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1. Introduction

Measure classification theorems have an important role in dynamics. A milestone is
Ratner’s theorem [Ra] and related results of Dani and Margulis [DM1] [DM3] [DM2]
[DM4] in the context of unipotent flows in homogeneous spaces. Later major advances
in the homogeneous setting include the the results of Einsiedler-Katok-Lindenstrauss
[EKL] for diagonal actions, and later Bourgain-Furman-Lindenstrauss-Mozes [BFLM]
and Benoist-Quint [BQ1] for actions of Zariski dense subgroups of semisimple groups.
Benoist-Quint extended their result to subgroups with semisimple Zariski closure in
[BQ2]. In [EMi] a Ratner-like theorem was proved for actions of SL(2,R) and its
upper triangular subgroup on moduli spaces of abelian differentials. Even though
this result was in an inhomogeneous setting, the proof used many ideas from [BQ1]
and from the “low entropy method” of [EKL]. In the main paper [EsL], we use, in
the homogenious setting, some of the methods developed in [EMi] together with some
new ideas, to prove some extensions and improvements to the results of Benoist-Quint
[BQ1, BQ2]. See the introduction to [EsL] for the exact statements.

The aim of this (almost entirely expository) note is to serve as in introduction to
some of the main ideas of [EsL] and of [EMi] in the simplest possible setting.

Research of the first author is partially supported by NSF grants DMS 0604251, DMS 0905912
and DMS 1201422.

Research of the second author is partially supported by the ISF (891/15).
1



2 ALEX ESKIN AND ELON LINDENSTRAUSS

Let G be an Ad-simple noncompact Lie Group with finite center and let g denote
the Lie algebra of G, and let Γ be a lattice in G. Let µ be a countably supported
probablity measure on G. We say that µ has finite first moment if∫

G

log ‖g‖ dµ(g) <∞.

Let S denote the support of µ, and let GS denote the closure of the group generated
by S. We say that µ has finite entropy if∑

g∈S
−µ(g) log µ(g) <∞.

Define a measure ν on G/Γ to be µ-stationary if

µ ∗ ν = ν, where µ ∗ ν =

∫
G

gν dµ(g).

We will always assume that ν is a probability measure (i.e. ν(G/Γ) = 1), and also
that ν is ergodic (i.e. is extremal among the µ-stationary measures).

In this note, we use the methods developed in [EMi] and [EsL] to give an alternative
proof of a variant of the main theorem of [BQ1]:

Theorem 1.1. Suppose µ is a countably supported measure on G with finite first
moment and finite entropy. Suppose also that the group generated by the support of µ
is Zariski dense in G. Let ν be any ergodic µ-stationary probability measure on G/Γ.
Then, ν is either Haar measure on G/Γ or is GS-invariant and finitely supported.

Theorem 1.1 follows from the main result of [BQ1] under the additional assumption
that µ is compactly supported. See [EsL] for a much more general setup, including
cases not covered by [BQ2].

Notation. Let µ(n) = µ ∗ µ · · · ∗ µ (n times). If H is a subgroup of G, we denote the
Lie algebra of H by Lie(H). Let g denote the Lie algebra of G, and let Ad denote the
adjoint representation. For g ∈ G and v ∈ g, we will often use the shorthand (g)∗v
for Ad(g)v.

1.1. Skew Products. We consider the two sided shift space SZ. For x ∈ SZ, we
have x = (. . . , x−1, x0, x1, . . . ). We write x = (x−, x+) where x− = (. . . , x−1) is the
“past”, and x+ = (x0, x1, . . . ) is the “future”. Let T : SZ → SZ denote the left shift
i.e. (Tx)n = xn+1. We are thinking of T as “taking one step into the future”.

We also have the “skew product” map T̂ : SZ ×G→ SZ ×G given by

T̂ (x, g) = (Tx, x0g), where x = (. . . , x0, . . . ).

We will often view T̂ as a map from SZ×G/Γ to SZ×G/Γ. For x ∈ SZ, and n ∈ N,
write

T nx = xn−1 . . . x0, T−nTnx = (T nx )−1
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so that for n ∈ Z,
T̂ n(x, g) = (T nx, T nx g).

Suppose we are given an ergodic µ-stationary measure ν on G/Γ. As in [BQ1], for
x = (. . . , x−1, x0, x1, . . . ), let

νx− = lim
n→∞

x−1 . . . x−n ν.

The fact that the limit exists follows from the martingale convergence theorem. Then
νx− is a measure on G/Γ.

Basic Fact: Given a µ-stationary measure ν on G/Γ, we get a T̂ -invariant measure
ν̂ on SZ ×G/Γ given by

(1.1) dν̂(x−, x+, gΓ) = dµZ(x−, x+) dνx−(gΓ)

It is important that the measure ν̂ is a product of a measure depending on (x−, gΓ)
and a measure depending on x+. (If instead of the two-sided shift space we use the

one-sided shift SN ×G/Γ, then µN × ν would be an invariant measure for T̂ . )

Proposition 1.2. The measure ν̂ is T̂ -ergodic.

Proof. Since ν is an ergodic stationary measure, this follows from [Kif, Lemma I.2.4,
Theorem I.2.1] �

The “group” U+
1 . We would like to express the fact that the measure νx− does not

depend on the x+ coordinate as invariance under the action of a group. The group
will be a bit artificial.

Let P (S) denote the permutation group of S, i.e. the set of bijections from S to S.
Let

U+
1 = P (S)× P (S)× P (S) . . .

The way u = (σ0, σ1, . . . , σn, . . . ) ∈ U+
1 acts on SZ is given by

u · (. . . , x−n, . . . , x−1, x0, x1, . . . ) = (. . . , x−n, . . . , x−1, σ0(x0), σ1(x1), . . . )

We then extend the action of U+
1 to SZ ×G by:

u · (x, g) = (ux, g)

(So U+
1 acts by “changing the combinatorial future”. U+

1 fixes x− and g and changes
x+.) In view of (1.1), the conditional measures of ν̂ along the U+

1 orbits are the (almost
always) the Bernoulli measure µN. We refer to this statement as “U+

1 -invariance” of

ν̂. In fact T̂ -invariant measures on the skew-product which come from stationary
measures are exactly the T̂ -invariant measures which are also invariant under U+

1 .
We have a similar group U−1 which is changing the combinatorial past. However,

in general ν̂ is not U−1 -invariant.

Stable and unstable manifolds. For x ∈ SZ, let

W−[x] = {y ∈ SZ : for n ∈ N sufficiently large, yn = xn}.
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Then W−[x] consists of sequences y which eventually agree with x. Clearly, W−[x]
depends only on x+. We call W−[x] the “stable leaf” though x. We also have the
subset

W−
1 [x] = {y ∈ SZ : y+ = x+} ⊂ W−[x].

Similarly, we define the “unstable leaf”

W+[x] = {y ∈ SZ : for n ∈ N sufficiently large, y−n = x−n}.
We also have the subset

W+
1 [x] = W+

1 [x−] = {y ∈ SZ : y− = x−} ⊂ W+[x].

Let dG(·, ·) be a right invariant Riemannian metric on G. For x̂ = (x, g) ∈ SZ×G,
let

Ŵ−
1 [x̂] = {(y, g′) ∈ SZ ×G : y ∈ W−

1 [x], lim sup
n→∞

1

n
log dG(T nx g, T

n
x g
′) < 0}.

Thus, Ŵ−
1 [x̂] consists of the points ŷ which have the same combinatorial future as x̂

and such that at n → ∞, T̂ nx̂ and T̂ nŷ converge exponentially fast. Similarly, we
have a subset

Ŵ+
1 [x̂] = {(y, g′) ∈ SZ ×G : y ∈ W+

1 [x], lim sup
n→∞

1

n
log dG(T−nx g, T−nx g′) < 0},

consisting of the points ŷ which have the same combinatorial past as x̂ and such that
at n→∞, T̂−nx̂ and T̂−nŷ converge exponentially fast.

We will show below that that for almost all x there exist unipotent subgroups
N+(x) and N−(x) so that N+(x) = N+(x−), N−(x) = N−(x+) and

Ŵ+
1 [(x, g)] = W+

1 [x]×N+(x)g,

and
Ŵ−

1 [(x, g)] = W−
1 [x]×N−(x)g,

Thus,

Ŵ+
1 [(x−, x+, g)] = {(y−, y+, h) : y− = x−, y+ is arbitrary, h ∈ N(x−)g}.

and

Ŵ−
1 [(x−, x+, g)] = {(y−, y+, h) : y+ = x+, y− is arbitrary, h ∈ N(x+)g}.

The two cases. In view of (1.1), for almost all (x, gΓ), the conditional measure
ν̂|Ŵ+

1 [(x,g)] is the product of the Bernoulli measure µN on W+
1 [x] ∼= SN and an un-

known measure on N+(x)g. However, we have no such information on the conditional
measures ν̂|Ŵ−1 [(x,g)]. A priori, we can only make the observation that the entropy

hν̂(T̂ ) > 0 (since the Bernoulli shift T is a factor), and therefore almost everywhere
ν̂|Ŵ−1 [(x,g)] is non-trivial. We distinguish two cases:

• Case I: Not Case II.
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• Case II: For almost all (x, g) ∈ SZ ×G, the conditional measure ν̂|Ŵ−1 [(x,g)] is

supported on a single U−1 orbit.

We emphasize that even in Case I, it is possible that all the entropy of T̂ comes from
the Bernoulli shift (so that the G/Γ fibers do not contrubute to the entropy).

Our proof breaks up into the following statements:

Theorem 1.3. Suppose µ is a measure on G satisfying the assumptions of Theo-
rem 1.1, and ν is an ergodic µ-stationary probability measure on G/Γ and suppose
Case I holds. Then ν is the Haar measure on G/Γ.

Theorem 1.4. Suppose µ is a probability measure on G satisying the assumptions of
Theorem 1.1, ν is an ergodic µ-stationary probability measure on G/Γ and suppose
Case II holds. Then

(a) ν is GS-invariant.
(b) ν is finitely supported.

Clearly Theorem 1.1 follows from Theorem 1.3 and Theorem 1.4. We will prove
Theorem 1.3 in §2-§6, and we will prove Theorem 1.4 in §7.

q̂′3

q̂′

T̂ ℓ T̂ ℓ

q̂′2
T̂ t1

q̂2

q̃2

T̂ t1

q̂

q̂′1q̂1

uu

T̂ tT̂ t

q̃′2 q̂3

Figure 1. Outline of the proof of Theorem 1.3

1.2. Outline of the proof of Theorem 1.3. The assumption of Case I implies that
we can find points q̂ = (q, g) and q̂′ = (q′, g′) in the support of ν̂, with q̂′ ∈ Ŵ−

1 [q̂]

and g 6= g′. (Since q̂′ ∈ Ŵ−
1 [q̂] we must have q+ = (q′)+, but q− need not be equal to
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(q′)−). Furthermore, we can find such q̂ in a set of large measure, and also choose q̂′

so that dG(g, g′) ≈ 1.
(In the rest of the outline, we use a suspension flow construction which will allow

us to make sense of expressions like T̂ t where t ∈ R. This construction is defined in
the beginning of §2.)

We now choose an arbitrary large parameter ` ∈ R+, and let q̂1 = T̂ `q̂, q̂′1 = T̂ `q̂′.
Since q̂′ ∈ Ŵ−

1 [q̂], d(q̂1, q̂
′
1) is exponentially small in `.

Suppose u ∈ U+
1 . For most choices of u, uq̂1 and uq̂′1 are no longer in the same stable

for T̂ , and thus we expect T̂ tuq̂1 and T̂ tuq̂′1 to diverge as t→∞. Fix 0 < ε < 1 and

choose t so that q̂2 ≡ T̂ tuq̂1 and q̂′2 ≡ T̂ tuq̂′1 satisfy d(q̂2, q̂
′
2) ≈ ε. Write q̂2 = (q2, g2),

q̂′2 = (q′2, g
′
2).

Let N1(x) ⊂ G denote the unipotent subgroup whose Lie algebra corresponds to
the top Lyapunov exponent λ1 of µ, i.e.

Lie(N1)(x) =

{
v ∈ g : lim

n→±∞
1

n
log
‖(T nx )∗v‖
‖v‖

= λ1

}
.

Since we are asssuming that GS is Zariski dense in a simple Lie group G, for a.e.
x ∈ SZ and for most choices of u, q̂′2 and q̂2 ‘diverge essentially along N1, i.e. g′2
is very close to N1(q2)g2, with the distance tending to 0 as ` → ∞. Furthermore,
there exists a cocycle λ1 : SZ × R → R such that for all v ∈ Lie(N1(x)) and t ≥ 0,
‖(T tx)∗v‖ = eλ1(x,t)‖v‖.

Now choose t1 > 0 such that λ1(q1, t1) = λ1(uq1, t), and let q̂3 = T̂ t1 q̂1, q̂′3 = T̂ t1q′1.
Then q̂3 and q̂′3 are even closer than q̂1 and q̂′1.

The rest of the setup follows [BQ1] (which only uses the “top half” of Figure 1).

For x̂ = (x, g) ∈ Ω̂, let f1(x̂) denote the conditional measure (or more precisely the
leafwise measure in the sense of [EiL2]) of ν̂ along {x}×N1(x)g. These measures are

only defined up to normalization. Then, since ν̂ is T̂ -invariant and U+
1 -invariant and

since λ1(q1, t1) = λ1(uq1, t), we have,

f1(q̂2) = f1(q̂3).

Also, since one can show λ1(uq′1, t) ≈ λ1(q′1, t1) we have,

f1(q̂′2) ≈ f1(q̂′3).

Since q̂3 and q̂′3 are very close, we can ensure that, f1(q̂′3) ≈ f1(q̂3). Then, we get, up
to normalization,

f1(q̂2) ≈ f1(q̂′2).

Applying the argument with a sequence of `’s going to infinity, and passing to a limit
along a subsequence, we obtain points q̃2 = (z, g̃2) and q̃′2 = (z, g̃′2) with g̃′2 ∈ N1(z)g̃2,
dG(g̃2, g̃

′
2) ≈ ε and, up to normalization, f1(q̃2) = f1(q̃′2). Thus, f1(q̃2) is invariant by a

translation of size approximately ε. By repeating this argument with a sequence of ε’s
converging to 0, we show that for almost all x̂ = (x, g) ∈ SZ×G/Γ, f1(x̂) is invariant
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under arbitrarily small translations, which implies that there exists a connected non-
trivial unipotent subgroup U+

new(x̂) ⊂ N1(x) so that ν̂ is “U+
new-invariant” or more

precisely, for almost all x̂, the conditional measure of ν̂ along {x} × U+
new(x̂) is Haar.

Since U+
new is unipotent, we can apply Ratner’s theorem. The rest of the argument

follows closely [BQ1, §8].
To make this scheme work, we need to make sure that all eight points q̂,q̂′, q̂1, q̂′1, q̂2,

q̂′2, q̂3, q̂′3. are in some “good subset” K0 ⊂ Ω̂ of almost full measure. (For instance we
want the function f1 to be uniformly continuous on K0). Showing that this is possible
is the heart of the proof. Our strategy for accomplishing this goal is substantially
different from that of [BQ1], where a time changed Martingale Convergence argument
was used, and from that of [BQ2], where a Local Limit Theorem (proved in [BQ3])
is used. Our strategy is is outlined further in §6.1.

In [EsL] we use a more elaborate version of the argument to handle a more general
situation in which (unlike [BQ1] and [BQ2]), the Zariski closure of the group generated
by the support of µ is not assumed to be semisimple, and in particular, N1 and λ1

with the above properties may not exist. See [EsL, §1.5] for a discussion, and for the
relation to other generalizations of the main theorem of [BQ1] and to [EMi].

Acknowledgements. We would like to thank David Fisher, Homin Lee, Nick Miller
and InSung Park for their careful reading of the paper, and helpful comments. (dis-
cuss this)

2. General cocycle lemmas

Let Ω = SZ × [0, 1]. Let T t denote the suspension flow on on Ω, i.e. T t is obtained
as a quotient of the flow (x, s) → (x, t + s) on SZ × R by the equivalence relation
(x, s+ 1) ∼ (Tx, s). Let the measure µ̃ on Ω be the product of the measure µZ on SZ

and the Lebesgue measure on [0, 1].
Let T nx be as in §1. We then define

T tx = T nx , where n is the greatest integer smaller than or equal to t.

We define Ω̂ = Ω×G. We then have a skew-product flow T̂ t on Ω, defined by

T̂ t(x, g) = (T tx, T txg).

Also Γ acts on Ω̂ on the right (by right multiplication on the second factor). We also

use T̂ to denote the induced map on Ω̂/Γ. We have an action on the trivial bundle
Ω× g given by

T t(x,v) = (T tx, (T tx)∗v).

We fix some norm ‖·‖0 on g, and apply the Osceledets multiplicative ergodic theorem
to the cocycle (T t)∗. Let λi denote the i-th Lyapunov exponent of this cocycle. We
always number the exponents so that

λ1 > λ2 > · · · > λn.
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Let

(2.1) {0} = V≤0(x) ⊂ V≤1(x) ⊂ · · · ⊂ V≤n(x) = g

denote the backward flag, and let

{0} = V≥n+1(x) ⊂ V≥n(x) ⊂ · · · ⊂ V≥1(x) = g

denote the forward flag. This means that for almost all x ∈ Ω and for v ∈ V≤i(x)
such that v 6∈ V≤i−1(x),

(2.2) lim
t→−∞

1

t
log
‖(T tx)∗v‖0

‖v‖0

= λi,

and for v ∈ V≥i(x) such that v 6∈ V≥i+1(x),

(2.3) lim
t→∞

1

t
log
‖(T tx)∗v‖0

‖v‖0

= λi.

It follows from (2.2) that for y ∈ W+
1 [x], we have

(2.4) V≤i(y) = V≤i(x).

Similarly, for y ∈ W−
1 [x],

V≥i(y) = V≥i(x).

By e.g. [GM, Lemma 1.5], we have for a.e. x ∈ Ω,

(2.5) g = V≤i(x)⊕ V≥i+1(x).

Let

Vi(x) = V≤i(x) ∩ V≥i(x).

Then, in view of (2.5), for almost all x, we have

V≤i(x) =
⊕
j≤i
Vj(x), V<i(x) =

⊕
j<i

Vj(x),

V≥i(x) =
⊕
j≥i
Vj(x), V>i(x) =

⊕
j>i

Vj(x).

We have v ∈ Vj(x) if and only if

lim
|t|→∞

1

t
log
‖(T tx)∗v‖0

‖v‖0

= λi.

The Lyapunov exponents λj and the Lyapunov subspaces Vj(x) do not depend on
the choice of the norm ‖ · ‖0.

It it easy to see that the subspaces⊕
λj>0

Vj(x) and
⊕
λj<0

Vj(x)
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are both nilpotent subalgebras of g. We thus define the unipotent subgroups N+(x)
and N−(x) of G by

Lie(N+)(x) =
⊕
λj>0

Vj(x), Lie(N−)(x) =
⊕
λj<0

Vj(x).

There are the subgroups which appeared in §1.

2.1. Equivariant measurable flat connections.

The maps P+(x, y) and P−(x, y). For almost all x ∈ Ω and almost all y ∈ W+
1 [x],

any vector v ∈ Vi(x) can be written uniquely as

v = v′ + v′′ v′ ∈ Vi(y), v′′ ∈ V<i(y).

Let P+
i (x, y) : Vi(x)→ Vi(y) be the linear map sending v to v′. Let P+(x, y) : g→ g

be the unique linear map which restricts to P+
i (x, y) on each of the subspaces Vi(x).

(We think of P+(x, y) as map from TxG to TyG). We call P+(x, y) the “parallel
transport” from x to y. The following is immediate from the definition:

Lemma 2.1. Suppose x, y ∈ W+
1 [z]. Then

(a) P+(x, y)Vi(x) = Vi(y).
(b) P+(T tx, T ty) = (T ty)∗ ◦ P+(x, y) ◦ (T−tx )∗.
(c) P+(x, y)V≤i(x) = V≤i(y) = V≤i(x). Thus, the map P+(x, y) : g → g is

unipotent.
(d) P+(x, z) = P+(y, z) ◦ P+(x, y).

If y ∈ W−
1 [x], then we can define a similar map which we denote by P−(x, y).

Distance between subspaces. For a subspace V of g, let SV denote the inter-
section of V with the unit ball in the ‖ · ‖0 norm. For subspaces V1, V2 of g, we
define

(2.6) d0(V1, V2) = The Hausdorff distance between SV1 and SV2

measured with respect to the distance induced from the norm ‖ · ‖0.

Lemma 2.2. Fix ε > 0 sufficiently small depending on the dimension of G and the
Lyapunov exponents. Then there exists a compact subset C = C ′ × [0, 1) ⊂ Ω with
µ̃(C) > 0 and a function T0 : C → N ∪ {∞} with T0(c) < ∞ for µ̃-a.e. c ∈ C and
T0(c) depending only on the projection of c to SZ, such that the following hold:

(a) There exists σ0 > 0 such that for all c ∈ C, and any subset S of the Lyapunov
exponents,

d0(
⊕
i∈S
Vi(c),

⊕
j 6∈S
Vj(c)) ≥ σ0.

(b) There exists ρ > 0 such that for all t > T0(c), for all c ∈ C, for all i and all
v ∈ Vi(c),

ρe(λi−ε)t‖v‖0 ≤ ‖(T tc )∗v‖0 ≤ ρ−1e(λi+ε)t‖v‖0.
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Proof. Part (a) holds since the inverse of the angle between Lyapunov subspaces
is finite a.e., therefore bounded on a set of almost full measure. Also, (b) follows
immediately from the multiplicative ergodic theorem. �

2.2. Dynamically defined norms. The aim of this subsection is to prove the fol-
lowing:

Proposition 2.3. There exists a T t-invariant subset Ψ ⊂ Ω with µ̃(Ψ) = 1 and for
all x ∈ Ψ there exists an inner product 〈·, ·〉x and a cocycle λ1 : Ω× R→ R with the
following properties:

(a) For all x ∈ Ψ, the distinct eigenspaces Vi(x) are orthogonal.
(b) If v ∈ V1(x), and t ∈ R, then

‖(T tx)∗v‖T tx = eλ1(x,t)‖v‖x,

where ‖v‖x denotes 〈v,v〉1/2x .
(c) There exists a constant κ > 1 such that for all x ∈ Ψ and for all t > 0,

κ−1t ≤ λ1(x, t) ≤ κt.

Hence, since λ1(·, ·) is a cocycle, for all x ∈ Ψ and for all t > t′,

1

κ
(t− t′) ≤ λ1(x, t)− λ1(x, t′) ≤ κ(t− t′).

(d) There exists a constant κ > 1 such that for all x ∈ Ψ, for all v ∈ Lie(N+)(x),
and all t ≥ 0,

eκ
−1t‖v‖x ≤ ‖(T tx)∗v‖T tx ≤ eκt‖v‖x.

Also, for all x ∈ Ψ and for all v ∈ Lie(N−)(x), and all t ≥ 0,

e−κt‖v‖x ≤ ‖(T tx)∗v‖T tx ≤ e−κ
−1t‖v‖x.

In addition, for all v ∈ g and all t ∈ R,

e−κ|t|‖v‖x ≤ ‖(T tx)∗v‖T tx ≤ eκ|t|‖v‖x.

In particular, the map t→ ‖(T tx)∗v‖T tx is continuous.

We often omit the subscript from ‖ · ‖x.

Our proof of Proposition 2.3 relies on the simplicity of G. For a more elaborate
version in a more general setting, see [EsL, Proposition 2.14].

Lemma 2.4. There exists an inner product 〈·, ·〉′x on V1(x) and a cocycle θ : Ω×R→
R such that for v ∈ V1(x) and t ∈ R,

〈(T tx)∗v, (T tx)∗v〉′T tx = eθ(x,t)〈v,v〉′x.
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Proof. This is [BQ1, Lemma 5.4], where it is attributed mostly to Furstenberg and
Kesten. �

Remark. Lemma 2.4 says that for G simple, the top eigenspace is conformal. In
fact, if G is semisimple, then all eigenspaces are block-conformal, see [EMat].

Lemma 2.5. Suppose C = C ′× [0, 1) ⊂ Ω is such that µ̃(C) > 0 and T1 : C → R+ is a
measurable function that is finite a.e. and with T1(c) depending only on the projection
of c to SZ. Then we can find a C1 ⊂ C such that for all c ∈ C1, for all 0 < t < T1(c),
we have T tc 6∈ C1, and also

⋃
t>0 T

tC1 is conull in Ω.

Proof. We can find n ∈ N such that C ′2 ≡ {x ∈ C ′ : T1(x) < n} has positive µZ

measure. Clearly µZ gives 0 measure to the set of periodic points of the shift T : SZ →
SZ. Then, there exists a non-periodic point x0 ∈ C ′2 such that every neighborhood
of x0 has positive µZ measure. Since T is continuous, there exists a neighborhood
E ⊂ SZ of x0 with E, TE, . . . , T nE pairwise disjoint. Now let C ′1 = E ∩ C ′2 and let
C1 = C ′1 × {0}. The last assertion follows from the ergodicity of T . �

Let C and T0 be as in Lemma 2.2. Let T1 : C → R+ be a finite a.e. measurable
function to be chosen later. We will choose T1 so that in particular T1(c) > T0(c) for
a.e. c ∈ C. Let C1 be as in Lemma 2.5. For c ∈ C1, let t(c) be the smallest t > 0 such
that T tc ∈ C1.

We will first define the inner product 〈, 〉c for c ∈ C1, and then interpolate between
〈, 〉c and 〈, 〉c′ where c′ = T t(c)c ∈ C1.

For c in C1, we can choose an inner product 〈·, ·〉c on g such that the following hold:

• For v,w ∈ V1(c), 〈v,w〉c = r〈v,w〉′c where r > 0.
• The distinct Vi(c) are orthogonal with respect to 〈·, ·〉c.
• There exists M = M(σ0) (where σ0 is as in Lemma 2.2), such that for all

v ∈ g,

M−1‖v‖0 ≤ 〈v,v〉1/2c ≤M‖v‖0.

Symmetric space interpretation. For a.e. x ∈ Ω, we may write x uniquely as
x = T tc, where 0 ≤ t < t(c) and c ∈ C1. We then define 〈·, ·〉x by interpolating between
〈·, ·〉c and 〈·, ·〉c′ , where c′ = T t(c)c. To define this interpolation, we recall that the set
of inner products on a vector space V is canonically isomorphic to SO(V )\GL(V ),
where GL(V ) is the general linear group of V and SO(V ) is the subgroup preserving
the inner product on V . In our case, V = g with the inner product 〈·, ·〉c.

Let Kc denote the subgroup of GL(g) which preserves the inner product 〈·, ·〉c. Let
Q denote the subgroup of GL(g) which preserves the splitting g =

⊕
i Vi(c), and let

Q′ ⊂ Q be the subgroup such that the restriction to V1(c) is a multiple of the identity.
Let KcA

′ denote the point in Kc\GL(g) which represents the inner product 〈·, ·〉c′ ,
i.e.

〈u,v〉c′ = 〈A′u, A′v〉c.
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Then, since (T
t(c)
c )∗Vi(c) = Vi(c′), we may assume that A′(T t(c)c )∗ ∈ Q. Furthermore,

by the choices of 〈·, ·〉c and 〈·, ·〉c′ and Lemma 2.4, we may assume that A′(T t(c)c )∗ ∈ Q′.

Claim 2.6. We may write

A′(T t(c)c )∗ = ΛA′′,

where Λ ∈ Q′ is the diagonal matrix which is scaling by eλit(c) on Vi(c), A′′ ∈ Q′ and
‖A′′‖ = O(eεt(c)), with the implied constant depending only on the constants ε, σ0, ρ
from Lemma 2.2.

Proof of claim. By construction, t(c) > T0(c), where T0(c) is as in Lemma 2.2.
Then, the claim follows from Lemma 2.2. �

Interpolation. We may write A′′ = DA′′′, where D is diagonal, and detA′′′ = 1. In
view of Claim 2.6, ‖D‖ = O(eεt) and ‖A′′′‖ = O(eεt). We now connect Kc\KcA

′′′ to
the identity by the shortest possible path Γ : [0, t(c)] → Kc\SL(V ), which stays in
the subset Kc\KcQ′ of the symmetric space Kc\SL(V ). (We parametrize the path
so it has constant speed). This path has length O(εt) where the implied constant
depends only on the symmetric space, and the constants σ0, ρ of Lemma 2.2.

Now for 0 ≤ t ≤ t(c), let

(2.7) A(t) = (ΛD)t/t(c)Γ(t).

Then A(0) is the identity map, and A(t(c)) = A′(T t(c)c )∗. Suppose x = T tc, where
0 ≤ t < t(c) and c ∈ C1, and c′ = T t(c)c ∈ C1. Then, we define,

(2.8) 〈u,v〉x = 〈A(t)(T−tx )∗u, A(t)(T−tx )∗v〉c.

In particular, since (T
−t(c)
c′ )∗ = (T

t(c)
c )−1

∗ , we have, letting t = t(c) in (2.8),

〈u,v〉c′ = 〈A(t(c))(T
−t(c)
c′ )∗u, A(t(c))(T

−t(c)
c′ )∗v〉c = 〈A′u, A′v〉c,

as required.

Proof of Proposition 2.3. By construction (a) holds. Also, since A(t) ∈ Q′, (b)
holds. From (2.7), we have for c ∈ C1, 0 ≤ t < t(c) and v ∈ Vi(c),

d

dt
log ‖(T tc )∗v‖T tc = λi + γi(c, t),

where γi(c, t) is the contribution of Dt/t(c)Γ(t). By Claim 2.6,

|γi(c, t)| ≤ kε+O(1/t),

where k depends only on the dimension, and the implied constant is bounded in terms
of the constants σ0 and ρ in Lemma 2.2. Therefore, if ε > 0 in Lemma 2.2 is chosen
small enough and T1(c) in Lemma 2.5 is chosen large enough, |γi(c, t)| < |λi|/2 and
thus (c) and (d) hold. �
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Lemma 2.7. For every δ > 0 there exists a compact subset K(δ) ⊂ Ω with µ̃(K(δ)) >
1− δ and a number C1(δ) <∞ such that for all x ∈ K(δ) and all v ∈ g,

(2.9) C1(δ)−1 ≤ ‖v‖x
‖v‖0

≤ C1(δ)

where ‖ · ‖x is the dynamical norm defined in this subsection and ‖ · ‖0 is the fixed
norm on g.

Proof. Since any two norms on a finite dimensional vector space are equivalent,
there exists a function Ξ0 : Ω→ R+ finite a.e. such that for all x ∈ Ω and all v ∈ g,

Ξ0(x)−1‖v‖0 ≤ ‖v‖x ≤ Ξ0(x)‖v‖0.

Since
⋃
N∈N{x : Ξ0(x) < N} is conull in Ω, we can choose K(δ) ⊂ Ω and C1 = C1(δ)

so that Ξ0(x) < C1(δ) for x ∈ K(δ) and µ̃(K(δ)) ≥ (1− δ). This implies (2.9). �

3. Preliminary divergence estimates

Lemma 3.1. For a.e. x ∈ Ω and a.e. u ∈ U+
1 , V1(ux) = V1(x).

Proof. Write x = (x−, x+). Then, V1(x) = V≤1(x). But V≤1(x) depends only on x−

(see (2.4)) and the action of u only changes the x+ coordinate. �

The measure | · |. Note that for every x ∈ Ω, U+
1 x = W+

1 [x] ∼= SN, and SN supports
a Bernoulli measure µN. We use the notation | · | to denote the corresponding measure
on U+

1 x.

Lemma 3.2. For every δ > 0 and every η > 0 there exists t0 = t0(δ, η) > 0 and
for every q1 ∈ Ω and every w ∈ g there exists a subset Q = Q(q1,w) ⊂ U+

1 with
|Q(q1)q1| ≥ (1− δ)|U+

1 q1| such that for u ∈ Q(q1) and t > 0,

‖(T tuq1)∗w‖ ≥ c(δ)e(λ1/2)t‖w‖,
and for t > t0

d

(
(T tuq1)∗w

‖(T tuq1)∗w‖
,V1(T tuq1)

)
≤ η,

where d(·, ·) is the distance on g defined by the dynamical norm ‖ · ‖T tuq1.

Proof. This is essentially [BQ1, Corollary 5.5]. (To get the second estimate, let
W = V1(uq1) = V1(q1) in [BQ1, Corollary 5.5(b)].) �

The map A(q1, u, `, t). For q1 ∈ Ω, u ∈ U+
1 , ` > 0 and t > 0, let A(q1, u, `, t) : g→ g

denote the map

(3.1) A(q1, u, `, t)v = (T tuq1)∗(T
`
T−`q1

)∗v.
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Proposition 3.3. For every δ > 0 and any η > 0 there exists t0 = t0(δ, η) > 0
such that for almost any q1 ∈ Ω and any v ∈ Lie(N−)(T−`q1), there exists a subset
Q = Q(q1,v) ⊂ U+

1 with |Qq1| ≥ (1− δ)|U+
1 q1| such that for u ∈ Q(q1) and any t > 0,

(3.2) ‖A(q1, u, `, t)v‖ ≥ C(δ)e−κ`+(λ1/2)t‖v‖,
where κ is as in Proposition 2.3. Also for t > t0,

(3.3) d

(
A(q1, u, `, t)v

‖A(q1, u, `, t)v‖
,V1(T tuq1)

)
≤ η,

where d(·, ·) is the distance on g defined by the dynamical norm ‖ · ‖T tuq1.

Proof. This is an immediate corollary of Lemma 3.2. �

3.1. Estimates for nearby points. Recall that ‖ · ‖0 is a fixed norm on g.

Lemma 3.4. There exists α > 0 depending only on the Lyapunov spectrum, and for
every δ > 0 there exists a subset K ⊂ Ω with µ̃(K) > 1− δ and a constant C(δ) > 0
such that for all x ∈ K, all y ∈ W−

1 [x] ∩K, and all t > 0,

(3.4) sup
v∈g−{0}

‖P−(T tx, T ty)v − v‖0

‖v‖0

≤ C(δ)e−αt.

Proof. Pick ε > 0 smaller than 1
3

mini 6=j |λi − λj|. As in the proof of Lemma 2.2,
there exists K1 ⊂ Ω with µ̃(K1) > 1− δ/2 and σ0 = σ0(δ) > 0 such that for x ∈ K1,
and any subset S of the Lyapunov exponents and any t ≥ 0,

(3.5) d0(
⊕
i∈S
Vi(T tx),

⊕
j 6∈S
Vj(T tx)) ≥ σ0e

−εt.

(Here d0(·, ·) is a distance on g derived from the norm ‖ · ‖0.) Then, (letting t = 0 in
(3.5)), for all x ∈ K1, all y ∈ W−

1 [x] ∩K1, and all w ∈ g,

(3.6) ‖P−(x, y)w‖0 ≤ C(δ)‖w‖0.

By the multiplicative ergodic theorem, there exists K2 ⊂ Ω with µ̃(K2) > 1 − δ/2
and ρ = ρ(δ) > 0 such that for x ∈ K2, any i, any t > 0 and any wi ∈ Vi(x),

(3.7) ρe(λi−ε)t‖wi‖0 ≤ ‖(T tx)∗wi‖0 ≤ ρ−1e(λi+ε)t‖wi‖0.

Now let K = K1∩K2, and suppose x ∈ K, y ∈ K. Let v be such that the supremum
in (3.4) is attained at v. By (3.5) we may assume without loss of generality that
v ∈ Vi(T tx) for some i. Let w ∈ Vi(x) be such that (T tx)∗w = v. By (3.7),

(3.8) ‖v‖0 ≥ ρe(λi−ε)t‖w‖0.

Note that

P−(T tx, T ty)v = (T ty)∗P
−(x, y)w.
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Note that since y ∈ W−
1 [x] and t > 0, (T tx)∗ = (T ty)∗. By the definition of P−(x, y) we

have

P−(x, y)w = w +
∑
j>i

wj, wj ∈ Vj(x).

Thus,

(3.9) P−(T tx, T ty)v − v =
∑
j>i

(T tx)∗wj.

By (3.6), for all j > i,

‖wj‖0 ≤ C1(δ)‖w‖0,

and then, by (3.7),

‖(T tx)∗wj‖0 ≤ ρ−1e(λj+ε)t‖wj‖0 ≤ C1(δ)ρ−1e(λj+ε)t‖w‖0.

Now, from (3.9) and (3.8),

‖P−(T tx, T ty)v − v‖0 ≤
∑
j>i

C1(δ)ρ−2e(λj−λi+2ε)t‖v‖0,

which immediately implies (3.4) since λj < λi for j > i. �

Lemma 3.5. For every δ > 0 there exists a compact set K ⊂ Ω with µ̃(K) > 1 − δ
such that the following holds: Suppose t > 0, x ∈ K, y ∈ W−

1 [x] ∩K, and T tx ∈ K
and T ty ∈ T [−a,a]K. Then,

(3.10) |λ1(x, t)− λ1(y, t)| ≤ C,

where C depends only on a and δ.

Proof of Lemma 3.5. Let K be as Lemma 3.4. Suppose v ∈ V1(x). Let

v′ = P−(x, y)v.

Then, v′ ∈ V1(y). For an invertible linear operator A : g → g, let ‖A‖yx = |A|yx +
|A−1|xy , where for a linear operator B : g → g, |B|yx denotes operator norm of B
relative to the norms ‖ · ‖x on the domain and ‖ · ‖y on the range. By Lemma 3.4 and
Lemma 2.7, there exist C = C(δ) and C1 = C1(a, δ) such that

(3.11) ‖P−(x, y)‖yx ≤ C(δ), and ‖P−(T tx, T ty)‖T
ty

T tx ≤ C1(a, δ).

Therefore,

(3.12) C(δ)−1 ≤ ‖v
′‖y

‖v‖x
≤ C(δ).

Note that

(T ty)∗v
′ = P−(T tx, T ty)(T tx)∗v.
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Then, in view of (3.11), there exists C2 = C2(a, δ) such that

(3.13) C2(a, δ)−1 ≤
‖(T ty)∗v′‖T ty
‖(T tx)∗v‖T tx

≤ C2(a, δ).

By the Proposition 2.3(b),

λ1(x, t) = log
‖(T tx)∗v‖T tx
‖v‖x

, λ1(y, t) = log
‖(T ty)∗v′‖T ty
‖v′‖y

.

Now (3.10) follows from (3.12) and (3.13). �

4. Bilipshitz estimates

The subspace L−(x̂). For x̂ = (x, g) ∈ Ω̂, let Ŵ−
loc[x̂] = {(y, g′) ∈ Ŵ−

1 [x̂] :
dG(g, g′) < 1}. Let L−(x̂) ⊂ Lie(N−)(x) ⊂ g denote the smallest subspace of
Lie(N−)(x) such that the projection to G of the conditional measure ν̂|Ŵ−loc[x̂] is sup-

ported on exp(L−(x̂)g). The assumption that we are in Case I (see §1) implies
dim(L−(x̂)) > 0 for a.e. x̂.

Lemma 4.1. For almost all x̂ = (x, g) ∈ Ω̂ and all t ∈ R,

(4.1) L−(T̂ tx̂) = (T tx)∗L−(x̂).

Also, for almost all x̂ = (x, g) ∈ Ω̂, exp(L−)(x̂) is a subgroup of N−(x).

Proof. From the definition, for t > 0, (T̂−tx̂ )∗L−(x̂) ⊂ L−(T̂−tx̂). Let φ(x̂) =
dim(L−(x̂)). Then, φ is a bounded integer valued function which is increasing under

the flow T̂−t. Since the flow is ergodic on Ω̂/Γ, it follows that φ is constant, and
therefore (4.1) holds.

For the second assertion, the proof of [EiL1, Proposition 6.2] goes through almost
verbatim. �

The function A(q1, u, `, t). For x ∈ Ω, let πV1 : g → V1(x) denote the orthogo-
nal projection using the inner product 〈·, ·〉x. Suppose q̂1 = (q1, g), u ∈ U+

1 , ` > 0

and t > 0. We consider the restriction of A(q1, u, `, t) to L−(T̂−`q̂1), so we are

considering A(q1, u, `, t) as a linear map from L−(T̂−`q̂1) to g. Let A(q̂1, u, `, t) =
‖πV1A(q1, u, `, t)‖ (the norm of the restriction) where the operator norm is with re-
spect to the dynamical norms ‖ · ‖T−`q1 and ‖ · ‖T tuq1 .

The function τ̃(ε)(q̂1, u, `). For ε > 0, almost all q̂1 ∈ Ω̂, almost all uq̂1 ∈ U+
1 q̂1 and

` > 0, let

τ̃(ε)(q1, u, `) = sup{t : t > 0 and A(q̂1, u, `, t) ≤ ε}.
The following easy estimate plays a key role in our proof.
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Proposition 4.2. For almost all q̂1 ∈ Ω̂, almost all uq̂1 ∈ U+
1 q̂1, all ` > 0 and all

s > 0,

(4.2) τ̃(ε)(q̂1, u, `) + κ−2s < τ̃(ε)(q̂1, u, `+ s) < τ̃(ε)(q̂1, u, `) + κ2s,

where κ is as in Proposition 2.3(d).

Proof. For x̂ = (x, g) ∈ Ω̂ and t > 0 let A+(x̂, t) = A+(x, t) denote the restriction

of (T tx)∗ to V1(x). For x̂ = (x, g) ∈ Ω̂, let A−(x̂, s) : L−(x̂) → L−(T̂ sx̂) denote the
restriction of (T sx)∗ to L−(x̂). It follows immediately from Proposition 2.3(d) that for
some κ > 1, almost all x̂ and t > 0,

(4.3) e−κ
−1t ≥ ‖A−(x̂, t)‖ ≥ e−κt, eκ

−1t ≤ ‖A+(x̂, t)‖ ≤ eκt.

and,

(4.4) eκt ≥ ‖A−(x̂,−t)‖ ≥ eκ
−1t, e−κt ≤ ‖A+(x̂,−t)‖ ≤ e−κ

−1t.

Note that by (3.1)

πV1A(q1, u, `+ s, t+ τ) = (T τT tuq1)∗πV1A(q1, u, `, t)(T
s
T−(`+s)q1

)∗

Let t = τ̃(ε)(q1, u, `), so that A(q1, u, `, t) = ε. Therefore, by (4.3) and (4.4),

A(q̂1, u, `+ s, t+ τ) ≤ ‖A+(T̂ tuq̂1, τ)‖A(q̂1, u, `, t)‖A−(T̂−(`+s)q̂1, s)‖ ≤

ε‖A+(T̂ tuq̂1, τ)‖‖A−(T̂−(`+s)q̂1, s)‖ ≤ εeκτ−κ
−1s,

where we have used the fact that A(q̂1, u, `, t) = ε. If t + τ = τ̃(ε)(q̂1, u, ` + s) then
A(q̂1, u, ` + s, t + τ) = ε. It follows that κτ − κ−1s > 0, i.e. τ > κ−2s. Hence, the
lower bound in (4.2) holds.

The proof of the upper bound is similar. Note that we have

A(q1, u, `, t) = (T−τT t+τuq1)∗πV1A(q1, u, `+ s, t+ τ)(T−s
T−`q1

)∗.

Let t+ τ = τ̃(ε)(q1, u, `+ s). Then, by (4.3) and (4.4),

A(q̂1, u, `, t) ≤ ‖A+(T̂ t+τuq̂1,−τ)‖A(q̂1, u, `+ s, t+ τ)‖A−(T̂−`q̂1,−s)‖ ≤

ε‖A+(T̂ t+τuq̂1,−τ)‖‖A−(T̂−`q̂1,−s)‖ ≤ εe−κ
−1τ+κs,

where we have used the fact that A(q̂1, u, ` + s, t + τ) = ε. Since A(q̂1, u, `, t) = ε, it
follows that −κ−1τ + κs > 0, i.e. τ < κ2s. It follows that the upper bound in (4.2)
holds. �
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5. Conditional measures.

We note the following:

Lemma 5.1. For any ρ > 0 there is a constant c(ρ) with the following property: Let
A : V → W be a linear map between Euclidean spaces. Then there exists a proper
subspace M⊂ V such that for any v ∈ V with ‖v‖ = 1 and d(v,M) > ρ, we have

‖A‖ ≥ ‖Av‖ ≥ c(ρ)‖A‖.

Proof of Lemma 5.1. The matrix AtA is symmetric, so it has a complete orthogonal
set of eigenspaces W1, . . . ,Wm corresponding to eigenvalues µ1 > µ2 > . . . µm. Let
M = W⊥

1 . �

5.1. Conditional Measure Lemmas. Let B be an arbitrary finite measure space.

Proposition 5.2. For every δ > 0 there exist constants c1(δ) > 0, ε1(δ) > 0 with
c1(δ) → 0 and ε1(δ) → 0 as δ → 0, and also constants ρ(δ) > 0 and ρ′(δ) > 0, such
that the following holds:

For any Γ-invariant subset K ′ ⊂ Ω̂ with ν̂(K ′/Γ) > 1−δ, there exists a Γ-invariant
subset K ⊂ K ′ with ν̂(K/Γ) > 1 − c1(δ) such that the following holds: suppose for

each q̂ ∈ Ω̂ we have a measurable map from B to proper subspaces of L−(q̂), written
as u → Mu(q̂). Then, for any q̂ = (q, g) ∈ K there exists q̂′ = (q′, exp(w)g) ∈ K ′
with q′ ∈ W−

1 [q], w ∈ L−(q̂),

(5.1) ρ′(δ) ≤ ‖w‖0 ≤ 1/100

and

(5.2) d0(w,Mu(q)) > ρ(δ) for at least (1− ε1(δ))-fraction of u ∈ B.

In the rest of this subsection we will prove Proposition 5.2.

Notation. For x̂ = (x, g) ∈ Ω̂, let ν̂|Ŵ−1 [x̂] denote conditional measure of ν̂ on Ŵ−
1 [x̂].

Let ν̃x̂ denote the projection of ν̂|Ŵ−1 [x̂] to the G factor. By abuse of notation, we

think of ν̃x̂ as a measure on g. Then, by the definition of L−(x̂), ν̃x̂ is supported on
L−(x̂). Recall that by Lemma 4.1, L−(x̂) is a subalgebra of g.

Lemma 5.3. (cf. [EiL1, Corollary 6.4]) For ν̂-almost all x̂ = (x, g) ∈ Ω̂, for any
ε > 0 (which is allowed to depend on x̂), the restriction of the measure ν̃x̂ to the
ball B(0, ε) ⊂ L−(x̂) is not supported on a finite union of proper affine subspaces of
L−(x̂).

Outline of proof. Suppose not. Let N(x̂) be the minimal integer N such that for
some ε = ε(x̂) > 0, the restriction of ν̃x̂ to B(0, ε) is supported on N affine subspaces.
Since L−(x̂) ⊂ Lie(N−)(x), the induced action on on L− of T−t for t ≥ 0 is expanding.
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Then N(x̂) is invariant under T−t, t ≥ 0. This implies that N(x̂) is constant for ν̂-
almost all x̂, and also that the only affine subspaces of L−(x̂) which contribute to N(·)
pass through the origin. Then, N(x̂) > 1 almost everywhere is impossible. Indeed,

suppose N(x̂) = k a.e., then for x̂ = (x, g) pick ŷ = (y, exp(w)g) ∈ Ŵ−
1 [x̂] near x̂

such that w is in one of the affine subspaces through 0; then there must be exactly
k affine subspaces of non-zero measure passing though w, but then at most one of
them passes through 0. Thus, the measure restricted to a neighborhood of 0 gives
positive weight to at least k + 1 subspaces, contradicting our assumption. Thus, we
must have N(x̂) = 1 almost everywhere; but then (after flowing by T̂−t for sufficiently
large t > 0) we see that for almost all x̂, ν̃x̂ is supported on a proper subspace of
L−(x̂), which contradicts the definition of L−(x̂). �

The partitions B̂− and B−. We may choose a Γ-invariant partition of B̂− of Ω̂
subordinate to Ŵ−

1 , so that for each x̂ = (x+, x−, g) the atom B̂−[x̂] containing x̂ is of
the form W−

1 [x+]×B−[x+, g], where B−[x+, g] ⊂ N−(x)g. Following our conventions,
we will write B−[x+, g] as B−[x̂]. We may also assume that the diameter of each B−[x̂]
is at most 1/100.

The measure ν ′x̂. For x ∈ Ω̂, let ν ′x̂ = ν̃x̂|B−[x̂]), i.e. ν ′x̂ is the restriction of ν̃x̂ (which

is a measure on N−(x)g) to the subset B−[x̂]. Then, for ŷ ∈ B̂−[x̂], ν ′ŷ = ν ′x̂.

Lemma 5.4. For every η > 0 and every N > 0 there exists β1 = β1(η,N) > 0, ρ1 =
ρ1(η,N) > 0 and a Γ-invariant subset Kη,N with Kη,N/Γ compact and of measure at
least 1−η such that for all x̂ ∈ Kη,N , and any proper subspacesM1(x̂), . . . ,MN(x̂) ⊂
L−(x̂),

(5.3) ν ′x̂(B
−[x̂] r

N⋃
k=1

Nbhd(Mk(x̂), ρ1)) ≥ β1ν
′
x̂(B

−[x̂]).

Outline of Proof. By Lemma 5.3, there exist βx̂ = βx̂(N) > 0 and ρx̂ = ρx̂(N) > 0
such that for any subspaces M1(x̂), . . .MN(x̂) ⊂ L−(x̂),

(5.4) ν ′x̂(B
−[x̂] r

N⋃
k=1

Nbhd(M(x̂), ρx̂)) ≥ βx̂ν
′
x̂(B

−[x̂]).

Let E(ρ1, β1) be the set of x̂ such that (5.3) holds. By (5.4),

ν̂

⋃
ρ1>0

β1>0

E(ρ1, β1)

 = 1.

Therefore, we can choose ρ1 > 0 and β1 > 0 such that ν̂(E(ρ1, β1)) > 1− η. �
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Lemma 5.5. For every η > 0 and every ε1 > 0 there exists β = β(η, ε1) > 0, a

Γ-invariant set Kη = Kη(ε1) ⊂ Ω̂ with Kη/Γ compact and of measure at least 1− η,
and ρ = ρ(η, ε1) > 0 such that the following holds: Suppose for each u ∈ B let Mu(x̂)
be a proper subspace of L−(x̂). Let

Egood(x̂) = {v ∈ B−[x̂] : for at least (1− ε1)-fraction of u in B,

d0(v,Mu(x̂)) > ρ/2}.
Then, for x̂ ∈ Kη,

(5.5) ν ′x̂(Egood(x̂)) ≥ βν ′x̂(B
−[x̂]).

Proof. Let n = dimL−[x̂]. By considering determinants, it is easy to show that
for any C > 0 there exists a constant cn = cn(C) > 0 depending on n and C such
that for any η > 0 and any points v1, . . . , vn in a ball of radius C with the property
that ‖v1‖ ≥ η and for all 1 < i ≤ n, vi is not within η of the subspace spanned by
v1, . . . , vi−1, then v1, . . . , vn are not within cnη

n of any n − 1 dimensional subspace.
Let kmax ∈ N denote the smallest integer greater then 1 +n/ε1, and let N = N(ε1) =(
kmax
n− 1

)
. Let β1, ρ1 and Kη,N be as in Lemma 5.4. Let β = β(η, ε1) = β1(η,N(ε1)),

ρ = ρ(η, ε1) = cnρ1(η,N(ε1))n, Kη(ε1) = Kη,N(ε1). Let Ebad(x̂) = B−[x̂] r Egood(x̂).
To simplify notation, we choose coordinates so that x̂ = 0. We claim that Ebad(x̂) is
contained in the union of the ρ1-neighborhoods of at most N subspaces. Suppose this
is not true. Then, for 1 ≤ k ≤ kmax we can inductively pick points v1, . . . , vk ∈ Ebad(x̂)
such that vj is not within ρ1 of any of the subspaces spanned by vi1 , . . . , vin−1 where
i1 ≤ · · · ≤ in−1 < j. Then, any n-tuple of points vi1 , . . . , vin is not contained within
ρ = cnρ1 of a single subspace. Now, since vi ∈ Ebad(x̂), there exists Ui ⊂ B with
|Ui| ≥ ε1|B| such that for all u ∈ Ui, d0(vi,Mu) < ρ/2. We now claim that for any
1 ≤ i1 < i2 < · · · < in ≤ k,

(5.6) Ui1 ∩ · · · ∩ Uin = ∅.
Indeed, suppose u belongs to the intersection. Then each of the vi1 , . . . vin is within
ρ/2 of the single subspace Mu, but this contradicts the choice of the vi. This proves
(5.6). Now,

ε1kmax|B| ≤
kmax∑
i=1

|Ui| ≤ n

∣∣∣∣∣
kmax⋃
i=1

Ui

∣∣∣∣∣ ≤ n|B|.

This is a contradiction, since kmax > 1 + n/ε1. This proves the claim. Now (5.3)
implies that

ν ′x̂(Egood(x̂)) ≥ ν ′x̂(B
−[x̂] r

N⋃
k=1

Nbhd(Mk(x̂), ρ1)) ≥ βν ′x̂(B
−[x̂]).

�
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Proof of Proposition 5.2. Let ν̂|Ŵ−[x̂] denote the conditional measure of ν̂ on the

stable leaf Ŵ−[x̂]. Let

K ′′ = {x̂ ∈ Ω̂ : ν̂|Ŵ−[x̂](K
′ ∩ B̂−[x̂]) ≥ (1− δ1/2)ν̂|Ŵ−[x̂](B̂

−[x̂])}.

Since B̂− is a partition, we have ν̂(K ′′) ≥ 1− δ1/2.

Let πG denote the projection Ω̂→ G. We have, for x̂ ∈ K ′′,

(5.7) ν ′x̂(πG(K ′) ∩B−[x̂]) ≥ (1− δ1/2)ν ′x̂(B
−[x̂]).

Let β(η, ε1) be as in Lemma 5.5. Let

c(δ) = δ + inf{(η2 + ε21)1/2 : β(η, ε1) ≥ 8δ1/2}.

We have c(δ)→ 0 as δ → 0. By the definition of c(δ) we can choose η = η(δ) < c(δ)
and ε1 = ε1(δ) < c(δ) so that β(η, ε1) ≥ 8δ1/2.

By (5.5), for x̂ ∈ Kη,

(5.8) ν ′x̂(Egood(x̂)) ≥ 8δ1/2ν ′x̂(B
−[x̂]).

Let K = K ′ ∩K ′′ ∩Kη. We have ν̂(K/Γ) ≥ 1 − δ − δ1/2 − c(δ), so ν̂(K/Γ) → 1 as
δ → 0. Also, if q̂ ∈ K, by (5.7) and (5.8),

πG(K ′) ∩B−[q̂] ∩ Egood(q̂) 6= ∅.

Thus, we can choose q̂′ ∈ K ′ ∩ B̂−[q̂] such that πG(q̂′) ∈ Egood(q̂). Then (5.2) holds
with ρ = ρ(η(δ), ε1(δ)) > 0. Also the upper bound in (5.1) holds since B−[q̂] has
diameter at most 1/100. Since allMu(q̂) contain the origin, the lower bound in (5.1)
follows from (5.2). �

5.2. Conditional measures on Ŵ+. Note that for a.e. x ∈ Ω, V1(x) is the Lie
algebra of a subgroup N1(x).

Lemma 5.6. Suppose x ∈ Ω̂, t ∈ R and u ∈ U+
1 .

(a) N1(T tx) = Ad(T tx)N1(x).
(b) For a.e. u ∈ U+

1 , N1(ux) = N1(x).

Proof. Part (a) follows from the equivariance of V1(x). Part (b) follows from
Lemma 3.1. �

The measures f1(x̂). Write x̂ = (x, g). Recall that N1(x) is a unipotent subgroup
of G. We now apply the leafwise measure construction described in [EiL2] to get
leafwise measures f1(x̂) of ν̂ on N1(x). (Roughly speaking, f1(x̂) is the pullback to
N1(x) of the “conditional measure of ν̂ along N1(x)g”). The measure f1(x̂) is only
defined up to normalization. We view f1(x̂) as a measure on G which happens to be
supported on the subgroup N1(x).
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Lemma 5.7. We have for a.e. x̂ = (x, g) ∈ Ω̂, u ∈ U+
1 and s and t in R,

f1(T̂ tuT̂−sx̂) ∝ (T tux)∗(T
−s
x )∗f1(x̂).

Proof. See [EiL2, Lemma 4.2(iv)]. �

6. The Eight Points

Let πΩ : Ω̂ → Ω denote the forgetful map. If f(·) is a function on Ω, and x̂ ∈ Ω̂,

we will often write f(x̂) instead of f(πΩ(x̂)). Let πG : Ω̂ → G be the projection to
the second factor.

We will derive Theorem 1.3 from the following:

Proposition 6.1. Suppose µ satisfies the assumptions of Theorem 1.1, and ν̂ is
a T̂ -invariant and U+

1 -invariant measure on Ω̂/Γ. Suppose also that Case I holds

(see §1). Then for almost all x ∈ Ω̂/Γ there exists a nontrivial unipotent subgroup
U+
new(x̂) ⊂ N1(x̂) such that the following hold:

(a) For almost all x̂ = (x, g) ∈ Ω̂ and all t ∈ R, U+
new(T̂ tx̂) = Ad(T tx)U

+
new(x̂) and

for almost all u ∈ U+
1 , U+

new(ux̂) = U+
new(x̂).

(b) For almost all x̂ = (x, g) ∈ Ω̂, the leafwise measure of ν̂ along N1[x̂] =
{x} × N1(x)g (which is by definition a measure on N1(x)) is right invariant
under U+

new(x̂) ⊂ N1(x).

Most of the rest of §6 will consist of the proof of Proposition 6.1. The argument
has been outlined in §1.2, and we have kept the same notation (in particular, see
Figure 1).

Proposition 6.1 will be derived from the following:

Proposition 6.2. Suppose µ and ν̂ are as in Proposition 6.1. Then there exists
0 < δ0 < 0.1, a Γ-invariant subset K∗ ⊂ Ω̂ with K∗/Γ compact and ν̂(K∗/Γ) > 1− δ0

such that f1 is uniformly continuous on K∗, and C > 1 (depending on K∗) such that
for every ε > 0 there exists a Γ-invariant E ⊂ K∗ with ν̂(E/Γ) > δ0, such that for
every x̂ ∈ E there exists ŷ ∈ N1[x̂] ∩K∗ with

(6.1) C−1ε ≤ dG(πG(x̂), πG(ŷ)) ≤ Cε

and

(6.2) f1(ŷ) ∝ f1(x̂).

6.1. Outline of the proof of Proposition 6.2. We use the same notation as in
§1.2. A simplified scheme for choosing the eight points is as follows:

(i) Choose q̂1 in some good set, so that in particular, for most t, T̂ tq̂1 ∈ K∗ and

T̂−tq̂1 ∈ K∗ and for most u and most t, T̂ tuq̂1 ∈ K∗.
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(ii) Let A(q̂1, u, `, t) be as in §3, so that if we write πG(q̂′) = exp(w)πG(q̂) then

πG(q̂′2) = exp(A(q̂1, u, `, t)w)πG(q̂2). Let q̂ = T̂−`q̂1 and let q̂2 = T̂ tuq̂1, where
t = τ(ε)(q̂1, u, `) is the solution to the equation ‖A(q̂1, u, `, t)‖ = ε. Since by
Proposition 4.2, for fixed q̂1, u, ε, τ(ε)(q̂1, u, `) is bilipshitz in `, for most choices
of `, we have q̂ ∈ K∗ and q̂2 ∈ K∗.

(iii) Let t1 = t1(q̂1, u, `) be defined by the equation λ1(uq̂1, t) = λ1(q̂1, t1). Since
λ1(x, t) is bilipshitz in t, the same argument shows that for most choices of `,

q̂3 ≡ T̂ t1 q̂1 ∈ K∗.
(iv) Let Mu ⊂ L−(q̂) be the subspace of Lemma 5.1 for the linear map A(q̂1, u, `, t)

restricted to L−(q̂). By Proposition 5.2, we can choose q̂′ ∈ K∗ with πG(q̂′) =
exp(w)πG(q̂) with ‖w‖ ≈ 1 and so that w avoids most of the subspaces Mu

as u varies over U+
1 . Then, for most u,

dG(πG(q̂2), πG(q̂′2)) ≈ ‖A(q̂1, u, `, t)w‖ ≈ ‖A(q̂1, u, `, t)‖‖w‖ ≈ ε,

as required.
(v) In view of Proposition 3.3, we can choose u so that q̂′2 is close to N1[q̂2] as

required.
(vi) We now proceed as in §1.2. Let q̂′1 = T̂ `q̂′, q̂′2 = T̂ tuq̂′1 where t = τ(ε)(q̂1, u, `),

and let q̂′3 = T̂ t1 q̂′1. Since ν̂ is T̂ -invariant and U+
1 -invariant and since λ1(q̂1, t1) =

λ1(uq̂1, t), we have,
f1(q̂2) = f1(q̂3).

Also, since one can show λ1(uq′1, t) ≈ λ1(q′1, t1) we have,

f1(q̂′2) ≈ f1(q̂′3).

Since q̂3 and q̂′3 are very close, we can ensure that, f1(q̂′3) ≈ f1(q̂3). Then, we
get, up to normalization,

f1(q̂2) ≈ f1(q̂′2).

Applying the argument with a sequence of `’s going to infinity, and passing to
a limit along a subsequence, we obtain points x̂, ŷ satisfying (6.1) and (6.2).

(In the above outline we also conflated A(·, ·, ·) with πV1 ◦A(·, ·, ·, ·) but this is a very
minor issue).

In fact our proof uses the same ideas, but we need to take a bit more care, mostly
because we also need to make sure that q̂′2 and q̂′3 belong to K∗. We now give a brief
outline of the strategy.

We define a Y -configuration Y = Y (q̂1, u, `) depending on the parameters q̂1 ∈ Ω̂,
u ∈ U+

1 , ` > 0 to be a quadruple of points q̂, q̂1, q̂2, q̂3 such that q̂, q̂2, q̂3 are chosen as
in (ii) and (iii) (depending on q̂1, u, `). Given a Y -configration Y , we refer to its points
as q(Y ), q1(Y ), etc. A Y -configuration Y is good if q̂(Y ) q̂1(Y ), q̂2(Y ), and q̂3(Y ) all
belong to some good set K∗. The argument of (i),(ii), (iii) and Fubini’s theorem show
that for an almost full density set of `, there are very many good Y -configurations
with that value of `. See Claim 6.4 below for the exact statement.
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We say that two Y -configurations Y = Y (q̂1, u, `) and Y ′ = Y (q̂′1, u
′, `′) are coupled

if ` = `′, u = u′, q̂(Y ′) ∈ Ŵ−
1 [q̂(Y )], and also if we write q̂(Y ) = (q, g), q̂(Y ′) =

(q′, exp(w)g) then ‖w‖ ≈ 1 and also w avoids the subspace Mu of (iv). Then the
argument of (iv) shows that we can (for most values of `) choose points q̂1, q̂′1 such
that for most u, the Y -configurations Y (q̂1, u, `) and Y (q̂′1, u, `) are both good and
also are coupled. (see “Choice of parameters #2” below for the precise statement).

We then choose u as in (v). (See Claim 6.7 and “Choice of parameters #3”). We
are now almost done, except for the fact that the lengths of the legs of Y = Y (q̂1, u, `)
and Y ′ = Y (q̂′1, u, `) are not same. (The bottom leg of Y has length `, and so does
the bottom leg of Y ′, but the two top legs of Y can potentially have different lengths
than the corresponding legs of Y ′). We show that the lengths of the corresponding
legs are close (see Claim 6.8 and (6.19)) then make some corrections using (6.4). We
then proceed to (vi).

6.2. Choosing the eight points. We now begin the formal proof of Proposition 6.2.

Choice of parameters #1. We then choose δ > 0 sufficiently small; the exact
value of δ will be chosen at the end of this section. All subsequent constants will
depend on δ. Let ε > 0 be arbitrary and η > 0 be arbitrary; however, we will always
assume that ε and η are sufficiently small depending on δ.

We will show that Proposition 6.2 holds with δ0 = δ/10. Let K∗ ⊂ Ω̂ be any Γ-
invariant subset with K∗/Γ compact and ν̂(K∗/Γ) > 1− δ0 on which the function f1

are uniformly continuous. It is enough to show that there exists C = C(δ) such that

for any ε > 0 and for an arbitrary Γ-invariant set K00 ⊂ Ω̂ with K00/Γ compact and
ν̂(K00/Γ) ≥ (1− 2δ0), there exists x̂ ∈ K00 ∩K∗ and ŷ ∈ N1[x̂] ∩K∗ satisfying (6.1)

and (6.2). Thus, let K00 ⊂ Ω̂ be an arbitrary Γ-invariant set with K00/Γ compact
and ν̂(K00/Γ) > 1− 2δ0.

Let ε′ > 0 be a constant which will be chosen later depending only on the Lyapunov
exponents. Then, by the multiplicative ergodic theorem, for any δ > 0 there exists a
Γ-invariant set K ′0 ⊂ Ω̂ with K ′0/Γ compact and ν̂(K ′0/Γ) > 1− δ and T ′0 = T ′0(δ) > 0
such that for t > T ′0, x̂ ∈ K ′0 and v ∈ V1(x̂),

(6.3) e−(λ1+ε′)t‖v‖ ≤ ‖(T̂−tx̂ )∗v‖ ≤ e−(λ1−ε′)t‖v‖.

Let K0 = K00 ∩K∗ ∩K ′0.
Let κ > 1 be as in Proposition 4.2, and so that Proposition 2.3(c) holds. Without

loss of generality, assume δ < 0.01. We now choose a Γ-invariant subset K ⊂ Ω̂ with
ν̂(K/Γ) > 1− δ such that the following hold:

• There exists a number T0(δ) such that for any x̂ ∈ K and any T > T0(δ),

(6.4) {t ∈ [−T/2, T/2] : T̂ tx̂ ∈ K0} ≥ 0.9T.

(This can be done by the Birkhoff ergodic theorem).
• Lemma 2.7 holds for K(δ) = πΩ(K) and C1 = C1(δ).
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For u ∈ U+
1 and q̂1 ∈ Ω̂ and t > 0, let t1 = t1(q̂1, u, t) be the unique solution to

λ1(q̂1, t1) = λ1(uq̂1, t)

Then, in view of Proposition 2.3(c), for fixed q̂1, u, t1(q1, u, t) is κ-bilipshitz in t. Let
τ̃(ε)(q1, u, `) be as in §4. Let

E2(q̂1, u) = E2(q̂1, u,K00, δ, ε, η) = {` : T̂ τ̃(ε)(q̂1,u,`)uq̂1 ∈ K},

E3(q̂1, u) = E3(q̂1, u,K00, δ, ε, η) = {` ∈ E2(q̂1, u) : T t1(q1,u,τ̃(ε)(q1,u,`))q1 ∈ K}.
Note that if we make choices as in §6.1 (ii) and (iii), then if ` ∈ E3(q̂1, u) then q̂2 ∈ K
and q̂3 ∈ K.

Claim 6.3. There exists `3 = `3(K00, δ, ε, η) > 0, a Γ-invariant set K3 = K3(K00, δ, ε)
with K3 ⊂ K and K3/Γ compact and of measure at least 1−c3(δ) and for each q̂1 ∈ K3

a subset Q3 = Q3(q̂1Γ, K00, δ, ε, η) ⊂ U+
1 with |Q3q̂1| ≥ (1− c′3(δ))|U+

1 q̂1| such that for
all q̂1 ∈ K3 and u ∈ Q3, uq̂1 ∈ K, and for ` > `3, |E3(q̂1, u) ∩ [0, `]| > (1 − c′′3(δ))`.
Also we have c3(δ), c′3(δ) and c′′3(δ)→ 0 as δ → 0.

Proof of claim. By the ergodic theorem, for any δ > 0 there exists a Γ-invariant
set K2(δ) ⊂ Ω̂ with K2/Γ compact and ν̂(K2/Γ) > 1− δ and `2 > 0 such that for any

q̂1 ∈ K2, and L > `2 the measure of {t ∈ [0, L] : T̂ tq̂1 ∈ K} is at least (1− δ)L. We
choose

K3 = K2 ∩ {x̂ ∈ Ω̂ : |U+
1 x̂ ∩K2| > (1− δ)|U+

1 x̂|}.
Suppose q̂1 ∈ K3, and uq̂1 ∈ K2.

Let

Ebad = {t : T̂ tuq̂1 ∈ Kc}.
Then, since uq̂1 ∈ K2, for ` > `2, the density of Ebad is at most δ. We have

E2(q̂1, u)c = {` : τ̃(ε)(q̂1, u, `) ∈ Ebad}.

Then, by Proposition 4.2, for ` > κ`2, the density of E2(q̂1, u) is at least 1 − 4κ2δ.
Similarly, since the function ` → t1(q̂1, u, τ̃(ε)(q̂1, u, `)) is κ2-bilipshitz (since it is the
compostion of two κ-bilipshitz functions), for ` > κ2`2, the density of E3(q̂1, u) is at
least 1− 8κ4δ.

The last assertion follows from Lemma 2.7. �

The following claim states that good Y -configurations are plentiful for an almost
full density set of `.

Claim 6.4. There exists a set D4 = D4(K00, δ, ε, η) ⊂ R+ and a number `4 =
`4(K00, δ, ε, η) > 0 so that D4 has density at least 1− c4(δ) for ` > `4, and for ` ∈ D4

a Γ-invariant subset K4(`) = K4(`,K00, δ, ε) ⊂ Ω̂ with K4 ⊂ K and ν̂(K4(`)/Γ) > 1−
c′4(δ), such that for any q̂1 ∈ K4(`) there exists a subset Q4 = Q4(q̂1Γ, `) ⊂ Q3 ⊂ U+

1
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with |Q4q̂1| ≥ (1 − c′′4(δ))|U+
1 q̂1| so that for all ` ∈ D4, for all q̂1 ∈ K4(`) and all

u ∈ Q4,

(6.5) ` ∈ E3(q̂1, u)

(We have c4(δ), c′4(δ) and c′′4(δ)→ 0 as δ → 0).

Proof of Claim. This follows from Claim 6.3 by applying Fubini’s theorem to
Ω̂B × [0, L], where Ω̂B = {(x̂, ux̂) : x̂ ∈ Ω, ux ∈ U+

1 x} and L ∈ R. �

Choice of parameters #2: Choice of q̂, q̂′, q̂′1 (depending on δ, ε, q̂1, `).
Suppose ` ∈ D4. Let A(q̂1, u, `, t) be as in (3.1). (Note that following our conventions,

we use the notation A(q̂1, u, `, t) for q̂1 ∈ Ω̂, even though A(q̂1, u, `, t) was originally
defined for q̂1 ∈ Ω) and for u ∈ Q4(q̂1Γ, `) let Mu be the subspace of Lemma 5.1

applied to the restriction of the linear map πV1A(q̂1, u, `, τ̃(ε)(q̂1, u, `)) to L−(T̂−`q̂1).

We now apply Proposition 5.2 with K ′ = T̂−`K4(`). We denote the resulting set K
by K5(`) = K5(`,K00, δ, ε). We have ν(K5(`)) ≥ 1− c5(δ), where c5(δ)→ 0 as δ → 0.

Let K6(`) = T̂ `K5(`).

Suppose ` ∈ D4 and q̂1 ∈ K6(`). Let q̂ = T̂−`q̂1. Then, q̂ ∈ K5(`). Write q̂ = (q, g)
where q = πΩ(q̂) ∈ Ω. By Proposition 5.2 and the definition of K5(`), we can choose

(6.6) q̂′ = (q′, exp(w)g) ∈ T̂−`K4(`)

so that q′ ∈ W−
1 [q], and w ∈ L−(q̂) with ρ′(δ) ≤ ‖w‖ ≤ 1/100 and so that (5.2) holds

with ε1(δ)→ 0 as δ → 0. Let q̂′1 = T̂ `q̂′. Then q̂′1 ∈ K4(`).

Standing Assumption. We assume ` ∈ D4, q̂1 ∈ K6(`) and q̂, q̂′, q̂′1 are as in
Choice of parameters #2. (This means that in the language of §6.1, for most u, the
Y configurations Y (q̂1, u, `) and Y (q̂′1, u, `) are both good and are coupled).

Notation. For u ∈ U+
1 , let

τ(u) = τ̃(ε)(q̂1, u, `), τ ′(u) = τ̃(ε)(q̂
′
1, u, `),

Claim 6.5. For u ∈ Q4(q̂1Γ, `) ∩Q4(q̂′1Γ, `),

(6.7) T̂ τ(u)uq̂1 ∈ K, and T̂ τ
′(u)uq̂′1 ∈ K.

Proof of Claim. Suppose u ∈ Q4(q̂1Γ, `). Since q̂1 ∈ K4 and ` ∈ D4, it follows
from (6.5) that ` ∈ E2(q̂1, u), and then from the definition of E2(q̂1, u) is follows

that T̂ τ(u)uq̂1 ∈ K. Similarly, since q̂′1 ∈ K4, we have for u ∈ Q4(q̂′1Γ, `) we have

T̂ τ
′(u)uq̂′1 ⊂ K. This completes the proof of (6.7). �

The numbers t1 and t′1. Suppose u ∈ Q4(q̂1Γ, `). Let t1 be defined by the equation

(6.8) λ1(q̂1, t1) = λ1(uq̂1, τ(u)).
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Then, since ` ∈ D4 and in view of (6.5), we have ` ∈ E3(q̂1, u). In view of the
definition of E3, it follows that

(6.9) T̂ t1 q̂1 ∈ K.

Similarly, suppose u ∈ Q4(q̂′1Γ, `). Let t′1 be defined by the equation

(6.10) λ1(q̂′1, t
′
1) = λ1(uq̂′1, τ

′(u)).

By the same argument,

(6.11) T̂ t
′
1 q̂′1 ∈ K.

The map v(u). For u ∈ U+
1 , let

(6.12) v(u) = v(q̂, q̂′, u, `, t) = A(q̂1, u, `, t)w

where t = τ̃(ε)(q̂1, u, `), w is as in (6.6) and A(·, ·, ·, ·) is as in (3.1).

Claim 6.6. There exists a subset Q5 = Q5(q̂1Γ, q̂′1Γ, `,K00, δ, ε) ⊂ Q4(q̂1Γ, `) ⊂ U+
1

with |Q5q̂1| ≥ (1− c′′5(δ))|U+
1 q̂1| (with c′′5(δ)→ 0 as δ → 0), and a number `5 = `5(δ, ε)

such that if ` > `5, for all u ∈ Q5,

(6.13) C ′(δ)−1ε ≤ ‖πV1(v(u))‖ ≤ C ′(δ)ε.

Proof of claim. Let Mu be the subspace of Lemma 5.1 applied to the restriction
to L−(q̂) of linear map (πV1 ◦A)(q̂1, u, `, τ̃(ε)(q̂1, u, `)), where A(, , , ) is as in (3.1). Let
Q5 ⊂ Q4(q̂1Γ) ∩Q4(q̂′1Γ) be such that for all u ∈ Q5,

d(w,Mu) ≥ β(δ)

Then, by (5.2),

|Q5q̂1| ≥ |(Q4(q̂1Γ) ∩Q4(q̂′1Γ))q̂1| − ε1(δ)|U+
1 q̂1| ≥ (1− ε1(δ)− c′′4(δ))|U+

1 q̂1|.

We now apply Lemma 5.1 to the linear map (πV1 ◦ A)(q̂1, u, `, t). Then, for all
u ∈ Q5,

c(δ)‖(πV1 ◦ A)(q̂1, u, `, t)‖ ≤ ‖(πV1 ◦ A)(q̂1, u, `, t)w‖ ≤ ‖(πV1 ◦ A)(q̂1, u, `, t)‖.

Therefore, since t = τ̃(ε)(q̂1, u, `), (6.13) holds. �

Standing assumption: We assume C(δ)ε < 1/100 for any constant C(δ) arising
in the course of the proof. In particular, this applies to C2(δ) and C ′2(δ) in the next
claim.

Claim 6.7. There exists constants c6(δ) and c′6(δ) > 0 with c6(δ) and c′6(δ) → 0 as
δ → 0, a Γ-invariant subset K ′6 = K ′6(`,K00, δ, ε) ⊂ K5 with ν̂(K ′6/Γ) > 1 − c6(δ),
for each q̂1 ∈ K ′6 a subset Q6 = Q6(q̂1Γ, q̂′1Γ, `,K00, δ, ε) ⊂ U+

1 with |Q6q̂1| ≥ (1 −
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c′6(δ))|U+
1 q̂1| and for any η > 0 a number `6 = `6(δ, η) such that for ` > `6, q̂1 ∈ K ′6,

u ∈ Q6,

(6.14) d

(
v(u)

‖v(u)‖
,V1(T̂ τ(u)uq̂1)

)
≤ η,

(6.15) C1(δ)ε ≤ d(T̂ τ(u)uq̂1, T̂
τ(u)uq̂′1) ≤ C2(δ)ε,

(6.16) C ′1(δ)ε ≤ ‖v(u)‖ ≤ C ′2(δ)ε,

and

(6.17) α−1
3 ` ≤ τ(u) ≤ α3`.

where α3 > 1 depends on the Lyapunov spectrum.

Proof. Let Q be as in Proposition 3.3 for v = w, and let Q6 = Q5∩Q. Then, (6.14)
follows immediately from (3.3) and the definition of v(u). This immediately implies
(6.15) and (6.16), in view of (6.13). Now the upper bound in (6.17) follows easily
from (3.2). The lower bound in (6.17) follows from Proposition 2.3(d). �

Standing Assumption. We assume q̂1 ∈ K ′6 and ` > `6.

Claim 6.8. Suppose u ∈ Q6(q̂1Γ, q̂′1Γ, `). Then, there exists C0 = C0(δ) such that

(6.18) |τ(u)− τ ′(u)| ≤ C0(δ).

Proof of claim. Note that q̂ = (q, g), q̂′ = (q′, g′) where q′ ∈ W−
1 [q] and g′ ∈

exp(L−[q′])g. This implies in particular that N−(q′) = N−(q), and

A(q̂1, u, `, t) = A(q̂′1, u, `, t).

By Lemma 4.1, we have L−(q̂′) = L−(q̂). Thus, in view of Lemma 2.7 and (6.14),

|τ̃(ε)(q̂1, u, `)− τ̃(ε)(q̂
′
1, u, `)| ≤ C0(δ)

i.e. (6.18) holds. �

Choice of parameters #3: Choosing u, q̂2, q̂
′
2, q̂3, q̂

′
3 (depending on q̂1, q̂

′
1, u,

`). Choose u ∈ Q6(q̂1Γ, `) ∩ Q6(q̂′1Γ, `) so that (6.15) holds. We have T̂ τ(u)uq̂1 ∈ K
and T̂ τ

′(u)uq̂′1 ∈ K. By (6.18),

|τ̃(ε)(q̂1, u, `)− τ̃(ε)(q̂
′
1, u, `)| ≤ C0(δ),

therefore,

T̂ τ(u)uq̂′1 ∈ T [−C,C]K,

where C = C(δ).
Note that πΩ(uq̂′1) ∈ W−

1 [πΩ(uq̂1)] and λ1(x, t) = λ1(πΩ(x), t). Then, by Lemma 3.5,

|λ1(uq̂1, τ(u))− λ1(uq̂′1, τ(u))| ≤ C ′4(δ).
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Then, by (6.18) and Proposition 2.3(c),

|λ1(uq̂1, τ(u))− λ1(uq̂′1, τ
′(u))| ≤ C ′′4 (δ).

Let t1, t
′
1 be as in (6.8) and (6.10). Then, the above equation can be rewritten as

|λ1(q̂1, t1)− λ1(q̂′1, t
′
1)| ≤ C ′′4 (δ).

Then, by Lemma 3.5 (applied to the points πΩ(q̂1) and πΩ(q̂′1) ∈ W−
1 [πΩ(q̂1)]) we have

|λ1(q̂1, t1)− λ1(q̂1, t
′
1)| ≤ C ′′′4 (δ).

Hence, by Proposition 2.3(c),

(6.19) |t1 − t′1| ≤ C5(δ).

Therefore, by (6.9) and (6.11), we have

T̂ t1 q̂1 ∈ K, and T̂ t1 q̂′1 ∈ T̂ [−C5(δ),C5(δ)]K.

Thus, at this point, the situation is as in Figure 1, except that T τ(u)uq̂′1 (which

should be q̂′2) is in T̂ [−C(δ),C(δ)]K instead of K, and T̂ t1 q̂′1 (which should be q̂′3) is in

T̂ [−C5(δ),C5(δ)]K instread of K. This is rectified as follows. By the definition of K we
can find C4(δ) and s ∈ [0, C4(δ)] such that

q̂2 ≡ T sT τ(u)uq̂1 ∈ K0, q̂′2 ≡ T sT τ(u)uq̂′1 ∈ K0,

Similarly, by the definition of K, we can find s′′ ∈ [0, C ′′5 (δ)] such that

q̂3 ≡ T̂ s
′′+t1 q̂1 ∈ K0, and q̂′3 ≡ T̂ s

′′+t1 q̂′1 ∈ K0.

Let τ = s+ τ(u), τ ′ = s′′ + t1. Then we have

q̂2 = T̂ τuq̂1, q̂′2 = T̂ τuq̂′1, q̂3 = T̂ τ
′
q̂1, q̂′3 = T̂ τ

′
q̂′1.

Thus, at this point the situation is as in Figure 1, with τ in place of t, τ ′ in place of
t1, q̂2, q̂

′
2, q̂3, q̂

′
3 ∈ K0, and (in particular), q̂1, q̂′1, uq̂1, uq̂′1 ∈ K3.

6.3. Completing the proofs. We continue the proof of Proposition 6.2.
For the next claim, we need a metric on the leafwise measures. By [EiL2, Theo-

rem 6.30], there exists a function ρ : G→ R+ which is integrable with respect to any
leafwise measure. Let Mρ denote the space of positive Radon measures ω on G for
which

∫
G
ρ dω ≤ 1 equipped with the weakest topology for which for any continuous

compactly supported φ the function ω →
∫
G
φ dω is continuous. Then,Mρ is compact

and metrizable, by some metric d′ (see e.g. [Kal, Theorem 4.2]). Then, if ω1 and ω2

are leafwise measures, we can define d(ω1, ω2) = d′(c1ω1, c2ω2), where c−1
i =

∫
G
ρ dωi.

Claim 6.9. There exists c10(δ, `), with c10(δ, `)→ 0 as `→∞ such that

(6.20) d(f1(q̂2), f1(q̂′2)) ≤ c10(δ, `).
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In (6.20) we consider f1(x) to be a measure on G which happens to be supported
on the subgroup N1(x).

Proof of claim. Let

R = (T τuq1)∗(T
−τ ′
q3

)∗ = (T τuq′1)∗(T
−τ ′
q′3

)∗.

We may view R as a map from the Lie algebra at q̂3 to the Lie algebra at q̂2 or as a
map from the Lie algebra at q̂′3 to the Lie algebra at q̂′2.

Let B : V1(q̂3)→ V1(q̂2) denote the restriction of R to V1(q̂3), and let B′ : V1(q̂′3)→
V1(q̂′2) denote the restriction of R to V1(q̂′3). By the construction of τ and τ ′, there
exists C = C(δ) such that

(6.21) max(‖B‖, ‖B−1‖) ≤ C(δ) and max(‖B′‖, ‖(B′)−1‖ ≤ C(δ).

By Lemma 5.7,

(6.22) f1(q̂2) ∝ B∗f1(q̂3), f1(q̂′2) ∝ B′∗f1(q̂′3).

Since πΩ(q̂′3) ∈ W−[πΩ(q̂3)] and πΩ(q̂′2) ∈ W−[πΩ(q̂2)], in view of Lemma 2.1(a),

V1(q̂′2) = P−(q̂2, q̂
′
2)V1(q̂2),

and

V1(q̂′3) = P−(q̂3, q̂
′
3)V1(q̂3).

By Lemma 3.4 and (6.17), there exists C = C(δ) such that

(6.23) ‖P−(q̂2, q̂
′
2)− I‖ ≤ C(δ)e−αα

−1
3 `

and

(6.24) ‖P−(q̂3, q̂
′
3)− I‖ ≤ C(δ)e−αα

−1
3 `.

Suppose v ∈ V1(q̂′3), and let w = (P−(q̂3, q̂
′
3)− I)v. Then, by (6.3),

‖(T−τ ′q̂′3
)∗w‖q̂′1 ≤ e(−λ1+ε′)τ ′‖w‖q̂′3 .

Hence, by Lemma 2.7,

(6.25) ‖(T−τ ′q̂′3
)∗w‖uq̂′1 ≤ Ce(−λ1+ε′)τ ′‖w‖q̂′3 ,

and then, since by (6.3) and Proposition 2.3(a), the norm of (T τuq̂′1
)∗, is at most

e(λ1+ε′)τ , we have, for large enough `,

(6.26) ‖Rw‖q′2 = ‖(T τuq̂′1)∗(T
−τ ′
q̂′3

)∗w‖q̂′2 ≤ e(λ1+ε′)τe(−λ1+ε′)τ ′‖w‖q̂′3 .

Choose ε′ = αα−1
3 /100. Note that for ` large enough, in view of (6.17), the definitions

of τ and τ ′ and (6.3), we have |τ − τ ′| ≤ 4ε′`. Therefore by (6.21), (6.23), (6.24) and
(6.25), for all v ∈ V1(q̂3),

(6.27) ‖B′P−(q̂3, q̂
′
3)v − P−(q̂2, q̂

′
2)Bv‖ ≤ C2(δ)e−(αα−1

3 /2)`‖v‖.



ZARISKI DENSE RANDOM WALKS ON HOMOGENEOUS SPACES 31

By Lemma 5.7,

(6.28) f1(q̂2) ∝ B∗f1(q̂3), f1(q̂′2) ∝ B′∗f1(q̂′3).

Since q̂3 ∈ K0 and q̂′3 ∈ K0,

d(f1(q̂3), f1(q̂′3))→ 0 as `→∞.

Then, also by (6.24),

d(P−(q̂3, q̂
′
3)∗f1(q̂3), f1(q̂′3))→ 0 as `→∞.

Then, applying B′ to both sides and using (6.21) and (6.28), we get

d(B′P−(q̂3, q̂
′
3)∗f1(q̂3), f1(q̂′2))→ 0 as `→∞.

Using (6.27), we get

d(P−(q̂2, q̂
′
2)B∗f1(q̂3), f1(q̂′2))→ 0 as `→∞.

Then, by (6.28) and (6.23), (6.20) follows. �

Taking the limit as η → 0. For fixed δ and ε, we now take a sequence of ηk → 0
(this forces `k → ∞) and pass to limits (mod Γ) along a subsequence. Let q̃2 ∈ K0

be such that the the limit of the q̂2Γ is q̃2Γ, and and let q̃′2 ∈ K0 be such that the
limit of the q̂′2Γ is q̃′2Γ. We get (after possibly replacing q̃′2 by q̃′2γ for some γ ∈ Γ),

1

C(δ)
ε ≤ d(q̃2, q̃

′
2) ≤ C(δ)ε,

and in view of (6.14),

q̃′2 ∈ N1[q̃2].

Now, by (6.20), we have

f1(q̃2) ∝ f1(q̃′2).

We have q̃2 ∈ K0 ⊂ K00 ∩ K∗, and q̃′2 ∈ K0 ⊂ K∗. This concludes the proof of
Proposition 6.2. �

Proof of Proposition 6.1. Take a sequence εm → 0. We now apply Proposition 6.2
with ε = εm. We get, for each m a Γ-invariant set Em ⊂ K∗ with ν̂(Em/Γ) > δ0 and
with the property that for every x̂ ∈ Em there exists ŷ ∈ N1[x̂] ∩K∗ such that (6.1)
and (6.2) hold for ε = εm. Let

F =
∞⋂
k=1

∞⋃
m=k

Em ⊂ K∗,

(so F consists of the points which are in infinitely many Em). Suppose x̂ ∈ F .
Then there exists a sequence ŷm → x̂ such that ŷm ∈ N1[x], ŷm 6= x̂, and so that
f1(ym) ∝ f1(x̂). We may write x̂ = (x, g), ŷm = (ym, γmg). Since ŷm ∈ N1[x̂], ym = x
and γm ∈ N1(x). By (6.1), γm tends to the identity of G as m→∞.
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By (6.2)

(6.29) f1(x̂) ∝ (rγm)∗f1(x̂),

where (rg)∗ denotes the action on measures induced by right multiplication by g. For
x̂ ∈ F let U+

new(x̂) denote the maximal connected subgroup of N1(x) such that for
n ∈ U+

new(x̂),

(6.30) (rn)∗f1(x̂) ∝ f1(x̂).

The set of n ∈ N1(x) satisfying (6.30) is closed, and by (6.29) is not discrete. There-
fore, for x̂ ∈ F , U+

new(x̂) is non-trivial. By construction, the subgroup U+
new(x̂) is

constant as x̂ varies over N1[x̂] = {x} ×N1(x)g, where we wrote x̂ = (x, g).
Suppose x̂ ∈ F and u ∈ U+

1 . Then, since f1(ux̂) = f1(x̂), we have that (6.30) holds
for n ∈ U+

new(ux̂). Therefore, by the maximality of U+
new(x̂), for x̂ ∈ F , u ∈ U+

1 such
that ux̂ ∈ F ,

(6.31) U+
new(ux̂) = U+

new(x̂).

Suppose x̂ ∈ F , t < 0 and T̂ tx̂ ∈ F . Then, since the N1[x̂] are T̂ t-equivariant

(see Lemma 5.6) we have that (6.30) holds for n ∈ T̂−tU+
new(T̂ tx̂). Therefore, by the

maximality of U+
new(x̂), for x̂ ∈ F , t < 0 with T̂ tx̂ ∈ F we have

(6.32) T̂−tU+
new(T̂ tx̂) = U+

new(x̂),

and (6.30) and (6.31) still hold.
From (6.30), we get that for x̂ ∈ F and n ∈ U+

new(x̂),

(6.33) (rn)∗f1(x̂) = eβx̂(n)f1(x̂),

where βx̂ : U+
new(x̂) → R is a homomorphism. Since ν(F/Γ) > δ0 > 0 and T̂ t is

ergodic, for almost all x̂ ∈ Ω̂ there exist arbitrarily large t > 0 so that T̂−tx̂ ∈ F .
Then, we define U+

new(x̂) to be T̂ tU+
new(T̂−tx̂). (This is consistent in view of (6.32)).

Then, (6.33) holds for a.e. x̂ ∈ Ω̂. It follows from (6.33) that for a.e. x̂ ∈ Ω̂, n ∈
U+
new(x̂) and t > 0,

(6.34) βT̂−tx̂(T̂
−tnT̂ t) = βx̂(n).

We can write

βx̂(n) = Lx̂(log n),

where Lx̂ : Lie(U+
new)(x̂)→ R is a Lie algebra homomorphism (which is in particular

a linear map). Let K ⊂ X̂ be a Γ-invariant set with K/Γ of positive measure for
which there exists a constant C with ‖Lx̂‖ ≤ C for all x̂ ∈ K. Now for almost all

x̂ ∈ Ω̂ and n ∈ U+
new(x̂) there exists a sequence tj → ∞ so that T−tj x̂ ∈ K and

T−tjnT tj → e, where e is the identity element of U+
new. Then, (6.34) applied to the

sequence tj implies that βx̂(n) = 0 almost everywhere (cf. [BQ1, Proposition 7.4(b)]).
This completes the proof of Proposition 6.1. �
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Proof of Theorem 1.3. This argument follows closely [BQ1, §8]. Let P(G/Γ)
denote the space of probability measures on G/Γ. For α ∈ P(G/Γ), let Sα denote the
connected component of the identity of the stabilizer of α with respect to the action
of G by left-multiplication on G/Γ. Let

F = {α ∈ P(G/Γ) : Sα 6= {1} and α is supported on one Sα orbit.}

The set F is endowed with the weak-∗ topology. The group G naturally acts on
F . By Ratner’s theorems [Ra], F contains all of the measures invariant and ergodic
under a connected non-trivial unipotent subgroup.

Let ν be an ergodic µ-stationary measure on G/Γ. We construct a T̂ t and U+
1

invariant measure ν̂ on Ω̂ as in §1.
By Proposition 6.1 for almost all x̂ = (x, gΓ) ∈ Ω̂, there exists a subgroup N1(x) ⊂

N+(x) such that the conditional measures ν̂|N1[x̂] of ν̂ on the N1(x) orbits on the
G/Γ-fiber at x are right-invariant under a non-trivial unipotent subgroup U+

new(x̂) of
N1(x). Without loss of generality we may assume that U+

new(x̂) is the stabilizer in
N1(x) of ν̂|N1[x̂] (otherwise we replace U+

new(x̂) by the stabilizer).
Let

∆(x, gΓ) = {g′ ∈ G/Γ : U+
new(x, g′Γ) = U+

new(x, gΓ)}.

Let ν̂x denote the conditional measure of ν̂ on {x} × G/Γ. We now disintegrate ν̂
under the map (x, gΓ) → (x, U+

new(x, gΓ)), or equivalently for µ̃-almost all x ∈ Ω we

disintegrate ν̂x under the map gΓ→ U+
new(x, gΓ). We get, for almost all (x, gΓ) ∈ Ω̂,

probability measures ν̃(x,gΓ) on G/Γ supported on ∆(x, gΓ) so that for µ̃-a.e. x ∈ Ω,

ν̂x =

∫
G/Γ

ν̃(x,gΓ) dν̂x(gΓ).

By [EiL3, Corollary 3.4] (cf. [BQ1, Proposition 4.3]), for ν̂-a.e. (x, gΓ) ∈ Ω̂, the
measure ν̃(x,gΓ) is (left) U+

new(x, gΓ)-invariant.
We can do the simultaneous U+

new(x, gΓ)-ergodic decomposition of all the measures

ν̃(x,gΓ) for almost all (x, gΓ) ∈ Ω̂ to get

(6.35) ν̃(x,gΓ) =

∫
G/Γ

ζ(x, g′Γ) dν̃(x,gΓ)(g
′Γ),

where ζ : Ω̂ → F is a ν̂-measurable map such that for almost all (x, gΓ) ∈ Ω̂, ζ is
constant along the fiber ∆(x, gΓ). (In fact, for any β ∈ F , ζ(x, gΓ) = β if and only
if gΓ is β-generic for the action of U+

new(x, gΓ) on ∆(x, gΓ)). Integrating (6.35) over
gΓ ∈ G/Γ we obtain for almost all x ∈ Ω,

(6.36) ν̂x =

∫
G/Γ

ζ(x, gΓ) dν̂x(gΓ).
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The uniqueness of the ergodic decomposition and the T̂ and U+
1 -equivariance of

the subgroups N1(x) and U+
new(x̂) shows that

(6.37) ζ(x, gΓ) = (T tx)∗ζ(T̂ t(x, gΓ))

and for u ∈ U+
1 ,

(6.38) ζ(ux, gΓ) = ζ(x, gΓ).

Therefore (see [BQ1, Lemma 3.2(e)]), the push-forward η = ζ∗ν̂ is a µ-stationary
probability measure on F .

By [Ra, Theorem 1.1] the set G of G-orbits on F is countable. Let η̄ denote the
push-forward of η to G. Then by [BQ1, Lemma 8.3], η̄ is invariant under the support
of µ.

Since ν̂ is ergodic, so is η. Thus η̄ is supported at one point. Then, η is supported
on Gν0, where ν0 ∈ F . Let H denote the stabilizer of ν0. By the definition of F , ν0

is supported on a single H-orbit.
We can now write ζ(x, gΓ) = θ(x, gΓ)ν0, where θ : Ω̂ → G/H. Then θ satisfies

(6.37) and (6.38) and then, again by [BQ1, Lemma 3.2(e)], the pushforward λ = θ∗ν̂ is
a µ-stationary measure on G/H. Then, by [BQ1, Proposition 6.7], H = G. Therefore,
ν is Haar measure. �

7. Case II

In this section, we will prove Theorem 1.4.

7.1. Initial reductions. Recall that S denotes the support of µ.

Proposition 7.1. Let ν be a µ-stationary measure on G/Γ, and suppose that Case
II holds, (see §1). Then ν is GS invariant, and ν̂ = µZ × ν.

Proof. This is essentially contained in [B-RH], see also [EsL, §11.1-§11.3].

Standing assumptions and notation. In view of Proposition 7.1 in the rest of §7
we will assume that ν is GS-invariant. Also, we may replace S by a finite subset S ′
such that GS′ is still Zariski dense in G. Thus, in the rest of §7, we will assume that
S is finite.

7.2. Dimensions of invariant measures. For g ∈ G and r > 0, let

B(r) = {exp(v) ∈ G : v ∈ g and ‖v‖ ≤ r}.
We define, for gΓ ∈ G/Γ, the “lower local dimension”

dim(ν, gΓ) = lim inf
r→0

log ν(B(r)gΓ)

log r
.

By the ergodicity of T̂ , for ν-a.e. g ∈ G, dim(ν, g) is independent of g. We denote the
common value by dim(ν).
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Proposition 7.2. Under the assumptions of Theorem 1.4, dim(ν) = 0.

Remark. If there are no zero Lyapunov exponents, this follows from [LX] (which
is based on [BPS]). We will give a proof of the trivial special case we need below
(allowing for zero exponents).

Let
B0(ε) = {exp(v) : v ∈ g, ‖v‖ ≤ ε}.

For x ∈ SZ and n ∈ N let Bn(x) denote the “Bowen ball” centered at the identity 1
of G, i.e.

Bn(x) = {h ∈ G : for all 0 ≤ m ≤ n, (xm . . . x0)h(xm . . . x0)−1 ∈ B0(ε)}.

Lemma 7.3. For any unit v ∈ g, for µZ-a.e. x ∈ SZ, for all sufficiently large n,

|{t : exp tv ∈ Bn(x)}| ≤ e−αn,

where α > 0 depends only on the Lyapunov spectrum.

Proof. See [BQ1, Lemma 7.3]. (is this the right reference?) �

The fiber entropy. Let ξ be a finite measurable partition of G/Γ. Then the limit

lim
n→∞

1

n
Hνx−

(
n−1∨
i=0

(T ix)
−1ξ) ≡ lim

n→∞
− 1

n

∑
A∈∨n−1

i=0 (T ix)−1ξ

νx−(A) log νx−(A)

exists and is constant for µZ-a.e. x. We denote its value by h
G/Γ

µZ×ν(T̂ , ξ). Then,

we define the fiber entropy h
G/Γ
ν̂ (T̂ ) to be the supremum over all finite measurable

partitions ξ of h
G/Γ

µZ×ν(T̂ , ξ).

We recall the following:

Lemma 7.4. For ε > 0, ε′′ > 0, n ∈ N and x ∈ SZ, let N(n, x, ε, ε′′) denote the
smallest number of Bowen balls Bn(x, ε)gΓ ⊂ G/Γ needed to cover a set of ν-measure
at least 1− ε′′. Then, for µZ-a.e. x ∈ SZ and any 0 < ε′′ < 1,

lim
ε→0

lim inf
n→∞

1

n
logN(n, x, ε, ε′′) = lim

ε→0
lim sup
n→∞

1

n
logN(n, x, ε, ε′′) = h

G/Γ

µZ×ν(T̂ ).

Proof. The analogous formula for the case of a single measure preserving trasfor-
mation is due to Katok [Ka, Theorem I.I]. The precise statement we need is given as
[Zhu, Theorem 3.1] �

Corollary 7.5. Let N(n, x, ε, ε′′) be as in Lemma 7.4. Then for any ε > 0, any
0 < ε′′ < 1 and µZ-a.e. x ∈ SZ,

lim
n→∞

1

n
logN(n, x, ε, ε′′) = 0.
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Proof. In our setting the fiber entropy h
G/Γ

µZ×ν(T̂ ) is zero. Now the statement fol-

lows immediately from the fact that for fixed n, x, ε′′, N(n, x, ε, ε′′) is decreasing as a
function of ε. �

Proof of Proposition 7.2. By Lemma 7.3 there exist x1, . . . , xM ∈ SZ and α > 0
such that for any g1, . . . , gM ∈ G,

(7.1)
M⋂
m=1

Bn(xm)gm ⊂ B(e−αn)g′ for some g′ ∈ G.

Then, by Corollary 7.5, for every ε > 0 and ε′ > 0 there exists M > 0, and x1, . . . xM ∈
SZ such that (7.1) holds, and for all sufficiently large n, for each 1 ≤ m ≤ M , there

exists Q
(n)
m ⊂ G/Γ of measure at least 1− ε/M such that Q

(n)
m can be covered by eε

′n

Bowen balls of the form Bn(xm)g′Γ. Then, Q(n) =
⋂M
m=1 Q

(n)
m satisfies ν(Q(n)) > 1−ε,

and also Q(n) can be covered by at most eMε′n sets of the form

M⋂
m=1

Bn(xm)gmΓ.

Therefore, by (7.1), there exists a finite set ∆ ⊂ G/Γ of cardinality at most eMε′n

such that

Q(n) ⊂
⋃

g′Γ∈∆

B(e−αn)g′Γ.

Let

∆′ = {g′Γ ∈ ∆ : ν(B(e−αn)g′Γ) ≤ ε|∆|−1}.
Then,

ν

( ⋃
g′Γ∈∆′

B(e−αn)g′Γ

)
≤
∑
g′Γ∈∆′

ν(B(e−αn)g′Γ) ≤ |∆|
(
ε|∆|−1

)
= ε.

Let Q̂(n) =
⋃
g′Γ∈∆r∆′ B(e−αn)g′Γ. Then, ν(Q̂(n)) ≥ (1 − 2ε), and each gΓ ∈ Q̂(n) is

contained in a set of the form B(e−αn)g′Γ with ν(B(e−αn)g′Γ) > ε|∆|−1. Therefore,

for each gΓ ∈ Q̂(n),

ν(B(3e−αn)gΓ) ≥ ε|∆|−1 ≥ ε e−Mε′n.

Let Q∞ denote the set of gΓ ∈ G/Γ such that gΓ ∈ Q̂(n) for infinitely many n. Then,
ν(Q∞) ≥ 1 − 2ε and for each gΓ ∈ Q∞ there exists a sequence rk = 3e−αnk with
rk → 0 such that

ν(B(rk)gΓ) ≥ ε r
(M/α)ε′

k ,

i.e.
log ν(B(rk)gΓ)

log rk
≤ (M/α)ε′ +

| log ε|
| log rk|

.
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Since ε and ε′ are arbitrary and | log rk| → ∞ as rk → 0, this implies dim(ν, gΓ) =
0. �

7.3. Margulis Functions. Recall that µ is a probability measure on G, supported
on a finite set S. Let r be small enough so that the exponential map restricted to the
set {v ∈ g : ‖v‖ ≤ r} is a diffeomorphism onto its image.

Let d : G×G→ R be defined by

d(g, g′) =

{
‖v‖ if g′ = exp(v)g, v ∈ g and ‖v‖ < r,

r otherwise.

Let δ > 0 be a small parameter to be chosen later (idependently of ε) and let f :
G×G→ R be defined by

f(g1, g2) = sup
γ∈Γ

dε(g1, g2γ)−δ.

Then, f descends to a function G/Γ×G/Γ→ R which we also denote by f .
In the next Lemma and Proposition, we assume that Γ is cocompact. (The general

argument is done in [EsL, Lemma 11.12 and Proposition 11.13]). We present the
cocompact case here since it is much shorter and easier to follow.

After replacing r by a smaller number, we may assume that for any gΓ in G/Γ, the
injectivity radius is at least r. The proof of Theorem 1.4 is based on the following
Margulis inequality:

Lemma 7.6. Suppose Γ is cocompact. There exists n ∈ N sufficiently large (de-
pending only on µ), and δ > 0 sufficiently small (depending only on n and µ), and
constants c = c(µ, n, δ) < 1, and b = b(µ, n, δ, r) > 0 such that for all g1Γ, g2Γ ∈ G/Γ,

(7.2)

∫
G

f(gg1Γ, gg2Γ) dµ(n)(g) ≤ cf(g1Γ, g2Γ) + b.

Proof. This is essentially [EMar, Lemma 4.2]. The constant b is needed in case for
some g in the support of µ(n), d(gg1, gg2) > r. �

Proposition 7.7. Suppose Γ is cocompact, and ν is non-atomic. Then, for any η > 0
there exists K ′′ ⊂ G/Γ with ν(K ′′) > 1−c(η) where c(η)→ 0 as η → 0 and a constant
C = C(η, ε) such that for any gΓ ∈ K ′′,

(7.3)

∫
G/Γ

f(gΓ, g′Γ) dν(g′Γ) < C.

Remark. This proposition is true even in the case where Γ is not cocompact: see
[EsL, Proposition 11.13].
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Proof. By iterating (7.2), for any g1Γ, g2Γ ∈ G/Γ,

(7.4) lim sup
k→∞

∫
G

f(g′g1Γ, g′g2Γ) dµ(kn)(g′) ≤ b

1− c
.

By the random ergodic theorem [Kif, Corollary I.2.2], there exists a function φ :
G/Γ×G/Γ→ R such that∫

G/Γ×G/Γ
φ d(ν × ν) =

∫
G/Γ×G/Γ

f d(ν × ν),

and for µZ a.e. x ∈ SZ and ν × ν a.e. g1Γ, g2Γ ∈ G/Γ,

(7.5) φ(g1Γ, g2Γ) = lim
k→∞

1

k

k∑
j=1

f(xjn . . . x1g1Γ, xjn . . . x1g2Γ).

Then, integrating both sides of (7.5) over SZ ×G/Γ×G/Γ, using Fatou’s lemma to
take the limsup outside the integral, and then using (7.4), we get∫

G/Γ×G/Γ
f d(ν × ν) ≤ b

1− c
.

This immediately implies the lemma. �

Proof of Theorem 1.4. Choose η > 0 and let K ′′, C be as in Proposition 7.7. Then
it follows from (7.3) that for all r > ε > 0 and all gΓ ∈ K ′′,

ν(B(ε)gΓ) ≤ C(η)εδ,

hence
log ν(B(ε)gΓ)

log ε
≥ δ − | logC(η)|

| log ε|
.

This implies dim(ν, gΓ) ≥ δ, contradicting Proposition 7.2.

Thus, ν has an atomic part. Then by the ergodicity of T̂ , ν is atomic, and all atoms
have the same measure. Therefore ν is finitely supported. �
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