactness, it has an infinite path
X for which Ψc⊕X is not an infinite set. When they are found, let c(t) = 1
for all t > s. Let X be an infinite path on T c. Since X extends some
σ ∈ T c ∩ 2n, we thus ensure that Ψc⊕X is not an infinite homogeneous set
for c.

(2) Suppose D2
2 6W KL as witnessed by Φ and Ψ. The proof is similar to

that of part (1), but “one jump up”. Instead of building a stable coloring
of pairs directly, we build an ∅′-computable 2-coloring c of singletons. By
the recursion theorem and the limit lemma, we may assume that we know
an index for the reduction from ∅′ to c, and hence know an index for a
computable stable coloring d of pairs such that c(x) = lims d(x, s). Note
that if an infinite set is limit-homogeneous for d then it is homogeneous
for c. For a function f : N → N, let fn be the set of all σ ∈ Nn such that
σ(i) < f(i) for all i < n, and let f<ω be the finitely branching tree

⋃
n fn.

Begin building c by letting c(s) = 0 at stage s, and let T d be the infinite,
finitely branching tree coded by Φd. Since we have access to ∅′, we also
have access to a function f such that T d ⊆ f<ω. Wait until we find an
n and an s such that T d(σ)[s]↓ for all σ ∈ fn, and for each such σ for
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which σ ∈ T d, there is an m < s such that m ∈ Ψd⊕σ[s]. As in part (1),
such n and s must eventually be found. When they are found, let c(t) = 1
for all t > s. Let X be an infinite path on T d. Since X extends some
σ ∈ T d ∩ fn, we thus ensure that Ψd⊕X is not an infinite homogeneous set
for c, and hence is not an infinite limit-homogeneous set for d.

(3) Given c : N → k, let d(x, y) = c(x) for all x < y; then d is stable,
and any set that is limit-homogeneous for d is homogeneous for c.

(4) Suppose that RT1
k+1 6W SRT2

k as witnessed by Φ and Ψ. We build
c : N → (k + 1) in stages. Let dc be the coloring of [N]2 coded by Φc, and
for x < s let e(x, s) = dc(x, u)[s] for the largest u such that dc(x, u)[s]↓
(or undefined if there is no such u). At each stage s, we have parameters
ij, Fj, and nj (which we call the j-parameters) for j < k, all of which are
initially undefined. Proceed as follows at stage s for each j < k.

If the j-parameters are undefined then look for a finite set F with
max F < s such that dc(x, y)↓ = j for all x, y ∈ F with x < y and
e(x, s) = j for all x ∈ F , and an n < s such that n ∈ Ψc⊕F [s]. If such F
and n exist then let Fj = F , let nj = n, and let ij = c(n).

If the j-parameters are defined and e(x, s) 6= j for some x ∈ Fj, then
undefine the j-parameters.

At the end of stage s, define c(s) to be different from ij for each ij that
is currently defined.

Now let H be an infinite homogeneous set for dc and let j be the color
to which it is homogeneous. Then Ψc⊕H is an infinite homogeneous set for
c. There are a finite E ⊂ H and an n such that n ∈ Ψc⊕E, so a final Fj

and nj will be found. This Fj is homogeneous to j for dc, and there is a y
such that dc(x, z) = j for all x ∈ Fj and z > y, and Ψc⊕Fj(nj)↓ = 1 with
use at most y. Then I = Fj ∪ (H � >y) is an infinite homogeneous set for
dc, and nj ∈ Ψc⊕I . However, c(s) 6= ij = c(nj) for all sufficiently large s,
so Ψc⊕I is not an infinite homogeneous set for c.

(5) Suppose RT1
2 6W COH as witnessed by Φ and Ψ. Begin building

c : N → 2 by letting c(s) = 0 at stage s, until we find a finite set F and
an n such that n ∈ Ψc⊕F . Then ensure that c(n) = 0 and c(t) = 1 for all
sufficiently large t. Now, Φc is an instance of COH. No matter what this
instance is, there is a solution S to it such that F ⊂ S and min S \ F is
larger than the use of Ψc⊕F (n). Then n ∈ Ψc⊕S, so Ψc⊕S is not an infinite
homogeneous set for c.

This result can also be obtained from Proposition 4.3 in [4], since, in
the terminology of that paper, COH is densely realized, while RT1

2 is in-
discriminative. We will strengthen it in Section 4.3.

(6) Let A = (A0, A1, . . .) be a sequence of sets. Let A1
i = Ai and A0

i =

Ai. Let T be the binary tree consisting of all σ such that |
⋂

i<|σ| A
σ(i)
i | >
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|σ|. It is easy to see that T is infinite and A′-computable. By the rela-
tivized form of Theorem 5 of Jockusch, Lewis, and Remmel [31], there is
an A-computable finitely branching tree U such that the infinite paths on
U are in an effective, degree-preserving one-to-one correspondence with
those of T . The definition of U in that proof is uniform, so U can be
obtained uniformly from A, and from an infinite path on U , we can uni-

formly obtain an infinite path P on T . We have |
⋂

i<n A
P (i)
i | = ω for all

n, so from A⊕ P we can uniformly obtain a cohesive set C = {c0, c1, . . .}
for A by letting c0 = 0 and letting cn+1 be the least number greater than

cn in
⋂

i<n A
P (i)
i .

(7) Given a function f : N → N, let T consist of all sequences of the
form (〈i, n0〉, 〈i, n1〉, . . . , 〈i, nk−1〉) where n0 < · · · < nk−1 are the first k
many numbers n such that f(n) = i. Then T is uniformly f -computable.
If rng(f) is bounded then T is finitely branching and from any infinite
path on T we can compute an infinite homogeneous set for f in a uniform
way.

(8) Given a function f : N → N, let c : [N]2 → 2 be defined by letting
c(x, y) = 1 if f(x) = f(y) and c(x, y) = 0 otherwise. Suppose H is homo-
geneous for c. If f has bounded range, then H cannot be homogeneous to
0, so it is homogeneous to 1 and hence also homogeneous for f .

(9) Given a function f : N → N, let Ai = {n : f(n) = i}, and let
C be cohesive for A0, A1, . . . . The Ai are pairwise disjoint, and if f has
bounded range, then only finitely many Ai are nonempty, so C must be
almost entirely contained in some Ai. Then C computes C ∩ Ai, which is
an infinite homogeneous set for f .

(10) Every instance of WWKL has positive measure many solutions, so
it is enough to show that there is a 2-coloring c of N such that the class
of sets that can compute an infinite homogeneous set for c has measure 0.
The existence of such a c follows at once from the following result of Mileti,
which is Theorem 5.2.6 of his dissertation [41]. We include a proof here for
the convenience of the reader. Recall that a set A is hyperimmune if there
is no computable function g such that A has at least n many elements less
than g(n) for all n.

Lemma 2.11 (Mileti [41]). If A is hyperimmune, then the family C of sets
that compute infinite subsets of A has measure 0.

Proof. We suppose that µ(C) > 0 and show that A is not hyperimmune.
Since µ(C) > 0 there exists an e such that µ(Ce) > 0, where Ce is the set
of X such that ΦX

e is an infinite subset of A. By the Lebesgue Density

Theorem, there is a string σ ∈ 2<ω such that µ(Ce∩[σ])
µ([σ])

> 1
2
, where [σ] =

{X : σ ≺ X}. For notational convenience we assume that σ is the empty
string, i.e., µ(Ce) > 1

2
. We claim now that there is a computable function
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f such that [n, f(n)) ∩ A 6= ∅ for all n. The claim suffices to prove the
lemma, since if f is as in the claim, then it follows by induction on n that
A has at least n many elements less than f (n)(0) for each n, where f (n) is
the nth iterate of f .

We now prove the claim. Given n, to calculate f(n) search for a number
k such that µ({X : ΦX

e ∩ [n, k) 6= ∅}) > 1
2

and let f(n) be the first such
k that is found. (In this definition, we identify ΦX

e with {j : ΦX
e (j) = 1}

without assuming that ΦX
e is total.) Such a number k exists since

1

2
< µ(Ce) 6 µ({X : ΦX

e is infinite}) 6 µ({X : ∃j [j ∈ ΦX
e ∧ j > n]})

= limz µ({X : ∃j 6 z [j ∈ ΦX
e ∧ j > n]}),

where the final equation follows easily from the countable additivity of µ.
Thus all sufficiently large numbers z meet the criterion to be chosen as
k. Furthermore, k can be found by effective search since the condition
µ({X : ΦX

e ∩ [n, k) 6= ∅}) > 1
2

is a Σ0
1 predicate of n and k. Hence f is

a (total) computable function. It remains to be shown that the interval
[n, f(n)) always contains at least one element of A. Since Ce and {X :
ΦX

e ∩ [n, k] 6= ∅} each have measure greater than 1
2
, these two sets must

have a nonempty intersection. Fix a set X that belongs to both sets. Then
ΦX

e is a subset of A that intersects the interval [n, f(n)), so A intersects
this interval. �

Now to complete the proof of (10), let A be any set such that both A and
A are hyperimmune, and let the coloring c be the characteristic function
of A. For A we may choose any weakly 1-generic set, i.e., any set that
meets every dense c.e. set of binary strings. By Kurtz [38, Corollaries 2.10
and 2.11], every hyperimmune degree contains a weakly 1-generic set, and
every such set is hyperimmune and has a hyperimmune complement. �

3. The number of colors

3.1. Weihrauch reducibility and the number of colors. In Theo-
rem 3.1 of [12], Dorais, Dzhafarov, Hirst, Mileti, and Shafer showed that
RTn

k 
sW RTn
j for all n > 1 and k > j > 2. They asked whether this result

remains true for Weihrauch reducibility. We show here that it does. This
result was obtained independently by Brattka and Rakotoniaina [5, 48].
During the final stages of preparation of this paper, we were informed that
Patey [46] has proved the stronger result that RTn

k 
c RTn
j for all n > 2

and k > j > 2 (with a proof considerably more involved than the one we
give for our weaker result).

To motivate our proof, let us first consider the n = 1 case. Here the proof
is easy: Assume for a contradiction that there is a Weihrauch reduction
of RT1

k to RT1
j given by the functionals Φ and Ψ. We build a k-coloring c

of N. For each i < j, we search for a finite set Fi such that every element



18 DENIS R. HIRSCHFELDT AND CARL G. JOCKUSCH, JR.

of Fi has Φc-color i and Ψc⊕Fi(mi)↓ = 1, say with use ui, for some mi.
Then we ensure that c(m) 6= c(mi) for all sufficiently large m. Since there
are at most j values of i such that mi is defined, and we have k colors
available with k > i, this is easy to arrange. Let i be such that infinitely
many numbers have Φc-color i. Then Fi must eventually be found, since
otherwise there is an infinite homogeneous set H for Φc such that Ψc⊕H is
not infinite. There is an infinite homogeneous set I for Φc such that Fi ⊂ I
and min(I \Fi) > ui. But mi ∈ Ψc⊕I , and c(m) 6= c(mi) for all sufficiently
large m, so Ψc⊕I is not an infinite homogeneous set for c, giving us the
desired contradiction.

To lift this construction to higher exponents, we proceed as in the proof
of part (2) of Theorem 2.10: Instead of constructing a computable coloring
of n-tuples directly, we construct an ∅(n−1)-computable coloring c of single-
tons. By the recursion theorem and the iterated form of the limit lemma,
we may assume that we know an index for the reduction from ∅(n−1) to
c, and hence know an index for a computable coloring d of n-tuples such
that c(x) = lims1 · · · limsn−1 d(x, s1, . . . , sn−1). Note that if an infinite set
is homogeneous for d then it is homogeneous for c.

Of course, we need to deal with the fact that Φd is a coloring of n-tuples.

But as we will see, we have access to an infinite Π0,∅(n−1)

1 set P such that
the Φd-color of a tuple in [P ]n depends only on its least element. Let e be
the induced coloring of P (i.e., e(x) is the Φd-color of a tuple in [P ]n with
least element x). Then, as long as we stay inside P , we can work with
the coloring of singletons e in place of Φd, and proceed much as above, to
build c so that, for some infinite homogeneous set H for e, and hence for
Φd, the set Ψd⊕H is not an infinite homogeneous set for c, and hence is
also not an infinite homogeneous set for d.

There is a slight complication in that we have to approximate both e
and P , and hence might have to make several attempts at defining our
mi and Fi before we hit on suitable ones, but this fact will not affect the
construction much.

Note that by Jockusch [30, Theorem 5.5], each computable 2-coloring
d of n-tuples has an infinite Π0

n homogeneous set P . However, this fact
does not serve our purposes here because this homogeneous set P is ob-
tained by a non-uniform construction. By weakening the requirement of
homogeneity, we can obtain uniformity using proofs from [30], as we now
show.

Lemma 3.1. Let n > 1 and k > 2 and let X ⊆ N.

(1) Let Y � X ′. There is an effective procedure that, from the index
of an X-computable k-coloring c of [N]n, produces an index for a Y -
computable infinite prehomogeneous set for c. (Note that we are not
claiming that the definition of this procedure is uniform with respect to
Y .)
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(2) There is an effective procedure that, from the index of an X-computable

k-coloring c of [N]n, produces an index for a Π0,X′

1 infinite prehomoge-
neous set for c.

Proof. For part (1), use the proof of Lemma 5.4 of [30], together with the
fact we have already noted that if Y � X ′ then each infinite X-computable
finitely branching tree has a Y -computable path.

For part (2), if n = 2 use the proof of Theorem 4.2 of [30]. The set
M constructed there is Π0

2, uniformly obtained, and prehomogeneous. An
elaboration of the same argument gives the full result. However, we omit
the proof since we need the result only for n = 2 in the proof of the
following lemma. �

Lemma 3.2. Let n, k > 2. Then there is an effective procedure that, from
the index of a computable k-coloring of [N]n, produces an index for an

infinite Π0,∅(n−1)

1 set P such that the color of a tuple in [P ]n depends only
on its least element.

Proof. For each i 6 n − 2, let Xi � ∅(i) be low over ∅(i). Such sets exist
by the low basis theorem. We first claim that, for each i 6 n− 2, there is
an effective procedure that, from an index of a computable k-coloring of
[N]n, produces an index for an Xi-computable infinite set Pi such that the
color of a tuple in [Pi]

n depends only on its least n− i many elements.
We proceed by induction. The i = 0 case is trivial. Now assume the

claim holds for i− 1 6 n− 3. Applying the first part of Lemma 3.1 to the
induced coloring of [Pi−1]

n−i+1 (with X = Xi−1, noting that X ′
i−1 ≡T ∅(i))

yields the desired procedure for obtaining Pi.
Now applying the second part of Lemma 3.1 to the induced coloring of

[Pn−2]
2 (with X = Xn−2, noting that X ′

n−2 ≡T ∅(n−1)) yields the desired
procedure for obtaining P . �

Theorem 3.3 (due independently to Patey [46] and Brattka and Rakoto-
niaina [5, 48]). Let n > 1 and k > j > 2. Then RTn

k 
W RTn
j .

Proof. Assume for a contradiction that there is a Weihrauch reduction
from RTn

j to RTn
k given by the functionals Φ and Ψ. We build an ∅(n−1)-

computable k-coloring of singletons c : N → k. As mentioned above, we
may assume that we know an index for the reduction from ∅(n−1) to c,
and hence know an index for a computable coloring d : [N]n → k such
that c(x) = lims1 · · · limsn−1 d(x, s1, . . . , sn−1). (If n = 1 then we just
take d = c.) Note that if an infinite set is homogeneous for d then it is

homogeneous for c. By Lemma 3.2, we have access to an infinite Π0,∅(n−1)

1

set P such that the Φd-color of a tuple in [P ]n depends only on its least
element. Let e be the induced coloring of P . Let Ps be stage s of an ∅(n−1)-
computable approximation to P . For x ∈ Ps, let es(x) be the Φd-color of
the least element of [Ps]

n with first element x (in some fixed ordering of
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[N]n). We think of es as a coloring of Ps. Note that e(x) = lims es(x) for
all x ∈ P .

As discussed above, the idea is to build c as in the n = 1 case described
above, but via a ∅(n−1)-computable construction instead of a computable
one, with Φc replaced by e, and working inside P . Our task is to build c
so that Φd has an infinite homogeneous set H such that Ψd⊕H is not an
infinite homogeneous set for d.

We have parameters m0, . . . ,mj−1 ∈ N and F0, . . . , Fj−1 ⊂ N, with the
latter being finite sets when defined. All parameters are initially undefined.
Whenever mi is defined, c(mi) will also be defined. Let Di be the ith finite
set in a standard listing of finite sets.

At stage s, we act as follows. There are three steps to this stage.
Step 1. For each i < j, if Fi is defined and either Fi * Ps or es(x) 6=

es−1(x) for some x ∈ Fi, then undefine mi and Fi.
Step 2. Search for the least pair (i, l) with i < j and l < s, if any, such

that Fi is undefined and for F = Dl,

1. F ⊂ Ps,
2. es(x) = i for all x ∈ F , and
3. Ψd⊕F (m)[s]↓ = 1 for some m such that c(m) is defined.

If there is no such pair, then proceed to Step 3. Otherwise, let Fi = F and
let mi = m.

Step 3. Define c(s) to be the least number different from c(mi) for each
mi that is defined.

There is an i < j such that e(x) = i for infinitely many x ∈ P . It is
then easy to see that there is a stage s at which Fi becomes defined and is
never later undefined. Furthermore, Fi ⊂ H for some infinite H ⊆ P such
that min(H \ Fi) exceeds the use of the computation Ψd⊕Fi(mi) and H
is homogeneous for e, and hence for Φd. Then mi ∈ Ψd⊕H , but for every
sufficiently large m, we have c(m) 6= c(mi), so Ψd⊕H is not an infinite
homogeneous set for c, and hence is not an infinite homogeneous set for
d. �

Note that in the n = 2 case of the above proof, d is stable, and Ψd⊕H

is in fact not an infinite limit-homogeneous set for d. Thus we have the
following result.

Theorem 3.4 (due independently to Patey [46]). If k > j > 2 then
D2

k 
W RT2
j , and hence SRT2

k 
W RT2
j .

We can use our exponent-lifting technique to answer another question
raised by Dorais, Dzhafarov, Hirst, Mileti, and Shafer [12]. In that pa-
per, they studied the following Ramsey-theoretic principles, related to the
Thin Set Theorem, whose reverse-mathematical analysis was introduced



ON NOTIONS OF REDUCTION BETWEEN Π1
2 PRINCIPLES 21

by Friedman [21] and further developed by Cholak, Giusto, Hirst, and
Jockusch [6] and Wang [58], among others.

Definition 3.5. A set S is thin for a k-coloring c of [N]n if there is an
i < k such that f(s) 6= i for all s ∈ [S]n. Let TSn

k be the statement that
every k-coloring of [N]n has an infinite thin set.

Note that TSn
2 is the same as RTn

2 . Indeed, let RTn
k,j be the statement

that for every k-coloring c of [N]n, there is an infinite set S such that the
image of [S]n under c consists of at most j many colors. Then RTn

k becomes
RTn

k,1, and TSn
k becomes RTn

k,k−1. The general reverse-mathematical study
of this family of principles was suggested by J. Miller (see Montalbán [43,
Section 2.2.3]) and has been pursued by Lempp, Miller and Ng (see [43]),
Wang [58], and Dorais, Dzhafarov, Hirst, Mileti, and Shafer [12].

Among several other results, Dorais, Dzhafarov, Hirst, Mileti, and Shafer
[12, Proposition 5.2 and Theorem 5.27] showed that if k > j > 2 and n > 1
then TS1

j 
W TS1
k and TSn

j 
sW TSn
k . They left open whether these re-

sults can be extended to prove the analog of the former result for higher
exponents. As we will see, we can use the same exponent-lifting strategy
as above to show that this is indeed the case. Patey [personal communi-
cation] has announced the stronger result that TSn

j 
c TSn
k for n > 2 and

k > j > 2.
To motivate our proof, let us review the proof in [12, Theorem 5.27]

that TS1
j 
W TS1

k for k > j > 2. Assume for a contradiction that there is

a Weihrauch reduction of TS1
j to TS1

k given by the functionals Φ and Ψ.
To obtain a contradiction, we define a computable k-coloring of singletons
c such that Φc (which is a j-coloring of singletons) has an infinite thin set
I such that Ψc⊕I is not a thin set for c. A key observation is that if d is
a k-coloring of N and F is a finite set whose image under d consists of at
most i 6 k− 2 many colors, then F is contained in an infinite set I whose
image under d consists of at most i + 1 many colors, and hence is thin for
d. For instance, let I = F ∪ H, where H is an infinite homogeneous set
for d.

Our construction now proceeds as follows. We start building a k-coloring
of singletons c (say by setting c(x) = 0 for x = 0, 1, . . . ) while looking for
a finite set F1 such that the image of F1 under Φc consists of only 1 color
and Ψc⊕F1(m1)↓ = 1 for some m1, say with use u1. (In the foregoing, we
require that any oracle information about c uses only the part of c already
defined when the first such set F1 is found.) We must eventually find such
an F1, since otherwise c is total and hence there is an infinite homogeneous
set I for Φc. (Then Ψc⊕I is infinite, so we can take m1 to be any element
of Ψc⊕I and F1 to be a finite subset of I with Ψc⊕F1(m1) = 1.) We
then continue defining c and ensure that c(m) 6= c(m1) for all sufficiently
large m. Now, assuming j > 2, we look for a finite set F2 ⊇ F1 such
that min(F2 \ F1) > u1, the image of F2 under Φc consists of at most
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2 colors, and Ψc⊕F2(m2)↓ = 1, say with use u2, for some m2 such that
c(m2) 6= c(m1). Again, we must eventually find such an F2 because, as
noted above, F1 is contained in an infinite set I with min(I − F1) > u1

such that image of I under Φc consists of at most 2 colors, and Ψc⊕I must
be infinite. We then ensure that c(m) 6= c(m2) for all sufficiently large m.
Note that Ψc⊕F2(m1) = 1 via the same computation as Ψc⊕F1(m1) = 1,
since F2 and F1 agree below u1.

We continue in this way to define Fi and mi for all i < j, in such a
way that the mi all have different c-colors and Ψc⊕Fi(mi) = 1 with use ui,
where min(Fi+1\Fi) > ui . The image of Fj−1 under Φc consists of at most
j−1 6 k−2 many colors, so it is contained in an infinite thin set I for Φc.
We may assume that min(I\Fj−1) > uj1 . Then Ψc⊕I(mi) = Ψc⊕Fi(mi) = 1
for all 0 < i < j. But Ψc⊕I must be infinite, so Ψc⊕I(m) = 1 for some
m such that c(m) 6= c(mi) for all 0 < i < j. Then the image of Ψc⊕I

under c consists of j many colors, so Ψc⊕I is not a thin set for c, which is
a contradiction.

We are now ready to prove the following theorem.

Theorem 3.6. Let n > 1 and k > j > 2. Then TSn
j 
W TSn

k .

Proof. Assume for a contradiction that there is a Weihrauch reduction
from TSn

k to TSn
j given by the functionals Φ and Ψ. We build an ∅(n−1)-

computable k-coloring of singletons c : N → k. Let d, P , e, Ps, and es be
as in the proof of Theorem 3.3. Note that if an infinite set is thin for d then
it is thin for c. As in the proof of Theorem 3.3, the idea is to build c as in
the n = 1 case described above, but via an ∅(n−1)-computable construction
instead of a computable one, with Φc replaced by e, and working inside P .
Our task is to build c so that Φd has an infinite thin set I such that Ψd⊕I

is not an infinite thin set for d.
We have parameters m1, . . . ,mj−1, u1, . . . , uj−1 ∈ N and F0, . . . , Fj−1 ⊂

N, with the latter being finite sets when defined. We will always have
F0 = ∅. All other parameters are initially undefined. Whenever mi is
defined, c(mi) will also be defined. Let Di be the ith finite set in a standard
listing of finite sets.

At stage s, we act as follows. There are three steps to this stage.
Step 1. If there exists i such that Fi is defined and either Fi * Ps or

es(x) 6= es−1(x) for some x ∈ Fi, then, for the least such i and all l > i,
undefine ml, ul, and Fl. If there is no such i, do nothing.

Step 2. Let i be largest such that Fi is defined. If i = j−1 then proceed
to Step 3. Otherwise, search for the least l < s, if any, such that, letting
F = Dl,

1. Fi ⊆ F ⊂ Ps,
2. min(F \ Fi) > ui,
3. the image of F under es consists of at most i + 1 many colors, and
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4. Ψd⊕F (m)[s]↓ = 1, say with use u, for an m such that c(m) is defined
and is different from c(mi) for each mi that is defined.

If there is no such pair then proceed to Step 3. Otherwise, let Fi+1 = F ,
let mi+1 = m, and let ui+1 = u.

Step 3. Define c(s) to be the least number different from c(mi) for each
mi that is defined.

We claim there is a stage s0 by which all Fi and mi are defined, and are
never later undefined. Suppose not, and let i be largest such that there
is a stage s by which Fi and mi are defined and never later undefined (or
let i = s = 0 if there is no such i > 0). Then Fi ⊂ P and e(x) = et(x)
for all x ∈ Fi and t > s, so the image of Fi under e consists of at most
i 6 k − 2 many colors. As noted above, it follows that Fi is contained in
some infinite subset I of P that is thin for e, and hence thin for Φd. Then
Ψd⊕I must be an infinite set that is thin for d. Thus there must be an
F such that Fi ⊆ F ⊂ P and min(F \ Fi) > ui, the image of F under e
consists of only i + 1 many colors, and Ψd⊕F (m)↓ = 1 for some m > s.
Note that c(m) is different from c(mj) for all j ∈ (0, i]. It is now easy to
see that there is a stage t > s at which Fi+1 and mi+1 are defined and
never later undefined.

Let s0 be as above. As before, Fj−1 ⊂ P and e(x) = et(x) for all
x ∈ Fj−1 and t > s0, so the image of Fj−1 under e consists of at most
j − 1 6 k− 2 many colors. Thus Fj−1 is contained in some infinite subset
I of P that is thin for e, and hence thin for Φd. Then Ψd⊕I must be an
infinite set that is thin for d. In particular, it must contain some m > s.
But then c(m) is different from c(mi) for all i ∈ (0, j], so Ψd⊕I contains
elements with j many different c-colors, and hence is not thin for c. Thus
Ψd⊕I is not thin for d, giving us our desired contradiction. �

3.2. Strong computable reducibility, nonuniform infinite infor-
mation reducibility, and the number of colors. In his proof that
COH 
sc D2

2, Dzhafarov [15] showed something stronger, namely that if
n > 2 and m < 2n, there is a sequence R = (R0, . . . , Rn−1) of sets such
that for any partition A0, . . . , Am−1 of N hyperarithmetical in R, there is
an infinite subset of some Aj that does not compute any cohesive set for
R. There are 2n many intersections of the form

⋂
i<n Si with each Si equal

to either Ri or Ri. As Dzhafarov [personal communication] has remarked,
it is easy to adapt the proof in [15] to ensure that all but m + 1 many of
these intersections are empty. (For those familiar with this proof, all that
needs to be done is the following: Choose a set I ⊆ 2n of size m + 1. It is
easy to restrict the set of conditions in the proof to ensure that for every
n, there is a ρ ∈ I such that Ri(n) = ρ(i) for all i < n. Lemma 2.3 in [15]
remains true when we add the condition that u0 . . . un−1 ∈ I. In the proof
of Lemma 2.4 in [15], we again restrict ourselves to such u0, . . . , un−1, and
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may still conclude in the last paragraph that there are two different such
n-tuples for which we can pick the same j < m, since |I| > m.) Thus we
can obtain an (m + 1)-coloring c of N from R such that every infinite ho-
mogeneous set for c is cohesive for R. Of course, a partition A0, . . . , Am−1

of N yields an m-coloring of N. Thus the proof in [15] yields the following
result.

Theorem 3.7 (Dzhafarov [15]). Let 2 6 j < k. Then there is a c : N →
k such that for every c-hyperarithmetic d : N → j, there is an infinite
homogeneous set for d that does not compute any infinite homogeneous set
for c. In particular, RT1

k 
sc RT1
j .

In fact, since we can view a view a stable coloring of pairs c as a c′-
computable coloring d of N, with limit-homogeneous sets for c correspond-
ing to homogeneous sets for d, Dzhafarov’s proof shows that if 2 6 j < k
then RT1

k 
sc D2
j . More recently, Dzhafarov, Patey, Solomon, and Westrick

[19] have shown that, in fact, if 2 6 j < k then RT1
k 
sc SRT2

j , answering
a question stated in an earlier version of this paper.

Montalbán [personal communication] asked whether the first statement
in Theorem 3.7 might hold without any computability assumptions on d.
We will give a positive answer to this question in Theorem 3.9. (This
theorem has been independently obtained by Patey [46], whose proof re-
markably shows that c can be chosen to be low.) This result demonstrates
a perhaps surprising difference in the degrees of homogeneous sets resulting
from partitions of N into j parts and into k parts for j 6= k.

Our result is also connected with one of the several reducibilities Dzha-
farov and Igusa [17] call “notions of robust information coding”. These
include the generic-case and coarse reducibilities defined by Jockusch and
Schupp [33], as well as several ones introduced in [17]. One of these is
infinite information reducibility, denoted by 6ii. A partial oracle for a set
A is a set (A) such that if there is an s with 〈n, 0, s〉 ∈ (A) then n /∈ A,
and if there is an s with 〈n, 1, s〉 ∈ (A) then n ∈ A. The domain of (A) is
the set of n such that 〈n, i, s〉 ∈ (A) for some s and some i < 2. We say
that B 6ii A if there is a Turing functional Γ such that for every partial
oracle (A) for A with infinite domain, Γ(A) has infinite domain and is equal
to B where defined.

As noted in [17], infinite information reducibility acts in the opposite
way to what one might at first expect. For instance, as shown in [17,
Proposition 3.6], if A 61 B then B 6ii A, and A ⊕ B is the infimum of
A and B under 6ii. Another interesting feature of ii-reducibility is the
existence of maximal pairs.

Theorem 3.8 (Dzhafarov and Igusa [17, Theorem 5.1]). There are sets
B0 and B1 for which there is no set A such that B0 6ii A and B1 6ii A.
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One of the motivations of Dzhafarov and Igusa in introducing ii-re-
ducibility was its potential connections with the computability-theoretic
analysis of versions of Ramsey’s Theorem. In this regard, it is particu-
larly interesting to examine the nonuniform analog to ii-reducibility. We
say that B is nonuniformly infinite information reducible to A, and write
B 6nii A, if each partial oracle (A) for A with infinite domain computes
a partial function that has infinite domain and is equal to B where de-
fined. The connection with Ramsey’s Theorem is particularly apparent
when we consider the following equivalent definition: B 6nii A if every
infinite subset of A or A computes an infinite subset of B or B.

To see that these definitions are indeed equivalent, first suppose that
the first definition holds of A and B and let S be an infinite subset of A
or A. Let i = 1 if S ⊆ A and let i = 0 otherwise. Then {〈n, i, 0〉 | n ∈ S}
is an S-computable partial oracle for A, so it computes a partial function
f that has infinite domain and is equal to B where defined. Given f we
can compute an infinite subset of B or B. Now suppose that the second
definition holds of A and B and let (A) be a partial oracle for A with
infinite domain. From (A) we can compute an infinite subset S of A or
A. From S we can compute an infinite subset of B or B, and from such
a subset we can compute a partial function with infinite domain that is
equal to B where defined.

Using ideas from its proof, we can extend Theorem 3.8 to nii-reducibility.
Given a maximal pair B0, B1 for nii-reducibility, let c : N → 4 be defined
by c(n) = 2B0(n) + B1(n). Then c is a 4-coloring of N such that for every
2-coloring d of N, there is an infinite homogeneous set for d that does not
compute any infinite homogeneous set for c. By working directly with
colorings (but still using ideas from the proof of Theorem 3.8), we can
make c a 3-coloring, and generalize this result as follows.

Theorem 3.9 (due independently to Patey [46]). Let m > 2. There is
a c : N → (m + 1) such that for every d : N → m, there is an infinite
homogeneous set for d that does not compute any infinite homogeneous set
for c.

Proof. We will show that any sufficiently Cohen generic c : N → (m + 1)
has this property. To determine a sufficient level of genericity, we begin
with a few definitions based on the notion of α-deduction for ordinals α in
[17, Definition 5.5]. A Mathias condition is a pair (F, I) such that F is a
finite set, I is an infinite set, and max F < min I. We write (F, I) 6 (G, J)
if I ⊆ J and G ⊆ F ⊂ G∪J . Given a coloring d : N → m, the construction
of an infinite homogeneous set for d that does not compute any infinite
homogeneous set for c will use Mathias conditions. Thus we will need to
adapt the notion of α-deduction to work relative to a given infinite set I.

Let Φ0, Φ1, . . . be an effective listing of the [0, m]-valued Turing function-
als. For a finite set F , we write ΦF

e (n)⇓ to mean that ΦF
e (n)↓ with use no
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larger than max F +1 (where we take this max to be −1 for F = ∅). A set
X is compatible with the Mathias condition (F, I) if F ⊆ X ⊆ F ∪I. Note
that if ΦF

e (n)⇓ and X is compatible with (F, I) then ΦX
e (n)↓ = ΦF

e (n).

Definition 3.10. Let I be an infinite set and let F be a finite set. We
say that F α-deduces relative to I that Φe(n) = i if either ΦF

e (n)⇓ = i or
there are infinitely many k ∈ I such that F ∪ {k} β-deduces relative to I
that Φe(n) = i for some β < α. We say that F deduces relative to I that
Φe(n) = i if it α-deduces relative to I that Φe(n) = i for some α.

Note that it is possible for F to deduce relative to I both that Φe(n) = i
and that Φe(n) = j for some i 6= j. Note also that for each I there is a
countable ordinal γI such that if F deduces relative to I that Φe(n) = i,
then F α-deduces relative to I that Φe(n) = i for some α < γI .

For each number e, finite set F , and infinite set I, define a partial
function fe,F,I by letting fe,F,I(n) = i if and only if F deduces relative to
I that Φe(n) = i but does not deduce relative to I that Φe(n) = j for any
j 6= i.

Remark 3.11. It is easy to show by transfinite induction on α that if F
α-deduces relative to I that Φe(n) = j, then for every k there is a finite
set G ⊂ I with min G > k such that ΦF∪G

e (n)↓ = j. If F 0-deduces
relative to I that Φe(n) = i then ΦF∪G

e (n)↓ = i for all G ⊂ I such that
min G > max F , so F cannot deduce relative to I that Φe(n) = j for j 6= i,
and hence fe,F,I(n) = i.

The basic reason for choosing our coloring c to be generic is to ensure
that, thinking of c as a partition of N, each part “knows nothing about”
the other parts. In fact, we will need it to be the case that if F and G are
disjoint subsets of [0, m] such that F ∪ G 6= [0, m], then c−1(F ) “knows
nothing about” c−1(G), in the sense that (roughly speaking) we cannot
use c−1(F ) to compute an infinite subset of c−1(G), even with the help of
some additional information, represented by a Turing ideal that we now
define. (We will be more precise about the properties we need c to satisfy
below. Note that the requirement that F ∪ G 6= [0, m] is necessary, since
c−1(F ) can compute c−1([0, m] \ F ).)

Definition 3.12. Let I be a countable Turing ideal such that for each
X ∈ I there is a Y ∈ I with the following properties.

1. For any X-computable infinite set I and any ordinal α 6 γI , given
numbers e, n, and i and a finite set F , we can use Y to compute
whether F β-deduces relative to I that Φe(n) = i for some β < α.
(In particular, taking α = γI , given numbers e, n, and i and a finite
set F , we can use Y to compute whether F deduces relative to I that
Φe(n) = i, and hence we can use Y to compute whether fe,F,I(n) = i.)

2. For any X-computable infinite set I, given a number e and finite sets
F and G, we can use Y to compute whether dom fe,F,I ⊆ dom fe,G,I .
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3. For any nonempty Π0,X
1 subclass C of ωω, we can use Y to compute the

range of some element of C.

Though we do not need this fact here, we note that we can take I to be
the smallest hyperjump-ideal, i.e., the smallest Turing ideal closed under
the hyperjump.

For sets A and B, we say that A is (B⊕I)-computable if it is (B⊕X)-
computable for some X ∈ I, that A is OB⊕I-computable if it is OB⊕X-
computable for some X ∈ I (where OY is the hyperjump of Y ), and that

a subclass of ωω is a Π0,I
1 class if it is a Π0,X

1 class for some X ∈ I.
Let c : N → (m + 1) be sufficiently generic so that the following condi-

tions hold. (The first condition was already mentioned above; the second
will be needed in the proof of Lemma 3.17 below.)

(C1) Let F, G ⊂ [0, m] be such that F ∩G = ∅ and F ∪G 6= [0, m]. Then

Oc−1(F )⊕I does not compute any infinite subset of c−1(G).
(C2) Let D0, D1, . . . be an I-computable sequence of finite sets such that

min Dn > n for all n. Then for each i 6 m there are infinitely many
n such that c(x) = i for all x ∈ Dn.

Note that, in particular, there is no infinite homogeneous set for c in I.

Remark 3.13. One way to see that such a c exists is the following: Let
Z be a set computing all elements of I. Then 1-genericity relative to Z
suffices to ensure that (C2) holds. Let F and G be as in (C1). Hyperarith-
metic genericity relative to OZ suffices to ensure that there is no infinite
subset of c−1(G) hyperarithmetic in c−1(F ) ⊕ OZ . A slight variation on
Exercise IV.3.13 of Sacks [49] shows that if c is sufficiently generic rela-

tive to Z then Oc−1(F )⊕Z is hyperarithmetically reducible to c−1(F )⊕OZ .
Thus, if c is sufficiently generic then there is no infinite subset of c−1(G)

computable (or even hyperarithmetic) in Oc−1(F )⊕Z .

Fix d0 : N → m. We must show that there is an infinite homogeneous
set for d0 that does not compute any infinite homogeneous set for c. It will
be convenient to “work inside” a certain infinite set I ∈ I. The property
we desire for I is that for each i < m either d−1

0 (i) ∩ I is empty or there
is no infinite subset of I \ d−1

0 (i) in I. This property can be ensured by
requiring that |d(I)| (the number of colors assigned by d to elements of
I) be as small as possible as I ranges over infinite sets in I. Fix such a
“minimal” I. Suppose that there are l many values of i < m such that
d−1

0 (i) ∩ I is nonempty. By permuting the numbers less than m we may
assume that these l many values of i are exactly 0, 1, . . . , l − 1, so that
d0 � I is an l-coloring of I. Let d = d0 � I. Then d has the property that
for each i < l there is no infinite subset of I \ d−1(i) in I. We may assume
without loss of generality that l > 2 since clearly l > 0, while if l = 1 then
I is an infinite homogeneous set for d0, and I cannot compute an infinite
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homogeneous set for c, as there are no infinite homogeneous sets for c in I.
Our goal now is to construct an infinite set S ⊂ I that is homogeneous for
d and computes no infinite homogeneous set for c, which of course suffices
to prove the theorem since S is also homogeneous for d0.

To give some intuition for our construction, let us consider the case
where l = 2. We may assume that every infinite subset of d−1(1) computes
an infinite homogeneous set for c, as otherwise we are done. It is enough
to build an infinite set S ⊆ d−1(0) to satisfy the requirements

Re : | dom ΦS
e | = ω ⇒ ∃n [ΦS

e (n)↓ 6= c(n)],

as it then clearly follows that S cannot compute an infinite homoge-
neous set for c. The idea is to build a sequence of Mathias conditions
(F0, I0) > (F1, I1) > · · · beginning with F0 = ∅ and I0 = dom d = I,
using (Fe+1, Ie+1) to satisfy Re, and to let S =

⋃
e Fe. (We can ensure that

S is infinite by also making Fe+1 ) Fe for all e.) As in many Mathias
forcing constructions, the easiest way to satisfy Re is to have a finite set
F ⊂ d−1(0) compatible with (Fe, Ie) and an n such that ΦF

e (n)⇓ 6= c(n).
We then set Fe+1 = F and let Ie+1 be the set of all elements of Ie greater
than max F . We call this outcome a “finite win”. If there is no such finite
set F , then we want to define (Fe+1, Ie+1) < (Fe, Ie) so that for any X
compatible with (Fe+1, Ie+1), the domain of ΦX

e is finite. (Notice that S is
such an X.)

As we will show below in Lemma 3.14 of our more general setting, the
assumption that we are not in the “finite win” case allows us to prove
the following Correctness Lemma by transfinite induction: If the finite
set H ⊂ d−1(0) is compatible with (Fe, Ie), then fe,H,Ie(n) = c(n) when
defined.

Let C be the Π0,I
1 class of all g ∈ ωω such that g is strictly increasing,

rng g ⊆ Ie, and dom fe,Fe∪H,Ie ⊆ dom fe,Fe,Ie for all finite H ⊂ rng g. If C
is nonempty, then it has an element g such that Y = rng g is in I. We
claim that we can take Ie+1 = Y and satisfy Re. Indeed, suppose that
Fe ⊂ X ⊆ Fe ∪ Y . It is easy to see using Remark 3.11 that if ΦX

e (n)↓
then n ∈ dom fe,Fe,Ie . However, the graph of fe,Fe,Ie is in I, and by the
Correctness Lemma, fe,Fe,Ie(n) = c(n) when defined, so dom fe,Fe,Ie cannot
be infinite, as otherwise there would be an infinite homogeneous set for c
in I. Thus dom ΦX

e is finite, as desired.
So we are left with arguing that C is nonempty. Assume for a contra-

diction that C = ∅. As we will show below in Lemma 3.15, it follows
that there is a finite set G ⊂ d−1(0) compatible with (Fe, Ie) such that
dom fe,G∪{k},Ie * dom fe,G,Ie for infinitely many k ∈ Ie. Let E be the set
of such k. Note that E ∈ I. For each k ∈ E, let nk be the least element of
dom fe,G∪{k},Ie \ dom fe,G,Ie . We claim that there is no n such that nk = n
for infinitely many k ∈ E. Assume for a contradiction that there is such
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an n. By the definition of deducibility, the fact that n ∈ dom fe,G∪{k},Ie

for infinitely many k ∈ Ie implies that there is an i such that G deduces
relative to Ie that Φe(n) = i. By the Correctness Lemma, the fact that G
is a subset of d−1(0) and is compatible with (Fe, Ie) implies that G can-
not deduce relative to Ie that Φe(n) = i unless i = c(n). It follows that
n ∈ dom fe,G,Ie , which is a contradiction and hence establishes our claim.

It is now easy to see that there are an i 6 m and an I-computable
sequence k0, k1, . . . ∈ E such that nkp > p and fe,G∪{kp},Ie(nkp) = i for
all p. Let j 6 m be such that j 6= i. The sequence nk0 , nk1 , . . . is
also I-computable, so condition (C2) above, applied to the singletons
{nk0}, {nk1}, . . ., implies that there are infinitely many p such that c(nkp) =
j. Thus

R = {k ∈ E : fe,G∪{k},Ie(nk)↓ = i ∧ c(nk) = j}

is infinite. (In this case, we can argue that R is infinite for some choice
of j 6= i without appealing to condition (C2), but that condition will be
crucial in obtaining an analogous set in the full proof.)

If k ∈ R then G∪{k} is compatible with (Fe, Ie) but does not satisfy the
conclusion of the Correctness Lemma, so it must be the case that G∪{k} *
d−1(0). Since G ⊂ d−1(0) and l = 2, it follows that k ∈ d−1(1). So R is
an infinite subset of d−1(1), and hence computes an infinite homogeneous
set H for c. If H is not homogeneous to j then we have our desired
contradiction, since R is (c−1(j)⊕ I)-computable, but we cannot be sure
that this is the case. Instead, we use the fact that R cannot compute an
infinite subset of c−1(i) (which follows from condition (C1) above and the
fact that R is (c−1(j)⊕ I)-computable) to analyze the following superset
of R:

Q = {k ∈ E : fe,G∪{k},Ie(nk)↓ = i 6= c(nk)}.

The set Q is (c−1(i) ⊕ I)-computable. Furthermore, Q has an infinite
subset that does not compute any infinite subset of c−1(i), namely R. The
class of all such subsets of Q is arithmetic relative to c−1(i) ⊕ I, so it

contains an Oc−1(i)⊕I-computable member P . By the same argument as
for R, we have that P is an infinite subset of d−1(1), and hence computes
an infinite set H that is homogeneous for c. Since P does not compute any
infinite subset of c−1(i), the set H must be contained in c−1(i′) for some

i′ 6= i. Thus there is an Oc−1(i)⊕I-computable infinite subset of c−1(i′),
contradicting condition (C1).

Having given an outline of our proof in the case where l = 2, let us
now turn to our full proof. Now we assume that every infinite subset of
d−1(l − 1) computes an infinite homogeneous set for c, and want to make
S an infinite subset of d−1(i) for some i 6 l − 2. As candidates for S we
will build infinite sets S0, . . . , Sl−2 with Si ⊆ d−1(i). For each i 6 l − 2,



30 DENIS R. HIRSCHFELDT AND CARL G. JOCKUSCH, JR.

we seek to satisfy the requirements

Ri,e : | dom ΦSi
e | = ω ⇒ ∃n ΦSi

e (n)↓ 6= c(n).

Fix a bijection 〈·, . . . , ·〉 between Nl−1 and N. At stage 〈e0, . . . , el−2〉+1 of
our construction, we will ensure the satisfaction of R0,e0 ∨ · · · ∨ Rl−2,el−2

.
We claim that it follows that there is an i 6 l − 2 such that every Ri,e

is satisfied. If l = 2 then the claim is clear. Otherwise, suppose that for
each i < l − 2 there is an ei such that Ri,ei

is never satisfied. Then at
stage 〈e0, . . . , el−3, e〉, we necessarily satisfy Rl−2,e. Thus our claim holds.
Furthermore, it is easy to see that if every Ri,e is satisfied then Si, which is
an infinite homogeneous set for d, cannot compute an infinite homogeneous
set for c.

We define sequences of Mathias conditions (F i
0, I0) > (F i

1, I1) > · · · for
i 6 l−2 by induction. (Notice that the finite parts of the conditions depend
on i, but the infinite parts do not.) We will ensure that F i

s ⊂ d−1(i), that
|F i

s+1| > |F i
s |, and that Is ∈ I. Our desired infinite subset Si of d−1(i) will

be
⋃

s F i
s . We will begin by setting I0 = dom d = I, which ensures that for

each s, we have Is ⊆ dom d, and hence |Is ∩ d−1(i)| = ω for all i 6 l − 2,
by our assumption that there is no infinite subset of dom d \ d−1(i) in I.

Let F i
0 = ∅ and I0 = dom d. Suppose we have defined F i

s ⊂ d−1(i)
and Is ∈ I. Let e0, . . . , el−2 be such that s = 〈e0, . . . , el−2〉. We first ask
whether there are an i 6 l−2, an n, and a finite set G ⊂ d−1(i) compatible
with (F i

s , Is) such that ΦG
ei
(n)⇓ 6= c(n). If so then, by adding an element to

G if needed, we may assume that G ) F i
s . In this case, proceed as follows.

Let F i
s+1 = G. For each j 6 l − 2 such that j 6= i, let k be the least

element of Is ∩ d−1(j) and let F j
s+1 = F j

s ∪{k}. Let Is+1 be the restriction

of Is to numbers greater than max(
⋃

j6l−2 F j
s+1). Notice that Is+1 ∈ I,

and for each j 6 l − 2 (including i), F j
s+1 ⊂ d−1(j) and |F j

s+1| > |F j
s |,

as required. We say that the conditions (F j
s+1, Is+1) are defined by finite

extension. Note that, in this case, Ri,ei
is satisfied.

If we are not in the above case then proceed as follows. We first prove a
general version of the Correctness Lemma discussed in our outline of the
case where l = 2 above.

Lemma 3.14. For each i 6 l − 2, if a finite set G ⊂ d−1(i) compatible
with (F i

s , Is) deduces relative to Is that Φei
(n) = j, then c(n) = j.

Proof. We prove by induction on α < γIs that if such a G α-deduces
relative to Is that Φei

(n) = j, then c(n) = j. The statement holds for
α = 0 because we have not defined the conditions (F i

s+1, Is+1) by finite
extension. Now suppose it holds for all β < α, and let G ⊂ d−1(i) be
a finite set compatible with (F i

s , Is) that α-deduces relative to Is that
Φei

(n) = j. Assume for a contradiction that c(n) 6= j. Since we do not
have ΦG

ei
(n)⇓ = j, there are infinitely many k ∈ Is such that G ∪ {k}
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β-deduces relative to Is that Φei
(n) = j for some β < α. By the inductive

hypothesis, none of these k’s can be in d−1(i), and the set of all such k’s
is in I. So there is an infinite subset of dom d \ d−1(i) in I, contradicting
our assumption on d. �

Now let Ci
s be the Π0,I

1 class of all g ∈ ωω such that g is strictly increasing,
rng g ⊆ Is, and dom fei,F i

s∪H,Is
⊆ dom fei,F i

s ,Is
for all finite H ⊂ rng g. Note

that if F i
s ⊆ S ⊆ F i

s ∪ rng g for some element g of Ci
s and ΦS

ei
(n)↓ = j,

then Φ
F i

s∪H
ei (n)⇓ = j for some finite H ⊂ rng g, which means that F i

s ∪H
0-deduces relative to Is that Φei

(n) = j. It follows by Remark 3.11 that
n ∈ dom fei,F i

s∪H,Is
, and hence that n ∈ dom fei,F i

s ,Is
.

We now show that there is at least one i 6 l−2 for which Ci
s is nonempty.

We will then be able to take (a finite modification of) the range of an
element of Ci

s as Is+1, which, as in our outline of the case where l = 2,
will allow us to satisfy Ri

ei
because the graph of fei,F i

s ,Is
is in I, and hence

cannot compute an infinite homogeneous set for c. We begin with two
auxiliary lemmas, which allow us to use the assumption that each Ci

s is
empty to choose finite sets G0, . . . , Gl−2 with properties analogous to the
finite set G in the outline of the case where l = 2. We will also want a set
E analogous to the one in that outline. It will be important that there is
a single such E that works for all Gi.

Lemma 3.15. Let i 6 l − 2 and let D ⊆ Is ∩ d−1(i) be infinite. Suppose
that for every finite set G ⊂ d−1(i) compatible with (F i

s , Is), we have that
dom fei,G∪{k},Is ⊆ dom fei,G,Is for all but finitely many k ∈ D. Then Ci

s is
nonempty.

Proof. We define a function g ∈ Ci
s by recursion. Suppose that g(i) is

defined for all i < n and let Yn = {g(i) : i < n}. Assume by induction
that if H ⊆ Yn then fei,F i

s∪H,Is
⊆ fei,F i

s ,Is
. By assumption, for each such H

we have dom fei,F i
s∪H∪{k},Is

⊆ dom fei,F i
s∪H,Is

for almost all k ∈ D. So there
is a k ∈ D such that dom fei,F i

s∪H∪{k},Is
⊆ dom fei,F i

s∪H,Is
for all H ⊆ Yn

and k > g(i) for all i < n. Let g(n) be the least such k. Then g ∈ Ci
s by

construction. �

Lemma 3.16. Suppose Ci
s = ∅ for all i 6 l − 2. Then there are an

infinite set E ⊆ Is and finite sets Gi ⊂ d−1(i) for i 6 l − 2 such that
dom fei,Gi∪{k},Is * dom fei,Gi,Is for every k ∈ E and i 6 l − 2.

Proof. By Lemma 3.15, there is a finite set G0 ⊂ d−1(0) compatible
with (F 0

s , Is) such that dom fe0,G0∪{k},Is * dom fe0,G0,Is for infinitely many
k ∈ Is ∩ d−1(0). Then there is an infinite set E0 ⊆ Is in I such that
dom fe0,G0∪{k},Is * dom fe0,G0,Is for all k ∈ E0. Now, E0 ∩ d−1(1) must be
infinite, so again by Lemma 3.15, there is a finite set G1 ⊂ d−1(1) compat-
ible with (F 1

s , Is) such that dom fe1,G1∪{k},Is * dom fe1,G1,Is for infinitely
many k ∈ E0 ∩ d−1(1). Again, there is an infinite set E1 ⊆ E0 in I such
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that dom fe1,G1∪{k},Is * dom fe1,G1,Is for all k ∈ E1. We can continue in
this manner to define, for each i 6 l − 2, a finite set Gi ⊂ d−1(i) com-
patible with (F i

s , Is) and an infinite set Ei ∈ I with Ei ⊆ Ei−1 such that
dom fei,Gi∪{k},Is * dom fei,Gi,Is for all k ∈ Ei. We have E0 ⊇ E1 ⊇ · · · ⊇
El−2, so the lemma follows by taking E = El−2. �

Lemma 3.17. There is an i 6 l − 2 such that Ci
s is nonempty.

Proof. Assume otherwise, and let E and G0, . . . , Gl−2 be as in Lemma 3.16.
Our argument will be similar to that in our outline of the case where l = 2.
We will define sets R, Q, and P analogous to the ones in that outline. The
main difference is that the single color i in the definitions of R and Q will
now be replaced by a set F of up to l − 1 many colors.

For k ∈ E and i 6 l− 2, let ni
k be the least element of dom fei,Gi∪{k},Is \

dom fei,Gi,Is . Fix i 6 l − 2. We claim that there is no n such that ni
k = n

for infinitely many k ∈ E. Assume for a contradiction that there is such
an n. By the definition of deducibility, the fact that n ∈ dom fei,Gi∪{k},Is

for infinitely many k ∈ Is implies that there is a j such that Gi deduces
relative to Is that Φei

(n) = j. By Lemma 3.14, Gi cannot deduce relative
to Is that Φei

(n) = j unless j = c(n). It follows that n ∈ dom fei,Gi,Is ,
which is a contradiction and hence establishes our claim.

It is now easy to see that there are j0, . . . , jl−2 6 m and an I-computable
sequence k0, k1, . . . ∈ E such that ni

kp
> p and fei,Gi∪{kp},Is(n

i
kp

) = ji for

all p and i 6 l − 2. Let F = {j0, . . . , jl−2} and let j 6 m be such that
j /∈ F . Applying condition (C2) to the sets {ni

kp
: i 6 l − 2}, we see that

there are infinitely many p such that c(ni
kp

) = j for all i 6 l − 2. Thus

R = {k ∈ E : (∀i 6 l − 2) [fei,Gi∪{k},Is(n
i
k)↓ ∈ F ∧ c(ni

k) = j]}
is infinite. Since R is (c−1(j)⊕ I)-computable, |F | 6 l − 1 6 m− 1, and
j /∈ F , condition (C1) implies that R cannot compute an infinite subset of
c−1(F ).

Now let

Q = {k ∈ E : (∀i 6 l − 2) [fei,Gi∪{k},Is(n
i
k)↓ ∈ F ∧ c(ni

k) /∈ F ]}.
Then Q is (c−1(F )⊕I)-computable. Furthermore, Q has an infinite subset
that does not compute any infinite subset of c−1(F ), namely R. The class
of all such subsets of Q is arithmetic relative to c−1(F )⊕I, so it contains

an Oc−1(F )⊕I-computable member P . Let k ∈ P . For each i 6 l − 2, we
have that fei,Gi∪{k},Is(n

i
k) 6= c(ni

k), which implies, by Lemma 3.14, that
Gi ∪ {k} * d−1(i), and hence that k /∈ d−1(i). Thus k ∈ d−1(l − 1).
So P is an infinite subset of d−1(l − 1), and hence computes an infinite
homogeneous set H for c. Since P does not compute any infinite subset of
c−1(F ), the set H must be contained in c−1(j′) for some j′ /∈ F . So there

is an Oc−1(F )⊕I-computable infinite subset of c−1(j′), which contradicts
condition (C1). �
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Let i 6 l−2 be such that Ci
s is nonempty, and let Y ∈ I be the range of

an element of Ci
s. Note that Y ∩d−1(j) is infinite for all j 6 l−2. For each

j 6 l− 2, let k be the least element of Y ∩d−1(j) and let F j
s+1 = F j

s ∪{k}.
Let Is+1 be the restriction of Y to numbers greater than max(

⋃
j6l−2 F j

s+1).

Notice that Is+1 ∈ I, and for each j 6 l − 2, we have F j
s+1 ⊂ d−1(j) and

|F j
s+1| > |F j

s |, as required.
We have completed the definition of our Mathias conditions. Now, for

each i 6 l − 2, let Si =
⋃

s F i
s . We have ensured that |F i

s+1| > |F i
s | and

that F i
s ⊂ d−1(i) for all s, so each Si is an infinite subset of d−1(i). As

argued above, it is enough to show that for each s = 〈e0, . . . , el−2〉, we
satisfy at least one requirement Ri

ei
. Assume for a contradiction that we

do not. Then it cannot be the case that the conditions (F i
s+1, Is+1) were

defined by finite extension, so there is an i 6 l − 2 such that F i
s ⊂ Si ⊆

F i
s ∪ rng g for some element g of Ci

s, which, as noted above, implies that
if ΦSi

ei
(n)↓ then n ∈ dom fei,F i

s ,Is
. Since we are assuming that Ri

ei
is not

satisfied, there are infinitely many such n, so dom fei,F i
s ,Is

is infinite. Since
fei,F i

s ,Is
(n) = c(n) when defined and the graph of fei,F i

s ,Is
is in I, there is

an infinite homogeneous set for c in I, contradicting the choice of c. �

Letting c be as in the theorem with m = 2 and defining B0 = c−1({0, 1})
and B1 = c−1({0, 2}) yields the following strengthening of Theorem 3.8.

Corollary 3.18. There exist sets B0 and B1 for which there is no set A
such that B0 6nii A and B1 6nii A.

The sets B0 and B1 constructed in the proof of Theorem 3.8 are quite
complicated, and the ones in the above corollary even more so. As men-
tioned above, Patey [46] has shown that, remarkably, the coloring c in
Theorem 3.9 can in fact be taken to be low, and hence so can the sets B0

and B1 in Corollary 3.18. We do not have any nontrivial lower bounds on
the complexity of maximal pairs in either the ii or the nii case. Indeed,
Dzhafarov and Igusa [17, Question 5.9] asked whether being mutually 1-
random or mutually 1-generic is enough to ensure that a pair of sets is
maximal with respect to ii-reducibility, and we may ask the same question
for nii-reducibility. Even this level of complexity might conceivably not be
necessary.

4. Reductions to multiple instances of a problem

4.1. Reduction games. As mentioned in the introduction, P 6ω Q can
be thought of as meaning that solutions to P can be obtained from solu-
tions to multiple instances of Q. We can make this intuition precise by
thinking of reductions between problems as games.

Definition 4.1. For problems P and Q, the reduction game G(Q → P )
is a two-player game that proceeds as follows.
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On the first move, Player 1 plays an instance X0 of P , and Player 2 either
plays an X0-computable solution to X0 and declares victory, in which case
the game ends, or responds with an X0-computable instance Y1 of Q. If
Player 2 cannot move (which might happen if there is no X0-computable
instance of Q), then Player 1 wins, and the game ends.

For n > 1, on the nth move (if the game has not yet ended), Player 1
plays a solution Xn−1 to the instance Yn−1 of Q. Then Player 2 either plays
a (

⊕
i<n Xi)-computable solution to X0 and declares victory, in which case

again the game ends, or plays a (
⊕

i<n Xi)-computable instance Yn of Q.
Player 2 wins this play of the game if it ever declares victory. Otherwise,

Player 1 wins.

Proposition 4.2. If P 6ω Q then Player 2 has a winning strategy for
G(Q → P ). Otherwise, Player 1 has a winning strategy for G(Q → P ).
(Note that these strategies do not have to be effective in any way.)

Proof. Suppose that P 6ω Q. Player 2 then plays according to the follow-
ing strategy. At the nth move, if there is a legal winning move, Player 2
makes it. Otherwise, it lets Yn,0, Yn,1, . . . be all instances of Q computable
in the join of the moves of the game so far. For the least pair 〈m, i〉 with
m 6 n for which Player 2 has not yet acted, it then acts by playing Ym,i

(to which Player 1 must reply with a solution to Ym,i). Suppose Player 2
never has a winning move, and Player 1 never fails to have a legal move.
Then the Turing ideal generated by the moves in the game is an ω-model
of Q, and hence is a model of P . But then there must be some finite
number of moves whose join computes a solution to Player 1’s first move,
which gives Player 2 a winning move. Thus Player 2 must eventually win
the game no matter what Player 1 does.

Now suppose that P 
ω Q and let S be an ω-model of RCA0 + Q that
is not a model of P . Since S is a Turing ideal, as long as Player 1’s moves
stay inside S, so must Player 2’s moves. Furthermore, the fact that S is a
model of Q implies that, as long as Player 2’s moves stay inside S, Player
1 will always be able to reply with moves that stay inside S. So Player 1
can simply begin by playing an instance X0 ∈ S of P that has no solution
in S, and then keep playing elements of S, which ensures that the game
never ends (unless there is no X0-computable instance of Q, in which case
Player 2 loses on the first move). �

4.2. Generalized Weihrauch reducibility. We can now define a gen-
eralized notion of Weihrauch reduction by considering computable strate-
gies. We assume that we have defined the join operation for finitely
many sets so that we can determine n from

⊕
i6n Xi, say by letting⊕

i6n Xi = {n} ⊕ {〈i, k〉 : i 6 n ∧ k ∈ Xi}. In general, when we write
X0 ⊕X1 we mean {2n : n ∈ X0} ∪ {2n + 1 : n ∈ X1} as usual. However,
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we will sometimes write X0 ⊕X1 for
⊕

i61 Xi, when it is clear that this is
what we mean. Similarly, we will write simply X0 instead of

⊕
i60 Xi.

Definition 4.3. A computable strategy for Player 2 in a reduction game
is a Turing functional that, given the join of Player 1’s first n moves as
an oracle, outputs Player 2’s nth move. More precisely, the strategy is
a functional Φ such that, if Z is the join of Player 1’s first n moves,
then ΦZ = V ⊕ Y , where Y is Player 2’s nth move, and V is {0} if

Player 2 declares victory at this move and ∅ otherwise. We write Φ̂X for

{n : 2n + 1 ∈ ΦX} (so if Z is the join of Player 1’s first n moves, then Φ̂Z

is Player 2’s nth move). This strategy is winning if it enables Player 2 to
win no matter what Player 1 does.

We say that P is Weihrauch (or uniformly) reducible to Q in the gen-
eralized sense, and write P 6gW Q, if Player 2 has a computable winning
strategy in G(Q → P ).

For example, consider RTn
3 and RTn

2 . While RTn
3 6ω RTn

2 , we have seen
in Theorem 3.3 that RTn

3 
W RTn
2 . However, the procedure for obtaining

solutions to instances of RTn
3 using RTn

2 is clearly uniform, though it does
require two applications of RTn

2 . Indeed, we do have RTn
3 6gW RTn

2 .
Here is Player 2’s strategy in G(RTn

2 → RTn
3 ): Player 1 plays a coloring

c : [N]n → 3. Then Player 2 plays the c-computable coloring d : [N]n → 2
defined by d(s) = 0 if c(s) = 2 and d(s) = 1 otherwise. Next, Player
1 plays an infinite homogeneous set H for d. From c ⊕ H, Player 2 can
computably determine to which color H is homogeneous. If that color is 0,
then H is also homogeneous for c, so Player 2 plays H and declares victory.
If the color is 1, then Player 2 plays the 2-coloring d � [H]n (encoded as
a coloring of [N]n). Player 1 must then play a homogeneous set I for
this coloring. This set is also homogeneous for c, so Player 2 plays I and
declares victory. Of course, this argument can easily be adapted to show
that RTn

k 6gW RTn
j for any k > j > 2.

Proposition 4.4. The relation 6gW is transitive.

Proof. Let Φ and Ψ be computable winning strategies for Player 2 in
G(Q → P ) and G(R → Q), respectively. Then Player 2 has the fol-
lowing computable winning strategy in G(R → P ). Player 1 plays the

instance X0 of P . If ΦX0(0) = 1 then Φ̂X0 is a solution to X0, so player

2 plays it and wins. Otherwise, Φ̂X0 is an instance Y1 of Q. Player 2 can
then begin a play of G(R → Q) by pretending that Player 1 has played
Y1 on its first move, and play this game according to Ψ until it obtains a
solution X1 to Y , which must happen no matter how player 1 replies. If

ΦX0⊕X1(0) = 1 then Φ̂X0⊕X1 is a solution to X0, so player 2 plays it and

wins. Otherwise, Φ̂X0⊕X1 is an instance Y2 of Q. Again, Player 2 can play
G(R → Q) according to Ψ pretending that Player 1 has played Y2 on its
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first move. Continuing in this way, Player 2 must eventually find an n
such that Φ

L
i6n X0(0) = 1. �

Clearly, if P 6W Q then P 6gW Q, and if P 6gW Q then P 6ω Q, so
we have the following picture.

P 6gW Q
px hhhhhhhhhh

P 6W Q
px hhhhhhhhhhhh
ks

P 6ω Q P 6c Qks P 6sW Q.

fn VVVVV
VVVVV

ow hhhhhhhhhh

P 6sc Q

go VVVVVV
VVVVVV

Versions of Ramsey’s Theorem for different exponents provide interest-
ing witnesses to the fact that 6gW does not imply 6c. (We will see an
example showing that 6sc does not imply 6gW in Corollary 4.10 below.)
Consider for instance RT4

2 and RT3
2. As discussed in the introduction,

RT4
2 
c RT3

2. On the other hand, let PRE be the principle stating that for
every k, n > 2, every k-coloring of [N]n has an infinite prehomogeneous set.
The construction in Jockusch [30, proof of Lemma 5.4] that gives us the
first part of Lemma 3.1 also shows that PRE 6W KL. We have already
seen that KL 6W RT3

2, so given an instance c of RT4
2, we can use one

application of RT3
2 to obtain an infinite prehomogeneous set A for c, then

another to obtain an infinite homogeneous set for the induced 2-coloring
of [A]3, which will also be homogeneous for c. This procedure is uniform,
so RT4

2 6gW RT3
2. A similar argument establishes the following fact.

Proposition 4.5. RT 6gW RTn
k for all n > 3 and k > 2.

Similarly, given an instance c of RT3
2, we can use one application of PRE

to obtain an infinite prehomogeneous set A for c, then another to obtain an
infinite prehomogeneous set B for the induced 2-coloring on [A]2, then an
application of RT1

2 to obtain an infinite homogeneous set for the induced
2-coloring on B, which will also be homogeneous for c. Since RT1

2 6W KL,
we see that RT3

2 6gW KL. By Proposition 4.5, we have the following result.

Proposition 4.6. RT 6gW KL.

Thus we see that the equivalences represented by the top line of Figure
2.1 also hold for 6gW. The same is true of the bottom line of that figure,
a fact worth noting in light of part (4) of Theorem 2.10, and of the similar
equivalences for exponent 2.

Proposition 4.7. (1) RT1
<∞ 6gW RT1

2.

(2) (S)RT2
<∞ 6gW (S)RT2

2 and D2
<∞ 6gW D2

2.

Proof. For (1), let f : N → N have bounded range. Let c0 : N → 2 be
defined by letting c0(n) = 0 if and only if f(n) = 0, and let H0 be an infinite
homogeneous set for c0. If H0 is homogeneous to 0 then it is homogeneous
for f . Otherwise, let c1 : H0 → 2 be defined by letting c0(n) = 0 if and
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only if f(n) = 1, and let H1 be an infinite homogeneous set for c1. If H1

is homogeneous to 0 then it is homogeneous for f . Otherwise, continue in
this way to define c2, c3, . . . and H2, H3, . . . . Eventually we must reach an
n such that Hn is homogeneous to 0, and hence homogeneous for f .

The argument for (2) is essentially the same. �

In light of Dzhafarov’s result [16] that SRT2
2 
W D2

2, the following fact
is also of interest.

Proposition 4.8. SRT2
2 6gW D2

2.

Proof. Let c : [N]2 → 2 be stable. With one application of D2
2, we can

obtain an infinite limit-homogeneous set H for c. Let a ∈ H and let
d(n) = c(a, a + n + 1). With one application of RT1

2, we can obtain an
infinite homogeneous set I for d. Let n ∈ I and let i = c(a, a + n + 1).
Then lims c(a, s) = i, so lims c(x, s) = i for all x ∈ H, and hence we can
define an infinite homogeneous set b0, b1, . . . for c by letting b0 be the least
element of H and letting bk+1 be the least element of H greater than bk

such that c(bj, bk+1) = i for all j 6 k. This construction is uniform, and
RT1

2 6W D2
2, so SRT2

2 6gW D2
2. �

We will summarize the relationships between versions of Ramsey’s The-
orem and König’s Lemma under 6gW in Section 5.

The following notions play an important role in the work of Dorais,
Dzhafarov, Hirst, Mileti, and Shafer [12]. For problems P0 and P1, let
(P0, P1) be the problem whose instances are pairs (X0, X1) where each Xi

is an instance of Pi, and such that a solution to such an instance is a
pair (Y0, Y1) where each Yi is a solution to Xi. Let P 2 = (P, P ). We can
similarly define P n for any n, and P ω, which is also sometimes denoted by
SeqP (the sequential version of P , also known as the parallelization of P )
to avoid too many superscripts. We also have P<ω, where an instance is
any instance of P n for n ∈ ω. Lemma 3.3 of [12] illustrates the fact that
P0 6W Q and P1 6W Q does not necessarily imply that (P0, P1) 6W Q;
indeed, it is even possible to have P 2 
W P . On the other hand, if
P0 6gW Q and P1 6gW Q then clearly (P0, P1) 6gW Q. In particular, we
always have P n 6gW P , and even P<ω 6gW P . It is not necessarily the
case that P ω 6gW P , however. In fact, we can even have P ω 
ω P . For
example, as shown in [12, Lemma 3.2], there is a computable instance of
SeqRT2

2 such that every solution computes ∅′′, but as shown by Seetapun
in [51, Theorem 3.1], there is an ω-model of RCA0 + RT2

2 that does not
contain ∅′.

It is more difficult to give examples of principles P and Q such that
P 6ω Q but P 
gW Q. We will discuss one class of examples in the
following subsection. A different kind of example is given by the following
proposition, which is a uniform version of Proposition 2.7.

Proposition 4.9. Let P be a problem. If P 6gW WKL then P 6sW WKL.
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Proof. For a set Z, let Z [i] = {n : 〈i, n〉 ∈ Z}. It is straightforward to
define computable functions f , g, and h, and a functional T , such that
TX is a binary tree whose infinite paths are exactly the sets Z with the
following properties.

1. Z [0] = X.
2. Z [f(i,j)] = Z [i] ⊕ Z [j] for all i, j.
3. If ΦZ[i]

e is total then Z [g(e,i)] = ΦZ[i]

e .
4. If Z [i] codes an infinite binary tree then Z [h(i)] is an infinite path on that

tree.

Now suppose that P 6gW WKL and let Φe be a winning strategy for
Player 2 in G(WKL → P ). Given an instance X of P , let Z be an infinite
path on TX . Proceed as follows to obtain a solution to X uniformly from
Z. Let i0 = 0. Suppose we have defined i0, . . . , in. Using f and g, we
can compute a j such that Zj =

⊕
k6n Z [ik]. Wait for ΦZ[j]

e (0) to converge.

When it does, if it converges to 1 then output Φ̂Z[j]

e . (Recall the hat
notation from Definition 4.3.) Otherwise, let in+1 = h(g(e1, j)), so that

Z [in+1] is a solution to the instance Φ̂Z[j]

e of WKL. It is easy to see that this
procedure eventually ends, producing a solution to X. �

Combining the above proposition with part (1) of Theorem 2.10 yields
the following result.

Corollary 4.10. RT1
2 
gW WKL.

Since clearly RT1
2 6sc WKL, we see that 6sc does not imply 6gW.

4.3. Diagonalizability. In most cases, when one shows that P 6ω Q, one
does so via a generalized Weihrauch reduction. However, several examples
where this is not the case fit a general pattern we now describe. (The defini-
tions we give below are not the absolutely most general ones we could give,
but they suffice for our examples.) For σ0, . . . , σn ∈ 2<ω and a functional
Φ, we write Φ

L
i6n σi(k)↓ = j to mean that Φ{n}⊕{〈i,k〉 : i6n∧σi(k)=1}(k)↓ = j

via a computation that does not query the oracle on 2〈i, k〉 + 1 for any
i 6 n and k > |σi|. The point is that then, for any X0 � σ0, . . . , Xn � σn,
we have Φ

L
i6n Xi(k)↓ = j.

Let us begin with an example. We saw in Theorem 2.10(5) that RT1
2 
W

COH. The proof of this result uses two properties of these problems: the
ability to use instances of RT1

2 to diagonalize against a supposed infinite
homogeneous set, and the fact that for every instance X of COH, every
string in 2<ω can be extended to a solution to X. It turns out that these
properties suffice to show that, in fact, RT1

2 
gW COH, as we now discuss.
Suppose that Player 2 has a computable winning strategy Φ for the

game G(COH → RT1
2), and build a coloring c : N → 2 as follows. (As

mentioned in Remark 1.4, we identify c with a subset of N coding it. We
say that a binary string σ is an initial segment of c, and write σ ≺ c, if σ
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is an initial segment of this set.) Start by letting c(s) = 0 at stage s until
we find σ0, . . . , σn ∈ 2<ω such that

1. σ0 ≺ c,
2. Φ

L
i6j σi(0)↓ = 0 for all j < n,

3. Φ
L

i6n σi(0)↓ = 1, and

4. Φ̂
L

i6n σi(k)↓ = 1 for some k.

If such strings are found, then ensure that c(k) = 0 and c(t) = 1 for all
sufficiently large t.

Consider a play of G(COH → RT1
2) where Player 1 plays c, then Player

2 plays the instance Y0 of COH determined by Φ, then Player 1 plays a
solution X1 to Y0, and so on, until Player 2 plays an infinite homogeneous
set Yn for c (still determined by Φ). For simplicity of notation, let X0 = c.
Then Φ

L
i6n Xi(0)↓ = 1 and Φ

L
i6j Xi(0)↓ = 0 for all j < n. Furthermore,

there is a k such that Φ̂
L

i6n Xi(k)↓ = 1. Thus σ0, . . . , σn as above must
eventually be found.

The crucial point now is that there are X0 � σ0, . . . , Xn � σn such that

X0 = c and if Φ̂
L

i6j Xi is an instance of COH then Xj+1 is a solution
to this instance. This is the case simply because for every instance Z of
COH, every string can be extended to a solution to Z. Now X0, . . . , Xn

are valid moves by Player 1 in a game in which Player 2 plays according
to Φ, and by the choice of σ0, . . . , σn,

1. Φ
L

i6j Xi(0)↓ = 0 for all j < n,
2. Φ

L
i6n Xi(0)↓ = 1, and

3. Φ̂
L

i6n Xi(k)↓ = 1, where k is as above.

Then Φ̂
L

i6n Xi must be an infinite homogeneous set for c. But k ∈ Φ̂
L

i6n Xi

and c(k) = 0, while c(t) = 1 for all sufficiently large t, so we have a
contradiction. Thus RT1

2 
gW COH.
We did not use any properties of COH in this argument other than the

fact that for every instance X of COH, every string can be extended to
a solution to X. (In the terminology of [4], COH is densely realized.)
We could also adapt the argument to the following more general situation
(where we recall from Remark 1.4 the fact that we identify instances and
solutions to problems with subsets of N).

Definition 4.11. A problem P is undiagonalizable if there is a uniform
procedure that, given an instance X of P and a string σ, decides whether
σ can be extended to a solution to X.

Let us now discuss the essential property of RT1
2 used in the above

argument. We think of σ0, . . . , σn as forming a finite approximation to
(Player 1’s moves in) a possible run of G(COH → RT1

2) where Player
1 begins by playing the coloring c we are building and Player 2 plays
according to Φ. Then k is an element that is necessarily included in Player
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2’s final move in that run. We get a contradiction by ensuring that there is
no infinite homogeneous set for c containing k. Suppose we were working
with TS1

3 instead of RT1
2. Then finding a single k would not be enough.

We would need a two-step process instead: First start defining c(s) = 0 at
stage s and find a finite approximation F0 to a possible run of G(COH →
TS1

3) where Player 1 begins by playing the coloring c we are building and
Player 2 plays according to Φ, and a corresponding k0 necessarily included
in Player 2’s final move in that run, with c(k0) = 0. Then start defining
c(s) = 1 at stage s and find a further finite approximation F1 extending F0

and a corresponding k1 with c(k1) = 1. At that point, by letting c(t) = 2
for all sufficiently large t, we ensure that there is no infinite thin set for c
containing both k0 and k1.

In general, we can think of this construction as producing a sequence
F0 ⊂ F1 ⊂ · · · of approximations to runs of a game G(Q → P ). (In the
above cases, we can stop after one or two such approximations, but for
the general case we think of the construction as finding infinitely many
approximations.) Each Fi determines some part of Player 2’s last move.
We can easily adapt the above construction so that these parts are longer
and longer initial segments, so that their union is a set. We think of this
set as ΨX , where X is the instance of P that we construct, and Ψ has
the property that ΨY is total and infinite for all instances Y of P . The
key property of P that makes the construction work is captured by the
following definition. (If solutions to instances of P are not themselves
subsets of N, we think of them as coded by such sets, as mentioned in
Remark 1.4. We then say that such a solution is infinite if the set coding
it is infinite, which for the problems considered in this paper is always the
case.)

Definition 4.12. A problem P has diagonalization opportunities if all of
its solutions are infinite and, given any Turing functional Ψ such that ΨY

is total and infinite for all instances Y of P , there are a τ and an instance
X � τ of P such that no solution to X extends Ψτ .

We now have the following general result.

Theorem 4.13. Let Q be undiagonalizable and P have diagonalization
opportunities. Then P 
gW Q.

Proof. In this proof, we regard all instances and solutions as subsets of N.
Write X [i] for {n : 〈i, n〉 ∈ X}. Assume for a contradiction that P 6gW Q,
so that, by Proposition 4.2, Player 2 has a computable winning strategy
Φ for G(Q → P ). Say that R is a possible run if there is a legal run of
this game where Player 1 plays R[0], . . . , R[k], Player 2 plays according to
its winning strategy, and the game ends after exactly k + 1 many moves.
From a possible run R, we can determine the corresponding k, and hence
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compute Φ̂
L

i6k R[i]

, which is a solution to R[0]. Thus there is a Turing
functional Γ such that if R is a possible run then ΓR is a solution to R[0].

For s = (σ0, . . . , σn) and s′ = (σ′
0, . . . , σ

′
n′), write s 4 s′ to mean that

n′ > n and σi 4 σ′
i for all i 6 n, and write Γs for Γ

L
i6n σi .

Let Θ be a Turing functional such that if Y is an instance of Q then
ΘY is the set of all σ that can be extended to a solution to Y . For a set
X, let SX be the set of all sequences s = (σ0, . . . , σn) for which there is a
k 6 n such that

1. σ0 ≺ X,
2. Φs�i+1(0)↓ = 0 for all i < k,
3. Φs�k+1(0)↓ = 1, and

4. σi+1 ∈ Θ
bΦs�i+1

for all i < k.

We say that a run R extends s if R[i] � σi for all i 6 n. Note that if X is
an instance of P then SX is uniformly X-c.e., every element of SX can be
extended to a possible run R with R[0] = X, and for every possible run R
with R[0] = X, every sufficiently long initial segment of R is in SX .

Let Ψ be the functional such that ΨX is defined as follows. Search for
an s0 ∈ SX and an n0 such that Γs0(m)↓ for all m 6 n0 and Γs0(n0) = 1.
If such an s0 and n0 are found then let ΨX(m) = Γs0(m) for all m 6 n0

and search for an s1 < s0 in SX and an n1 > n0 such that Γs1(m)↓ for
all m 6 n1 and Γs1(n1) = 1. If such an s1 and n1 are found then let
ΨX(m) = Γs1(m) for all m ∈ (n0, n1]. Continue to define the si and ni

in this way. If X is an instance of P then each si can be extended to a
possible run R such that R[0] = X, and ΓR must be total and infinite, so
si+1 and ni+1 will be found. Thus in this case ΨX is total and infinite.

Let τ be as in Definition 4.12 and let X � τ be an instance of P such
that no solution to X extends Ψτ . Letting si be as above, there is an
i such that Ψτ 4 Γsi . There is a possible run R extending si such that
R[0] = X. Then ΓR � Ψτ , so ΓR is not a solution to R[0], which is a
contradiction. �

Remark 4.14. Brattka, Hendtlass, and Kreuzer [4] defined the notion of
ω-indiscriminative multi-valued functions on represented spaces using the
all or co-unique choice operation ACCN. The latter can be restated as a
problem PACCN with infinite solutions, for example by letting an instance
be either ∅ or a singleton {〈n, k〉}, and letting a solution to an instance X
be any set Y of the form {〈m, k〉 : k ∈ N} such that X ∩ Y = ∅. Then
a problem Q is ω-indiscriminative if and only if PACCN 6W Q. Brattka,
Hendtlass, and Kreuzer [4, Proposition 4.3] showed that if Q is densely
realized (i.e., if for every instance X of Q, every σ can be extended to a
solution to X) then Q is ω-indiscriminative. It is easy to see that PACCN

has diagonalization opportunities, so Theorem 4.13 extends that result in
the context of Π1

2 principles.
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The class of densely realized problems mentioned above includes all
problems where the class of solutions to any given instance is a collection
of subsets of N closed under finite difference, for example n-RAND, the
statement that for every X, there is a set that is n-random relative to
X, and indeed RAND, the statement that for every X there is a set that
is arithmetically random (i.e., n-random for every n) relative to X. (See
Downey and Hirschfeldt [13] for more on algorithmic randomness.)

A different kind of example is given by the Atomic Model Theorem
AMT, which states that every complete atomic theory has an atomic
model. Given such a theory T , we can uniformly determine whether σ
is an initial segment of a model of T , in which case σ is also an initial seg-
ment of an atomic model of T . Thus AMT is undiagonalizable. The same
is true of the related principles OPT and AST considered in Hirschfeldt,
Shore, and Slaman [29].

As we have seen, an example of a problem with diagonalization opportu-
nities is RT1

2. Thus, although RT1
2 is provable in RCA0, it is not Weihrauch

reducible in the generalized sense to any undiagonalizable problem, such
as RAND, COH, or AMT. (Of course, the same holds of RTn

k for any n > 1
and k > 2.)

Corollary 4.15. If Q is undiagonalizable, then RT1
2 
gW Q.

Several other examples of problems with diagonalization opportunities
can be found among the consequences of RT2

2, for example SRT2
2 and the

principles ADS, CAC, SADS, and SCAC studied in Hirschfeldt and Shore
[28]. The following are a few more examples.

Recall the principle WWKL, defined at the end of Section 1. Let Ψ be
as in Definition 4.12 and let τ be an initial segment of the full binary tree
such that Ψτ (0)↓. Let T be a binary tree extending τ such that A is a
path on T if and only if A(0) 6= Ψτ (0). Then T is an instance of WWKL
such that no solution to T extends Ψτ , so WWKL has diagonalization
opportunities.

Let Θe be the eth Turing functional in a fixed effective listing of such
functionals. The Diagonally Nonrecursive Principle DNR states that for
every X, there is a function f such that f(e) 6= ΘX

e (e) for all e. Let Ψ be as
in Definition 4.12, and let e be such that Θe = Ψ. Let τ be any string such
that Ψτ (e)↓ and let X � τ . Then Ψτ (e) = ΨX(e) = ΘX

e (e), so no solution
to X extends Ψτ , and hence DNR has diagonalization opportunities.

Giusto and Simpson [23, Lemma 6.18] showed that WWKL implies DNR
over RCA0. Their proof in fact shows that DNR 6sW WWKL. Ambos-
Spies, Kjos-Hanssen, Lempp, and Slaman [1] showed that WWKL 
ω

DNR. Yu and Simpson [61, Section 2] showed that WKL 
ω WWKL.
As shown by Kučera [37, Lemma 3], for every Π0

1 class C of positive
measure and every 1-random set R, there is a final segment of R contained
in C. Relativizing this result, we see that WWKL 6sc 1-RAND. Kučera
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[37] (see also [13, Theorem 8.8.1]) also showed that every 1-random set
computes a function f as in the definition of DNR, and his proof shows
that in fact DNR 6sc 1-RAND. On the other hand, Brattka, Hendtlass,
and Kreuzer [4, Proposition 7.3] showed that DNR 
W 1-RAND. Indeed,
the above remarks show that the following holds.

Corollary 4.16. WWKL 
gW RAND and DNR 
gW RAND.

A function f : [N]n → N is k-bounded if |f−1(i)| 6 k for all i. A set R
is a rainbow for f if R is infinite and f is injective on [R]n. The Rainbow
Ramsey Theorem for n and k, RRTn

k , states that every k-bounded function
on [N]n has a rainbow. Csima and Mileti [11, Theorem 3.1] showed that
RRT2

k 6c 2-RAND. However, RRT2
2 has diagonalization opportunities:

Let Ψ be as in Definition 4.12. Let τ be an initial segment of an injective
function on [N]2 such that Ψτ contains at least two elements x and y. Let
f � τ be a 2-bounded function on [N]2 such that f(x, z) = f(y, z) for all
sufficiently large z. Then no infinite rainbow for f can extend Ψτ . Thus
we have the following result.

Corollary 4.17. RRT2
2 
gW RAND.

One may argue that in the above examples, the real issue is not effectiv-
ity but continuity. That is, we can define the notion of a continuous strat-
egy by replacing the Turing functional in Definition 4.3 by any continuous
map 2ω → 2ω, and use that to define a notion of “continuously reducible
in the generalized sense”. If we then redefine the notion of diagonaliz-
able instance by replacing “any Turing functional Ψ” by “any continuous
Ψ”, we can redo all the work in this subsection for this weaker notion
of reducibility in essentially the same way. However, a continuous map
2ω → 2ω is just a Turing functional relative to some oracle, so working in
the cone above this oracle, there is no difference between the two notions
of reducibility. Thus it appears that, for natural problems like the ones
discussed above, there is no real difference between these two approaches.

4.4. Counting instances. Another thing we can do with our reduction
games is calibrate the exact number of instances of Q needed to obtain
P (uniformly or not). Let us write P 6n

ω Q if Player 2 has a winning
strategy in G(Q → P ) that guarantees victory in n+1 or fewer moves, and
P 6n

gW Q if Player 2 has a computable winning strategy in G(Q → P ) that

guarantees victory in n+1 or fewer moves. Notice that P 60
ω Q if and only

if P is computably true (i.e., every instance X of P has an X-computable
solution), while P 60

gW Q if and only if P is uniformly computably true
(i.e., there is a procedure for obtaining a solution to an instance X of P
from X). RT1

2 is an example of a principle that is computably true but
not uniformly so. Similarly, P 61

ω Q if and only if P 6c Q, and P 61
gW Q

if and only if P 6W Q.
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For instance, the proof of Proposition 4.8 shows that SRT2
2 62

gW D2
2. We

also have the following more detailed analysis of the equivalence, under
both 6ω and 6gW, of KL, RTn

k for n > 3 and k > 2, RTn
<∞ for n > 3, and

RT.

Proposition 4.18. Let n > 1. Then RTn
<∞ 6n−1

ω KL but (for n > 1)
RTn

2 
n−2
ω KL. Thus RT 
k

ω KL and RT 
k
ω RTn

<∞ for all k and all
n > 1.

Proof. For n = 1 we are just stating that RT1
<∞ is computably true, so

let n > 2. As mentioned before Proposition 4.5, PRE 6W KL, where
PRE is the principle stating that for every n, k > 2, every k-coloring of
[N]n has an infinite prehomogeneous set. With n− 1 applications of PRE,
we can reduce a coloring c of [N]n to a coloring of N. This coloring has
a computable infinite homogeneous set, which is also homogeneous for c.
Thus RTn

<∞ 6n−1
ω KL.

For the second statement, we use the fact that every instance Y of KL
has a solution Z such that Y ⊕ Z is low over Y ′. (This fact follows from
the relativized form of the low basis theorem, since every Y -computable
finitely bounded tree is Y ′-computably bounded.) From this fact, it follows
easily by induction that in the game G(KL → RTn

2 ), if Player 1 plays a
computable instance of RTn

2 on its first move, then it is always possible for
Player 1 to ensure that Player 2’s kth move is low over ∅(k−1). By Jockusch
[30, Theorem 5.1], there is a computable instance of RTn

2 with no ∅(n−1)-
computable solution, so if Player 1 begins with such an instance and plays
as above, Player 2 cannot win until move n. Thus RTn

2 
n−2
ω KL. �

It follows from Proposition 4.18 that RTn
2 
n−2

gW KL. In the positive
direction, we have the following fact.

Proposition 4.19. Let n > 1. Then RTn
<∞ 6n

gW KL.

Proof. As in the previous proof, with n − 1 applications of PRE, we can
reduce a coloring c of [N]n to a coloring of N, in a uniform way, and by
Theorem 2.10(7), RT1

<∞ 6W KL. �

It is easy to see that RT1
2 
0

gW KL, and by Theorem 2.10(2), RT2
2 
1

gW

KL. However, we do not know whether RTn
k 6n−1

gW KL for n > 3, where
k > 2 may be <∞.

Theorem 4.20. Let n > 3, let k > 2, and let j > 1, and suppose that

m ∈ (n + (j − 1)(n− 2), n + j(n− 2)].

Then RTm
k 6j+1

gW RTn
k but RTm

2 
j
ω RTn

k .

Proof. We begin by showing that RTm
k 6j+1

ω RTn
k , and then discuss uni-

formity. Suppose that in the game G(RTn
k → RTm

k ), Player 1 begins by
playing an instance c of RTm

k . By the relativized form of Lemma 5.9 in
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Jockusch [30], for each A there is an A-computable instance Y of RTn
k such

that for any solution Z, we have A(n−2) 6T A⊕Z. Thus Player 2 can force
Player 1 to play a set Z2 on its second move such that c(n−2) 6T c⊕Z2, then
force it to play a set Z3 on its third move such that c(2(n−2)) 6T c⊕Z2⊕Z3,
and so on. So Player 2 can gain access to c((j−1)(n−2)) before its jth move.
By the relativized form of Corollary 2.2, with one more move, Player 2 can
gain access to a set of PA degree over c(j(n−2)). By the proof of Lemma
3.2, Player 2 then has access to an infinite set P such that the c-color of
a tuple in [P ]m depends only on its least m − j(n − 2) 6 n many colors.
With one more move, Player 2 can force Player 1 to play a solution to the
induced coloring of [P ]n, which is also a solution to c. Player 2 then plays
this set as its (j + 2)nd move and wins.

We now need to show that the above strategy for Player 2 is computable.
We claim that the proof of the relativized form of Corollary 2.2 can be car-
ried out uniformly, or, more precisely, that there are Turing functionals Φ
and Ψ such that for each X, the set ΦX codes a computable 2-coloring of
[N]n such that if H is an infinite homogeneous set for this coloring, then

ΨX⊕H is a completion of the partial function e 7→ ΦX(n−2)

e (e). Assume
the claim for now. Then, since X(n−2) can be computed uniformly from
such a completion, Player 2’s first j many moves under the above strat-
egy can be performed computably. Player 2’s jth move is a completion
of e 7→ Φc(j(n−2))

e (e). From such a completion, we can uniformly compute

completions of e 7→ Φc(i)

e (e) for each i 6 j(n− 2), which allows us to carry
out the construction in the proof of Lemma 3.2 uniformly to obtain a set
P as above. (The key point here is that Lemma 5.4 of [30] is proved by
building a finitely branching tree all of whose paths are infinite prehomo-
geneous sets for a given coloring d. This tree is built uniformly from d,
and a path on such a tree can be obtained uniformly from a completion of
e 7→ Φd′

e (e).) Now Player 2’s final 2 moves can also be made computably.
It remains to prove the claim. We repeat the argument in the proof of

Corollary 2.2, but now paying attention to uniformity. As in that proof,
we will ensure that the coloring coded by ΦX is unbalanced. In fact,
we will ensure that every infinite homogeneous set for that coloring is
homogeneous to 1; we say that the coloring is unbalanced toward 1. For
n = 3, the existence of the functionals Φ and Ψ follows from the proof of
Lemma 3.1. Now let n > 3 and assume by induction that we have Turing

functionals Φ̂ and Ψ̂ such that for each Y , the set Φ̂Y codes a 2-coloring
cY of [N]n that is unbalanced toward 1 and such that if H is an infinite

homogeneous set for cY , then Ψ̂Y ⊕H is a completion of the partial function
e 7→ ΦY (n−2)

e (e). In particular, for each X, if H is an infinite homogeneous

set for cX′
, then Ψ̂X′⊕H is a completion of e 7→ ΦX(n−1)

e (e). The argument
in the proof of Lemma 5.2 of [30] shows that we can uniformly obtain an
X-computable 2-coloring dX of [N]n+1 that is unbalanced toward 1 and
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such that every infinite set homogeneous for dX is homogeneous for cX′
.

Since n > 3, we can also transform cX into a 2-coloring eX of [N]n+1 that
is unbalanced toward 1 and such that we can uniformly compute X ′ from
X ⊕ H for any infinite homogeneous set H for eX . (We just let the eX-
color of an (n + 1)-tuple be the cX-color of its n many least elements.)
By the proof of Lemma 5.10 of [30], from dX and eX we can uniformly
obtain a 2-coloring fX of [N]n+1 that is unbalanced toward 1 and such
that the infinite homogeneous sets for fX are precisely the infinite sets
homogeneous for both dX and eX . Let ΦX code fX . Given an infinite
homogeneous set H for fX , the fact that H is homogeneous for dX , and

hence for cX′
, implies that Ψ̂X′⊕H is a completion of e 7→ ΦX(n−1)

e (e). But
since H is homogeneous for eX , we can uniformly compute X ′ from X⊕H.
Thus we can define a Turing functional Ψ such that, for any such H, the
set ΨX⊕H is a completion of e 7→ ΦX(n−1)

e (e).

To show that RTm
2 
j

ω RTn
k , we use the relativized form of Theorem 12.1

in Cholak, Jockusch, and Slaman [7], which states that every instance Y
of RTn

k has a solution Z such that (Y ⊕ Z)′′ 6T Y (n). From this result,
it follows easily by induction that in the game G(RTn

k → RTm
2 ), if Player

1 plays a computable instance of RTm
2 on its first move, then it is always

possible for Player 1 to ensure that Player 2’s ith move has ∅((n+(i−2)(n−2))-
computable double jump. As mentioned above, there is a computable
instance of RTm

2 such that every solution Z computes ∅(m−2), and hence
has Z ′′ >T ∅(m) >T ∅(n+(j−1)(n−2)). If Player 1 begins with such an instance
and plays as above, Player 2 cannot win until move j + 2. �

We turn now to comparing versions of RT with fixed size of tuples
but different numbers of colors. We have seen that RTn

3 62
gW RTn

2 but

RTn
3 
1

gW RTn
2 . In the n = 1 case at least, this fact has the following

generalization.

Theorem 4.21. Let j > 2. If k ∈ (jm, jm+1] then RT1
k 6m+1

gW RT1
j but

RT1
k 
m

gW RT1
j . Similarly, RT1

<∞ 
m
gW RT1

j for all m.

Proof. For the positive direction, we use the usual reduction from RT1
jm+1

to RT1
j , which we can think of inductively. The base case is m = 0, for

which a single application of RT1
j suffices. Given a jm+1-coloring c, we

partition its colors into j many sets G0, . . . , Gj−1, each of size jm, and let
d be the j-coloring defined by letting d(x) = i if c(x) ∈ Gi. Solving this
instance of RT1

j gives us an infinite homogeneous set H for d, and c � H
is a jm-coloring (which we can encode as a coloring of N), so by induction
we can find an infinite homogeneous set for c � H (and hence for c) with
m applications of RT1

j . This procedure is clearly uniform (both in the

instances of RT1
jm+1 and in m), so we conclude that RT1

jm+1 6m+1
gW RT1

j ,

and hence RT1
k 6m+1

gW RT1
j for all k 6 jm+1.
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For the negative direction, let Φ be a computable strategy for Player 2
in G(RT1

j → RT1
k), where k > jm. Recall that if X is the join of Player 1’s

first m moves in a run of this game, then ΦX is of the form V ⊕ Φ̂X , where

V = {0} if Player 2 declares victory on the mth move, in which case Φ̂X

is a solution to Player 1’s first move, and V = ∅ otherwise, in which case

Φ̂X codes a j-coloring of N. We write dX for this coloring.
Build a k-coloring c of N as follows. We have auxiliary sets Ai0,...,il ,

where l < m and ip < j for each p 6 l. Begin defining c arbitrarily. For
uniformity of notation, let A∅ = c, and start computing ΦA∅ . If we find
that ΦA∅(0) = 1 (which indicates that Player 2 declares victory on the

first move) then wait until we find an x such that Φ̂A∅(x) = 1 and ensure
that c(s) 6= c(x) for all sufficiently large s.

Otherwise, once we find that ΦA∅(0) = 0, start putting all x such that
dA∅(x) = i into Ai. Once we have started building a set Ai0,...,il , if we

find that Φ
L

j6l+1 Ai0,...,ij−1 (0) = 1 and Φ̂
L

j6l+1 Ai0,...,ij−1 (x) = 1 for some x,
ensure that c(s) 6= c(x) for all sufficiently large s.

On the other hand, if we find that Φ
L

j6l+1 Ai0,...,ij−1 (0) = 0, and l < x−1,

then start putting all x such that d
L

j6l+1 Ai0,...,ij−1 (x) = i into Ai0,...,il,i.
The total number of colors that we can ever want to avoid in this con-

struction is jm, so we never run out of colors. Now consider the following
run of our game, where Player 2 plays according to Φ. Player 1 begins
by playing A∅ = c. By construction, Player 2 cannot declare victory on
the first move, so the Ai are built. There is an i0 < j such that Ai0 is
an infinite homogeneous set for dA∅ , and Player 1 plays Ai0 . Again by
construction, Player 2 cannot declare victory on this move, so the Ai0,i are
built. Again, there is an i1 < j such that Ai0,i1 is an infinite homogeneous
set for dA∅⊕Ai0 , and Player 1 plays Ai0,i1 . Continuing in this way, we have a
run of our game in which Player 2, playing according to Φ, cannot declare
victory before move m + 2. Since Φ is arbitrary, RT1

k 
m
gW RT1

j , which of

course implies that RT1
<∞ 
m

gW RT1
j . �

The positive part of the above proof works for higher exponents, so we
have the following result.

Proposition 4.22. Let j, n > 2. If k ∈ (jm, jm+1] then RTn
k 6m+1

gW RTn
j .

The exponent-lifting technique of Section 3.1 does not seem immediately
applicable to establishing corresponding lower bounds on the m such that
RTn

k 6m
gW RTn

j for n > 2 and k > j > 2, since some of the sets Ai0,...,ij in
the proof of Theorem 4.21 might be infinite, and hence, if we try to perform
a version of the construction in that proof inside a set P as in the proof
of Theorem 3.3, we might get infinitely many convergent computations

Φ̂
L

j6l+1(Ai0,...,ij−1
∩P [s])(x) = 1 for which Φ̂

L
j6l+1(Ai0,...,ij−1

∩P )(x) 6= 1.
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Patey [45] gave an exact characterization of the least m such that
(S)RTn

k 6m
ω RTn

j for n > 2 and k > j > 2, answering a question stated
in an earlier version of this paper. For n > 3, this m is 2, independent
of j and k. The n = 2 case is more complicated: Let π(x, y) be the least
a > 1 such that x = ay − b for some b < y. For j > 2, let m1,j = 0, and
for k > 1, let mk,j = mπ(k,j),j + 1. Then mk,j is the least m such that

(S)RT2
k 6m

ω RT2
j .

Remark 4.23. Another way to define 6n
gW is to use the operation • dis-

cussed in Section 5.2 of Dorais, Dzhafarov, Hirst, Mileti, and Shafer [12].
For problems P and Q and a fixed Turing functional Θ, the problem Q•P
is defined as follows. A set A is an instance of Q •P if A is an instance of
P and, for every solution B to A as an instance of P , we have that ΘA⊕B

is an instance of Q. (In practice, Θ will normally be chosen so that every
instance A of P has the latter property.) A solution to an instance A of
Q • P is a pair (B, C) such that B is a solution to A as an instance of P ,
and C is a solution to the instance ΘA⊕B of Q. (See [12] for a discussion
of the relationship of this notion with function composition in the context
of computable analysis, and the compositional product in the Weihrauch
lattice.)

For notational simplicity, let us consider the n = 2 case. It is easy to
check that if P 6W Q •Q then P 62

gW Q: Suppose that Φ and Ψ witness
that P 6W Q•Q. In the game G(Q → P ), once Player 1 plays an instance
X of P , Player 2 can respond with ΦX . Player 1 then plays a solution Z to
ΦX , thought of as an instance of Q. Player 2 can then play ΘΦX⊕Z , which
is an instance of Q. Player 1 then plays a solution W to this instance.
Now (Z,W ) is a solution to ΦX as an instance of Q • Q, so Ψ(Z,W ) is a
solution to P . Player 2 can thus play Ψ(Z,W ) on its third move and declare
victory.

In the other direction, we need a slight technical adjustment. Suppose
that P 62

gW Q and let Γ be Player 2’s computable winning strategy for

G(Q → P ). Let Q̂ be the problem whose instances are pairs (X, Y ) where
X is any set and Y is an instance of Q, such that a solution to such
an instance is a pair (X, Z) where Z is a solution to Y . Let Φ be a
Turing functional that, on oracle X, returns (X, ΓX). Let Θ be a Turing
functional that, on oracle (X, Y ) ⊕ (X, Z), returns ΓX⊕Z . Let Ψ be a
Turing functional that, on oracle X ⊕ (Z,W ) returns ΓX⊕Z⊕W . Define •
using Θ. Let X be an instance of P . Then ΦX is an instance of Q • Q̂.
A solution to this instance has the form (Z,W ), where Z is a solution to

(X, ΦX) as an instance of Q̂, and W is a solution to the instance ΓX⊕Z

of Q. Then ΨX⊕(Z,W ) is a solution to X, as it is equal to ΓX⊕Z⊕W , which
is Player 2’s third, and therefore winning, move in a run of G(Q → P )

played according to Γ. Thus Φ and Ψ witness that P 6W Q • Q̂.
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A similar analysis can be made for larger values of n. Of course, the
real power of the • operation comes when considering multiple principles.
For instance, saying that RT2

2 6W SRT2
2 •COH gives us more information

than saying that RT2
2 62

gW SRT2
2 ∧ COH. On the other hand, we cannot

use the • operation to define 6gW in general, as there are principles P and
Q such that P 6gW Q but P 
n

gW Q for all n.

4.5. Non-ω-models. We need not limit our game-based approach to ω-
models. Let Σ0

1-PA be first-order Peano arithmetic with the induction
scheme restricted to Σ0

1 formulas. For a first order model M of Σ0
1-PA and

X0, . . . , Xn ⊆ M , let M [X0, . . . , Xn] be the second order model whose first
order part is M and whose second order part consists of all subsets of M
that are ∆0

1-definable over M with X0, . . . , Xn as additional parameters.
Let P be of the form ∀X [Θ(X) → ∃Y Ψ(X, Y )], with Θ and Ψ arithmetic.
An instance of P over M is an X ⊆ M such that Θ(X) holds in M [X],
and a solution to X (over M) is a Y ⊆ M such that Ψ(X, Y ) holds in
M [X, Y ].

Definition 4.24. For problems P and Q, the generalized reduction game

Ĝ(Q → P ) is a two-player game that proceeds as follows. If at any point
one of the players does not have a legal move, then the game ends with a
victory for the other player.

On the first move, Player 1 plays a countable first order model M of
Σ0

1-PA and an instance X0 of P over M with M [X0] � RCA0, and Player
2 either plays a solution to X0 in M [X0] and declares victory, in which
case the game ends, or responds with an instance Y1 of Q in M [X0].

For n > 1, on the nth move (if the game has not yet ended), Player 1
plays a solution Xn−1 to the instance Yn−1 of Q with M [X0, . . . , Xn−1] �
RCA0. Then Player 2 either plays a solution to X0 in M [X0, . . . , Xn−1] and
declares victory, in which case again the game ends, or plays an instance
Yn of Q in M [X0, . . . , Xn−1].

Player 2 wins this play of the game if it ever declares victory, or if Player
1 has no legal move at some point in the game. Otherwise, Player 1 wins.

It is easy to adapt the proof of Proposition 4.2 to show that if RCA0 +

Q ` P then Player 2 has a winning strategy in Ĝ(Q → P ), while otherwise

Player 1 has a winning strategy in Ĝ(Q → P ). We can use our generalized
games to count applications as above, by writing RCA0 +Q `k P to mean

that Player 2 has a winning strategy in Ĝ(Q → P ) that guarantees a win
in at most k + 1 many moves.

This notion seems particularly interesting in connection with princi-
ples equivalent to ACA0, such as RTn

k for n > 3 and k > 2. For exam-
ple, our discussion above transfers to non-ω-models to show that RCA0 +
RT3

2 `2 RT4
2 but RCA0 + RT3

2 01 RT4
2. It is well known that adding Σ0

1-
comprehension to RCA0 yields ACA0, but our notion allows us to count
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how many applications of Σ0
1-comprehension are needed in a particular

proof in ACA0. For example, Jockusch [30, Theorems 5.1 and 5.5] showed
that for n > 2, every instance X of RTn

k has a solution computable in
X(n), but there is a computable instance with no solution computable
in ∅(n−1). The proof of the first of these facts carries through in RCA0

to show that RTn
k can be proved in RCA0 together with a single ap-

plication of the principle ∀X ∃Y [Y = X(n)], from which it follows eas-
ily that RCA0 + Σ0

1-CA `n RTn
k . The second fact above implies that

RTn
k 
n−1

ω Σ0
1-CA, and hence RCA0 + Σ0

1-CA 0n−1 RTn
k .

A simple example showing that P 6n
ω Q (or even P 6n

gW Q) and RCA0+

Q ` P do not together imply RCA0+Q `n P is given by the principles Π0
1G

and Π0
1GA from Definition 1.6. It is easy to see that Π0

1GA is uniformly
computably true, so in particular Π0

1GA 60
gW Π0

1G. Of course, we also

have RCA0 + Π0
1G `1 Π0

1GA. However, as shown in [27, Theorem 3.3],
RCA0 0 Π0

1GA. Let M be a countable model of RCA0 + ¬Π0
1GA, let M

be the first order part of M, and let X ∈ M be an instance of Π0
1GA

over M with no solution in M. In the game Ĝ(Π0
1G → Π0

1GA), Player 1
can begin by playing M and X, and Player 2 cannot then win on its first
move. Thus RCA0 + Π0

1G 00 Π0
1GA.

It would of course be interesting to have natural examples for larger
n of problems P and Q such that RCA0 + Q ` P and P 6n

ω Q, but
RCA0 + Q 0n P .

It is also straightforward to define the notion of a computable strategy
for Player 2 in a generalized reduction game (using ∆0

1-definable func-
tionals), and hence a notion of gu-reducibility that is not restricted to
ω-models, which we may denote by RCA0 + Q `W P , as well as the cor-
responding instance-counting version RCA + Q `n

W P . In this context,
RCA0 + Q `1 P and RCA0 + Q `1

W P are the analogs to P 6c Q and
P 6W Q, respectively. We leave the further study of these notions to
future work.

5. Relationships between versions of RT and KL: a summary

We summarize the relationships between some versions of Ramsey’s
Theorem and König’s Lemma under 6ω, 6c, 6sc, 6W, 6sW, and 6gW

in Figures 5.1–5.6. (We do not include the Thin Set Theorem, as we have
not considered it beyond Theorem 3.6.) No other implications than the
ones shown (or implied by transitivity) hold. Dotted arrows represent
hierarchies of principles. For example, the dotted arrow in Figure 5.2 rep-
resents the fact that RT4

2 <c RT5
2 <c RT6

2 <c · · · <c RT. We list several
open questions, old and new, at the end of this section.



ON NOTIONS OF REDUCTION BETWEEN Π1
2 PRINCIPLES 51

RT = RT3
k = KL

uukkkkkkkkkkkkkkkk

((RRRRRRRRRRRRRR

RT2
k

wwppppppppppppp

��

WKL

��
COH

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR SRT2
k = D2

k

))SSSSSSSSSSSSSSS

?

OO

?oo WWKL

uullllllllllllllll

DNR

��

RT1
k

Figure 5.1. Versions of RT and KL under 6ω (k > 2)
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Figure 5.2. Versions of RT and KL under 6c
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Figure 5.3. Versions of RT and KL under 6sc



ON NOTIONS OF REDUCTION BETWEEN Π1
2 PRINCIPLES 53

RT

��

RT4
2

��

RT3
2

�� ##F
FFFFFFFFFFFF

RT2
2

{{xxxxxxxxxxxxx

��

##F
FFFFFFFFFFF

KL

uukkkkkkkkkkkkkkkkkkkkkkkkk

##H
HHHHHHHHHHHHH

��








































COH SRT2
2

��

WKL

��
RT1

<∞

��

D2
2

��








































##H
HHHHHHHHHHHHH WWKL

��
RT1

3

��

DNR

RT1
2

Figure 5.4. Versions of RT and KL under 6W
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Figure 5.5. Versions of RT and KL under 6sW
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Figure 5.6. Versions of RT and KL under 6gW (k > 2)

Figure 5.1 extends Figure 2.1. Since the number of colors does not
matter in this case, the subscript k here stands for any number greater than
1 or for <∞. For justifications of the implications and nonimplications in
this figure, see [25].

In Figure 5.2, we leave out RTn
k , SRT2

k, and D2
k for n > 2 and k > 2.

As noted above, Patey [46] has shown that RTn
k 
c RTn

j for all n > 2

and k > j > 2. His argument also shows that SRT2
k 
c RT2

j for all
k > j > 2. In this figure, all implications are obvious or follow from those
in Figure 5.4, except for that between KL and RT2

2, which is established in
Corollary 2.4; and that between D2

2 and SRT2
2, which follows from the same

proof that shows that D2
2 implies SRT2

2 over RCA0 (see Cholak, Jockusch,
and Slaman [7, Lemma 7.10]). All nonimplications in this figure follow
either from those in Figure 5.1 or from computability-theoretic results of
Jockusch [30].

In Figure 5.3 too, we leave out RTn
k , SRT2

k, and D2
k for n > 2 and k > 2;

Patey’s results also apply here. As mentioned following Theorem 3.7,
Dzhafarov, Patey, Solomon, and Westrick [19] showed that if if 2 6 j < k
then RT1

k 
sc SRT2
j . They also showed that COH 
sc SRT2

<∞. In this
figure, all implications are obvious or follow from those in Figure 5.5,
except for those between

1. KL and RT2
2, which is established in Corollary 2.6,

2. WKL and RT1
<∞, which follows from Proposition 2.7, and
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3. COH and RT1
<∞, which is established in Theorem 2.10(9).

All nonimplications in this figure follow from those in Figure 5.2, except
for those between

1. RT (and hence RT4
2 and RT3

2) and WWKL, which is due to Monin and
Patey [42] (strengthening the nonimplication between RT and (W)KL
established in Corollary 2.9),

2. SRT2
2 and COH, which is due to Dzhafarov [16] (strengthening the non-

implication between D2
2 and COH that he proved in [15]),

3. SRT2
2 and RT1

3 (and hence RT1
<∞), which is due to Dzhafarov, Patey,

Solomon, and Westrick [19] (strengthening the nonimplication between
D2

2 and RT1
3 proved by Dzhafarov [15]),

4. D2
2 and SRT2

2, which is due to Dzhafarov [16],
5. WWKL (and hence DNR) and RT1

2 (and hence RT1
3 and RT1

<∞), which
is established in Theorem 2.10(10), and

6. RT1
j and RT1

k for k > j > 2, which is Theorem 3.7, again due to
Dzhafarov [15].

In Figure 5.4, we again leave out RTn
k , SRT2

k, and D2
k for n > 2 and

k > 2; see Theorems 3.3 and 3.4. In this figure, all implications are
obvious or follow from those in Figure 5.5, except for the one between RT3

2

and KL, which is established in Corollary 2.3. All nonimplications in this
figure follow from those in Figure 5.2, except for those between

1. KL and D2
2 (and therefore (S)RT2

2), which is established in Theorem
2.10(2),

2. SRT2
2 (and therefore D2

2) and COH, which is due to Dzhafarov [16],
3. SRT2

2 (and therefore D2
2) and RT1

3 (and therefore RT1
<∞), which is es-

tablished in Theorem 2.10(4),
4. D2

2 and SRT2
2, which is due to Dzhafarov [16],

5. COH and RT1
2 (and therefore RT1

3 and RT1
<∞), which is established in

Theorem 2.10(5),
6. WKL (and therefore WWKL and DNR) and RT1

2 (and therefore RT1
3

and RT1
<∞), which is established in Theorem 2.10(1), and

7. RT1
j and RT1

k for k > j > 2, which is the easy case of Theorem 3.3.

In Figure 5.5 we once more leave out RTn
k , SRT2

k, and D2
k for n > 2 and

k > 2; again see Theorems 3.3 and 3.4. In this figure, all implications are
obvious except for those between

1. RT2
2 and RT1

<∞, which is established in Theorem 2.10(8),
2. RT2

2 and COH, which follows from the proof of Theorems 12.4 and 12.5
in Cholak, Jockusch, and Slaman [7], as noted also by Brattka and
Rakotoniaina [5],

3. KL and RT1
<∞, which is established in Theorem 2.10(7),

4. KL and COH, which is established in Theorem 2.10(6),
5. D2

2 and RT1
2, which is established in Theorem 2.10(3),
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6. D2
2 and DNR, which follows from the proof of Theorem 2.3 in Hirsch-

feldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [26] (see also [5,
Corollary 5.25]), and

7. WWKL and DNR, which follows from the proof of Lemma 6.18 in
Giusto and Simpson [23].

All nonimplications in this figure follow from those in Figures 5.3 and 5.4.

In light of Propositions 4.5 and 4.7, in Figure 5.6, k stands for any
number greater than 1 or for <∞. All implications in this figure follow
from those in Figure 5.4 except for the equivalences on the top and bottom
lines, which are established in Propositions 4.5, 4.6, and 4.7; and the
implication between D2

k and SRT2
k, which is established in Proposition 4.8.

All nonimplications in this figure follow from the ones in Figure 5.1, except
for those between

1. WKL (and therefore WWKL and DNR) and RT1
2, which is established

in Corollary 4.10, and
2. COH and RT1

2, which is established at the beginning of Section 4.3.

Figure 5.2 shows that most of the implications in Figure 5.1 are in fact
61

ω-reductions (or 60
ω-reductions in the case of reductions to RT1

k). The
exceptions are

1. some of the reductions witnessing the equivalences represented by the
top line of Figure 5.1 (see Proposition 4.18 and Theorem 4.20) and

2. the ones between principles with the same exponent (greater than 1)
and different numbers of colors (by Patey [46]).

Figure 5.4 shows that most of the implications in Figure 5.6 are in fact
61

gW-reductions. The exceptions are

1. some of the reductions witnessing the equivalences represented by the
top line of Figure 5.6 (again see Proposition 4.18 and Theorem 4.20),

2. those between principles with the same exponent and different numbers
of colors (see Theorems 3.3 and 3.4), and

3. the one between D2
k and SRT2

k (see the comment on the work of Dzha-
farov [16] in Definition 1.3, and the paragraph preceding Proposition
4.18).

The following questions remain open.

Question 5.1. Is RT2
2 6ω SRT2

2? (Equivalently, is COH 6ω SRT2
2?)

Question 5.2. Is RT2
2 6gW SRT2

2? (As in the previous question, this
question is equivalent to asking whether COH 6gW SRT2

2, since we can
obtain RT2

2 uniformly from COH + SRT2
2, by the proof of Lemma 7.11 of

[7].)

Question 5.3. Is COH 6c SRT2
2?
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Question 5.4. Let n > 3 and k > 2, where k may also be <∞. Is
RTn

k 6n−1
gW KL?

Question 5.5. Let n > 2 and k > j > 2, where k may also be <∞. For
which m do we have RTn

k 6m
gW RTn

j ? (See the mention of the work of
Patey [45] following Proposition 4.22 for the 6m

ω case.)

There are also many principles related to Ramsey’s Theorem not shown
in the diagrams in this section. In some cases, their positions in these
diagrams follow from known results (or from the proofs of these results),
but there are likely several interesting questions involved in filling out these
diagrams. For more information on some of these principles, see [14, 25].

Another area for further work is the development of useful extensions
of the reducibilities discussed here to principles with more complicated
syntactic forms than the Π1

2 principles we have considered.

Appendix A. On a proof by Cholak, Jockusch, and Slaman

The following result is stated as Theorem 12.2 in Cholak, Jockusch, and
Slaman [7].

Theorem A.1. Let n, k > 2 and let C0, C1, . . . be sets such that Ci 
T

∅(n−2) for all i. Each computable k-coloring of [N]n has an infinite homo-
geneous set H such that H ′ �T ∅(n) and Ci 
T H for all i.

The proof given in that paper is by induction on n. The base case
n = 2 of that proof is correct, but the inductive case has a flaw. The
argument for n + 1 fixes a computable coloring c of [N]n+1 and C0, C1, . . .
such that Ci 
T ∅(n−1) for all i. It then chooses an infinite prehomogeneous
set A for this coloring with A′ 6T ∅′′, and claims that Ci 
T A(n−2)

for each i. This claim is correct if n > 3, but for n = 2 it becomes
a claim that Ci 
T A for all i. However, the only condition on Ci in
this case is that Ci 
T ∅′. There are computable colorings of [N]3 with no
infinite ∅′-computable prehomogeneous sets, as may be seen easily from the
existence of a computable 2-coloring of pairs with no infinite ∅′-computable
homogeneous sets ([30, Theorem 3.1]). Taking Ci = A for such a coloring
shows that the claim does not hold in general.

To correct this argument, it is enough to prove the theorem for n = 3, as
then the inductive argument can proceed as before. We give a proof based
on that of the n = 2 case, beginning with an auxiliary lemma, which is
an extension of Theorem 12.1 in [7], and is proved by a similar argument.
We write deg(X) for the (Turing) degree of a set X.

Lemma A.2. Let k, n > 2, let e be a computable k-coloring of [N]n, and let
p be a degree such that p � 0(n−1). Then there is an infinite homogeneous
set H for e such that deg(H)′ 6 p.
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Proof. The lemma is proved in relativized form by induction on n. The
base step n = 2 follows from Corollary 12.6 in [7]. (A corrected proof of this
result appears in [8].) For the inductive step, assume the lemma holds in
relativized form for n. For notational simplicity, we prove the unrelativized
form for n + 1. Suppose that e is a computable k-coloring of [N]n+1 and
that p � 0(n). By Jockusch [30, Lemma 5.4] there is an infinite prehomo-
geneous set A for e such that A′ 6T 0′′. Note that p � 0(n) > deg(A(n−1)).
Let d be the coloring of [A]n induced by e, so that d is A-computable. By
the inductive hypothesis (relative to A), there is an infinite homogeneous
set H for d such that deg(H)′6 p. Clearly H is also homogeneous for e,
so the inductive step is complete. �

Lemma A.3. Let k > 2 and let C0, C1, . . . be sets such that Ci 
T ∅′ for
all i. Each computable k-coloring of [N]3 has an infinite homogeneous set
H such that H ′ �T ∅′′′ and Ci 
T H for all i.

Proof. Fix a k-coloring c of [N]3. Let ci = deg(Ci). Let d0 = 0′′. If
di ∨ ci � 0′′′ then let ei = ci; otherwise let ei = 0′′. Let di+1 = di ∨ ei.
By Kleene and Post [36]/Lacombe [39]/Spector [57] (see Odifreddi [44,
Theorem V.4.3]), the ideal generated by the di has an exact pair f ,g such
that the ei are uniformly computable in both f and g. (More precisely,
there are Ei ∈ ei such that the Ei are uniformly computable from any

element of f , and Êi ∈ ei such that the Êi are uniformly computable from
any element of g.) Since 0′′′ is not in this ideal, at least one of f and g
is not above 0′′′, say g � 0′′′. Note that, since d0 = 0′′, we have g > 0′′.
Also, ei 
 0′ for all i. By Posner and Robinson [47, Theorem 3] relativized
to 0′, there is a d > 0′ such that g = d′ = d ∨ ei for all i. By Friedberg
[20], there is an a such that a′ = d. Then a′′ = g, so

a′′ � 0′′′.

If ei = ci then (a′ ∨ ci)
′ = (d ∨ ei)

′ = g′ > 0′′′. If ei 6= ci then (a′ ∨ ci)
′ >

a′′ ∨ ci = g ∨ ci > di ∨ ci > 0′′′. Thus

(a′ ∨ ci)
′ > 0′′′

for all i. These two displayed properties of a are all that we will use below.
Let p be a degree that is PA over a′′ and hyperimmune-free over a′′.

By Jockusch [30, Lemma 5.9] relative to a, there is an a-computable 2-
coloring d of [N]3 such that for any infinite homogeneous set H for d, we
have deg(H) ∨ a > a′. We can combine the colorings c and d into an
a-computable 2k-coloring e of [N]3 such that any homogeneous set for e
is also homogeneous for both c and d. (Just let e(s) = 2c(s) + d(s).)
By the n = 3 case of Lemma A.2 (relativized to a), there is an infinite
homogeneous set H for e such that (deg(H) ∨ a)′ 6 p. We claim that H
satisfies the conclusion of Lemma A.3. Let b = deg(H) ∨ a. Then b > a′

and b′ is hyperimmune-free over a′′.
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If b′ > 0′′′ then, since we also have b′ > a′′, it follows that b′ > a′′ ∨ 0′′′

and hence a′′∨0′′′ is hyperimmune-free over a′′. But a′′∨0′′′ is c.e. relative
to a′′, so a′′ > 0′′′, which is not the case. Thus b′ � 0′′′, and hence
H ′ �T ∅′′′.

Now suppose that ci 6 b. Then b > b∨ci > a′∨ci, so b′ > (a′∨ci)
′ >

0′′′, which is not the case. Thus ci 
 b for all i, and hence Ci 
T H for
all i. This completes the proof of Lemma A.3 and hence also the proof of
Theorem A.1. �
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