
COUNTING PROBLEMS IN MODULI SPACE

ALEX ESKIN

In this series of lectures, we describe some counting problems in mod-
uli space and outline their connection to the dynamics of the SL(2, R)
action on moduli space. Much of this is presented in analogy with the
space of lattices SL(n, R)/SL(n, Z).

1. LECTURE 1: Counting problems and volumes of strata

Recall that Ωn = SL(n, R)/SL(n, Z) is the space of covolume 1
lattices in Rn. This space is non-compact, since we can have arbitrarily
short vectors in a lattice.

We will refer to moduli spaces of translation surfaces as defined in
the lectures by Howard Masur in this volume [Ma1, Definition 6] as
strata. Note that the case of n = 2 in the space of lattices and the
case of the stratum H1(∅) boil down to the same thing, since we are
considering the space of unit area holomoprphic 1-forms on tori, which
is given by SL(2, R)/SL(2, Z).

Let B(R) be the ball of radius R centered at 0 in Rn. For a given
lattice ∆ ∈ Ωn. we would like to find out how many lattice points, that
is, how many points of ∆ are contained in B(R).

It is immediately clear that for a fixed lattice ∆, as R → ∞,

(1) |∆ ∩ B(R)| ∼ Vol(B(R)) = Vol(B(1))Rn.

(i.e. the number of lattice points is asymptotic to the volume). How-
ever, this is not uniform in ∆. A uniform upper bound can be given as
follows:

Let Rn be endowed with a Euclidean structure. Given a subspace L
of Rn, we say it is ∆-rational if L∩∆ is a lattice in L. We define d(L)
to be the volume of L/(∆ ∩ L). We then define the function α by

α(∆) = sup
1

d(L)

where the supremum is taken over all ∆-rational subspaces L. We have
the following result (see [Sch]): there is a constant C, depending only
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on the dimension n so that for all ∆ ∈ Ωn,

(2) |∆ ∩ B(1)| < Cα(∆).

This estimate follows from what is called “the geometry of numbers”.
The analogous problem in moduli space is as follows: let H(β) be a

stratum, i.e. a moduli space of translation surfaces (defined in [Ma1,
Definition 6]), and let S = (X, ω) ∈ H(β). Recall (see e.g. [Ma1, §1.1])
that the holonomy of a curve γ on S is given by

hol(γ) =

∫

γ

ω.

Let

Vsc(S) = {hol(γ) : γ is a saddle connection on S},

so that Vsc(S) ⊂ C ≃ R2 (saddle connections are defined in [Ma1,
Definition 3]). Note that Vsc(S) is a discrete subset of R2, but it is not,
in general, a subgroup. We are interested in |Vsc(S) ∩ B(1)|, i.e. the
number of saddle connections of length at most 1 on S.

The result is as follows: Fix ǫ > 0. Then there is a constant c =
c(β, ǫ) such that for all S ∈ H(β) of area 1,

(3) |Vsc(S) ∩ B(1)| ≤
c

ℓ(S)1+ǫ
,

where ℓ(S) is the length of the shortest saddle connection on S.
The proof of this result (which can be found in [EM]) is more difficult

that that of (2). It uses techniques developed by Margulis for the
quantitative version of the Oppenheim conjecture (see Lecture 3), as
well as induction on the genus.

The following construction and its analogues play a key role. For
any function of compact support f ∈ Cc(R

n), let f̂(∆) =
∑

v∈∆\0 f(v).

Note that if f = χB(1), we get f̂(∆) = |∆ ∩ B(1)|. We have the Siegel
formula: For any f ∈ Cc(R

n),

(4)
1

µ(Ωn)

∫

Ωn

f̂(∆) dµ(∆) =

∫

Rn

f dλ,

where µ is Haar measure on Ωn = SL(n, R)/SL(n, Z), and λ is Lebesgue
measure on Rn.

The generalization of this formula to moduli space was developed,
so the legend goes, by Veech while he listened to Margulis lecture on
the Oppenheim conjecture. For f ∈ Cc(R

2) we define the Siegel-Veech

transform f̂(S) =
∑

v∈Vsc(S) f(v). Just as above, if f = χB(1), f̂ counts
the number of saddle connections of length ≤ 1.
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Just as we had the Siegel formula for lattices, here we have the Siegel-
Veech formula: There is a constant b(β) such that for any f ∈ Cc(R

2),
we have

(5)
1

µ(H1(β))

∫

H1(β)

f̂(S) dµ(S) = b(β)

∫

R2

f,

where µ is the natural SL(2, R) invariant measure on H1(β), where
H1(β) ⊂ H(β) is the hypersurface of translation surfaces of area 1
(this measure is defined in [Ma1, §3], or in the next section).

Let us sketch the proof of this result (essentially from [Ve], also
reproduced in [EM]). The first step (which is by far the most technical)

is to show that f̂ ∈ L1(H1(β)), so that the left hand side is finite. This
can be deduced e.g. from (3). Having done this, we denote the quantity
on the left hand side of (5) by ϕ(f).

Thus we have a linear functional ϕ : Cc(R
2) → R, i.e. a measure.

But it also has to be SL(2, R) invariant. Only Lebesgue measue and δ0,
the delta measure at 0 are SL(2, R) invariant. Thus we have ϕ(f) =
af(0) + b

∫

R2 f . It remains to show a = 0. Consider the limit of
indicator functions f = χB(R) as R → 0. Both sides of the equation
tend to 0, so we have that a = 0, and thus our result.

Returning to lattices, we can apply literally the same arguments to
prove the Siegel formula (4). Note that nothing was special about
dimension 2 in the above proof sketch. Thus, we have almost proved
(4) as well. To be precise, we currently have:

1

µ(Ωn)

∫

Ωn

f̂(∆)dµ(∆) = b

∫

Rn

fdλ,

for some constant b. We need to show b = 1. Here, we once again
use f = χB(R), but this time consider R → ∞. Recall that f̂(∆) =
|∆ ∩ B(R)| ∼ Vol(B(R)), for R ≫ 0. Thus, we get b = 1, and the
Siegel formula.

We should remark that for the space of lattices the proof of the
Siegel formula indicated above is not the easiest available. In fact, it
is possible to avoid proving apriori that f̂ ∈ L1(Ωn). See [Sie] or [Cas]
or [Ter] for the details.

We now show how to use the Siegel formula to calculate the volumes
of the spaces Ωn. We first prove a variant of the formula. Recall that
v ∈ ∆ is primitive if there is no integer n so that v/n ∈ ∆. The
analogue of (1) for counting primitive vectors is

(6) |∆prim ∩ B(R)| ∼
1

ζ(n)
Vol(B(1))Rn,
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where ζ(n) is Riemann’s zeta function. Now for f ∈ Cc(R
n), let

f̃(∆) =
∑

v∈∆

′
f(v)

where the prime indicates that we are summing over primitive vectors
only. Now the proof of the Siegel formula given above shows that

(7)
1

µ(Ωn)

∫

Ωn

f̃(∆)dµ(∆) =
1

ζ(n)

∫

Rn

fdλ.

The rest of the argument is heuristic. Consider f = χB(ǫ) for some

small positive ǫ. We have that f̃(∆) = 0 unless ∆ has a primitive
vector of length less than ǫ. Note that if v is a primitive short vector,
then so is −v. It turns out that we can, in the limit as ǫ → 0, ignore
the contribution to the integral of the lattices which have more then
two primitive short vectors; thus we may assume that f̃(∆) = 2. Now,
let v any one of the two primitive short vectors in ∆, and consider a
basis for ∆ containing v. We may subtract multiples of v from the
other elements of the basis, to make them as short as possible. After
this “reduction” procedure is complete, we get a basis for ∆ containing
v where all the other elements are almost orthogonal to v. Then these
other basis elements form an arbitrary lattice of dimension n − 1, i.e.
an element of Ωn−1. Thus, the left hand side of (7) is approximately

2

µ(Ωn)

1

2
Vol(B(ǫ))µ(Ωn−1)

where the factor of 2 came from the value of f̃ , the factor of 1
2
Vol(B(ǫ))

came from the integral over v ∈ Rn, and the factor µ(Ωn−1) came

from the integral over the rest of the basis (and we assumed that f̃ is
always either 0 or 1). The right hand side of (7) is exactly equal to

1
ζ(n)

Vol(B(ǫ)).

Doing this more carefully, and taking into account the normalizations
of the measures (to be defined in the next lecture), we get, after sending
ǫ → 0,

(8)
1

ζ(n)
=

n − 1

n

µ(Ωn−1)

µ(Ωn)
.

Now after iterating the above formula, we get the desired formula for
the volume:

(9) µ(Ωn) =
1

n
ζ(2) ζ(3) . . . ζ(n).

The above could be justified rigorously, but this is usually not done
since (8) and (9) can be obtained from (7) in an easier way (see [Sie]
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or [Cas] or [Ter]). However, the analogue of the argument presented
here is the only way we currently know how to proceed in the case of
translation surfaces. This was done in [EMZ] where we obtained the
following result, which corresponds to (8). For any stratum (i.e. moduli
space of translation surfaces) H1(β), the coefficient b(β) involved in (5)
can be expressed in the following form:

(10) b(β) =
∑

α<β

c(α, β)
µ(H1(α))

µ(H1(β))
,

where the sum is over lower dimensional strata α (which lie at the
“boundary” of H1(β)), and c(α, β) are explicitly known rational num-
bers.

We note that (10) fails as a method for calculating the volumes,
since (unlike the lattice case) we do not have an independent formula
for b(β). In the second lecture we will show that the volumes can
be computed in a different way; then (10) can be used to evaluate
b(β). Also, we will see in the third lecture that b(β) is the answer to a
certain natural counting problem. The numbers b(β), called the Siegel-
Veech constants, appear in some other contexts as well, in particular
in connection with the Lyapunov exponents of the geodesic flow.

2. LECTURE 2: Lattice points and branched covers

In this lecture we describe briefly another strategy for calculating
volumes of moduli spaces of translation surfaces, which also has a
parallel for the space of lattices. Recall that we are considering the
moduli spaces H(β) of translation surfaces with singularity structure
β = (β1, β2, . . . βn), where βi ∈ N,

∑

βi = 2g − 2. Let the set of sin-
gularities be denoted by Σ. We have |Σ| = n, and we have the first
relative homology group of S relative to Σ (with coefficients in Z):

H1(S, Σ; Z) = Z2g+n−1.

We can pick a basis for the relative homology by selecting g a-cycles,
g b-cycles (from absolute homology), and n − 1 relative cycles, where
a relative cycle is a path with starts at some point of Σ and ends at a
different point of Σ.

Fix a Z-basis γ1, γ2, . . . γk of H1(S, Σ; Z), where k = 2g + n − 1. We
recall the following fact (see [K]):

Theorem 1. The map (X, ω) → (hol(γ1), . . . , hol(γk)) from H(β) →
(R2)k is a local coordinate system.

By pulling back Lebesgue measure on (R2)k, we obtain a normalized
measure ν on H(β). (For more details on the above constuction, see
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[Ma1, §3].) Now, we would like to define a measure on the hypersurface
H1(β).

This is similar to the lattice setting, where if we pick a basis v1, v2, . . . vn

for our lattice ∆ ⊂ Rn, we get a matrix in Mn(R) by letting vi be the
ith column. Note that since our lattice is unit volume, our matrix has
determinant 1. We have a natural (Lebesque) measure ν on Mn(R).
Consider the det = 1 hypersurface Ω1 (i.e., SL(n, R)). We define a
measure µ on this space as follows: let E ⊂ Ω1, and let C1(E) be the
cone over E (i.e. the union of all line segments which start at the origin
and end at a point of E). We define µ(E) = ν(C1(E)). This yields
a finite measure since we are considering a fundamental domain under
the SL(n, Z)-action. This is in fact the measure used in the previous
section in the case of lattices.

Returning to the setting of translation surfaces, recall that the area
of our surface S = (X, ω) is given by

Area(S) =
1

2i

∫

X

ω ∧ ω̄ =
1

2i

g
∑

i=1

∫

ai

ω̄

∫

bi

ω −

∫

bi

ω̄

∫

ai

ω

where ai and bi are the a- and b-cycles on X respectively.
This gives that the area is a quadratic form in the local coordinate

system, i.e.,

Area(X, ω) = Q(hol(γ1), . . . , hol(γk)).

However, it is a degenerate form, since it only depends on the absolute
cycles ai and bi. We can mimic the lattice picture now: we define
µ(E) = ν(C1(E)) for any subset E ⊂ H1(β). This is the measure used
in the previous section for the case of translation surfaces.

In what follows, we should really work inside each local coordinate
chart as in Theorem 1 and then sum over the charts at the end (see [EO,
§3.2]). But to simplify the presentation, we pretend there is only one
chart. Let F ⊂ H1(β) denote a fundamental domain (for the relation
of equivalence of translation surfaces) with rectifiable boundary, so that
each translation surface corresponds to a unique point in F . Then,

µ(H1(β)) = µ(F) = ν(C1(F)),

We now make a cosmetic step. Let CR(F) denote the cone of F
extended to the hypersurface of area R-surfaces. Clearly

µ(H1(β)) = ν(C1(F)) =
ν(CR(F))

Rk
.

We have the following fact:

|CR(F) ∩ (Z2)k| ∼ ν(CR(F))
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as R → ∞, i.e. the number of lattice points in a cone is asymptotic
to the volume. Ususally this is used to estimate the number of lattice
points, but here we use this in reverse and estimate the volume by the
number of lattice points. Thus, we get that

µ(H1(β)) =
ν(CR(F))

Rk
∼

|CR(F) ∩ (Z2)k|

Rk
,

or, equivalently,

(11) |CR(F) ∩ (Z2)k| ∼ µ(H1(β))Rk.

The equation (11) is not useful unless we can find an interpretation
of the points of CR(F) ∩ (Z2)k. This is given by the following:

Lemma 2. S = (X, ω) ∈ CR(F) ∩ (Z2)k if and only if X is a holo-
morphic branched cover of the standard torus of degree ≤ R, ω is the
pullback of dz under the covering map, and all singularities branch over
the same point.

Proof: Since S ∈ CR(F), area(S) ≤ R. By definition, S ∈ (Z2)k

is equivalent to hol(γ1), . . . , hol(γk) ∈ Z2. Fix a non-singular point
z0 on S, and define π : S → T , where T is the standard torus, by
π(z) =

∫ z

z0

ω. Since
∫

γ
ω ∈ Z + iZ for any closed curve or saddle

connection γ, this is a well defined covering map with all singularities
branching over the same point. Since the torus is unit volume, the area
of S is equal to the degree of the covering. �

Let Nβ(d) denote the number1 of branched covers of T of degree d
with branching type β. (Note that Nβ(d) is defined in purely combi-
natorial terms).

Combining Lemma 2 with (11), we obtain the following: as R → ∞,

(12)

R
∑

d=1

Nβ(d) ∼ µ(H1(β))Rk.

(This relation was discovered by Kontsevich and Zorich, and indepen-
dently by Masur and the author.) Thus, we can compute µ(H1(β)) if
we can compute the asymptotics of the left-hand-side of (12). This is
a purely combinatorial problem.

Suppose we are considering a degree d cover of the torus. Consider
the standard basis a and b of curves on the torus (when the torus is
viewed as the unit square, the curves correspond to the sides of the
square). They give rise to permutations of the sheets, that is, elements

1In order for Theorem 3 below to hold, we should, when defining Nβ(d), weigh
each cover by the inverse of its automorphism group. However this does not affect
the asymptotics and can be ignored here.
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of the symmetric group Sd. We will abuse notation by denoting these
permutations also by a and b. Singularity types of covers correspond
to different conjugacy classes of the commutator aba−1b−1. A simple
zero is a transposition, a double zero a three cycle, a two simple zeroes
is a product of two transpositions, etc. (So for example, if we are
considering the stratum H(1, 1), the commutator will be in the same
conjugacy class as a product of two transpositions.) The number of
pairs (a, b) ∈ Sd × Sd satisfying such a commutation relation can be
expressed as a sum over the characters of the symmetric group Sd.

However, simply looking at the conjugacy class of the commutator
permutation does not guarantee that the resulting surface is connected.
We wish to count only the connected covers. However, the disconnected
ones dominate the count. If one knows the number of disconnected
covers exactly, one can compute the number of connected covers (by
using inclusion/exclusion to subtract off all the possible ways a cover
can disconnect). Unfortunately, as one does that, the first n terms
in the asymptotic formula cancel. Still, it is possible, using the exact
formula for the number of disconnected covers in [BO], to carry out the
computation (see [EO]). The result, is a fairly messy but computable
formula for the volume µ(H1(β)).

There are two consequences of the above computations worth men-
tioning:

Theorem 3. The generating function Fβ(q) =
∑∞

d=0 Nβ(d)qd is a
quasi-modular form, that is, it is a polynomial in the Eisenstein se-
ries Gk(q), k = 2, 4, 6.

Theorem 4. π−2gµ(H1(β)) ∈ Q, where g is the genus of any surface
in H(β).

Both of the above theorems were conjectured by Kontsevich. Fur-
ther work showed that they hold also for the connected components of
strata, and that similar results hold for spaces of quadratic differentials.
We remark that Theorem 4 implies that the Siegel-Veech constants are
rational.

For the space of lattices, one can carry out the same construction.
The main difference is that one ends up counting unbranched covers of
the standard torus T n, or what is equivalent, sublattices of the standard
lattice Zn. By computing the number of sublattices of Zn of index at
most R, and sending R → ∞, it is not difficult to reproduce (9).
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3. LECTURE 3: The Oppenheim conjecture and Ratner’s

theorem

3.1. Counting cylinders and saddle connections. Recall that Vsc(S) =
{hol(γ) : γ is a saddle connection on S} where S = (X, ω) is a trans-
lation surface. We also define the analogous set:

V (S) = {hol(γ) : γ is a closed geodesic on S not passing through singularities}.

Note that any such closed geodesic is part of a cylinder (see [Ma1, §3]),
and all the closed geodesics in the cylinder have the same holonomy.
Thus, |V (S)∩B(R)| is the number of cylinders on S of length at most
R.

Masur proved the following:

Theorem 5. For all translation surfaces S in a compact set, there are
constants c1 and c2 so that for R ≫ 1

c1R
2 < |V (S) ∩ B(R)| ≤ |Vsc(S) ∩ B(R)| < c2R

2.

The upper bound is proved in [Ma2] and the lower bound is proved
in [Ma3]. The proof of the lower bound depends on the proof of the
upper bound. Another proof of both the upper and lower bounds with
explicit constants was given by Vorobets in [Vo1] and [Vo2]. Also see
[EM] for yet another proof of the upper bound, which is influenced by
ideas of Margulis.

We also note that there is a dense set of directions with a closed
trajectory and thus a cylinder.

The following theorem, gives asymptotic formulas for the number of
saddle connections and cylinders of closed geodesics on a fixed surface.
It was first proved in this form in [EM], but many of the ideas came
from [Ve], where a slightly weaker version was proved.

Theorem 6. For a.e. S ∈ H1(β), we have

|Vsc(S) ∩ B(R)| ∼ πb(β)R2,

where Vsc(S) is the collection of vectors in R2 given by holonomy of
saddle connections on S, and b(β) is the Siegel-Veech constant from
Lecture 1, (whose value is given by (10)).

Similarly, for cylinders of closed geodesics, we have that there is a
constant b1(β) so that

|V (S) ∩ B(R)| ∼ πb1(β)R2

where V (S) is the collection of vectors given by holonomy along (im-
primitive) closed geodesics not passing through singularities, and b1(β)
is the associated Siegel-Veech constant.
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The following exposition will be along the lines of [EM], which was
heavily influenced by [Ve]. To simplify the notation, we only deal with

the case of saddle connections. Define gt =

(

et 0
0 e−t

)

and rθ =
(

cos θ sin θ
− sin θ cos θ

)

. Let f be the indicator function of the trapezoid

defined by the points

(1, 1), (−1, 1), (−1/2, 1/2), (1/2, 1/2).

Lemma 7. We have
∫ 2π

0
f(gtrθv) dθ ≈

{

2e−2t if et/2 ≤ ||v|| ≤ et,

0 otherwise.

Proof. Let U denote the trapezoid. Note that

(13) f(gtrθv) 6= 0 ⇔ gtrθv ∈ U ⇔ rθv ∈ g−1
t U.

The set g−1
t U is the shaded region in Figure 1. From (13) it is clear

that the integral in Lemma 7 is equal to (2π times) the fraction of the
circle which lies inside the shaded region g−1

t U . If v is too long or too
short (not drawn), then the circle would completely miss the shaded
region, and the integral would be zero. If it does not miss, then (2π
times) the fraction of the circle in the shaded region is approximately
2e−2t, independent of ‖v‖. �

We now prove Theorem 6. Summing our formula from Lemma 7 over
all v ∈ Vsc(S) and recalling the definition of the Siegel-Veech transform

f̂(S) =
∑

v∈Vsc(S) f(v), we get

1
2
e2t

∫ 2π

0

f̂(gtrθS) dθ ≈ |Vsc(S) ∩ B(et)| − |Vsc(S) ∩ B(et/2)|.

Writing R = et, we can rewrite this as

(14) 1
2
R2

∫ 2π

0

f̂(gtrθS)dθ ≈ |Vsc(S) ∩ B(R)| − |Vsc(S) ∩ B(R/2)|.

This equation is key to the counting problem, since the right hand side
counts saddle connections in an annulus, and the left hand side is an
integral over (part of) an SL(2, R) orbit. (The fact that we only have
approximate equality does not affect the leading order asymptotics.)
Now we are supposed to use some sort of ergodic theory to analyze
the behavoir of integral on the left-hand-side of (14) as t → ∞ (or
equivalently as R → ∞).
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v

( 1

2
e
−t

,
1

2
e

t)

(e−t, et)

Figure 1. Lemma 7.

There is an ergodic theorem of Nevo [Ne] which implies that2 for

almost all S ∈ H1(β), and provided that f̂ ∈ L1+ǫ(H1(β)), the integral

converges to 2π
∫

H1(β)
f̂(S) dS = 2πb(β)

∫

R2 f . The assertion that f̂ ∈

L1+ǫ can be verified using (3). This immediately implies Theorem 6.
�

However, this approach is a failure if one wants to prove things about
billiards in rational polygons: our theorems hold for almost every point
S, and the set of translation surfaces arising from rational polygons has
measure zero.

3.2. Oppenheim’s conjecture. We now describe a counting problem
for lattices which has a solution very similar to the above approach.
(In fact, the results in this subsection predated and heavily influenced
the discussion in the previous subsection). Let Q = Q(x1, x2, . . . xn)
be a indefinite irrational quadratic form in n variables which is not
a linear multiple of a rational form. In 1929 Oppenheim conjectured
the following: Q(Zn) is dense in R. This was proved by Margulis in
1986 [Mar], using methods from dynamics and ergodic theory.

2The theorem of Nevo used here is about a general SL(2, R) action, and uses
nothing about the geometry of the moduli space.
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In [EMM], the following quantitative version of the conjecture is
proved:

(15) |{x ∈ Zn : ||x|| ≤ T, a ≤ Q(x) ≤ b}| ∼ c(Q)(b − a)T n−2.

This is very similar to our above problem with saddle connections:
we want to consider the lattice points in the ball of radius T intersected
with the region in between the two hypersurfaces Q(x) = a and Q(x) =
b.

To solve this, one writes an integral very similar to the previous
problem: this time, our compact group which we are integrating over
is H = SO(Q)∩SO(n) and our diagaonal subgroup, denoted by at, has
1’s in every diagonal entry except the first and last, where they are et

and e−t respectively. Our integral is as follows: T n−2
∫

H
f̂(ath∆Q) dh,

where ∆Q is a certain lattice in Rn associated to Q. We will assume
that Q has signature (p, q), with p ≥ 3 and q ≥ 1.

Hence, if one makes a formal analogy between the spaces of trans-
lation surfaces and the spaces of lattices, the problem of counting sad-
dle connections corresponds to the quantitative Oppenheim conjecture.
There is an important difference between the two problems: unlike the
saddle connection case where the result is “almost everywhere”, we
can prove the asymptotic formula (15) for ALL quadratic forms Q not
proportional to rational forms (and (15) fails for multiples of rational
forms). This is due to the theorems we describe in the next part of
the lecture, which are collectively known as Ratner’s theorem. A ma-
jor unsolved question is whether or not there is a version of Ratner’s
theorem for the action on the moduli space of translation surfaces. An
affirmative answer would allow us to prove an asymptotic formula for
billiards in every rational polygon (and every translation surface).

3.3. Ratner’s theorem. Recall the Birkhoff Ergodic Theorem:

Theorem 8. Let (X, µ) be a measure space with µ(X) = 1, and let
T : X → X be a ergodic measure preserving transformation. Let f :
X → R be in L1(X, µ). Then, for almost every x ∈ X, we have that

(16) lim
N→∞

1

N

N−1
∑

i=0

f(T ix) =

∫

X

fdµ.

This is a great theorem, but the ”almost every” is fatal for most
applications to number theory. We would like to know what happens
for those other points as well, and Ratner’s theorem can describe the
behavior in certain settings.

First, however, recall that T : X → X is said to be uniquely ergodic
if there is a unique invariant probability measure µ on X.
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We have the following consequence of unique ergodicity: if T is
uniquely ergodic, and X is compact, then (assuming f in continuous)
the convergence in Birkhoff’s theorem holds for all x ∈ X. To see this,
let νN (f) = 1

N

∑N−1
i=0 f(T ix). Since X is compact, the set of probability

measures on X is weak-* compact, so there is a subsequence νnj
and

a probability measure ν∞ so that νnj
→ ν∞. Its easy to see that ν∞ is

an invariant measure for T , so ν∞ = µ. This is equivalent to (16).
Thus we can see that understanding the set of invariant measures is

very important (or in particular, the set of ergodic invariant measures,
since any invariant measure is a convex combination of ergodic mea-
sures). The other key issue in the topological setting is understanding
the closure of orbits, and the two are related, since there will be invari-
ant measures supported on orbit closures. This is the subject matter
of Ratner’s theorem (see [Rat1, Rat2, Rat3, Rat4, Rat5]).

We now describe the setting. Let G be a semisimple Lie group with
finite center (for example, G = SL(n, R)). Let Γ be a lattice in G
(not neccesarily cocompact, e.g. Γ = SL(n, Z)), and let U be a one

parameter unipotent subgroup (for example, ut =

(

1 t
0 1

)

). We let

U act on G/Γ by left multiplication on cosets (for n = 2, this action is
the horocycle flow).

The following theorem is stated somewhat informally. See e.g. [Rat5]
for precise statements.

Theorem 9 (Ratner).

(1) The closure of every U-orbit is algebraic: that is, for all x ∈
G/Γ, there is a closed subgroup L ⊂ G such that Ux = Lx, and
that L ∩ xΓx−1 is a lattice in L (so that Lx is a closed subset
of G/Γ).

(2) Every ergodic U-invariant measure ν is algebraic, that is there
exists a subgroup L and x ∈ G/Γ, such that ν is the L-invariant
measure on the closed subset Lx.

(3) Every orbit is uniformly distributed in its closure, that is, for
every x ∈ G there exists a (not-nessesarily proper) subgroup

L of G such that Lx = Ux is closed, and 1
T

∫ T

0
f(utx)dt →

∫

f(y)dµL(y) as t → ∞, where µL is the L-invariant probability
measure on Lx.

The second part of the theorem is the most difficult. The other two
parts are essentially consequences of part 2. Also note that Birkhoff’s
theorem yields that for all ǫ > 0 there is a set B of measure < ǫ
so that outside of B, the convergence is uniform. Dani and Margulis
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obtained an explicit description of B using part 2 of Ratner’s theorem
(see [DM]).

One eventual goal is to prove a version of Ratner’s theorem for the
SL(2, R) action on H1(β). That is, we would like to classify invariant
measures, orbit closures, and prove uniform distribution, for both the
full SL(2, R) action, and for the horocycle flow (which is defined to be

the action on H1(β) of the subgroup

(

1 ∗
0 1

)

of SL(2, R)).

One partial result in this direction is due to McMullen [Mc]: he has
classified the SL(2, R) orbit closures and invariant measures for the
moduli space of genus 2 surfaces (i.e., the strata H(1, 1) and H(2)).
Note that the integral in (14) is over large circles in SL(2, R), which
can be approximated well by horocycles. Thus the horocycle flow is
directly relevant to the counting problem. For other very partial re-
sults in this direction see [EMWM] and [EMS], where this program
(i.e. measure classification with respect to the horocycle flow and ap-
plication to counting) has been carried out in the very special case of
branched covers of Veech surfaces.
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