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1. General introduction

1.1. Values of indefinite quadratic forms at integral points. The Op-
penheim Conjecture. Let

Q(xl,...,xn) = Z Qi TiT 5

1<i<j<n

be a quadratic form in n variables. We always assume that @ is indefinite so that
(so that there exists p with 1 < p < n so that after a linear change of variables, @
can be expresses as:

P

n
Qpyrsyn) =D i — > 4

i=1 i=p+1

We should think of the coefficients a;; of @ as real numbers (not necessarily
rational or integer). One can still ask what will happen if one substitutes integers
for the x;. It is easy to see that if @ is a multiple of a form with rational coefficients,
then the set of values Q(Z") is a discrete subset of R. Much deeper is the following
conjecture:

CONJECTURE 1.1 (Oppenheim, 1929). Suppose Q is not proportional to a ra-
tional form and n > 5. Then Q(Z™) is dense in the real line.

This conjecture was extended by Davenport to n > 3.

THEOREM 1.2 (Margulis, 1986). The Oppenheim Congjecture is true as long as
n > 3. Thus, if n >3 and Q is not proportional to a rational form, then Q(Z™) is
dense in R.

This theorem is a triumph of ergodic theory. Before Margulis, the Oppenheim
Conjecture was attacked by analytic number theory methods. (In particular it was
known for n > 21, and for diagonal forms with n > 5).

Failure of the Oppenheim Conjecture in dimension 2. Let a« > 0 be a
quadratic irrational such that o ¢ Q (e.g. a = (14 1/5)/2), and let

Q(x1,x2) = 33% — an%.
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PROPOSITION 1.3. There exists € > 0 such that for all x1,x9 € Z, |Q(x1, x2)| >

Proof. Suppose not. Then for any 1 > € > 0 there exist x1, 22 € Z such that
(1) |Q(x1,x2)| = |21 — axs||z1 + axs| < e

We may assume xo # 0. If € < o2, one of the factors must be smaller then a.
Without loss of generality, we may assume |21 — axz2| < @, so |21 — axa| < alxal|.
Then,

|z1 + axe| = 2022 + (21 — ax2)| > 2alxa| — |21 — axe| > alzs].

Substituting into (1) we get

T € e 1
(2) Loal< < -

T |xal|lz1 + azs| ~ a x|
But since « is a quadratic irrational, there exists ¢y > 0 such that for all p,q € Z,
£ —al = 2. This is a contradiction to (2) if € < coor. O

A relation to flows on homogeneous spaces. This was noticed by Raghu-
nathan, and previously in implicit form by Cassels and Swinnerton-Dyer. However
the Cassels-Swinnerton-Dyer paper was mostly forgotten. Raghunathan made clear
the connection to unipotent flows, and explained from the point of view of dynamics
what is different in dimension 2. See §5.1.

1.2. Some basic Ergodic Theory. Transformations, flows and Ergodic
Measures. Let X be a locally compact separable topological space, and T : X —
X amap. We assume that there is a finite measure p on X which is preserved by T'.
One usually normalizes p so that u(X) = 1, in which case p is called a probability
measure.

Sometimes, instead of a transformation 7" one considers a flow ¢;, t € R. For a
fixed ¢, ¢ is a map from X to X. In this section we state definitions and theorems
for transformations only, even though we will use them for flows later.

DEFINITION 1.4 (Ergodic Measure). An T-invariant probability measure p is
called ergodic for T if for every measurable T-invariant subset F of X one has
w(E)=0or u(E)=1.

Every measure can be written as a linear combination (possibly uncountable,
dealt with via integration) of ergodic measures. This is called the “ergodic decom-
position”.

Ergodic measures always exist. In fact the probability measures form a convex
set, and the ergodic probability measures are the extreme points of this set (cf. the
Krein-Milman theorem).

Birkhoff’s Ergodic Theorem.

THEOREM 1.5 (Birkhoff Ergodic Theorem). Suppose u is ergodic for T, and
suppose f € LY(X, ). Then for p-almost all x € X, we have

(3) lim — 3 f(T"x)= [ fdp.
x =]
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The sum on the left-hand side is called the “time average”, and the integral on
the right is the “space average”. Thus the theorem says that for almost all base
points z, the time average along the orbit of x converges to the space average.

This theorem is amazing in its generality: the only assumption is ergodicity of
the measure p. (This is a some sort of irreducibility assumption).

The set of © € X for which (3) holds is called the generic set for p.

Mutually singular measures. Recall that two probability measures p; and o
are called mutually singular (written as p1 L uo if there exists a set E such that
i1 (B) = 1, us(E) = 0 (s0 pa(E*) = 1).

In our proofs we will use repeatedly the following:

LEMMA 1.6. Suppose p1 and ps are distinct ergodic measures for the map
T:X — X. Then 1 L po.

Proof. This is an immediate consequence of the Birkhoff ergodic theorem. Since
p1 # pe we can find an f such that [, fdui # [y fdpz. Now let E denote the set
where (3) holds with = 4. O

Remark. It is not difficult to give another proof of Lemma 1.6 using the Radon-
Nikodym theorem.

Given an invariant measure p for 7', we want to find conditions under which
it is ivariant under the action of a larger group. Now if H commutes with T', then
for each hg € H the measure hgu is T-invariant. So if y is ergodic, so is hou, and
Lemma 1.6 applies. More can be said, ([cf. [Ra4, Thm. 2.2], [Mor, Lem. 5.8.6]]):

LEMMA 1.7. Suppose T : X — X 1is preserving an ergodic measure (. Suppose
H is a group with acts continuously on X and commutes with T. Also suppose that
there exists ho € H such that hou # p. Then there exists a neighborhood B of
ho € H and a conull T-invariant subset Q of X such that

MINQ =0 forallhe B.

Proof. Since hg commutes with T, the measure hou is T-invariant and ergodic.
Thus by Lemma 1.6, hou L p. This implies there is a compact subset Ky of X,
such that p(Kp) > 0.99 and Ky NhoKy = (). By continuity and compactness, there
are open neighborhoods U and U™ of Ky, and a symmetric neighborhood B, of ¢
in H, such that U+ N hodt = O and B.U C Ut. From applying (3) with f the
characteristic function of ¢, we know there is a conull T-invariant subset €, of X,
such that the T-orbit of every point in Qp,, spends 99% of its life in /. Now suppose
there exists h € Behg, such that Q,, NhQp, # 0. Then there exists z € Qp,,, n € N,
and ¢ € B, such that T"x and choT"x both belong to &. This implies that 7"z
and hoT"x both belong to U+. This contradicts the fact that Ut Nhotdt = 0. O

Uniquely ergodic systems. In some applications (in particular to number the-
ory) we need some analogue of (3) for all points = (and not almost all). For example,
we want to know if Q(Z") is dense for a specific quadratic form @ (and not for al-
most all forms). Then the Birkhoff ergodic theorem is not helpful. However, there
is one situation where we can show that (3) holds for all x.

DEFINITION 1.8. A map T : X — X is called uniquely ergodic if there exists a
unique invariant probability measure pu.
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PROPOSITION 1.9. Suppose X is compact, T : X — X is uniquely ergodic, and
let p be the invariant probability measure. Suppose f : X — R is continuous. Then
for all z € X, (3) holds.

Proof. This is quite easy (as opposed to the Birkhoff ergodic theorem which is
hard). Let d,, be the probability measure on X defined by

n—1

Bulf) == 3 F(T")
k=0

(we are now thinking of measures as elements of the dual space to the space C(X)
of continuous functions on X). Note that

su(foT)= L (romy@ay = L3 pana,
k=0 k=1
SO
() Sulf o) = ulf) =~ (&) ~ F(T")),

(since the sum telescopes). Suppose some subsequence §,,; converges to some limit
d (in the weak-* topology). Then, by (4), doo(f 0 T) = doo(f), ie. oo is T-
invariant.

Since X is compact, d, is a probability measure, and thus by the assumption
of unique ergodicity, we have do, = p. Thus all possible limit points of the sequence
0, are p. Also the space of probability measures on X is compact (in the weak-*
topology), so there exists a convergent subsequence. Hence d8,, — p, which is the
same as (3). O

Remarks.

e The main point of the above proof is the construction of an invariant
measure (namely d,) supported on the closure of the orbit of . The
same construction works with flows, or more generally with actions of
amenable groups.

e We have used the compactness of X to argue that d., is a probability
measure: this might fail if X is not compact. This phenomenon is called
“loss of mass”.

e Of course the problem with Proposition 1.9 is that most of the dynam-
ical systems we are interested in are not uniquely ergodic. For example
any system which has a closed orbit which is not the entire space is not
uniquely ergodic.

e However, the proof of Proposition 1.9 suggests that (at least in the amenable
case) the classification of the invariant measures is one of the most power-
ful statements one can make about a dynamical system, in the sense that
it allows one to try to understand every orbit (and not just almost every
orbit).

Exercise 1. (To be used in §3.)
(a) Show that if « is irrational then the map T, : [0,1] — [0,1] given by
T,(z) =x+a (modl) is uniquely ergodic. Hint: Use Fourier analysis.
(b) Use part (a) to show that the flow on R?/Z? given by ¢(x,y) = (z +
ta,y + t) is uniquely ergodic.
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1.3. Unipotent Flows. Let G be a semisimple Lie group (I will usually as-
sume the center of G is finite), and let I' be a lattice in G (this means that I' C G
is a discrete subgroup, and the quotient G/T" has finite Haar measure). A lattice I’
is uniform if G/T is compact.

Let U = {ut}ter be a unipotent one-parameter subgroup of G. Then U acts
on G/T by left multiplication. (Recall that in SL(n,R) a matrix is unipotent if all
its eigenvalues are 1. In a general Lie group an element is unipotent if its Adjoint
(acting on the Lie algebra) is a unipotent matrix. ) Examples of unipotent one

parameter subgroups:
1t
{o 1) wemp

and
1t t2)2
0 1 t , teR ,,
0 0 1

Ratner’s measure classification theorem.

DEFINITION 1.10. A probability measure p on G/T is called algebraic if there
exists & € G/I' and a subgroup F' of G such that FZ is closed, and p is the F-
invariant probability measure supported on F'Z.

THEOREM 1.11 (Ratner’s measure classification theorem). Let G be a Lie group,
I' C G a lattice. Let U be a one-parameter unipotent subgroup of G. Then, any
ergodic U-invariant measure is algebraic. (Also the group F in the definition of
algebraic is generated by unipotent elements, and contains U ).

Loosely speaking, this theorem says that all U-invariant ergodic measures are
very nice. The assumption that U is unipotent is crucial: if we consider instead
arbitrary one-parameter subgroups, then there are ergodic invariant measures sup-
ported on Cantor sets (and worse). This phenomenon is responsible in particular
for the failure of the Oppenheim conjecture in dimension 2.

Theorem 1.11 has many applications, some of which we will explore in this
course. I will give some indication of the ideas which go into the proof of this
theorem in the next two lectures.

Remark on algebraic measures. Let 7 : G — G/T" be the projection map.
Suppose T € G/T', and F C G is a subgroup. Let Stabp(Z) denote the stabilizer in
F of z, i.e. the set of elements g € F such that gz = z. Then Stabp(z) = FNalTz ™1,
where © € G is any element such that 7w(z) = Z. Thus there is a continuous
map from FZ to F/(F N aT'z~!), which is a bijection, but is in general not a
homeomorphism.

However, in the case of algebraic measures, we are making the additional as-
sumption that F'Z is closed. In this case, the above map is a homeomorphism, and
thus p is the image under this map of the Haar measure on F/(F Nal'z~!). The
assumption that y is a probability measure thus implies that FNaT'z~! is a lattice
in F'. (The last condition is usually taken to be part of the definition of an algebraic
measure).

Uniform Distribution and the classification of orbit closures.
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THEOREM 1.12 (Ratner’s uniform distribution theorem). Let G be a Lie group,
T a lattice in G, and U = {u; }ter a one-parameter unipotent subgroup. Then for
any T € G/T" there exists a subgroup F O U (generated by unipotents) with FZ
closed, and an F-invariant algebraic measure u supported on FZ, such that for any

fed(G/r),

T—oo T

T
(5) lim l/0 flwZ) dt = F*fdM

Remarks.

o It follows from (5) that the closure of the orbit UZ is FZ. Thus Theo-
rem 1.12 can be rephrased as “any orbit is uniformly distributed in its
closure”.

e Theorem 1.12 is derived from Theorem 1.11 by an argument morally sim-
ilar to the proof of Proposition 1.9. There is one more ingredient: one
has to show that the set of subgroups F which appear in Theorem 1.11
is countable up to conjugation (Proposition 4.1 below). For proofs of
this fact see [Ra6, Theorem 1.1] and [Ra7, Cor. A(2)]), or alternatively
[DM4, Proposition 2.1].

An immediate consequence of Theorem 1.12 is the following:
THEOREM 1.13 (Raghunathan’s topological conjecture). Let G be a Lie group,
I C G alattice, and U C G a one-parameter unipotent subgroup. Suppose T € G/T.

Then there exists a subgroup F' of G (generated by unipotents) such that the closure
Uz of the orbit Uz is Fx.

This theorem is due to Ratner in the general case, but several cases were known
previously. See §5.1 for a discussion and the relation to the Oppenheim Conjecture.

Uniformity of convergence. In many applications it is important to somehow
ensure that the time averages converge to the space average uniformly in the base
point Z (for example we may have an additional integral over z). In the context of
Birkhoff’s ergodic theorem, we have the following:

LEMMA 1.14. Suppose ¢ : X — X is a flow preserving an ergodic probability
measure . Suppose f € LY(X,u). Then for any € > 0 and § > 0, there erists
To > 0 and a set E C X with u(E) < €, such that for any x € E° and any T > Ty

we have .
1
f/o f(¢t($))dt*/xfdﬂ

(In other words, one has uniform convergence outside of a set of small measure.)

Proof. Let E,, denote the set of x € X such that for some T > n,

2 soena— [ san

Then by the Birkhoff ergodic theorem, pu((,—, E,) = 0. Hence there exists n € N
such that u(E,) < e. Now let Ty =n, and E = E,,. ]

<d

> 4.

The uniform distribution theorem of Dani-Margulis. One problem with
Lemma 1.14 is that it does not provide us with any information about the ex-
ceptional set E (other then the fact that it has small measure). In the setting
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of unipotent flows, Dani and Margulis proved a theorem (see §4.2 below for the
precise statement) which is the analogue of Lemma 1.14, but with an explicit geo-
metric description of the set E. This theorem is crucial for many applications. Its
proof is based on the Ratner measure classification theorem (Theorem 1.11) and
the “linearization” technique of Dani and Margulis (see §4).

2. The case of SL(2,R)/SL(2,7)
In this lecture I will be loosely following Ratner’s paper [Ra8].

2.1. Basic Preliminaries. The space of lattices. Let G = SL(n,R), and
let £,, denote the space of unimodular lattices in R™. (By definition, a lattice A is
unimodular if an only if the volume of R"/A = 1. ) G acts on L,, as follows: if
g € G and A € L, is the Z-span of the vectors vy, ...v,, then gv is the Z-span of
gu1, ..., gv,. This action is clearly transitive. The stabilizer of the standard lattice
Z" is I' = SL(n,Z). This gives an identification of £, with G/T". We choose a
right-invariant metric d(-,-) on Gj; then this metric descends to G/T.

The set £,,(¢). For e > 0 let £,,(¢) C L,, denote the set of lattices whose shortest
non-zero vector has length at least e.

THEOREM 2.1 (Mahler Compactness). For any € > 0 the set L, (¢€) is compact.

The upper half plane. In the rest of this section, we set n = 2. Let K =
SO(2) C G. Given a pair of vectors vy, ve we can find a unique rotation matrix
k € K so that kv; is pointing along the positive z-axis and kvy is in the upper
half plane. The map g = (111 112) — kvg gives an identification of K\G with the
hyperbolic upper half plane H2. Now G (and in particular I' C G) acts on K\G by
multiplication on the right. Using the identification of K\G with H? this becomes
(a variant of) the usual action by fractional linear transformations.

The horocycle and geodesic flows. We use the following notation:

(1t (et 0 (10
“=10 1 M=\ et t=\t 1)

Let U={u; : teR} A={a; : teR}), V={v, : teR}. The action of
U is called the horocycle flow and the action of A is called the geodesic flow. Some
basic commutation relations are the following;:

(6) artsa; t = Ugae avsa; t = v,
Thus conjugation by a; for ¢ > 0 contracts V and expands U.

Orbits of the geodesic and horocycle flow in the upper half plane. Let
p : G — K\G denote the natural projection. Then for z € G, p(Ux) is either a
horizontal line or a circle tangent to the x-axis. Also p(Ax) is either a vertical line
or a semicircular arc orthogonal to the z-axis.

Flowboxes. Let W, C U, W_ C V, Wy C A be intervals containing the identity
(we have identified all three subgroups with R). By a flowboz we mean a subset of G
of the form W_WyW ., or one of its right translates by g € G. Clearly, W_W W g
is an open set containing g. (Recall that in our conventions, right multiplication
by ¢ is an isometry).
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2.2. An elementary non-divergence result. Much more is proved in [KI11].

LEMMA 2.2. There exists an absolute constant €9 > 0 such that the following
holds: Suppose A € Lo is a unimodular lattice. Then A cannot contain two linearly
independent vectors each of length less than €.

Proof. Let v; be the shortest vector in A, and let vo be the shortest vector in
A linearly independent from v;. Then v; and vy span a sublattice A’ of A. (In
fact A’ = A but this is not important for us right now). Since A is unimodular,
this implies that Vol(R?/A’) > 1. But Vol(R?/A’) = |jv1 x va|| < ||v1]||Jvz]. Hence
[lv1][Jvz]] > 1, so the lemma holds with ¢y = 1. O

Remark. In general ey depends on the choice of norm on R2.

The following lemma is a simple “nondivergence” result for unipotent orbits:

LEMMA 2.3. Suppose A € Ly is a unimodular lattice. Then at least one of the
following holds:

(a) A contains a horizontal vector.
(b) There exists t > 0 such that a; *A € La(e).

Proof. Suppose A does not contain a horizontal vector, and A & Ls(€g). Then A
contains a vector v with ||v]| < €. Since v is not horizontal, there exists a smallest
to > 0 such that ||a; 'v|| = €o. Then by Lemma 2.2 for ¢ € [0, 0], a; *A contains no
vectors shorter then ey (other then a; 'v and possibly its multiples). In particular
ay,' A, contains no vectors shorter then eg. This means a;,' A € L (o). O

Remark. We note that Lemma 2.2 and thus Lemma 2.3 are specific to dimension
2.

2.3. The classification of U-invariant measures. Note that for A € Lo,
the U-orbit of A is closed if and only if A contains a horizontal vector. (The
horizontal vector is fixed by the action of U). Any closed U-orbit supports a U-
invariant probability measure. All such measures are ergodic.

Let v denote the Haar measure on L3 = G/I'. The measure v is normalized so
that v(L2) = 1. Recall that v is ergodic for both the horocycle and the geodesic
flows (this follows from the Moore ergodicity theorem, see e.g. [BM]).

Our main goal in this lecture is the following:

THEOREM 2.4. Suppose i is an ergodic U-invariant probability measure on Lo.
Then either u is supported on a closed orbit, or u is the Haar measure v.

Proof. Let £, C Lo denote the set of lattices which contain a horizontal vector.
Note that the set £} is U-invariant.

Suppose u is an ergodic U-invariant probability measure on L£5. By ergodicity
of p, p(LL) = 0 or pu(Ly) = 1. If the latter holds, it is easy to show that p is
supported on a closed orbit. Thus we assume (L) = 0 and we must show that
w=uv.

Suppose not. Then there exists a compactly supported continuous function
f:Ls — Rand e > 0 such that
(7) fan~ [ fav

[,2 [/2

> €.
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Since f is uniformly continuous, there exists a neighborhoods of the identity Wj C A
and W’ C V such that for a € W, v € W/ and A" € L,,

(8) |[f(vaA”) = f(A")] < ¢/3.

Recall that 7 : G — G/T" & L, denotes the natural projection. Since La(eg) is
compact the injectivity radius on La(€g) is bounded from below, hence there exist
Wy CcU, Wy C A, W_ C V so that for any g € G with 7(g) € Lo, the restriction
of 7 to the flowbox W_W,W_ g is injective. We may also assume that W_ C W~
and Wy C W{. Let 6 = v(W_WyW, ) denote the Lebesque measure of the flowbox.

By Lemma 1.14 applied to the Lebesque measure v, there exists a set £ C Lo
with v(E) < § and 71 > 0 such that for any interval I with |I| > T} and any
A" ¢ E,

) ‘ﬁ/lf(utA’)dt—/ﬁzfdu

Now let A be a generic point for U (in the sense of the Birkhoff ergodic theo-
rem). This implies that there exists To > 0 such that for any interval I containing
the origin of length greater then T,

1 €
- A)di — <
(10) ‘m/lf(ut ) dt /Ezfdu‘<3

Since p(Ly) = 0, we may assume that A does not contain any horizontal vectors.
Then by repeatedly applying Lemma 2.3 we can construct arbitrarily large ¢ > 0
such that

(11) a; 'A € Ly(e).

Now suppose t is such that (11) holds, and consider the set Q = a;W_ WOWJra;lA.
Then @ can be rewritten as

Q = (aW_a; " YWo(a:Wya; ')A

<<
3

(so when t is large, @ is long in the U direction and short in A and V' directions.)
The set @ is an embedded copy of a flowbox in Lo, and v(Q) = .

If ¢ is sufficiently large and W_, Wy and W, are sufficiently small, it is possible
to find for each A’ € @ intervals I(A’) C R and I(A) C R with the following
properties: |I(A")| > max(Ty,Ts), [I(A)| > max(Ty,T>) and

1 ) 1
T 7008 T T
(this says that the integral of f over a suitably chosen interval of each U-orbit is
nearly the same).

Since v(F) < § and v(Q) = J, there exists A’ € @ N E°. Now (9) holds with
I = I(A’), and (10) holds with I = I(A). These estimates together with (12)
contradict (7). O

(12) < %

Remarks.
e The above proof works with minor modifications if I is an arbitrary lattice
in SL(2,R) (not just SL(2,Z)).
e If " is a uniform lattice in SL(2,R) then the horocycle flow on G/T is
uniquely ergodic. This is a theorem of Furstenberg [F].
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e The proof of Theorem 2.4 does not generalize to classification of measures
invariant under a one-parameter unipotent subgroup on e.g. L£,, n > 3.
Completely different ideas are needed. (I will introduce some of them in
the next lecture).

Horospherical subgroups and a theorem of Dani. The key property of U
in dimension 2 which is used in the proof is that U is horospherical, i.e. that it is
equal to the set contracted by a one-parameter diagonal subgroup. (One-parameter
unipotent subgroups are horospherical only in SL(2,R)). An argument similar in
spirit to the proof of Theorem 2.4 can be used to classify the measures invariant
under the action of a horospherical subgroup. This is a theorem of Dani [Dan2]
(which was proved before Ratner’s measure classification theorem). However, the
details, and in particular the non-divergence results needed are much more compli-
cated.
The horospherical case also allows for an analytic approach, see e.g. [Bul].

3. The case of SL(2,R) x R2.

In this section we will outline a proof of Ratner’s measure classification theorem
Theorem 1.11 in the special case G = SL(2,R) x R2, T' = SL(2,Z) x Z*. We will be
following the argument of Ratner [Ral, Ra2, Ra3, Ra4, Ra5, Ra6] and Margulis-
Tomanov [MT]. An introduction to these ideas can be found in the books [Mor],
and also [BM]. Another exposition of a closely related case is in [EMaMo).

Let X = G/T. Then X can be viewed as a space of pairs (A,v), where A
is a unimodular lattice in R? and v is a marked point on the torus R?/A. (We
remove the translation invariance on the torus R?/A since we consider the origin
as a special point. Alternatively we consider a pair of marked points, and use the
translation invariance of the torus to place one of the points at the origin). X is
thus naturally a fiber bundle where the base is L5 and the fiber above the point
A € Ly is the torus R?/A. (X is also sometimes called the universal elliptic curve).

The action of SL(2,R) C G on X is by left multiplication. It amounts to

g-(A,v) = (g4, gv).

The action of the R? part of G on X is by translating the marked point, i.e for
w e R w-(A,v) = (A, w+v). Let U be the subgroup of SL(2,R) defined in §2.1.
In this lecture our goal is the following special case of Theorem 1.11:

THEOREM 3.1. Let u be an ergodic U-invariant measure on X. Then p is
algebraic.

Let p be an ergodic U-invariant measure on X. Let m; : X — Ly denote
the natural projection (i.e. m1(A,v) = A). Then 7} (p) is an ergodic U-invariant
measure on L£o. Thus by Theorem 2.4, either 7} () is supported on a closed orbit
of U, or mi(u) is the Haar measure v on Lo. The first case is easy to handle, so in
the rest of this section we assume that 77 () = v. Then we can disintegrate

du(A,v) = dv(A)dAa(v)

where A (v) is some probability measure on the torus R?/A.
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3.1. Finiteness of the fiber measures. Many of the ideas behind the proof
of Ratner’s measure classification theorem Theorem 1.11 can be illustrated in the
proof of the following:

PROPOSITION 3.2. Fither pu is Haar measure on X, or for almost all A € Lo,
the measure Aa is supported on a finite set of points.

We will give an almost complete proof of Proposition 3.2 in this subsection,
and then indicate how to complete the proof of Theorem 3.1 in the next subsection.

The subgroups U,V,A,H, and W. Let U, V, A be the subgroups of SL(2,R)
defined in §2.1. We also give names to certain subgroups of the R? part of G. In
particular, let H = {hs, s € R} be the subgroup of G whose action on X is given

by hs(A,v) = (Av+s (é)), and W = {w,,r € R} be the subgroup of G whose

action on X is given by w,.(A,v) = (A,v+7r (1) ). The action of H is called the
horizontal flow and the action of W the vertical flow.

Action of the centralizer. A key observation is that H commutes with U (and
so the action of H commutes with the action of U). This implies that if p is
an ergodic U-invariant measure, so is hsp for any hy € H. (See the discussion
preceeding Lemma 1.7).

Thus, either p is invariant under H or there exists s € R such that hgspu is
distinct from p. Suppose p is invariant under H. Then so are the fiber measures
Aa for all A € L£5. Then by Exercise 1 (b), for v-almost all A € L, Aa is the
Lebesque measure on R?/A. Thus u coincides with Haar measure on X for almost
all fibers. Then by the ergodicity of y we can conclude that p is the Haar measure
on X.

Thus, Proposition 3.2 follows from the following:

PROPOSITION 3.3. Suppose u is not H-invariant. Then for almost all A € Lo,
the measure Aa is supported on a finite set of points.

The element h and the compact set K. From now on, we assume that y is not
H-invariant. Then there exists hy, € H such that hs,pu # p. (We may assume that
hs, is fairly close to the identity). Since hg,p and p are both ergodic U-invariant
measures, by Lemma 1.6 we have hg it L p1. Thus the sets of generic points of 1 and
hsypt are disjoint. It follows from Lemma 1.7 that there exists § > 0 and a subset
Q C X with u(Q) = 1 such that hsQNQ = O for all s € (s9—dsp, so]. It follows that
there exists a compact set K with p(K) > 0.999 such that for all s € [(1—dp)so, So,
hsK N K = . Since K is compact and the action of H is continuous, there exist
€ > 0 and § > 0 such that

(13) dhs K, K) > ¢ for all s € [(1 — d)so, o]

The set Q,. In view of Lemma 1.14 (with f the characteristic function of K), for
any p > 0 we can find a set Q, with u(Q,) > 1 — p and Ty > 0 such that for all
T > 1Ty and all p € Q, we have

(14) %\{t €[0,7T] : wzxre€ K} >1-(0.01)5
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Shearing. Suppose p = (A,v) and p’ = (A,v’) are two nearby points in the same
fiber. We want to study how they diverge under the action of U. Note that wu:p
and u;p’ are always in the same fiber (i.e. 7 (uwp) = m(uep’) = ugA), but within
the fiber ;' (u;A) they will slowly diverge. More precisely, if we let v = (z,y) and
v = (2',y’) we have
ut — v = (2 —x +tly —y),y —y).

Note that if y = ¢’ (i.e. p and p’ are in the same orbit of H) then u;p and ugp’ will
not diverge at all.

Now suppose y # y'. We are considering the regime where |2’ — x|, |y — y|
are very small, but ¢ is so large that d(p,p’) is comparable to 1 (this amounts to

|t(y' — y)| comparable to 1). Under these assumptions, the leading divergence is
along H, i.e.

(15) up’ = houp + small error
where s = t(y' — y).

LEMMA 3.4. Suppose that for some positive measure set of A € Lo, the support
of Aa is infinite. Then for any p > 0 we can find A € Lo and a sequence of points
Pn = (A, (zn,Yn)) € Q, which converge to p = (A, (z,y)) € Q, so that y, # y for
alln.

We postpone the proof of this lemma (which is intuitively reasonable anyway).

Proof of Proposition 3.3. Suppose the conclusion of Proposition 3.3 is false, so
that for some positive measure set of A € Lo, the support of Aa is infinite. Then
Lemma 3.4 applies.

Let T,, = so/(yn — v). Then by (15) we have for ¢ € [(1 — )Ty, Ty],

(16) d(ugpn, hsup) < €,, where s =t/(y' —y).

and €, — 0 as n — oco. If n is sufficiently large, then T, > Ty where Tj is as in
the definition of €2,. Then (14) applies to both p and p,, and we can thus find
t € [(1-96)T,,T,] such that wp, € K and also uyp € K. Then s =t/(y —y) €
[(1 — dp)s0, so], and so (16) contradicts (13). O

Proof of Lemma 3.4. Suppose that for some positive measure set of A € Lo, the
support of Aa is infinite. Then (by the ergodicity of the action of U on Ls), the
support of Aa is infinite for almost all fibers A.

Suppose for the moment that the support of Aa is countable for almost all
A, so A is supported on a sequence of points p, with weights A,,. But then the
collection of points with the same weight is a U-invariant set, so by ergodicity of p
all the points must have the same weight. Thus, since Aa is a probability measure
if the support of Aa is countable it must be finite.

Hence we may assume that the support of Aa is uncountable. Then so is Q,NAa
for almost all A. Since any uncountable set contains one of its accumulation points,
we may construct a sequence p,, € §2, with p, — p, where p € Q,. It only remains
to verify that if we write p, = (A, (zn,yn)) and p = (A, (z,y)) then we can ensure
Yn 7 Y-

If it is not possible to do so, then it is easy to see that the support of Aa is
contained in a finite union of H-orbits. Thus given a < b we can define a function
u((A,v)) = Aa({hsv : s € [a,b]}). This function is U-invariant hence constant
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for each choice of [a,b]. It is easy to conclude from this that the support of Aa
must be finite. ([

3.2. Outline of the Proof of Theorem 3.1. The following general lemma
is a stronger version of Lemma 1.14:

LEMMA 3.5 (cf. [MT, Lem. 7.3]). Suppose ¢y : X — X is a flow preserving an
ergodic probability measure u. For any p > 0, there is a “uniformly generic set” Q,
in X, such that

(1) (@) >1—p,
(2) for every e > 0 and every compact subset K of X, with u(K) > 1 — ¢,
there exists Ly € RT, such that, for all z € Q, and all L > Lo, we have

{tel[-L L[ d(¢i(x), K) <€} > (1—€)(2L).

Outline of proof. This is similar to that of Lemma 1.14, except that one also
chooses a countable basis of functions and approximates K by elements of the
basis. [

We now return to the setting of §3. Let u be an ergodic invariant measure for
the action of U on X = G/T = (SL(2, R) x R?)/(SL(2,Z) x Z?). For any p > 0 we
chose a “uniformly generic” set €2, for u as in Lemma 3.5.

The argument of §3.1 is the basis of the following more general proposition
(which we state somewhat imprecisely):

PROPOSITION 3.6. Suppose Q is a subgroup of G normalizing U, and suppose
that for any p > 0 we can find sequences p, and p), in Q, such that d(pn,p),) — 0,
and under the action of U the leading transverse divergence of the trajectories uspy,
and ugp), is in the direction of Q (i.e the analogue of (15) holds with q € Q instead
of h € H).

Then the measure p is Q-invariant.

Remark. The analogous statement for unipotent flows is a cornerstone of the
proof of Ratner’s Measure Classification Theorem [Ra5, Lem. 3.3], [MT, Lem. 7.5],
[Mor, Prop. 5.2.4'].

Remark. For two points in the same fiber, the leading divergence is always along
H (if the points diverge at all). For an arbitrary pair of nearby points in X this is
not the case.

Remark. It is possible that the leading direction of divergence is along U. In that
case we want to consider the leading “transverse” divergence. In other words we
compare u;p, and uyp), where ¢’ is chosen to cancel the divergence along U (i.e.
one trajectory waits for the other). In that case we say that the leading transverse
divergence is along @ if for some g € @,

WPn = quyp,, + small error
Remark. To prove Proposition 3.6 we must use Lemma 3.5 instead of Lemma 1.14

as in §3.1 because we must choose 2, before we know what subgroup @ (and thus
what compact set K) we will be dealing with.

We now continue the proof of Theorem 3.1. We assume that p projects to Haar
measure on Ly, but that p is not Haar measure.
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PROPOSITION 3.7. The measure u is invariant under some subgroup of AH
other then H.

Proof. Choose ), as in Lemma 3.5, with p = 0.01. By Proposition 3.2, the
measure on each fiber is supported on a finite set. Also we are assuming that p
projects to Haar measure on L£o. Then it is easy to see that there exist p € Q,,
{vn} € V ~{e}, and {w,} C HW, such that p, = vywp,p € Q,, v, — €, and
Wy — €.

It is not difficult to compute that (after passing to a subsequence), the leading
direction of divergence of u;p, and wu;p is a one-parameter subgroup ) which is
contained in AH. Then by Proposition 3.6, y is invariant under ). By §3.1, we
have Q # H. O

Invariance under A. Any one-parameter subgroup @ of AH other then H is
conjugate to A (via an element of H). Thus, by replacing p with a translate
under H, we may (and will) assume p is A-invariant.

Note. At this point we do not know that p is A-ergodic.

ProproOSITION 3.8 (cf. [MT, Cor. 8.4], [Mor, Cor. 5.5.2]). There is a conull
subset Q of X, such that
QNVWp=QnVp,

for all p € Q.

Proof. Let Q be a generic set for for the action of A on X; thus, 2 is conull and,
for each p € Q,

atp € Q, for most t € RY.
(The existence of such a set follows e.g. from the full version of the Birkhoff
ergodic theorem, in which one does not assume ergodicity). Given p,p’ € Q, such
that p’ = vwp with v € V and w € W, we wish to show w = e.

Choose a sequence t, — oo, such that a;,p and a;,p’ each belong to Q,.
Because t,, — oo and VW is the foliation that is contracted by ag+, we know that
a_y, (vw)ay, — e. Furthermore, because A acts on the Lie algebra of V' with twice
the weight that it acts on the Lie algebra of W, we see that

la—t,vas, ||/la—t,way, || — 0.

Thus p), = a_;,p'as, approaches p, = a_¢, pa;, from the direction of W.

If two points p/, and p,, approach each other along W, then an easy compu-
tation shows that wu¢p, and w.p), diverge along H. (This observation motivates
Proposition 3.8). Thus by Proposition 3.6 x4 must be invariant under H. But this
impossible by §3.1 (since we are assuming that p is not Haar measure). ([

We require the following entropy estimate, (see [EL] for a proof).

LEMMA 3.9 (cf. [MT, Thm. 9.7], [Mor, Prop. 2.5.11]). Suppose W is a closed
connected subgroup of VW that is normalized by a € AT, and let
J(a’l, W) = det((Ad a71)|Licw)
be the Jacobian of a=* on W.
(1) If p is W-invariant, then h,(a™t') >log J(a™t, W).
(2) If there is a conull, Borel subset Q of X, such that QN VWp C Wp, for
every p € Q, then h,(a™') <logJ(a™ 1, W).
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(3) If the hypotheses of 2 are satisfied, and equality holds in its conclusion,
then w is W-invariant.

PropPoOSITION 3.10 (cf. [MT, Step 1 of 10.5], [Mor, Prop. 5.6.1]). u is V-
muariant.

Proof. From Lemma 3.9(1), with a~! in the role of a, we have
log J(a,U) < hy(a).
From Proposition 3.8 and Lemma 3.9(2), we have
hu(a™t) <logJ(a', V).

Combining these two inequalities with the facts that

e h,(a) =h,(a"') and
e J(a,U)=J(a V),

we have
log J(a,U) < hy(a) = hy(a™t) <log J(a™*,V) =log J(a,U).

Thus, we must have equality throughout, so the desired conclusion follows from
Lemma 3.9(3). O

PROPOSITION 3.11. p is the Lebesgue measure on a single orbit of SL(2,R) on
X.

Proof We know:

e U preserves u (by assumption),
e A preserves p (by Proposition 3.7) and
e V preserves u (by Proposition 3.10).

Since SL(2,R) is generated by U, A and V, p is SL(2,R) invariant. Because
SL(2,R) is transitive on the quotient £4 and the support of x4 on each fiber is finite
(see Proposition 3.2), this implies that some orbit of SL(2, R) has positive measure.
By ergodicity of U, then this orbit is conull. O

This completes the proof of Theorem 3.1.

4. Linearization and ergodicity

4.1. Non-ergodic measures invariant under a unipotent. The collec-
tion H. (Up to conjugation, this should be the collection of groups which appear
in the definition of algebraic measure).

Let G be a Lie group, I' a discrete subgroup of G, and 7 : G — G/T" the natural
quotient map. Let H be the collection of all closed subgroups F' of G such that
FNT is a lattice in F' and the subgroup generated by unipotent one-parameter
subgroups of G contained in F' acts ergodically on n(F) = F/(F NT') with respect
to the F-invariant probability measure.

PROPOSITION 4.1. The collection H 1is countable.
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Proof. See [Ra6, Theorem 1.1] or [DM4, Proposition 2.1] for different proofs of
this result. g

Let U be a unipotent one-parameter subgroup of G and F' € H. Define
N(F,U) = {9€eG:UcCgFg '}
S(F,U) = |J{NWF.U):F' €M, F' CF, dimF <dimF}.

LEMMA 4.2. ([MS, Lemma 2.4]) Let g € G and F € H. Then g € N(F,U) \
S(F,U) if and only if the group gFg~" is the smallest closed subgroup of G which
contains U and whose orbit through w(g) is closed in G/T'. Moreover in this case the
action of U on gn(F) is ergodic with respect to a finite gF g~'-invariant measure.

As a consequence of this lemma,
(17) m(N(F,U)\ S(F,U)) ==(N(F,U))\ n(S(F,U)), VE € H.

Ratner’s theorem [Ra6] states that given any U-ergodic invariant probability
measure on G/T', there exists F € H and g € G such that u is g~!Fg-invariant
and p(m(F)g) = 1. Now decomposing any finite invariant measure into its ergodic
component, and using Lemma 4.2, we obtain the following description for any U-
invariant probability measure on G/T" (see [MS, Theorem 2.2]).

THEOREM 4.3 (Ratner). Let U be a unipotent one-parameter subgroup of G
and p be a finite U-invariant measure on GJ/T'. For every F' € H, let up denote
the restriction of p on w(N(F,U)\ S(F,U)). Then pp is U-invariant and any U -
ergodic component of ur is a gFg~l-invariant measure on the closed orbit gm(F)
for some g € N(F,U)\ S(F,U).

In particular, for all Borel measurable subsets A of G/T,

wA) = Y ur(A),
FeH*
where H* C H is a countable set consisting of one representative from each T'-
conjugacy class of elements in H.

Remark. We will often use Theorem 4.3 in the following form: suppose p is any U-
invariant measure on G/T" which is not Lebesque measure. Then there exists F' € H
such that u gives positive measure to some compact subset of N(F,U) \ S(F,U).

4.2. The theorem of Dani-Margulis on uniform convergence. The “lin-
earization” technique of Dani and Margulis was devised to understand which mea-
sures give positive weight to compact subsets subsets of N(F,U) \ S(F,U). Using
this technique Dani and Margulis proved the following theorem (which is important
for many applications, in particular §5):

THEOREM 4.4 ([DM4], Theorem 3). Let G be a connected Lie group and let T
be a lattice in G. Let pu be the G-invariant probability measure on G/T'. Let U =
{us} be an Ad-unipotent one-parameter subgroup of G and let f be a bounded con-
tinuous function on G/T. Let D be a compact subset of G/T' and let € > 0 be given.
Then there exist finitely many proper closed subgroups Fy = Fy(f,D,¢€), -, Fx =
F.(f,D,¢) such that F; NT is a lattice in F; for all i, and compact subsets C; =
Ci(f,D,e),-+- ,Cxr = Cr(f,D,€) of N(F1,U),- -+, N(Fy,U) respectively, for which
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the following holds: For any compact subset K of D —|J,<;<, 7(C;) there exists a
To > 0 such that for all z € K and T > Ty T

(18) ‘;,/OTf(utx) dt—/G/Ffdu‘ <e

Remarks.

e This theorem can be informally stated as follows: Fix f and € > 0. Then
(18) holds (i.e. the space average of f is within € of the time average of f)
uniformly in the base point z, as long as x is restricted to compact sets
away from a finite union of “tubes” N(F,U). (The N(F,U) are associated
with orbits which do not become equidistributed in G/I", because their
closure is strictly smaller.)

e It is a key point that only finitely many Fj, are needed in Theorem 4.4.
This has the remarkable implication that if F' € H but not one of the Fj,
then (18) holds for z € N(F,U) even though Uz is not dense in G/I" (the
closure of Uz is Fz). Informally, this means the non-dense orbits of U
are themselves becoming equidistributed as they get longer.

A full proof of Theorem 4.4 is beyond the scope of this course. However, we
will describe the “linearization” technique used in its proof in §4.3.

4.3. Ergodicity of limits of ergodic measures. In this subsection we are
following [MS], which refers many times to [DM4].
Let P(G/T) be the space of all probability measures on G/T.

THEOREM 4.5 (Mozes-Shah). Let U; be a sequence of unipotent one-parameter
subgroups of G, and for each i, let pu; be an ergodic U;-invariant probability measure
on GJT. Suppose u; — p in P(G/T'). Then there exists a unipotent one-parameter
subgroup U such that p is an ergodic U-invariant measure on G/T". In particular,
W is algebraic.

Remarks.

o Let Q(G/T) C P(G/T') denote the set of measures ergodic for the action
of a unipotent one-parameter subgroup of G, and let Qy(G/T') denote
Q(G/T') union the zero measure. If combined with the results of [K11,
§3], Theorem 4.5 shows that Qy(G/T") is compact.

e The theorem actually proved by Mozes and Shah in [MS] gives more
information about what kind of limits of ergodic U-invariant measures
are possible. Here is an easily stated consequence:

Suppose x; € G/T' converge to 2o, € G/I', and also x; € Uz, For
i € NU{oo} let p; be the algebraic measures supported on Ux;, so that
the trajectories Ux; are equidistributed with respect to the measures u;.
Then p; = foo-

We now give some indication of the proof of Theorem 4.5. Let U, u;, i be as
in Theorem 4.5. Write U; = {u;(t) }ter.

Invariance of y under a unipotent.

LEMMA 4.6. Suppose U; # {e} for all large i € N. Then p is invariant under
a one-parameter unipotent subgroup of G.
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Proof. For each ¢ € N there exists w; in the Lie algebra g of G, such that
lwi]| = 1 and U; = {exp(tw;),t € R}. (Here || - | is some Euclidean norm on
g). By passing to a subsequence we may assume that w; — w for some w € g,
|lw|| = 1. For any ¢ € R we have Ad(exp(tw;)) — Ad(exp(tw)) as i — co. Note that
Ad(exp(tw)) is unipotent, since the set of unipotent matrices is closed (consider e.g.

the characteristic polynomial). Therefore U = {exp(tw) : t € R} is a nontrivial
unipotent subgroup of G. Since exptw; — exptw for all ¢t and u; — pu, it follows
that p is invariant under the action of U on G/T. g

Application of Ratner’s measure classification theorem. We want to ana-
lyze the case when the limit measure y is not the G-invariant measure. By Ratner’s
description of y as in Theorem 4.3, there exists a proper subgroup F € H, ¢y > 0,
and a compact set Cy C N(F,U) \ S(F,U) such that u(n(Cy)) > e9. Thus for
any neighborhood ® of 7(C}), we have u;(®) > ¢y for all large i € N. Thus the
unipotent trajectories which are equidistributed with respect to the measures p;
spend a fixed proportion of time in ®.

Linearization of neighborhoods of singular subsets. Let F € H. Let g
denote the Lie algebra of G and let f denote its Lie subalgebra associated to F.
For d = dimf, put Vp = A%, the d-th exterior power, and consider the linear G-
action on Vg via the representation A% Ad, the d-th exterior power of the Adjoint
representation of G on g. Fix pp € A%\ {0}, and let nr : G — Vg be the map
defined by nr(g) = g-pr = (A Adg) - pr for all g € G. Note that

nr~(pr) = {g € Na(F) : det(Ad ) = 1}.

Remark. The idea of Dani and Margulis is to work in the representation space
Vi (or more precisely Vi, which is the quotient of Vz by the involution v — —v)
instead of G/T". In fact, for most of the argument one works only with the oribit
G-pr C Vp. The advantage is that F' is collapsed to a point (since it stabilizes pr).
The difficulty is that the map np : G — Vi is not T-equivariant, and so becomes
multivalued if considered as a map from G/T" to V.

PROPOSITION 4.7 ([DM4, Theorem 3.4]). The orbit T - pp is discrete in V.
Remark. In the arithmetic case the above proposition is immediate.

PROPOSITION 4.8. ([DMA4, Prop. 3.2]) Let Ap be the linear span of np (N (F,U))
in V. Then
nr~(Ap) = N(F,U).

Let Ng(F') denote the normalizer in G of F. Put I'p = Ng(F)NT. Then for
any v € I'p, we have ym(F) = w(F'), and hence v preserves the volume of 7 (F').
Therefore | det(Ad~v|s)| = 1. Hence v - pp = £pp. Now define

Vi = { Vrp/{ld,-1d} if 'r-pr = {pr, —pr}
Vr it I'r-pr=pr
The action of G factors through the quotient map of Vi onto V. Let pr denote
the image of pp in Vi, and define nr G — Vi as fr(g) = g - pr for all g € G.
Then I'r = 7~ (pr) NT. Let Ap denote the image of Ar in Vp. Note that the
inverse image of Ar in Vi is Ap.
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For every z € G/T, define the set of representatives of = in V¢ to be
Rep(x) = jp(n~ ! (2)) = qp(2T) C Vp.

Remark. If one attempts to consider the map 7jp : G — Vr as a map from G/ I" to
VF, one obtains the multivalued map which takes z € G/T to the set Rep(z) C V.
The following lemma allows us to understand the map Rep in a special case:

LEMMA 4.9. Ifx =n(g) and g € N(F,U)\ S(F,U)
Rep(z) N Ar = {g-pr}.

Thus x has a single representative in Ap C Vp.

Proof. Indeed, using Proposition 4.8,
Rep(m(g)) N Ar = (9T N N(F,U)) - pr

Now suppose vy € I is such that gy € N(F,U). Then g belongs to N(yFy~!,U) as
well as N(F,U). Since g € S(F,U), we must have yFy~! = F, s0 v € I'r. Then
Ypr = Ppr, 80 (gU N N(F,U)) - pr ={g - pr} as required. O

We extend this observation in the following result (cf. [Shal, Prop. 6.5]).

PROPOSITION 4.10 ([DM4, Corollary 3.5]). Let D be a compact subset of Ap.
Then for any compact set K C G/T'\ w(S(F,U)), there exists a neighborhood ® of
D in Vg such that any x € K has at most one representative in .

Remark. This proposition constructs a “fundamental domain” @ around any
compact subset D of Ap, so that for any = in a compact subset of G/I" away from
w(S(F,U)), Rep(z) has at most one element in ®. Using this proposition, one can
uniquely represent in ® the parts of the unipotent trajectories in G/T" lying in K.

PROPOSITION 4.11 ([DM4, Proposition 4.2]). Let a compact set C C Ap and
an € > 0 be given. Then there exists a (larger) compact set D C Ap with the
following property: For any neighborhood ® of D in Vi there exists a neighborhood
U of C in Vg with ¥ C ® such that the following holds: For any unipotent one
parameter subgroup {u(t)} of G, an element w € Vg and and interval I C R, if
u(to)w & ® for some ty € I then,

(19) {tel : uwel)|<e |{tel : ult)we d}|.

Proof. This is a “polynomial divergence” estimate similar to these in [K11, §2]
and [KI1, §3] O

PROPOSITION 4.12. Let € > 0, a compact set K C G/T' \ n(S(F,U)), and a
compact set C C Ap be given. Then there exists a neighborhood ¥ of C' in Vi such
that for any unipotent one-parameter subgroup {u(t)} of G and any x € G/T, at
least one of the following conditions is satisfied:

(1) There exists w € Rep(z) NV such that {u(t)} C Gy, where G, = {g €
G : gw=w}.
(2) For all large T > 0,

{t € [0,T]: u(t)x € K Nw(fp'(V))}] < €T.
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Figure 1. Proposition 4.11.

Proof. Let a compact set D C Ap be as in Proposition 4.11. Let ® be a given
neighborhood of D in Vi. Replacing ® by a smaller neighborhood of D, by Propo-
sition 4.10 the set Rep(z) N ® contains at most one element for all x € K. By the
choice of D there exists a neighborhood ¥ of C' contained in ¢ such that equa-
tion (19) holds.

Now put Q = (7' (¥)) N K, and define
(20) E={t>0 : u(t)z € Q}.
Let t € E. By the choice of ®, there exists a unique w € Vp such that Rep(u(t)z) N
O = {u(t)w}.

Since s — u(s)w is a polynomial function, either it is constant or it is un-
bounded as s — +oo. In the first case condition 1) is satisfied and we are done.

Now suppose that condition 1 does not hold. Then for every t € E, there exists a
largest open interval I(t) C (0,7") containing ¢ such that

(21) u(s)w € & for all s € I(t).

Put Z = {I(t) : t € E}, Then for any I; € Z and s € I; N E, we have I(s) = I.
Therefore for any t1,ty € E, if t; < to then either I(¢t1) = I(t2) or I(t1) NI(t2) C
(t1,t2). Hence any ¢t € [0,7] is contained in at most two distinct elements of 7.
Thus

(22) > | <er.
IeT
Now by equations (19) and (21), for any t € E,
(23) {seI(t):u(s)we T} <e-|I(t).
Therefore by equations (22) and (23), we get
Bl <e- Y |1 < (20T,
IeT
which is condition 2 for 2¢ in place of e. O
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Outline of Proof of Theorem 4.5. Suppose p is not Haar measure on G/T". By
Lemma 4.6 p is invariant under some one-parameter unipotent subgroup p. Then
by Theorem 4.3 there exists F' € H such that pu(N(F,U)) > 0 and u(S(F,U)) = 0.
Thus there exists a compact subset Cy of N(F,U) \ S(F,U) and a > 0 such that

(24) w(mw(Cy)) > o

Take any y € 7w(Cy). It is easy to see that for each ¢ € N there exists y; €
supp(p;) such that {w;(¢)y;} is uniformly distributed with respect to p;, and also
y; = y as i — oo. Let h; — e be a sequence in G such that h;y; = y for all ¢ € N.

We now replace p; by p) = hiju;. We still have p; — p, but now we also have
y € supp(u}) for all i. Let w)(t) = hsu;(t)h;*. Then the trajectory {ul(t)y} is
uniformly distributed with respect to p}.

We now apply Proposition 4.12 for C = 7jp(C4) and € = a/2. We can choose a
compact neighborhood K of 7(C4) such that KNS(F,U) = 0. Put Q = 7(7," (¥))N
K. Since p} — u, due to (24) there exists ko € N such that p}(2) > € for all i > kq.
This means that Condition 2) of Proposition 4.12 is violated for all i > kg. Therefore
according to condition 1) of Proposition 4.12, for each i > ko,

{ui(t)yher C Guy,

where G,, is as in Proposition 4.12. By Proposition 4.7, G,y is closed in G/T".
The rest of the proof is by induction on dimG. If dimG, < dimG then
everything is taking place in the homogeneous space G,,y, and therefore p is ergodic
by the induction hypothesis. If dimG, = dimG then G,, = G and hence F
is a normal subgroup of G. In this case one can project the measures to the
homogeneous space G/(FT') and apply induction. a

5. Oppenheim and Quantitative Oppenheim

5.1. The Oppenheim Conjecture. Let Q be an indefinite nondegenerate
quadratic form in n variables. Let Q(Z™) denote the set of values of @ at integral
points. The Oppenheim conjecture, proved by Margulis (cf. [Mar3]) states that if
n > 3, and @ is not proportional to a form with rational coefficients, then Q(Z™)
is dense. The Oppenheim conjecture enjoyed attention and many studies since it
was conjectured in 1929 mostly using analytic number theory methods.

In the mid seventies Raghunathan observed a remarkable connection between
the Oppenheim Conjecture and unipotent flows on the space of lattices £, =
SL(n,R)/SL(n,Z). It can be summarized as the following:

OBSERVATION 5.1 (Raghunathan). Let @ be an indefinite quadratic form Q
and let H = SO(Q) denote its orthogonal group. Consider the orbit of the standard
lattice Z™ € L,, under H. Then the following are equivalent:

(a) The orbit HZ™ is not relatively compact in L.
(b) For all € > 0 there exists u € Z™ such that 0 < |Q(u)] < e.
(c) The set Q(Z") is dense in R.

Proof. Suppose (a) holds, so some sequence hiZ™ leaves all compact sets. Then in
view of the Mahler compactness criterion there exist vg € hiZ"™ such that ||vg| — 0.
Then also by continuity, Q(vi) — 0. But then hj'v, € Z", and Q(hy'vk) =
Q(v) — 0. Thus (b) holds.
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It is easy to see that (b) implies (a). It is also possible to show that (b) implies
(c). O

The Oppenheim Conjecture, the Raghunathan Conjecture and Unipo-
tent Flows. Raghunathan also explained why the case n = 2 is different: in
that case H = SO(Q) is not generated by unipotent elements. Margulis’s proof of
the Oppenheim conjecture, given in [Mar 2-4] uses Raghunathan’s observation.
In fact Margulis showed that that any relatively compact orbit of SO(2,1) in
SL(3,R)/SL(3,Z) is compact; this implies the Oppenheim Conjecture.

Raghunathan also conjectured Theorem 1.13. In the literature it was first stated
in the paper [Dan2] and in a more general form in [Mar3] (when the subgroup U
is not necessarily unipotent but generated by unipotent elements). Raghunathan’s
conjecture was eventually proved in full generality by M. Ratner (see [Ra7]). Earlier
it was known in the following cases: (a) G is reductive and U is horospherical (see
[Dan2]); (b) G = SL(3,R) and U = {u(t)} is a one-parameter unipotent subgroup
of G such that u(t) — I has rank 2 for all ¢ # 0, where I is the identity matrix (see
[DM2]); (c¢) G is solvable (see [Stal] and [Sta2]). We remark that the proof given
in [Dan2] is restricted to horospherical U and the proof given in [Stal] and [Sta2]
cannot be applied for nonsolvable G.

However the proof in [DM2] together with the methods developed in [Mar 2-4]
and [DM1] suggest an approach for proving the Raghunathan conjecture in general
by studying the minimal invariant sets, and the limits of orbits of sequences of points
tending to a minimal invariant set. This strategy can be outlined as follows: Let
x be a point in G/T, and U a connected unipotent subgroup of G. Denote by
X the closure of Uz and consider a minimal closed U-invariant subset Y of X.
Suppose that Uz is not closed (equivalently X is not equal to Uz). Then X should
contain "many” translations of Y by elements from the normalizer N(U) of U not
belonging to U. After that one can try to prove that X contains orbits of bigger
and bigger unipotent subgroups until one reaches horospherical subgroups. The
basic tool in this strategy is the following fact. Let y be a point in X, and let g,
be a sequence of elements in G such that g,, converges to 1, g, does not belong to
N(U), and y, = gny belongs to X. Then X contains AY where A is a nontrivial
connected subset in N(U) containing 1 and ”transversal” to U. To prove this one
has to observe that the orbits Uy,, and Uy are ”almost parallel” in the direction of
N(U) most of the time in "the intermediate range”. (cf. Proposition 3.6).

In fact the set AU as a subset of N(U)/U is the image of a nontrivial rational
map from U into N(U)/U. Moreover this rational map sends 1 to 1 and also
comes from a polynomial map from U into the closure of G/U in the affine space V'
containing G/U. This affine space V is the space of the rational representation of
G such that V contains a vector the stabilizer of which is U (Chevalley theorem).

This program was being actively pursued at the time Ratner’s results were
announced (cf. [Sha3]).

5.2. A quantitative version of the Oppenheim Conjecture. References
for this subsection are [EMM1] and [EMMZ2].

In this section we study some finer questions related to the distribution of the
values of ) at integral points.

Let v be a continuous positive function on the sphere {v € R™ | ||v|| = 1}, and
let Q@ ={veR"||v| <v(v/|v])} We denote by T the dilate of Q by T". Define
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the following set:

V(gb)(R) ={zeR" |a<Qx)<b}
We shall use Vg5 = V(g b) when there is no confusion about the form Q. Also
let Viap)(Z) = V(f b)(Z) ={z €Z" | a< Q(x) <b}. The set TQNZ" consists
of O(T™) points, Q(T N Z™) is contained in an interval of the form [—uT?, uT?],

where p > 0 is a constant depending on @ and 2. Thus one might expect that for
any interval [a,b], as T — oo,

(25) Viap) (Z) NTQ| ~ cqalb—a)T"?

where cg o is a constant depending on @ and 2. This may be interpreted as
“uniform distribution” of the sets Q(Z™ NTK?) in the real line. The main result of
this section is that (25) holds if @ is not proportional to a rational form, and has
signature (p, q) with p > 3, ¢ > 1. We also determine the constant cg q.

If @ is an indefinite quadratic form in n variables, ) is as above and (a, b) is
an interval, we show that there exists a constant A = Ag o so that as T' — oo,

(26) Vol(Viap) (R) N TQ) ~ Ag.a(b—a)T" 2
The main result is the following:

THEOREM 5.2. Let Q be an indefinite quadratic form of signature (p,q), with
p >3 and q > 1. Suppose @ is not proportional to a rational form. Then for any
interval (a,b), as T — oo,

(27) Viap) (Z) NTQ| ~ Aga(b — a)T" 2
where n =p+q, and Ag o is as in (26).

The asymptotically exact lower bound was proved in [DM4]. Also a lower
bound with a smaller constant was obtained independently by M. Ratner, and by
S. G. Dani jointly with S. Mozes (both unpublished). The upper bound was proved
in [EMM1].

If the signature of @ is (2,1) or (2,2) then no universal formula like (25) holds.
In fact, we have the following theorem:

THEOREM 5.3. Let Qg be the unit ball, and let ¢ = 1 or 2. Then for every
e > 0 and every interval (a,b) there exists a quadratic form Q of signature (2,q)
not proportional to a rational form, and a constant ¢ > 0 such that for an infinite
sequence T; — oo,
[Via) (Z) N TQ| > T} (log Ty) ' ~*.

The case ¢ = 1, b < 0 of Theorem 5.3 was noticed by P. Sarnak and worked out
in detail in [Bre]. The quadratic forms constructed are of the form x? + 23 — a2,
or 23 + 23 — a(23 + 22), where « is extremely well approximated by squares of
rational numbers.

However in the (2,1) and (2,2) cases, one can still establish an upper bound
of the form ¢T'?logT. This upper bound is effective, and is uniform over compact
sets in the set of quadratic forms. We also give an effective uniform upper bound
for the case p > 3.

THEOREM 5.4 ([EMM1]). Let O(p,q) denote the space of quadratic forms of
signature (p,q) and discriminant +1, let n = p + ¢, (a,b) be an interval, and let
D be a compact subset of O(p,q). Let v be a continuous positive function on the
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unit sphere and let Q@ = {v € R | ||v]| < v(v/||v||)}. Then, if p > 3 there exists
a constant ¢ depending only on D, (a,b) and Q such that for any Q@ € D and all
T>1,

Vi) (Z)NTQ| < T2

If p=2and q =1 or q =2, then there exists a constant ¢ > 0 depending only on
D, (a,b) and Q such that for any Q € D and all T > 2,

Viapy NTQNZ" < T ?log T

Also, for the (2,1) and (2,2) cases, we have the following “almost everywhere”
result:

THEOREM 5.5. For almost all quadratic forms Q of signature (p,q) = (2,1) or
(2,2)
Vi) (Z) N'TQ| ~ Ag,a(b— a)T"™?

where n =p+q, and Ag.q is as in (26).

Theorem 5.5 may be proved using a recent general result of Nevo and Stein
[NS]; see also [EMM1].
It is also possible to give a “uniform” version of Theorem 5.2, following [DM4]:

THEOREM 5.6. Let D be a compact subset of O(p, q), withp > 3. Let n = p+q,
and let Q be as in Theorem 5.4. Then for every interval [a,b] and every 6 > 0,
there exists a finite subset P of D such that each Q € P is a scalar multiple of a
rational form and for any compact subset F of D — P there exists Ty such that for
all Q in F and T > Ty,

(1= 0)Agad—a)T" % < [Viun(Z)NTQ < (1+0)Agalb—a)T" 2
where A\g.q is as in (26).

As in Theorem 5.2 the upper bound is from [EMM1]; the asymptotically exact
lower bound, which holds even for SO(2,1) and SO(2,2), was proved in [DM4].

REMARK 5.7. If we consider |V, ) (R)NTQNP(Z")| instead of |V, 4)(Z) TS|
(where P(Z™) denotes the set of primitive lattice points, then Theorem 5.2 and
Theorem 5.6 hold provided one replaces Ag o by )‘/Q,Q = Ag,0/C¢(n), where ( is the
Riemann zeta function.

More on signature (2,2). Recall that a subspace is called isotropic if the re-
striction of the quadratic form to the subspace is identically zero. Observe also
that whenever a form of signature (2,2) has a rational isotropic subspace L then
L N TQ contains on the order of T? integral points = for which Q(z) = 0, hence
Ng.a(—€,6T) > ¢I'?, independently of the choice of e. Thus to obtain an as-
ymptotic formula similar to (27) in the signature (2,2) case, we must exclude the
contribution of the rational isotropic subspaces. We remark that an irrational qua-
dratic form of signature (2,2) may have at most 4 rational isotropic subspaces (see
[EMMZ2, Lemma 10.3]).

The space of quadratic forms in 4 variables is a linear space of dimension 10.
Fix a norm || - || on this space.
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DEFINITION 5.8. (EWAS) A quadratic form @ is called extremely well approzx-
imable by split forms (EWAS) if for any N > 0 there exists a split integral form @’
and 2 < k € R such that
1

S]W'

]‘ /
lo- e

The main result of [EMMZ2] is:

THEOREM 5.9. Suppose Q) is as above. Let QQ be an indefinite quadratic form
of signature (2,2) which is not EWAS. Then for any interval (a,b), as T — oo,

(28) Ng.a(a,b,T) ~ Aga(b—a)T?

where the constant \g.q is as in (26), and Ng.o counts the points not contained in
isotropic subspaces.

Open Problem. State and prove a result similar to Theorem 5.9 for the signature
(2,1) case.

FEigenvalue spacings on flat 2-tori. It has been suggested by Berry and Tabor
that the eigenvalues of the quantization of a completely integrable Hamiltonian
follow the statistics of a Poisson point-process, which means their consecutive spac-
ings should be i.i.d. exponentially distributed. For the Hamiltonian which is the
geodesic flow on the flat 2-torus, it was noted by P. Sarnak [Sar] that this problem
translates to one of the spacing between the values at integers of a binary quadratic
form, and is related to the quantitative Oppenheim problem in the signature (2, 2)
case. We briefly recall the connection following [Sar].

Let A C R? be a lattice and let M = R?/A denote the associated flat torus.
The eigenfunctions of the Laplacian on M are of the form f,(-) = e2™(v:) where v
belongs to the dual lattice A*. The corresponding eigenvalues are 472 ||v[|?, v € A*.
These are the values at integral points of the binary quadratic B(m,n) = 472 |muv;+
nva||?, where {vq, v} is a Z-basis for A*. We will identify A* with Z? using this
basis.

We label the eigenvalues (with multiplicity) by

0= )\o(M) < )\1(M) < )\Q(M)
It is easy to see that Weyl’s law holds, i.e.
i+ Ai(M) ST} ~enT,

where cpy = (areaM)/(4m). We are interested in the distribution of the local
spacings \j(M) — A (M). In particular, for 0 & (a,b), set

Fasta 1) = K2 A0 ST £ T, £ 0,00 = (M) 1)

The statistic Ry is called the pair correlation. The Poisson-random model predicts,
in particular, that

(29) lim Ry(a,b,T) = c3,(b— a).
T—o00

Note that the differences X\;(M) — A\ (M) are precisely the integral values of the
quadratic form Qps(z1, z2,x3,24) = B(x1,22) — B(xs,24).

P. Sarnak showed in [Sar] that (29) holds on a set of full measure in the space
of tori. Some remarkable related results for forms of higher degree and higher
dimensional tori were proved in [V1], [V2] and [V3]|. These methods, however,
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cannot be used to explicitly construct a specific torus for which (29) holds. A
corollary of Theorem 5.9 is the following:

THEOREM 5.10. Let M be a 2 dimensional flat torus rescaled so that one of
the coefficients in the associated binary quadratic form B is 1. Let Ay, Ay denote
the two other coefficients of B. Suppose that there exists N > 0 such that for all
triples of integers (p1,p2,q) with ¢ > 2,

Di 1
A; . g
Then, for any interval (a,b) not containing 0, (29) holds, i.e.

lim Ry(a,b,T) = c3,(b— a).
T—o0

max
i=1,2

In particular, the set of (A1, As) C R? for which (29) does not hold has zero Haus-
dorff dimension.

Thus, if one of the A; is Diophantine’s (e.g. algebraic), then M has a spectrum
whose pair correlation satisfies the Berry-Tabor conjecture.

This establishes the pair correlation for the flat torus or “boxed oscillator” con-
sidered numerically by Berry and Tabor. We note that without some diophantine
condition, (29) may fail.

5.3. Passage to the space of lattices. We now relate the counting problem
of Theorem 5.2 to a certain integral expression involving the orthogonal group of
the quadratic form and the space of lattices SL(n,R)/SL(n,Z). Roughly this is
done as follows. Let f be a bounded function on R™ — {0} vanishing outside a
compact subset. For a lattice A € £, let

(30) fay="> fa)

veA\{0}
(the function f is called the “Siegel Transform” of f). The proof is based on the
identity of the form

(31) /fatkA > /fatkv

veA\{0}

obtained by integrating (30). In (31) {a:} is a certain diagonal subgroup of the
orthogonal group of @@, and K is a maximal compact subgroup of the orthogonal
group of Q. Then for an appropriate function f, the right hand side is then related
to the number of lattice points v € [e!/2, €] with a < Q(v) < b. The asymptotics
of the left-hand side is then established using the ergodic theory of unipotent flows
and some other techniques.

Quadratic Forms, and the lattice Ag. Let n > 3, and let p > 2. We denote
n — p by ¢, and assume ¢ > 0. Let {e1,eq,...e,} be the standard basis of R™. Let
Qo be the quadratic form defined by

(32) (Z vlez> = 20qv,, + Zv — Z v?  for all vy,...,v, €R.

i=p+1

It is straightforward to verify that Qo has signature (p,q). Let G = SL(n,R), the
group of n X m matrices of determinant 1. For each quadratic form @ and g € G,
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let @9 denote the quadratic form defined by Q9(v) = Q(gv) for all v € R™. By
the well known classification of quadratic forms over R, for each @ € O(p, q) there
exists ¢ € G such that @ = Qf. Then let Ag denote the lattice gZ", so that
Qo(Ag) = Q(Z™).

For any quadratic form @ let SO(Q) denote the special orthogonal group cor-
responding to @; namely {g € G | Q9 = Q}. Let H = SO(Qp). Then the map
H\G — O(p, q) given by Hg — Qf is a homeomorphism.

The map a; and the group K. For t € R, let a; be the linear map so that
ate; = e~ teq, aze, = ele,, and are; = e;, 2 < i < n — 1. Then the one-parameter
group {a;} is contained in H. Let K be the subgroup of G consisting of orthogonal
matrices, and let K = HN K. It is easy to check that K is a maximal compact
subgroup of H, and consists of all h € H leaving invariant the subspace spanned
by {e1 +en,e2,...,€e,}. We denote by m the normalized Haar measure on K.

A Lemma about vectors in R”. In this section we will be somewhat informal.
For a completely rigorous argument see [EMM1, §§3.4-3.5]. Also for simplicity we
let v =1 in this section.

Let W C R™ be the characteristic function of the region defined by the inequal-
ities on & = (z1,...,%y,):

a<Qo(x) <b, (1/2) <[z <2,
z1 >0, (1/2)z1 <|z;] < (1/2)zq for 2<i<n-—1.
Let f be the characteristic function of W.

LEMMA 5.11. There exists Ty > 0 such that for every t with et > Ty, and every
v € R™ with ||v]| > Ty,

1ifa<Qo(z) <band % < ||| < €,
0 otherwise

(33) cp,qe(n_Q)t/ flatkv) dm(k) ~ {
K

where ¢, 4 is a constant depending only on p and q.

Proof. This is a direct calculation. (]

Remark. The = in (33) is essentially equality up to “edge effects”. These edge
effects can be overcome if one approximated f from above and below by continuous
functions f, and f_ in such a way that the L' norm of f, — f_ is small. We choose
not to do this here in order to not clutter the notation.

In (33), we let 7= e’ and sum over v € Ag. We obtain:

PrOPOSITION 5.12. As T — oo,
cp,anfz/ f(atkAQ) ~H{velAg + a<Qov) <band %T <|jv|| < T},
K

wheret = logT. Note that the right-hand side is by definition |V(§2 b)(Z)ﬂ[T/Q, T,
where Qg is the unit ball.

We also note without proof the following lemma:
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LEMMA 5.13. Let p be a continuous positive function on the sphere, and let
Q={veR"||lv| <p/||v])}. Then there exists a constant A = Ag.q so that as
T — oo,

Vol(ViZ ) (R) N TQ) ~ Aga(b—a)T" .

Also (using Siegel’s formula), cpq [, f=cpgfon F=1-22")g0.

Remark. One can verify that:

o / dA
@8 Vel
LNQ

where L is the lightcone Q = 0 and dA is the area element on L.

The main theorems. In view of Proposition 5.12 and Lemma 5.13, to prove
Theorem 5.2 one may use the following theorem:

THEOREM 5.14. Suppose p > 3, ¢ > 1. Let A € L,, be a unimodular lattice
such that HA is not closed. Let v be any continuous function on K. Then

(34) lim /K FlagkA)v(k) dm(k) = /K v dm /L F(A) du(A).

t——+o00
To prove Theorem 5.6 we use the following generalization:

THEOREM 5.15. Suppose p > 3, ¢ > 1. Let v be as in Theorem 5.14, and let

C be any compact set in L,,. Then for any € > 0 there exist finitely many points
Ai,..., A € L, such that

(i) The orbits HA1,...,HA, are closed and have finite H-invariant measure.
(ii) For any compact subset F' of C\ U <,<, HA;, there exists to > 0, so that
forallA € F and t > tg,

(35) ‘/Kf(atkA)u(k)dm(k;)—/ﬁnfdu/Kudm’ <e

Theorem 5.14 and Theorem 5.15 if f is replaced by a bounded function ¢.
If we replace f by a bounded continuous function ¢ then (34) and (35) follow easily
from Theorem 4.4. (This was the original motivation for Theorem 4.4). The fact
that Theorem 4.4 deals with unipotents and Theorem 5.15 deals with large spheres
is not a serious obstacle, since large spheres can be approximated by unipotents.
In fact, the integral in (34) can be rewritten as

/B(T(lx) /OT(w) o(urx) dm(k)) dz,

where B is a suitable subset of G and U is a suitable unipotent. Now by Theo-
rem 4.4, the inner integral tends to fG/F ¢ uniformly as long as x is in a compact set
away from an explicitly described set E, where F is a finite union of neighborhoods
of sets of the form 7(C) where C is a compact subset of some N(F,U). By direct
calculation one can show that only a small part of B is near E, hence Theorem 5.14
and Theorem 5.15 both hold.

Remark. Both Theorem 4.4 and Ratner’s uniform distribution theorem Theo-
rem 1.12 hold for bounded continuous functions, but not for arbitrary continuous
functions from L'(G/T). However, for a non-negative bounded continuous function
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f on R™, the function f defined in (30) is non-negative, continuous, and L! but un-
bounded (it is in L*(G/T') for 1 < s < n, where G = SL(n,R), and I' = SL(n,Z)).
The lower bounds. As it was done in [DM4] it is possible to obtain asymp-
totically exact lower bounds by considering bounded continuous functions ¢ < f.
However, to prove the upper bounds in the theorems stated above we need to exam-

ine carefully the situation at the “cusp” of G/T, i.e outside of compact sets. This
will be done in §6.

6. Quantitative Oppenheim (upper bounds)
The references for this section are [EMM1] and [EMMZ2].

Lattices. Let A be a lattice in R™. We say that a subspace L of R™ is A-rational if
LNAis alattice in L. For any A-rational subspace L, we denote by da (L) or simply
by d(L) the volume of L/(L N A). In the notation of [KI1, §3], da(L) = |[L N A|.
Let us note that d(L) is equal to the norm of e; A--- A ey in the exterior power
/\Z(R”) where ¢ = dim L and (ey,--- ,e¢) is a basis over Z of LNA. If L = {0} we
write d(L) = 1.
Let us introduce the following notation:

1
a;(A) = sup {m’ L is a A-rational subspace of dimension % }, 0<i<n,

The following lemma is known as the “Lipshitz Principle”:

LEMMA 6.1 ([Sch, Lemma 2]). Let f be a bounded function on R™ vanishing
outside a compact subset. Then there exists a positive constant ¢ = c(f) such that

F(B) < ca(d)
for any lattice A in R™. Here f is the function on the space of lattices defined in

(30).

Replacing f by a. By Lemma 6.1, the function f(g) on the space of unimodular
lattices £,, is majorized by the function a(g). The function « is more convenient
since it is invariant under the left action of the maximal compact subgroup K of
G, and its growth rate at infinity is known explicitly. Theorems 5.2 and 5.6 are
proved by combining Theorem 4.4 with the following integrability estimate:

THEOREM 6.2 ((EMML1)). Ifp>3,g>1and0<s<2,0orifp=2,¢>1
and 0 < s < 1, then for any lattice A in R™

sup/ a(atkA)? dm(k) < oo.
K

>0
The upper bound is uniform as A varies over compact sets in the space of lattices.

This result can be interpreted as follows. For a lattice A in £,, and for h € H,
let f(h) = a(hA). Since a is left-K invariant, f is a function on the symmetric
space X = K\H. Theorem 6.2 is the statement that if if p > 3, then the averages
of f°, 0 < s < 2 over the sets Ka;K in X remain bounded as t — oo, and the
bound is uniform as one varies the base point A over compact sets. We remark
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that in the case ¢ = 1, the rank of X is 1, and the sets Ka;K are metric spheres of
radius t, centered at the origin.

If (p,q) = (2,1) or (2,2), Theorem 6.2 does not hold even for s = 1. The
following result is, in general, best possible:

THEOREM 6.3 ([EMML1]). If p=2 and ¢ =2, or if p =2 and q = 1, then for
any lattice A in R™,

(37) sup1 / alatkA) dm(k) < oo,
t>1 K

The upper bound is uniform as A varies over compact sets in the space of lattices.

Proof of Theorem 5.15 assuming Theorem 6.2. We can assume that f is
nonnegative. Let A(r) = {x € G/T' : a(x) > r}. Choose a continuous nonnegative
function g, on G/T such that g.(x) =1if z € A(r +1), g-(x) =0if x ¢ A(r) and
0<gr(r)<lifze A(r)— A(r +1). Then

/ Flagka)w(k) dm(k) =

(38) o o

- / (Fgo)(arkz)v(k) dm(k) + / (F = For)(askz)v(k) dm(k).
K K

. s — _B _8
But (letting § =2 —s), (fg:)(y) < Bia(y)*7g:(y) = Biay)*~ g, (y)aly) > <
Bir~2a(y)?~ 2 (the last inequality is true because g,.(y) = 0if a(y) < r). Therefore

(39) /K(fgr)(ath)'/(k) dm(k) < Byr~* /I(oz(ath)Q‘%V(k) dm(k).
According to Theorem 6.2 there exists B such that

/Koz(ath)Q_g dm(k) < B
for any ¢ > 0 and uniformly over « € C. Then (39) implies that

(40) / (For)avkz)v (k) dm(k) < BB, (sup v)r—5

K
Since the function f — f g, is continuous and has a compact support, the “bounded
function” case of Theorem 5.15 implies that for every € > 0 there exists a finite set
of points x1,...,z, with Hx; closed for each ¢ so that for every compact subset F’
of C\ Ule Hzx; there exists tg > 0 such that for every ¢ >ty and every = € F,
(41)

oz oz €
G = Fa ey dmv) ~ [ (7= Fa o) dut) [ vk dm(n)| < 5.
K G/T K
It is easy to see that (38), (40) and (41) imply (35) if r is sufficiently large. This
implies Theorem 5.15. (]

In the rest of this section, we prove Theorem 6.2 and Theorem 6.3. We recall
the notation from §5: G is SL(n,R), T = SL(n,Z), K = SO(n) is a maximal
compact subgroup of G, H = SO(p,q) C G, K = HN K is a maximal compact
subgroup of H, and X is the symmetric space K\H. From its definition (36), the
function a(A) is the maximum over 1 < i < n of K invariant functions a;(A). The
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main idea of the proof is to show that the o satisfy a certain system of integral
inequalities which imply the desired bounds.

Ifp>3and 0 <s <2 orif (p,g) =(2,1) or (2,2) and 0 < s < 1, we show
that for any ¢ > 0 there exist ¢ > 0, and w > 1 so that the the functions «f satisfy
the following system of integral inequalities in the space of lattices:

42 Al < ad + w? max ad, of .
(42) L 0<j<min(n—ii)\/ vhI =g

where A, is the averaging operator (4. f)(A) = [} f(a;kA), and ¢; < ¢ (Lemma 6.7).
If (p,q) = (2,1) or (2,2) and s = 1, then (42) also holds (for suitably modified func-
tions «;), but some of the constants ¢; cannot be made smaller than 1.

Let f;(h) = a;(hA), so that each f; is a function on the symmetric space X.
When one restricts to an orbit of H, (42) becomes:

43 Arff < ciff 4+ w? s s
(43) ofi Sl tw 0<j<min(nia) V I+
If rank X = 1, then (A:f)(h) can be interpreted as the average of f over the sphere

of radius 2¢ in X, centered at h. In §6.4 we show that if the f; satisfy (43) then for
any € > 0, the function f = fc. = > g<icp ei(”_i)ff satisfies the scalar inequality:

(44) Atf < Cf + b7

where ¢, ¢ and b are constants. This inequality is studied in §6.3. We show that if
c is sufficiently small, then (44) for a fixed ¢ together with the uniform continuity
of log f imply that (A4, f)(1) is bounded as a function of r, which is the conclusion
of Theorem 6.2. If ¢ = 1, which will occur in the SO(2,1) and SO(2,2) cases, then
(44) implies that (A, f)(1) is growing at most linearly with the radius. In §6.4, we
complete the proof of Theorem 6.2, and also prove Theorems 6.3 and 5.15.

Throughout the proof we consider the functions «a(g)® for 0 < s < 2 even
though for the application to quadratic forms we only need s = 1+ 4. This yields a
better integrability result, and is also necessary for the proof of Theorem 5.14 and
Theorem 5.15.

6.1. Averages of the functions 1/d? over spheres. Recall that the func-
tion d; is the norm of a certain vector in the exterior power A\"(R™). We have the
following:

PROPOSITION 6.4. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1). Let p and q be positive integers and let 0 < i < p+q. Let
Fi)={a1 Azg A+ ANay | o1, 29, ,x; € RPTI} € \'(RPH9).
Then, if p >3, orifp =2, ¢q =2 and i # 2, then for any s, 0 < s < 2,
dm(k
(45) lim sup il )S =0
1200 yep(), |oll=1 /K [lackv]]

where K = SO(p) x SO(q) and SO(2,1) is embedded into SO(p,q). If p =2 and
g=1,orifp=2,q=2 andi =2, then (45) holds for any s, 0 < s < 1.

Proof. This is a direct calculation. O

The next lemma we obtain an analogous result for the case (p,q) = (2,1), s = 1.
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LEMMA 6.5. Let H = SO(2,1) be the orthogonal group of the quadratic form
22 +y? — 22 Let {a; | t € R} be a self-adjoint one-parameter subgroup of H, and
let K = HNO(3) denote the mazimal compact of H. We define another norm || -|*
on R? by

(46) (@, 2)|I" = max(v/z* + 2, |2]).
Then, for any v € R?, v # 0, and any t > 0,
dm/(k 1
(47) dmb) 1
K llacko[|* = (o]

6.2. A system of inequalities.
LEMMA 6.6. For any two A-rational subspaces L and M

(48) d(L)d(M) > d(L N M)d(L + M).

Proof. Let 7 : R™ — R™/(L N M) denote the natural projection. Then d(L) =
d(m(L))d(LNM), d(M) = d(m(M))d(LNM) and d(L+M) = d(7(L+M))d(LNM).
On the other hand the inequality (48) is equivalent to the inequality
d(L) d(M) - d(L+ M)

d(ILNM)d(LNM) — d(LNM)"
Therefore replacing L, M and L+ M by (L), (M) and w(L+ M) we can assume
that LN M = {0}. Let (e1,--- ,ep), £ =dim L, and (ep11, -+ ,€p4m), m = dim M,
be bases in L and M respectively. Then

(49) d(L)d(M) = [lex A--- Nee| [[eerr A+ A epim|
>ller A AegAegri A+ Aeppm| > d(L+ M)

that proves (48) (the second inequality in (49) is true because (LNA)+ (M NA) C
(L+ M)NA. O

LEMMA 6.7. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1). Let p and g be positive integers, and denote p+ q by n. Denote SO(p) x
SO(q) by K. Supposep>3,q>1and0<i<n,orp=2,¢q=2andi=1 or3.
Then for any s, 0 < s < 2, and any ¢ > 0 there exist t > 0 and w > 1 such that for
any lattice A in R™

(50) /K aslark) k) < S0+ max  (JamWa,(™) )

2 0<j<min{n—i,:}

Ifp=2,q=1andi=1,2, orifp=2,q=2 and i = 2, then for any s, 0 < s < 1,
and any ¢ > 0 there exist t > 0 and w > 1 such that (50) holds.

Proof. Fix ¢ > 0. In view of Proposition 6.4 one can find ¢ > 0 such that
dm/(k
/ m(k) _ 3
x lackol® 2

whenever v € F(i),||v| = 1. It follows that

51) /K dm(k) _c 1

lackolls =2 lof|*’
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for any v € F(i),v # 0. Let A be a lattice in R™. There exists a A-rational subspace
L; of dimension ¢ such that

(52)

The inequality (51) implies

dm(k) c 1
(53) /K don @k L)~ 2da(Ly)

Let w = maxo<j<n || N (as)|l. (In fact w = e). We have that

- 1 e

<w, 0<j<mn,veF(y).

[[o]]

Let us denote the set of A-rational subspaces L of dimension ¢ with da(L) <
w?dp(L;) by ¥,;. We get from (54) that for a A-rational i-dimensional subspace
L¢U,

(55) datkA(atkL) > datkA(atkLi)a keK.
It follows from (53), (55) and the definition of a; that

(56) /K ilakA)’ dm(k) < Son(A)" it i = {L;).

Assume now that U; # {L;}. Let M € ¥;,, M # L;. Then dim(M+L;) =i+j, j >
0. Now using (52), (54) and Lemma 6.6 we get that for any k € K

w w2

da(L;) < da(Li)da (M)

(57) w?

= Vda(Li N M)d(L; + M)

<y faipi(M)ai-j(A).

ai(akA) < wa;(A) =

Hence if ¥; # {L;}

(58) /K culakA) dm(k) <o’ max (yfar (e, ()

0<j<min{n—i,i}
Combining (56) and (58) we get that for any lattice A C R™, (50) holds. O

In the rest of this subsection we obtain similar systems of inequalities for the
SO(2,1) and SO(2,2) cases, with s = 1. For H = SO(2,1), A a lattice in R3, and
L a A-rational subspace of R?, let di (L) = |le1 A...eg||* where (eq,...¢€;) is a basis
for AN L. (The norm || - ||* defined in (46) on R? = A'(R?) can be extended to
A’ (R3) by duality.) For 1 <i < 2, let

1
dj (L)

(59) o (A) = sup{ ‘L is a A-rational subspace of dimension i }

Clearly for any A,
(60) (1/2)a;(A) < af (A) < 2a;(A).
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LEMMA 6.8. Let {a; | t € R} be a self-adjoint one-parameter subgroup of H =
S0(2,1), and denote SO(2) by K. Then there exist tg > 0 and w > 1, such that
for any t < to, for any unimodular lattice A in R?, and 1 <i < 2,

(61) /K o (atkA) dm(k) < af(A) +w?y/az_i(A).

Proof. The argument is identical to the proof of Lemma 6.7 except that one uses
Lemma 6.5 instead of Proposition 6.4. (I

Now let H = SO(2,2). The space V = A*(R%) splits as a direct sum Vi & Vs
of two invariant subspaces, where on each V;, H preserves a quadratic form @; of
signature (2,1). We define on each V; a Euclidean norm | - ||¥ by (46) (adapted to
Q). Let m; denote the orthogonal projections from V to V;. Now let A be a lattice
in R4, and let L be a two-dimensional A-rational subspace of R*. For 1 < i < 2,
let

(62) di? (L) = mi(er Aea)7,

where {e1, es} is a basis over Z for AN L. Then let

o = sup < min 1 1

The supremum is taken over A-rational two dimensional subspaces L. By construc-
tion, for any A,

(64) Clad (A) < as(A) < Caf (D),
where C' is an absolute constant.

LEMMA 6.9. Let {a; | t € R} be a self-adjoint one-parameter subgroup of
SO(2,1), where SO(2,1) is diagonally embedded in H = SO(2,2), under its lo-
cal identification with SL(2,R) x SL(2,R). Denote SO(2) x SO(2) by K, and the
mazimal compact of SO(2,1) by K. Then there exist to > 0 and w > 1, such that
for any t <ty and for any unimodular lattice A in R*,

(65) / off (akA) dm(k) < o (A) + w?y/a1(M)as(A).

K

Proof. The group K is diagonally embedded in K. Recall that each S0(2,2)
invariant subspace V; of A*(R*) is fixed pointwise by one of the SL(2,R) factors,
while the other fixes a quadratic form of signature (2,1). Thus, for 1 < ¢ < 2, the
inequalities:

dm(k) < 1

(66) & |[mi(ako)lly ~ Im@)I;
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follow immediately from Lemma 6.5. Hence,

1 1
min = , = dm(k
/f< (IIm(atkv)ll*{ Iﬂz(atkv)HZ) “

. dm (k) dm(k)
< min = , =
& [[m(ackv)[li /& [[ma(atko)|3
1 1

(67) < min ( -, *) .

[ ()77 2 (0)]3
The rest of the proof is identical to that of Lemma 6.7 except that (67) is used in
place of Proposition 6.4. ([

6.3. Coarsely Superharmonic Functions. Let n € Nt and let D de-
note the set of diagonal matrices d(A1, -+ ,A,) € GL(n,R) with Ay > Ao >
-+- > A, > 0. For any g € GL(n,R), consider the Cartan decomposition g =
k1(g)d(g)k2(9), k1(g), k2(9) € K = O(n,R), d(g) € D; and denote by Ai(g) >
A2(g) > -+ > A(g) the eigenvalues of d(g).

LEMMA 6.10. For every € > 0 there exists a neighborhood U of e in O(n,R)
such that

Ai(d1kds)
Ai(d1)Ai(da)

for any dy,dy € D}, k€U and 1 <i<n.

(68) -1l <e

Proof. Let (ey,--- ,e,) be the standard orthonormal basis in R™. If k € O(n,R)
and (key,e1) > 1 — € then

(69) ||d1kd261|| > (1 — 6))\1(d1))\1(d2).

On the other hand, for any g € GL(n,R).

(70) A(g) = llgll = llgeall-

Since ||d1kdz|| < ||d1]| ||dz|| it follows from (69) and (70) that
A1 (drkds)

71 1>———>1—¢,

(1) ~ A1(d1)A1(de)

if (ke1,e1) >1—e. Analogously considering the representation of GL(n,R) in the
i-th exterior product A'(R") of R™ we get that

(A As -~ A) (drkds)
(72) L2 e ) (didy)

> 1 —¢,

if k € O(n,R) and (A" (k)(e1 A- - -Ae;), 1A - -Aeg) > 1—e. It is clear that there exists
a neighborhood U of identity in O(n, R) such that (\'(k)(e1A---Ae;), e1A---Ae;) >
vV1—¢forevery ke U and 1 <1i <n. But
(MAz2---Ai)(9)
A(g) = .
) (A1Az - Ai1)(9)
Therefore (68) follows from (72). O
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LEMMA 6.11. (¢f. the “wavefront lemma” [EMec, Theorem 3.1]) Let H be a
self-adjoint connected reductive subgroup of GL(n,R), let K = O(n,R) N H be a
mazimal compact subgroup of H and let {a; | t € R} be a self-adjoint one-parameter
subgroup of H. Then for every neighborhood V' of e in H there exists a neighborhood
U of e in K such that

(73) a:Uas C KVaa, K
foranyt >0 and s > 0.

Proof. Conjugating a; by an element of K we can assume that {a; | ¢ > 0} C D}
It is easy to see that there exists € > 0 such that hy € Vhs whenever hy, hy € Dj;

and iEZ;g — 1‘ < € for every 1 < i < n. Take a neighborhood U such that (68) is
satisfied. Then (73) is true for this U. O

PROPOSITION 6.12. Let H be a self-adjoint reductive subgroup of GL(n,R), let
K =0O(n,R)NH, let m denote the normalized measure on K, and let A = {a; |t €
R} be a self-adjoint one-parameter subgroup of H. Let F be a family of strictly
positive functions on H having the following properties:

(a) The logarithms log f for f € F are equicontinuous with respect to a left-
invariant uniform structure on H or, equivalently, for any € > 0 there
exists a neighborhood V (¢) of 1 in H such that for any f € F,

(1=e)f(h) < fluh) < (1+€)f(h)
for any h € H and u € V(e);
(b) The functions f € F are left K-invariant, that is f(Kh) = f(h), h € H,
(c) SUpfer f(1) < oo.
Then there exists 0 < ¢ = ¢(F) < 1 such that for any t > 0 and b > 0 there exists
B = B(t,b) < oo with the following property: If f € F and
(74) / Flarkh) dm(k) < cf(h) + b
K
for any h € KAK C H, then
/ fla-k)dm(k) < B
K

for any T > 0.
Proof. Fix f € F, and let
Fiwy = [ (o) o).
K

Properties (a), (b), (c) of the function f imply that f has the same properties.
Hence it suffices to show that the conclusion of the proposition holds for f. There-
fore we can assume that

(75) f(KRK) = f(h), h € H,
and we have to prove that

(76) sup f(a;) < B < 0.
>0
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It follows from property (a) that
1 1
(77) 5F00) < f(uh) <2f(h), he H ueV =V(5).

According to Lemma 6.11 there exists a neighborhood U of 1 in H such that
aUar € KVaia, K for any t > 0 and 7 > 0. Then we get from (75) and (77) that

(78) /K Fackar) dm(k) > /U  arkay) dm(k) > %m(UﬁK) Fasar).

Suppose for some t > 0 and b > 0

1
(79) / Flackh) dm(k) < Gm(U 0 K) () +b, he H
K
It follows from (78) and (79) that for some b’ > 0,
1
(80) flarar) < if(aT) + b, for all 7 > 0.
Using induction on £ we get from (80) that
(81) flaw) < 2max{f(1),b'}, ;£ e N*.
Since {a, | 0 < r < t} belongs to V¥ for some i where V! =V, Vi =V Vil it
follows that sup,cy o<,<t ! ](fz;b})l) < 00. Therefore (81) and property (c¢) imply
(76). O

6.4. Averages over large spheres. In this subsection we complete the proofs
of Theorem 6.2, Theorem 6.3 and Theorem 5.15.

Proof of Theorem 6.2. Define functions fo, f1, -, fn on H = SO(p, q) by the
following equalities

fl(h) = Ozi(hA), heH, 0<i<n.
Since a(akA)® = maxo<i<n fi(ark)® < Zogign fi(ark)® it is enough to show that

(82) sup /K 17 (ack) dm(k) < oo.

t>0, 0<i<n

Let A; denote the averaging operator defined by

(Af)(h) = / flackh)ydm(k), e H.
K
As in Proposition 6.4, let

FG)={zi Ay A-- Az | 31,29, - ,x; € R"} € N'(R™).

Since ||Kv|| = ||v| and lholl < | A"(h)]], for any v € F(i) and h € H, each f; has

[lv]l
properties (a) and (b) of Proposition 6.12. Applying Lemma 6.7 to A = hA we see
that for any 7,0 < ¢ <n,and h € H

s c s 2 s s
(83) Aifi < ifi +tw 0<j§£g?n7i,i} itjdi—j
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Let us denote q(i) = i(n—1). Then by direct computations 2¢q(i)—q(i+7)—q(i—j) =
2j2. Therefore we get from (83) that for any 4,0 < i < n, and any positive € < 1
(84)

At(eq(i)ff) < geq(i)ﬁ + w2 <ma§< } Gq(i)—% \/Gq(ﬁj)fﬁjeq(i_j)ff,j
0<j<min{n—1,

€ q(i) s 2 i+j) fs i—j) fs
< §€q(z)fi + ew O<j§gilg§1—i,i} \/eq( "r])fiJerQ( J)fiij.

Consider the linear combination

fgs = Z eq(i) f:

0<i<n

The function fe s then also has properties (a) and (b) of Proposition 6.12. Since
W fs < foo fo=1and f, = 1/d(A), the inequalities (84) imply the following
inequality:

(85) Acfes < 14d(A) + gf +ne S,

Taking € = 5% we see that (74) from Proposition 6.12 also holds. Furthermore
property (a) and (74) of Proposition 6.12 hold with the same constants for any
unimodular lattice A € R™. Since f. (1) < na(A)®, fes(1) is uniformly bounded
as A varies over a compact set C of unimodular lattices. Hence the family F of
functions f. s obtained as A varies over C satisfies all the conditions of Proposi-
tion 6.12. Since a;(hA)* = fi(h)* < €9 f, (h), Proposition 6.12 implies that
there exists a constant B > 0 so that for each 4, all £ > 0, and all A € C,

/ on(agkD)* dm(k) < B.
K
From this the theorem follows. O

7. Connections to dynamics of rational billiards

For references to this section see [E2].

In this lecture, we describe some counting problems on translation surfaces and
outline their connection to the dynamics of the SL(2,R) action on the moduli space
of translation surfaces. Much of this is presented in analogy with the quantitative
Oppenheim conjecture (see §5 and §6).

Recall that £, = SL(n,R)/SL(n,Z) is the space of covolume 1 lattices in R™.
This space is non-compact, since we can have arbitrarily short vectors in a lattice.

The strata and the measure p. Let 5 = f1,..., 5, be a partition of 2¢g — 2.
Let H(B) denote the moduli space of translation surfaces with conical singularities
of total angles 27 (81 + 1),...,27(Bm + 1). (I am using the notation from [Zor]:
Jean-Christophe is using M(-).) We will sometimes call H(8) a stratum. Let
H1(B) C H(B) denote the subset consisting of surfaces of area 1. Let u be the
normalized Lebesque measure on H;(8) (as defined by Jean-Christophe via the
period map). We will use the same letter to denote the restriction of p to Hi(B).
A theorem of Masur and Veech (proved in Jean-Christophe’s lectures) states that
w(H1(B8)) < co. In §7.5 we will describe how to evaluate the numbers p(H1(8)).
Note that the case of n = 2 in the space of lattices £ and the case of stratum
H1(0) boil down to the same thing, since we are considering the space of unit
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volume tori (or more precisely, the space of 1-forms on unit volume tori), which is
given by SL(2,R)/SL(2,7Z).

Note. I will use the term saddle connection to denote what Jean-Christophe is
calling a connection.

Holonomy and the sets V.(S) and V(S). Recall that a point S € H(3) can
be viewed as a pair (M,w) where M is a Riemann surface and w is a holomorphic
1-form on M. Recall that the holonomy of a curve v on S is given by

hol(vy) = Aw.

Vse(S) = {hol(y) : = is a saddle connection on S},

so that V.(S) C C ~ R?2. Note that V,.(9) is a discrete subset of R?, but it is not,
in general, a subgroup. We also define the analogous set:

Let

V(S) = {hol(v) : v is a closed geodesic on S not passing through singularities}.

Note that any such closed geodesic is part of a cylinder and all the closed geodesics
in the cylinder have the same holonomy. (If S = R?/Z? is the standard torus with
the standard flat structure, then V(S) = Z?).

7.1. Counting cylinders and saddle connections. Let B(R) denote a ball
of radius R. Then, |V (S)N B(R)| is the number of cylinders on S of length at most
R, and |V,.(S)NB(R)| is the number of saddle connections (not necessarily vertical)
of length at most R. Masur proved the following:

THEOREM 7.1. For all flat surfaces S in a compact set, there are constants c;
and co so that for R>1

c1R? < |V(S) N B(R)| < |Vse(S) N B(R)| < caR?.

The upper bound is proved in [Mas2] and the lower bound is proved in [Mas3].
The proof of the lower bound depends on the proof of the upper bound. Another
proof of both the upper and lower bounds with explicit constants was given by
Vorobets in [Vol] and [Vo2]. We will sketch below yet another proof of the upper
bound, using the ideas of §6. (See [EM] for the details).

We also note that there is a dense set of directions with a closed trajectory and
thus a cylinder.

The following theorem, gives asymptotic formulas for the number of saddle
connections and cylinders of closed geodesics on a generic surface. It was first
proved in this form in [EM], but many of the ideas came from [Ve], where a
slightly weaker version was proved.

THEOREM 7.2. For a.e. S € H1(B), we have
Vse(S) N B(R)| ~ mb(B) R,

where Vi.(S) is the collection of vectors in R? given by holonomy of saddle connec-
tions on S, and b(B) is the Siegel-Veech constant defined in §7.2 (see also (89)).
Similarly, for closed geodesics, we have that there is a constant bi(8) so that

V(S) N B(R)| ~ 7by () R?
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where V(S) is the collection of vectors given by holonomy along (imprimitive) closed
geodesics not passing through singularities, and by (8) is the associated Siegel-Veech
constant.

It will turn out that the problem of counting saddle connections or cylinders
closed geodesics on a flat surface is analogous to the quantitative Oppenheim prob-
lem (85 and §6).

7.2. The Siegel-Veech formula. The following construction and its ana-
logues play a key role. For any function of compact support f € C.(R™), let
f(A) = > veavo f(v). Note that if f = xp(), we get F(A) = |ANB(1)]. We have
the Siegel formula: For any f € C.(R"™),

1 .
(36) o /L F(8)dn(a) = / fin

where p is Haar measure on £,, = SL(n,R)/SL(n,Z), and X is Lebesgue measure
on R™.

The generalization of this formula to moduli space was developed, so the legend
goes, by Veech while he listened to Margulis lecture on the Oppenheim conjecture.
For f € C.(R?) we define the Siegel-Veech transform f(S) = > vevi.(s) f (V). Just

as above, if f = xp(1), f counts the number of saddle connections of length < 1.

Just as we had the Siegel formula for lattices, here we have the Siegel-Veech
formula: There is a constant b(3), called the Siegel-Veech constant, such that for
any f € C.(R?), we have

1
(87) ST fuy (O =00) [ 1
where p is the natural SL(2,R) invariant measue on H1(5).

Let us sketch the proof of this result (essentially from [Ve], also reproduced
in [EM]). The first step (which is by far the most technical) is to show that
f € L*(H1(B)), so that the left hand side is finite. This can be deduced e.g. from
(94) below. Having done this, we denote the quantity on the left hand side of (87)
by ¢ (f).

Thus we have a linear functional ¢ : C.(R?) — R, i.e. a measure. But it also
has to be SL(2,R) invariant. Only Lebesgue measue and dp, the delta measure at
0 are SL(2,R) invariant. Thus we have o(f) = af(0) +b [, f. It remains to show
a = 0. Consider the limit of indicator functions f = xp(r) as R — 0. Both sides
of the equation tend to 0, so we have that a = 0, and thus our result.

Returning to lattices, we can apply literally the same arguments to prove the
Siegel formula (86). Note that nothing was special about dimension 2 in the above
proof sketch. Thus, we have almost proved (86) as well. To be precise, we currently

have:
1 .
m /ﬁn f(A)du(A) = b/]Rn fax,

for some constant b. We need to show b = 1. Here, we once again use f = XB(R)>
but this time consider R — co. Recall that f(A) = |A N B(R)| ~ Vol(B(R)), for
R — oo and A fixed. Thus, we get b = 1, and the Siegel formula.

We should remark that for the space of lattices the proof of the Siegel formula
indicated above is not the easiest available. In fact, it is possible to avoid proving



UNIPOTENT FLOWS AND APPLICATIONS 41

apriori that f € L*(L,). See [Sie] or [Cas] or [Ter] for the details. A well known
consequence of the Siegel formula is the following:

(55) plLa) = ~CR)C(3) - C(n).

For the stata #(/3), this method of evaluating b(3) (i.e. considering f = xp(r)
and taking R — o0) is not avaliable. Essentially the problem is that we do not
have an alternative expression for the constant in Theorem 5.5.

Another approach is to let f = xp(c), send € — 0 and keep track of the leading
term in the asymptotics of both sides. This was done in [EMZ] where we obtained
the following result: For any stratum #;(8) in the moduli space of translation
surfaces the coeflicient b(8) involved in (87) can be expressed in the following form:

N oo, gy (@)
(89) b(ﬁ)—(; ( ,/3)“(%(5)),

where the sum is over lower dimensional strata « (which lie at the “boundary” of
H(5)), and c(a, B) are explicitly known rational numbers.

We note that (89) fails as a method for calculating the volumes, since (unlike
the lattice case) we do not have an independent formula for b(3). In §7.5 we will
show that the volumes can be computed in a different way; then (89) can be used
to evaluate the Siegel-Veech constants b(3). These numbers appear in some other
contexts as well, in particular in connection with the Lyapunov exponents of the
geodesic flow.

7.3. Counting using the SL(2,R) action. This subsection is closely parallel
to §5.3. The following exposition will be along the lines of [EM], which was heavily
influenced by [Ve]. To simplify the notation, we only deal with the case of saddle

t .
connections. Define g; = ( 60 th > and rg = ( _Czlsfe (S:::g ) Let f be the

indicator function of the trapezoid defined by the points
(17 1)a (_17 1)a (_1/27 1/2)a (1/27 1/2)

2e72 ifelt/2 < ||| < e,

2
LEMMA 7.3. We h df ~
¢ nave fo F(girev) {0 otherwise.

Proof. Let U denote the trapezoid. Note that
(90) f(gimgv) # 0 & girov € U < v € g; U.

The set g; 'U is the shaded region in Figure 2. From (90) it is clear that the
integral in Lemma 7.3 is equal to (27 times) the fraction of the circle which lies
inside the shaded region g; 'U. If v is too long or too short (not drawn), then the
circle would completely miss the shaded region, and the integral would be zero. If
it does not miss, then (27 times) the fraction of the circle in the shaded region is
approximately 2e 2! independent of ||v]. O

We now prove Theorem 7.2. Summing our formula from Lemma 7.3 over
all v € V,.(S) and recalling the definition of the Siegel-Veech transform f(S) =
ZUEVSC(S) f(l)), we get

2

e ; F(9:195) b = |Vie(S) N B(e")| = |Vie(S) N B(e'/2)].

1
2
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eV
Figure 2. Lemma 7.3.
Writing R = e!, we can rewrite this as
2
(91) 3B [ flgreS)dd = |Vie(S) N B(R)| — |Vie(S) N B(R/2)|.

0
This equation is key to the counting problem, since the right hand side counts
saddle connections in an annulus, and the left hand side is an integral over (part
of) an SL(2,R) orbit. (The fact that we only have approximate equality does not
affect the leading order asymptotics.) Now we are supposed to use some sort of
ergodic theory to analyze the behavoir of integral on the left-hand-side of (91) as
t — oo (or equivalently as R — c0).

There is an ergodic theorem of Nevo [Ne] which implies that! for almost
all S € #,(B), and provided that f € L't¢(#,(8)), the integral converges to
27 [, () f(S)dS = 21b(B) [» f. The assertion that f € L'*¢ can be verified

using (94). This immediately implies Theorem 7.2. (]

However, this approach is a failure if one wants to prove things about billiards:
our theorems hold for almost every point S, and the set of translation surfaces
arising from rational billiards has measure zero.

One eventual goal is to prove analogues of Ratner’s theorems on unipotent
flows for the SL(2,R) action on H1(8). That is, we would like to classify invariant
measures, orbit closures, and prove uniform distribution, for both the full SL(2,R)
action, and for the horocycle flow. One partial result in this direction is due to

IThe theorem of Nevo used here is about a general SL(2,R) action, and uses nothing about
the geometry of the moduli space.
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McMullen [Mc]: he has classified the SL(2,R) orbit closures and invariant measures
for the moduli space of genus 2 surfaces (i.e., the strata #(1,1) and H(2)). Note
that the integral in (91) is over large circles in SL(2,R), which can be approximated
well by horocycles. Thus the action of the horocycle flow (i.e. the action of ((1) i) )
is directly relevant. For other very partial results in this direction see [EMaMo],
[EMS] and [CW].

7.4. The upper bounds. In this subsection, we will outline a proof of the
upper bound in Theorem 7.1, following the scheme of §6.

Let B(R) be the ball of radius R centered at 0 in R™. For a given lattice
A € L,,. we would like to find out how many lattice points, that is, how many
points of A are contained in B(R).

It is immediately clear that for a fixed lattice A, as R — oo,

(92) |A N B(R)| ~ Vol(B(R)) = Vol(B(1))R".

(i.e. the number of lattice points is asymptotic to the volume). However, this is not
uniform in A. A uniform upper bound has been given in Lemma 6.1, in particular:

(93) IANB(1)] < Ca(A).

The analagous problem in moduli space is as follows: We are interested in
|Vse(S) N B(1)], i.e. the number of saddle connections of length at most 1 on S.

The result is as follows: Fix e > 0. Then there is a constant ¢ = ¢(3, €) such
that for all S € H(B) of area 1,

c

(94) Ve ) N BOI < e
where £(.5) is the length of the shortest saddle connection on S.

Assuming (94), the proof of the upper bound in Theorem 7.1 can be following
the scheme of §6 (with a suitable definition for the functions a;).

However, it turns out that the proof of (94) is more difficult that that of (93);
it itself uses the system of inequalities along the line of §6, as well as induction on
the genus.

7.5. Evaluation of the volumes. In this lecture we describe briefly another
strategy for calculating volumes of strata, which also has a parallel for the space
of lattices. Recall that we are considering the spaces H(f) of flat structures with
singularity structure 8 = (81, fa, ... Bn), where 8; € N, >~ 8, = 2g — 2. Let the set
of singularities be denoted by ¥. We have |X| = n, and we have

H\(S,%;2) = 72291

We can pick a basis by selecting g a-cycles, g b-cycles (from absolute homology),
and n — 1 relative cycles.

Fix a Z-basis 71,72, ... vk of H1(S,%;Z), where k = 2g + n — 1. We recall the
following fact (see [Ko)):

THEOREM 7.4. The map (X,w) — (hol(y1),...,hol(yx)) from H(B) — (R?)*
is a local coordinate system.

By pulling back Lebesgue measure on (R?)*, we obtain a normalized measure
v on H(B). (For more details on the above constuction, see [Masl, §3].) Now, we
would like to define a measure on the hypersurface Hi(5).
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This is similar to the lattice setting, where if we pick a basis vy, vs, ... v, for
our lattice A C R™, we get a matrix in M, (R) by letting v; be the ith column.
Note that since our lattice is unit volume, our matrix has determinant 1. We have
a natural (Lebesque) measure v on M, (R). Consider the det = 1 hypersurface 2,
(i.e., SL(n,R)). We define a measure u on this space as follows: let E C 4, and
let C1(F) be the cone over E (i.e. the union of all line segments which start at the
origin and end at a point of E). We define p(E) = v(C1(E)). This yields a finite
measure since we are considering a fundamental domain under the SL(n, Z)-action.
This is in fact the measure used in the previous section.

Returning to the setting of surfaces, recall that the area of our surface S =
(X, w) is given by

1 I I _
ATea(S)zQ—i/Xw/\w:z_Z/w/bw—/bw/w
i=1"v Qi i i (27

where a; and b; are the a- and b-cycles on X respectively.
This gives that the area is a quadratic form in the coordinate sytem, i.e.,

Area(X,w) = Q(hol(y1), ..., hol(vk)).

However, it is a degenerate form, since it only depends on the absolute cycles a;
and b;. We can mimic the lattice picture now: we define u(E) = v(C1(E)) for any
subset £ C H1(8). Thus,

w(H1(B)) = u(F) = v(CL(F)),
where F is a fundamental domain.
We now make a cosmetic step. Let Cr(F) denote the cone of F extended to
the hypersurface of area R-surfaces. Clearly

w(Ha(8)) = v(Cy(F)) = LRI

We have the following fact:
CR(F) N (Z*)*] ~ v(Cr(F))

as R — oo, i.e. the number of lattice points in a cone is asymptotic to the volume.
Ususally this is used to estimate the number of lattice points, but here we use this
in reverse and estimate the volume by the number of lattice points. Thus, we get
that

v 2\k

or, equivalently,
(95) [Cr(F) N (Z2)*| ~ u(H1(8))R".

The equation (95) is not useful unless we can find an interpretation of the points
of Cr(F) N (Z*)*. This is given by the following:

LEMMA 7.5. S = (X,w) € Cr(F) N (Z*)* if and only if X is a holomorphic

branched cover of the standard torus of degree < R, w is the pullback of dz under
the covering map, and all singularities branch over the same point.

Proof: Since S € Cr(F), area(S) < R. By definition, S € (Z2)* is equivalent to
hol(v1), ..., hol(yx) € Z*. Fix a non-singular point 2o on S, and define 7 : S — T,
where T is the standard torus, by n(z) = f; w. Since fvw € Z + iZ for any
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closed curve or saddle connection -y, this is a well defined covering map with all
singularities branching over the same point. Since the torus is unit volume, the
area of S is equal to the degree of the covering. O

Let Nj(d) denote the number? of branched covers of T of degree d with branch-
ing type 8. (Note that Ng(d) is defined in purely combinatorial terms).
Combining Lemma 7.5 with (95), we obtain the following: as R — oo,

R
(96) > Ns(d) ~ p(Hi(B))R".
d=1

(This relation was discovered by Kontsevich and Zorich, and independently by
Masur and the author.) Thus, we can compute u(H1(3)) if we can compute the
asymptotics of the left-hand-side of (96). This is a purely combinatorial problem.

Suppose we are considering a degree d cover of the torus. Consider the standard
basis a and b of curves on the torus (when the torus is viewed as the unit square,
the curves correspond to the sides of the square). They give rise to permutations of
the sheets, that is, elements of the symmetric group Sy. We will abuse notation by
denoting these permutations also by a and b. Singularity types of covers correspond
to different conjugacy classes of the commutator aba~'b~!. A simple zero is a
transposition, a double zero a three cycle, a two simple zeroes is a product of two
transpositions, etc. (So for example, if we are considering the stratum #(1, 1), the
commutator will be in the same conjugacy class as a product of two transpositions.)
The number of pairs (a,b) € Sy x Sy satisfying such a commutation relation can
be expressed as a sum over the characters of the symmetric group Sy.

However, simply looking at the conjugacy class of the commutator permutation
does not guarantee that the resulting surface is connected. We wish to count only
the connected covers. However, the disconnected ones dominate the count. If one
knows the number of disconnected covers exactly, one can compute the number
of connected covers (by using inclusion/exclusion to subtract off all the possible
ways a cover can disconnect). Unfortunately, as one does that, the first n terms in
the asymptotic formula cancel. Still, it is possible, using the exact formula for the
number of disconnected covers in [BO], to carry out the computation (see [EO]).
The result, is a fairly messy but computable formula for p(Hi(8)).

There are two consequences of the above computations worth mentioning:

THEOREM 7.6. The generating function Fz(q) = > geo Ng(d)q? is a quasi-
modular form, that is, it is a polynomial in the Eisenstein series Gr(q), k = 2,4, 6.

THEOREM 7.7. m=29u(H1(B)) € Q, where g is the genus of any surface in
H(B).

Both of the above theorems were conjectured by Kontsevich. Further work
showed that they hold also for the connected components of strata, and that similar
results hold for spaces of quadratic differentials. We remark that Theorem 7.7
implies that the Siegel-Veech constants are rational.

For the space of lattices, one can carry out the same construction. The main
difference is that one ends up counting unbranched covers of the standard torus

2In order for Theorem 7.6 below to hold, we should, when defining Ng(d), weigh each cover
by the inverse of its automorphism group. However this does not affect the asymptotics and can
be ignored for most purposes.



46 ALEX ESKIN

T™, or what is equivalent, sublattices of the standard lattice Z™. By computing
the number of sublattices of Z™ of index at most R, and sending R — oo, it is not
difficult to reproduce (88).

8. Equidistribution of translates and applications to Diophantine
equations

We will follow parts of [EMc| and [EMS1].

In this section, using ergodic properties of subgroup actions on homogeneous
spaces of Lie groups, we study asymptotic behavior of number of lattice points on
certain affine varieties. Consider for instance the following.

Example 1 Let p(A) be a monic polynomial of degree n > 2 with integer coefficients
and irreducible over Q. Let M,,(Z) denote the set of n x n integer matrices, and
put

Vp(Z) ={A e M,(Z) : det(AI—A)=pN)}.
Hence V,(Z) is the set of integral matrices with characteristic polynomial p(\).
Consider the norm on n x n real matrices given by ||(zi;)[| = />_,; =7, and let

177

N(T,V,) denote the number of elements of V,,(Z) with norm less than T

THEOREM 8.1. Suppose further that p(\) splits over R, and for a root a of p(\)
the ring of algebraic integers in Q(«) is Z[a]. Then, asymptotically as T — oo,

n—1

2" hRwn  pnn-1)/2
VD Tli—p A(k/2)
where h is the class number of Z[a], R is the regulator of Q(a), D is the discriminant
of p(\), wy, is the volume of the unit ball in R™™~Y/2 and A(s) = 7=°T'(s)¢(2s).

N(Tvvp) ~

Example 1 is a special case of the following counting problem which was first
studied in [DRS] and [EMc].

The counting problem: Let W be a real finite dimensional vector space with
a Q structure and V a Zariski closed real subvariety of W defined over Q. Let
G be a reductive real algebraic group defined over QQ, which acts on W via a Q-
representation p : G — GL(W). Suppose that G acts transitively on V. Let || - ||
denote a Euclidean norm on W. Let Br denote the ball of radius 7" > 0 in W
around the origin, and define

N(T,V)=|VnNnBrnZ"|,
the number of integral points on V' with norm less than 7. We are interested in
the asymptotics of N(T,V) as T — oc.

Let T be a subgroup of finite index in G(Z) such that W(Z)I' C W(Z). By a
theorem of Borel and Harish-Chandra [BH-C], V(Z) is a union of finitely many
I-orbits. Therefore to compute the asymptotics of N (T, V) it is enough to consider
each I'-orbit, say O, separately and compute the asymptotics of

N(T,V,0) =|0n Br|.

Suppose that @ =T - vy for some vy € V(Z). Then the stabilizer H = {g €

G : guvg =g} is a reductive real algebraic Q-subgroup, and V = G/H. Define
Ry ={gH € G/H : gvy € Br},
the pullback of the ball By to G/H.
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Assume that G and H® do not admit nontrivial Q-characters. Then by the
theorem of Borel and Harish-Chandra, G/T" admits a G-invariant (Borel) probabil-
ity measure, say ug, and H/(I' N H) admits an H-invariant probability measure,
say pp. Now the natural inclusion H/(I' N H) — G/T is an H-equivariant proper
map. Let 7 : G — G/T be the natural quotient map. Then the orbit 7(H) is
closed, H/(ITNH) = 7(H), and ppg can be treated as a measure on G/I' supported
on 7(H). Such finite invariant measures supported on closed orbits of subgroups
are called algebraic measures. Let Ag,p denote the (unique) G-invariant measure
on G/H induced by the normalization of the Haar measures on G and H.

The following result was proved in [DRS]; subsequently a simpler proof ap-
peared in [EMc].

THEOREM 8.2. Suppose that V is affine symmetric and T is irreducible (equiv-
alently, H is the set of fixed points of an involution of G, and G is Q-simple). Then
asymptotically as T — oo,

N(T,V,0) ~ Ag/u(Rr).

Translates of algebraic measures. For any g € G, let guy denote the translated
measure defined as

gpu(E) = ug (97 E), V Borel sets E C G/T.

Note that gu g is supported on g (H). A key ingredient in the proofs of Theorem 8.2
in [DRS] and [EMc] is showing that if H is the set of fixed points of an involution of
G then for any sequence {g;} C G, such that {g; H} has no convergent subsequence
in G/H, the translated measures g;upy get ‘equidistributed’ on G/T" as i — o0;
that is, the sequence {g;up} weakly converges to ug. The method of [DRS] uses
spectral analysis on G/T", while the argument of [EMc] uses the mixing property
of the geodesic flow. However, both methods seem limited essentially to the affine
symmetric case. It should be remarked that for the proof of Theorem 8.2 one needs
only certain averages of translates of the form guy to become equidistributed.

One can show that under certain conditions if for some sequence {g;} we have
limg;uy = v then the measure v is again algebraic. We give exact algebraic
conditions on the sequence {g;} relating it to the limit measure v. Using this
analysis, we show that the counting estimates as in Theorem 8.2 hold for a large
class of homogeneous varieties. The following particular cases of homogeneous
varieties, which are not affine symmetric, are of interest. We first place Example 1
in this context.

Example 1 continued. Note that V,(Z) is the set of integral points on the
real subvariety V, = {A € M, (R) : det(A\] — A) = p(\)} contained in the vector
space W = M, (R). Let G = {g € GL,(R) : detg = +1}. Then G acts on W
via conjugations, and V), is a closed orbit of G (see [New, Theorem IIL.7]). Put
I' = G(Z) = GL,(Z). The companion matrix of p(\) is

0 0 —a,
1 0 —Aan_—1
(97) vo=10 --- : € V,(Z).
: 0
0 1 —aq



48 ALEX ESKIN

The centralizer H of vg is a maximal Q-torus and H has no nontrivial Q-characters.
Note that H is not the set of fixed points of an involution, and the variety V,, = H\G
is not affine symmetric. Nevertheless, we show that N(T',V,,T'vg) ~ Ag,/u(Rr). By
computing the volumes, we obtain the following estimate.

THEOREM 8.3. Let N(T,V,) be the number of points on V,(Z) of norm less
than T. Then asymptotically as T — oo,

N(T7 ‘/p) ~ Can(n—l)/27
where ¢, > 0 is an explicitly computable constant.

We obtain a ‘formula’ for calculating c,; for the sake of simplicity we calculate
it explicitly only under the additional assumptions on p(A) of Theorem 8.1.
See [BR] for some deeper consequences of the above result.

Example 2. Let A be a nondegenerate indefinite integral quadratic form in n > 3
variables and of signature (p,q), where p > ¢, and B a definite integral quadratic
form in m < p variables. Let W = M,,x,(R) be the space of m X n matrices.

Consider the norm on W given by [|(xi;)|| = />, ; #7;- Define

Vap = {X € Mpxn(R) : XAX = B}.

Thus a point on V4, g(Z) corresponds to a way of representing B by A over Z. We
assume that V4 p(Z) is not empty.

The group G = SO(A) acts on W via right multiplication, and the action is
transitive on V4 p. The stabilizer of a point £ € V4 p is an orthogonal group H¢ in
n — m variables. Let I' = G(Z). Then the number of I'-orbits on V4 p(Z) is finite.
Let &1,...,&, be the representatives for the orbits.

THEOREM 8.4. Let N(T,Va g) denote the number of points on Vi g(Z) with
norm less than T. Then asymptotically as T — o0,

h
vol(I' N He, \H, .
T VAB NZ fz\ fz) A,BTT(n 1)
i=1

vol(T\G)
where r = min(m, q), and ca,p > 0 is an explicitly computable constant.

REMARK 8.5. In some ranges of p, g, m,n this formula may be proved by the
Hardy-Littlewood circle method, or by ©-function techniques. Using our method
one also obtains asymptotic formulas for the number of points in the individual
orbits T'¢;.

REMARK 8.6. In the case m > ¢, the asymptotics of the number of integer
points does not agree with the heuristic of the Hardy-Littlewood circle method, even
if the number of variables mn is very large compared to the number of quadratic
equations m(m+1)/2. The discrepancy occurs because the null locus {X : X A'X =
0} does not contain a non-singular real point (cf. [Bir, Theorem 1]) and so the
‘singular integral’ vanishes.

8.1. Connection between counting and translates of measures. We
recall some observations from [DRS, Sect. 2[; see also [EMc]. Let the notation be
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as in the counting problem stated in the introduction. For T > 0, define a function
Fr on G by

Frig)= > xrlgy-v0),

~eT'/(HNT')

where y is the characteristic function of By. By construction F7p is left I'-invariant,
and hence it will be treated as a function on G/I'. Note that

Fr(e) = Z xr(7-v) = N(T,V,0).

~€T/(HAT)

Since we expect, as in Theorem 8.2, that
N(T,V,0) ~ Ag\a(Rr),

we define
. 1
F = —
) = N (Re)

Thus the asymptotics in Theorem 8.2 is the assertion

Fr(g).

(98) Fre)—=1 asT — oo,
PRrROPOSITION 8.7 ([DRS, Sect. 2]). For any compactly supported function
on G/T,

~ _ 1 —F
<FT71/}> - )\G/H(RT) /RTw dAG/H>

where

W (gH) = Yd(gpm)
G/r

is a function on G/H.

Proof. Let F be a fundamental domain for G/T". By definition,

(Fr.g)= > /XT (97)¢(9) dra(g)
~€T/(HAT)
/ x1(9)¥(9) duc(g)
'yeF/(HnF) Fy
- / xr(9)(9) dpc(g)
G/(HNT)

/ / i (gh) dprs () A (3)
G/H JH/(HN)

/ ( wdgHH> Aa/u(9)
Rt G/T
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8.2. Limiting distributions of translates of algebraic measures. The
following is the main result of this section which allows us to investigate the counting
problems.

THEOREM 8.8. Let G be a connected real algebraic group defined over Q, I' C
G(Q) an arithmetic lattice in G with respect to the Q-structure on G, and 7 : G —
G/T the natural quotient map. Let H C G be a connected real algebraic Q-subgroup
admitting no nontrivial Q-characters. Let pg denote the H-invariant probability
measure on the closed orbit w(H). For a sequence {g;} C G, suppose that the
translated measures g;pup converge to a probability measure p on G/T'. Then there
exists a connected real algebraic Q-subgroup L of G containing H such that the
following holds:

(i) There exists cg € G such that p is a coLco~t-invariant measure supported
on com(L).
In particular, p is a algebraic measure.
(i) There exist sequences {v;} C T and ¢; — co in G such that v;Hv;~* C L
and g;H = ¢;v; H for all but finitely many i € N.

The proof of this theorem is based on the following observation.

PRrROPOSITION 8.9. Let the notation be as in Theorem 8.8. Then either there
exists a sequence ¢; — ¢ in G such that c;pu; = pg for all i € N (in which case p =
cp ), or p is invariant under the action of a nontrivial unipotent one-parameter
subgroup of G.

In order to be able to apply Theorem 8.8 to the problem of counting, we need
to know some conditions under which the sequence {g; 1} of probability measures
does not escape to infinity. Suppose further that G and H are reductive. Let Z(H)
be the centralizer of H in G. By rationality m(Z(H)) is closed in G/T". Now if
w(Z(H)) is noncompact, there exits a sequence {z;} C Z(H) such that {m(z;)} is
divergent; that is, it has no convergent subsequence. Then z;up escapes to the
infinity; that is (z;um)(K) — 0 for any compact set K C G/T'. The condition
that m(Z(H)) is noncompact is equivalent to the condition that H is contained in a
proper parabolic Q-subgroup of G. In the converse direction we have the following
(see [EMSZ2]).

THEOREM 8.10. Let G be a connected real reductive algebraic group defined over
Q, and H a connected real reductive Q-subgroup of G, both admitting no nontrivial
Q-characters. Suppose that H is not contained in any proper parabolic Q-subgroup
of G defined over Q. Let T' C G(Q) be an arithmetic lattice in G and 7 : G —
G/T the natural quotient map. Let puy denote the H-invariant probability measure
on w(H). Then given an € > 0 there exists a compact set K C G/I' such that
(gum)(K) >1—¢€ Vg €G.

The proof of this result uses generalizations of some results of Dani and Mar-
gulis [DM3]. Combining this theorem with Theorem 8.8, we deduce the following
consequence.

COROLLARY 8.11. Suppose that H is reductive and a proper mazximal connected
real algebraic Q-subgroup of G. Then for any sequence {g;} C G, if the sequence
{g:H} is divergent (that is, it has no convergent subsequence) in G/H, then the
sequence {g;up} gets equidistributed with respect to pug as i — oo (that is, gipg —
e weakly).
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In the general case, one obtains the following analogue of Corollary 8.11. We
note that the condition that H is not contained in any proper Q-parabolic sub-
group of G, is also equivalent to saying that any real algebraic Q-subgroup L of G
containing H is reductive.

COROLLARY 8.12. Let G be a connected real reductive algebraic group defined
over Q, and H a connected real reductive Q-subgroup of G not contained in any
proper parabolic Q-subgroup of G. Let I' C G(Q) be an arithmetic lattice in G.
Suppose that a sequence {g;} C G is such that the sequence {g;ur} does not con-
verge to the G-invariant probability measure. Then after passing to a subsequence,
there exist a proper connected real reductive Q-subgroup L of G containing H and
a compact set C C G such that

{9:} CCL(Z(H)NT)

8.3. Applications to the counting problem. The case where H is max-
imal. The following is a consequence of Corollary 8.11:

THEOREM 8.13. Let G and H be as in the counting problem. Suppose that
HC is reductive and a proper mazimal connected real algebraic Q-subgroup of G,
where H denotes the connected component of identity in H. Then asymptotically
as T — oo

N(T,V,0) ~ Ag/u(Rr).

REMARK 8.14. Suppose that H is the set of fixed point of an involution of G.
Let L be a connected real reductive Q-subgroup of G containing H°. Then there
exists a normal Q-subgroup N of G such that L = H°N. Now if G is Q-simple,
then HY is a maximal proper connected Q-subgroup of G (see [Bor, Lemma 8.0]).
Hence Theorem 8.2 follows from Theorem 8.13.

The general case. We now use Corollary 8.12. For applying this result to the
counting problem, we need to know that averages of translates of the measure ug
along the sets Ry become equidistributed as 7" tends to infinity. I.e., we want the
set of ‘singular sequences’, for which the limit measure is not G-invariant, to have
negligible ‘measure’ in the sets Ry as T — oo. This does not hold when the sets
Ry are ‘focused’ along L/H(C G/H):

DEFINITION 8.15. Let GG and H be as in the counting problem. For a sequence
T, — oo, the sequence {Rr,} of open sets in G/H is said to be focused, if there
exist a proper connected reductive real algebraic Q-subgroup L of G containing H°
and a compact set C' C G such that

 gyalgn(CL(Z(HY) NT) N Ry,)
lim sup
n—o0 AG/H(RT,,,)

>0,

where gy : G — G/H is the natural quotient map.

Note that since L is reductive and defined over Q, we have that 7(L) is closed
in G/T. In particular, L(Z(H®) N T) is closed in G. Also LzH" = Lz for any
z € Z(HY). Now since C is compact, the set ¢ (CL(Z(H®)NT)) is closed in G/H.

Now if the focusing of { Rz, } does not occur, then using Corollary 8.12 we can
obtain the following analogue of Corollary 8.11.
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COROLLARY 8.16. Let G and H be as in the counting problem. Suppose that H°
is not contained in any proper Q-parabolic subgroup of G°, and for some sequence
T, — oo, the sequence { Ry, } is not focused. Then given € > O there exists an open
set A C G/H with the following properties:

Ao/m(ANR
(99) lim inf 26/H A B,

>1—¢

and given any sequence {g;} C qu'(A), if the sequence {qu(g;)} is divergent in
G/H then the sequence {g;upg} converges to ug.

This corollary allows us to obtain the counting estimates like in Theorem 8.2
and Theorem 8.13 for a large class of homogeneous varieties.

THEOREM 8.17. Let G and H be as in the counting problem. Suppose that HY is
not contained in any proper Q-parabolic subgroup of G° (equivalently, Z(H)/(Z(H)N
I') is compact), and for some sequence T,, — oo with bounded gaps, the sequence
{Rr,} is not focused. Then asymptotically

N(T,V,0) ~ g u(Rr).

Remark. The non-focusing assumption in Theorem 8.17 is not vacuous. In the
above setup one is required to verify the condition of nonfocusing in Theorem 8.17
separately for each application of the result.

Outline of the proof of Theorem 8.17, assuming Corollary 8.16.

ProprosITION 8.18. Let the notation and conditions be as in Theorem 8.17.
Then Fr, — 1 in the weak-star topology on L= (G/T, ug); that is, (Fr,,¥) — (1,4)
for any compactly supported continuous function ¢ on G/T.

Proof. As in Proposition 8.7,

~ _ 1 —7
<FT7,(/)> - )\G/H(RT) /RTw dAG/Hv

where

w(gH) = [ p(ghT) (D) = [ d(gpn)
HT/T G/r
is a function on G/H.
Let € > 0 be given. Since the sequence {Rr,} is not focused, we obtain a set
A C G/H as in Corollary 8.16. Break up the integral over Ry, into the integrals
over Ry, N A and Ry, \ /A. By equation (99) and the boundedness of ¢, the second
integral is O(e). By Corollary 8.16, for any sequence {g;} C qz~*(A), if {qu(g:)}
has no convergent subsequence in G/H, then g; - pg — . Hence

W1 (g, H) / Ydug = (,1).
a/r
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We use dominated convergence theorem to justify the interchange of limits. Now

lim (Fr | = 1im7/ WH d\g g + Ole
"—>°°< 7.0¥) n—oo A\q/ g (Rr,) RT"nA¢ @ ©

- 1 dA\a/g + O
n—oo A\q/u (Rr,) /RTn NA W 1) dd/m ©
Ag/u(Br, NA)

e on O 7 1’ +0
n— o0 )\G/H(RTn) < 1Z}> (6)

= (L) +0(e)

Since € is arbitrary, the proof is complete. O

PROPOSITION 8.19 ([EMS1]). There are constants a(d) and b(d) tending to 1
as 6 = 0 such that

.. Aqu(Ra—sr) .. Aa/u(Rats)r)
b 6 < hm lnf _— =< thu —_—
0) < T—oo  Ag/a(Rr) T A u(RT)

< a(9).

Proof of Theorem 8.17. Let ¢ in Proposition 8.18 tend to a J-function at the
origin. Then, combining Proposition 8.18 and Proposition 8.19, we obtain that
Fr, — 1 pointwise on G/T" as i — co. (See [DRS, Lemma 2.3] for the details).
Thus (98) holds. This completes the proof. O

8.4. Invariance under unipotents.

PROPOSITION 8.20. Let G be a semisimple Lie group, I' be a discrete subgroup
of G, and 7 : G — G/JT be the natural quotient map. Let H be a nontrivial
reductive subgroup of G and Q be a relatively compact neighborhood of identity in
H. Let pg be the probability measure on 7(2) which is the pushforward under m of
the restriction to 2 of a Haar measure on H.

Suppose that for a sequence {g; }ien C G, the sequence {g; - patien C P(G/T)
converges weakly to a nonzero measure p on G/T'. Then one of the following holds:

(1) There exists a compact set C C G such that {g; }ien C CZg(H).
(2) w is invariant under a nontrivial unipotent one-parameter subgroup of G.

ProOF. (Cf. [Moz, Lemma ?7]) Let g be the Lie algebra of G and h C g be
the Lie subalgebra corresponding to H. Equip g with a Euclidean norm, say || - ||.

Claim 1. If the Condition 1 above does not hold then there exists a sequence X; — 0
in b as i — oo, such that a subsequence of {Ad g; - X;}ien converges to a nonzero
elementY € g.

To prove the claim there is no loss of generality if we pass to a subsequence of
{gi}ien, or replace {g;}ien by {gici}ien, where {c¢;};en is contained in a compact
subset of G.

Since H is reductive, there is a Cartan involution 6 of G such that (H) = H.
Let K be the set of fixed points of . Then K is a maximal compact subset of G.
There exists a maximal R-split torus A in G such that

(100) 0(a) =a™ ', Ya € A.
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Choose an order on the system of R-roots of A for G and let A be the set of simple
roots. Let A4 be the exponential of the closure of the positive Weyl chamber. Then
by Cartan decomposition we have

Hence without loss of generality we can assume that g; = a;k; for all i € N, where
ki — kin K as i — oo and {a;}i;en C Ay
Let
O ={a € A:supala;) < oo}
i€EN
Then by modifying the sequence {a; };cn from the left by multiplications by elements
from a compact set in A N (Ngea\a ker §), we may assume that

(101) ala;) =1, Va € O,

By passing to a subsequence, we may also assume that

(102) lim a(a;) = 00, Va € A\ ®.
1— 00

Let P be the standard parabolic subgroup of G associated to ®. Let p be the
Lie algebra of P, and n be the Lie algebra of the unipotent radical N of P. Due to
(100), we have

g=10(p) &n.
Let 7, denote the projection onto n with ker(m,) = o(p).
Suppose that the claim fails to hold. Then

(103) sup||Adg; - X|| < o0, VX € b.
ieN

Hence by (102),
lim m(Adk; - X) = 0, VX € .

71— 00
Therefore kHk=1 C §(P). Since §(H) = H and (k) = k, we have that kHk~! C
P N6O(P). Hence due to (101),

{ai}ien € Za(PNO(P)) C kZg(H)k™".
Since g = 0(p) +n and k;k~1 — e as i — oo, by passing to subsequences, there
exist sequences b; — e in (P) and n; — e in N such that
kik~' = bmn;, VieN.

Let {X1,...,Xm} beabasis of h and put q = (X1,...,X,,) € &, g. Consider
the action of G on @[ ,g via the Adjoint action on each of the summands. Then
gi-a=(gik™ ") (k-q) = (a:kik ™) (k- q) = (aibsa; ") (ainia; ") (k- q)

By (103), {g: - q}ien is a bounded sequence. By (100) and (102), a;b;a; ' — e
as i — oo. Therefore (a;n;a;')(k-q) :i € N} is a bounded sequence. Since N is a
unipotent group, the orbit N(k - q) is closed. Therefore there exists a compact set
C7 C N such that
aflniai € Cl(k‘ZG(H)/{J71 n N)
Therefore, since {a;} C kZg(H)k™! and a;b;a;~* — e as i — oo, there exists a
compact set C' C G, such that

gikil = (Zikik71 = (aibiafl)(amiafl) S CZG(H)kil, Vi € N.
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This contradicts the hypothesis of the claim, and hence the proof of Claim 1 is
complete.

Now we can assume that there exists a sequence X; — 0 in h and a nonzero
elements Y € g such that

11— 00
Consider the one-parameter subgroup v : R — G defined as u(t) = exp(tY") for all
t € R. Since X; — 0, all the eigenvalues of AdtX; converge to 1 as i — co. Since
u(t) = lim; o g;~*(exptX;)g; and the eigenvalues are invariant under conjugation,
we have that 1 is the only eigenvalue of Adwu(t) for all ¢ € R. Therefore u is a
unipotent one-parameter subgroup of G.

Claim 2. The measure p is invariant under the action of {u(t) : t € R}.

To prove the claim let ¢ € R and put 6 = exp(tX;) for all ¢ € N. Then by the
definition of g, for any ¢ € C.(G/T),

(104) < ¢ sup |yl

(2) dpo(z) /G 0 o)

G/r

where ¢; depends only on d;, and ¢; — 0 as §; — 0. Let ¢ € N. Applying Eq. 104
for ¢;(x) := ¥(g;x) for all x € X, we get

P (giw) duo(z) — U((9:0i9: ") gix) dpa(x)
G/T G/T

<€ -suply|.

We have g; - ug — p weakly as i — oo, ¢;~20;9; — u(t) as i — oo, and 1 is
uniformly continuous. Therefore

P(x) du(z) = (zu(g)) dp(x).
G/T G/T
This shows that p is invariant under {u(¢) : ¢ € R}. This completes the proof of
the theorem. O

8.5. Proving Ergodicity. In view of Proposition 8.20 and the measure clas-
sification theorem, Theorem 8.8 would follow immediately if we knew that p was
ergodic. In general the ergodicity of u does not follow from Theorem 4.5 since we
are not assuming that H contains unipotents.

The next part of the proof of Theorem 8.8 parallels §4.3. One applies the
measure classification theorem followed by linearization. The analysis is somewhat
more complicated then that of §4.3 because of the multi-dimensional situation, and
the fact that we have a map only from a compact subset of H. The end result is:

PROPOSITION 8.21. Let B C H be a ball of diameter at most §g in H around
e. Let g; be a sequence of elements in G, and let \; be the probability measure on
w(g:(B)) which is the pushforward under g; of the normalized Lebesgue measure
on B. Suppose that \; — X weakly in the space of probability measures on G/T'.
Suppose there exist a unipotent one-parameter subgroup U of G and F € H such
that \(m(N(F,U))) > 0 and \M(w(S(F,U))) = 0. Then there exists a compact set
D C Ap such that the following holds: For any sequence of neighborhoods {®;} of
D in Vg, there exists a sequence {~;} C I' such that for all large i € N,

(105) 9i(B)yi - pr C ;.
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In general the condition (105) is difficult to analyze using linear algebra meth-
ods. The idea of the proof of Theorem 8.8 is the following: Since we are assuming
that ¢g; B return to a compact set in G/T", we may write g; = ¢;yjh;, where ¢; is in
a compact set, v; € I and h; € B C H. Without loss of generality, we may then
replace g; by v;h;. Consider rational points h; in BB. The orbit of each rational
point under I' is discrete, so there are only finitely many possibilities for v;h;7; - pr.
By passing to a subsequence one can assume that v/h;v; - pr is constant, which
eventually yields the proof of Theorem 8.8.
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