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Abstract

The Wiman-Edge pencil is the universal family Ct, t ∈ B of projective, genus 6,
complex-algebraic curves admitting a faithful action of the icosahedral group A5. The
curve C0, discovered by Wiman in 1895 [11] and called the Wiman curve, is the unique
smooth, genus 6 curve admitting a faithful action of the symmetric group S5. In this
paper we give an explicit uniformization of B as a non-congruence quotient Γ\H of the
hyperbolic plane H, where Γ < PSL2(Z) is a subgroup of index 18. We also give modular
interpretations for various aspects of this uniformization, for example for the degenera-
tions of Ct into 10 lines (resp. 5 conics) whose intersection graph is the Petersen graph
(resp. K5).

In the second half of this paper we give an explicit arithmetic uniformization of the
Wiman curve C0 itself as the quotient Λ\H, where Λ is a principal level 5 subgroup of a
certain “unit spinor norm” group of Möbius transformations. We then prove that C0 is
a certain moduli space of Hodge structures, endowing it with the structure of a Shimura
curve of indefinite quaternionic type.
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1 Introduction

In 1895 Wiman [11] discovered a smooth, projective curve C0 of genus 6 with automorphism
group the symmetric group S5; indeed this is the unique such curve (see Theorem 3.3 of
[5] or Theorem 2.1 below). In 1981 Edge [6] placed C0 in a family Ct, t ∈ B (now called
the Wiman-Edge pencil) of smooth, projective curves Ct of genus 6 with a faithful action of
the icosahedral group A5; it is universal among all such families (see Theorem 3.3 of [5] or
Theorem 1.1 below). As explained by Edge [6] (see [5] for a more modern treatment), the
family Ct of curves appears naturally on a quintic del Pezzo surface S, with the Wiman curve
“a uniquely special canonical curve of genus 6” on S: the standard action of S5 on S leaves
Ct invariant and leaves invariant exactly the curve C0. The base B of the Wiman pencil
appears also as the moduli space of K3 surfaces with (a certain) faithful µ2 ×A5 action; see
§5.3 of [7]. For a number of recent papers on the Wiman-Edge pencil, see [2, 3, 5, 7, 12].

The problem of finding uniformizations of moduli spaces is a classical one, but it is typi-
cally a difficult task. The first main result of this paper is to give an explicit uniformization
of the smooth locus of the base of the Wiman pencil. We also give modular interpretations
for various aspects of this uniformization, for example for the degenerations of the family.

Theorem 1.1 (Uniformization of the universal icosahedral family). There exists a
torsion-free subgroup Γ ⊂ PSL2(Z) of index 18 such that B◦ := Γ\H underlies the base of a
universal family CB◦ → B◦ of compact Riemann surfaces of genus 6 endowed with a faithful
A5-action such that:

(i) The map which assigns to a member of CB◦ → B◦ its A5-quotient is represented by the
natural map Γ\H→ PSL2(Z)\H.

(ii) The natural completion B of B◦ is of genus zero and has five cusps, one of width 2, two
of width 3 and two of width 5.

(iii) The family CB◦ → B◦ extends naturally to a Deligne-Mumford stable family CB → B
of A5-curves such that the fiber over each cusp has (after normalization) only rational
irreducible components. It is one of the following types, labeled by its dual intersection
graph (see Figure 1):

Petersen curve: The Petersen graph (cusp width 2).
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Figure 1: Two genus 6 surfaces with A5-symmetry. The embedded circles are the vanishing cycles for the
Petersen degeneration (cusp width 2) resp. the K5 degeneration (cusp width 3).

K5 curve: The complete graph on 5 vertices (cusp width 3).

Dodecahedral curve: The graph with one vertex and six loops attached (cusp width
5).

(iv) The involution ι of Γ ⊂ PSL2(Z) coming from the unique nontrivial outer automor-
phism of A5 is defined by conjugation with an element of order two in PSL2(Z) which
normalizes Γ; it exchanges the two cusps of the same width (see Figure 3).

As we explain in Remark 2.4 below, the group Γ in Theorem 1.1 is not a congruence
subgroup. We prove Theorem 1.1 in §2.

Our next main result is the content of §3, where we find explicit affine, piecewise-Euclidean
and hyperbolic metrics on each member of the family Ct. These metrics allow us to view
the 5 degenerations into singular members of the family. One example of a piecewise-affine
metric on a member of Ct is given in Figure 2.

The second half of this paper concerns the Wiman curve C0 itself; again, this is the
unique smooth, genus 6 curve with faithful S5 action. In §4 we determine C0 as a hyperbolic
triangle group, and we prove that the Wiman curve is actually an arithmetic curve, that is,
the quotient of the hyperbolic disk by an arithmetic lattice. Since the details are somewhat
involved, we give here only a rough statement; see Theorem 4.2 for an exact statement.

Theorem 1.2 (Arithmeticity of the Wiman curve). The Wiman curve is biholomorphic
to the quotient of the hyperbolic disk by the principal level 5 subgroup of a certain “unit spinor
norm” group of Möbius transformations.

In §5 we give a modular interpretation to the Wiman curve C0 itself as a certain moduli
space of Hodge structures. We use this as well as the arithmetic description of C0 to prove
the following (see Theorem 5.4 for a precise statement).

Theorem 1.3 (Modular description of the Wiman curve). The Wiman curve naturally
supports a family of abelian surfaces A for which End(A) is an indefinite quaternion algebra,
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Figure 2: A genus 6 surface with A5-action obtained as a dodecahedron with interior disks removed
and opposite boundary components identified (as suggested by the cylinders). The piecewise-linear
metric determines a conformal structure without singularities. The six antipodal pairs of boundary
components define as many vanishing cycles of a degeneration into an irreducible stable A5-surface
with an irreducible singular fiber (cusp width 5).

which is endowed with an isomorphism F5 ⊗ End(A) with a fixed F5-algebra and for which
H1(A;Z) is a principal End(A)-module. This gives the Wiman curve the structure of a
Shimura curve of indefinite quaternionic type.

Acknowledgements. The present paper grew out of our joint work [5] with Igor Dol-
gachev. It is a pleasure to thank Igor for sharing with us his knowledge and insights on this
topic. We also thank Amie Wilkinson for making Figure 2.

2 Riemann surfaces with A5-action and their orbifolds

2.1 Reconstructing a surface with symmetry from its orbifold

This section is closely related to the material in §3.2 of [5], but we take here an orbifold point
of view. This is in a sense a bottom up approach. We will use the language of branched
covers and 2-dimensional orbifolds; see, e.g., §2 of [10]. Denote by (g;m1, . . . ,mr) a complex-
analytic (or hyperbolic when specified) orbifold of genus g with r orbifold points of orders
m1, . . . ,mr. We use the classical terminology and call this the genus of the orbifold.

Our point of departure is Proposition 3.2 of [5], where we observe that this proposition is
essentially topological in nature. It says among other things that if C is compact Riemann
surface of genus 6 endowed with a faithful action of the alternating group A5 (resp. the
symmetric group S5), then it gives rise to an orbifold of type (0; 3, 2, 2, 2) (resp. (0; 6, 4, 2)).
We also noted that in the case of an S5-action, the passage from the A5-orbit space to the
S5-orbit space defines a degree 2 cover from an orbifold of type (0; 3, 2, 2, 2) to one of type
(0; 6, 4, 2) which ramifies over the orbifold points of order 6 and 4.
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We investigate here to what extent the orbifold determines the Riemann surface with its
group action. Our findings in this section are summed up in Theorem 1.1 in the introduction.
We will deduce this theorem from two results. The first reproves in an elementary fashion
the uniqueness assertion of Corollary 3.6 of [5].

Theorem 2.1 (Genus 6 surfaces with S5 action). There is, up to covering transfor-
mations, exactly one compact connected Riemann surface of genus 6 endowed with a faithful
S5-action.

The surface whose uniqueness and existence it asserts is called the Wiman curve, and we
shall denote it by C0.

In order to state the other two results, let (P ; q1, q2, q3, q4) be an orbifold of type (0; 3, 2, 2, 2).
We first address the question ‘How many Riemann surfaces of genus 6 with faithful A5-action
give rise to this orbifold?’. In order to state our answer, we fix an embedded segment γ in
P r {q1, q2} connecting the order 2 orbifold points q3 and q4. The embedded segments in
P r γ connecting q1 with q2 then belong to a single isotopy class; let α be such a segment.
Clearly, α is a deformation retract of P r γ.

Let f : C → P be any connected smooth A5-covering; by smooth we mean here that f
‘resolves’ the orbifold points in the sense that the order of the orbifold point is the order of
ramification of f over this point. Then f−1γ is a disjoint union of embedded circles and a
deformation retraction of P r γ onto α lifts to a deformation retraction of C r f−1γ onto
f−1α. So each connected component of f−1(P r γ) has a connected component of f−1α as
deformation retract, and since f−1α is a trivalent graph (with vertex set the preimage of q1),
this component will have first Betti number ≥ 2, and therefore negative Euler characteristic.

Denote by tγ the simple braid generator in the mapping class group of the orbifold P
supported by a regular neighborhood of γ in P r{q1, q2}. So a homeomorphism representing
tγ interchanges q3 and q4. Note that tγ takes an f : C → P as above to an A5-covering
f ′ : C ′ → P of the same type, by which we mean that this comes with orientation-preserving
A5-equivariant diffeomorphism (C, f−1γ) ∼= (C ′, f ′−1γ).

The following is the second main result of this section. It answers the above question.

Theorem 2.2 (Genus 6 surfaces with A5 action). Up to P -isomorphism, there are 18
A5-coverings of P that resolve the orbifold singularities; these coverings are necessarily of
genus 6. They come in three types and make up five orbits under the group 〈 tγ 〉 generated
by tγ. More precisely, they are:

Petersen configuration The intersection graph of (C, f−1γ) is the Petersen graph; this is
a single 〈 tγ 〉-orbit which has two elements. The A5-stabilizer of a connected component
of Crf−1γ is conjugate to Sev

3 (or equivalently, is the A5-centralizer of a transposition
of S5).

K5 configuration The intersection graph of (C, f−1γ) is the complete graph on 5 vertices;
it has two 〈 tγ 〉-orbits, each having three elements. The A5-stabilizer of a connected
component of C r f−1γ is conjugate to the subgroup A4 ⊂ A5.
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Dodecahedral configuration The intersection graph of (C, f−1γ) has a single vertex with
five loops; it has two 〈 tγ 〉-orbits, each having five elements (1).

An outer automorphism of A5 leaves the orbit type invariant; it exchanges the two ele-
ments of the Petersen case and exchanges the two orbits in the last two cases.

Remark 2.3. The topological interpretation of the tγ-action is as follows. If Uγ is a thin
regular neighborhood Uγ of γ, then each connected component of f−1Uγ has the same degree
d over Uγ and for the three cases listed d equals 2, 3 and 5 respectively. The mapping class
tdγ takes C to itself, but induces a Dehn twist along each connected component of f−1γ. In
particular, its restriction to C r f−1γ is isotopic to the identity.

We prove at the same time a universal property. This will yield a different (and perhaps
more elementary) proof of Theorem 3.4 and Corollary 3.5 of [5].

For P as above, the double cover of P branched at the four orbifold points is a genus
one Riemann surface, which we make an elliptic curve by taking the order 3 point as origin.
Then the three other points of ramification are the points of order 2 of this elliptic curve.
Thus the isomorphism type of P determines and is determined by an element of PSL2(Z)\H,
the moduli space of elliptic curves.

Before proceeding to the proofs of the theorems above, we make a few remarks.

Remark 2.4. Recall that a subgroup of PSL2(Z) is called a congruence subgroup if for some
positive integer m it is the preimage of a subgroup of PSL2(Z/m) under the mod m reduction
PSL2(Z)→ PSL2(Z/m). It was shown by H. Larcher (Theorem C in [8]) that the set of cusp
widths of such a group is closed under taking lcm and gcd. As this is evidently not the case
for the group Γ in Theorem 1.1, we conclude that Γ is not a congruence subgroup.

Remark 2.5 (Universal family versus Deligne-Mumford stack). We established in
Theorem 3.4 of [5] that B◦ parametrizes the smooth, projective, genus 6 curves endowed with
a faithful A5-action. It is given by the part of the base of the Wiman-Edge pencil over which
we have smooth fibers; there are five singular fibers, each of which is Deligne-Mumford stable,
and which have dual intersection graphs as described here. In other words, our notation is
compatible with the notation employed in [5]. In particular, B can be identified with the
base of the Wiman-Edge pencil.

A comment regarding Theorem 3.4 of [5]—if not a correction—is in order. The S5-action
on the Wiman curve implies that as a A5-curve it admits an automorphism that is not inner.
So if we want to attribute to the family over B◦ a universal property, as does Theorem 3.4,
then we must work in the setting of Deligne-Mumford stacks. To be precise, while it is true
that every family of smooth geometrically connected A5-curves of genus 6 fits in a cartesian
square with the Wiman-Edge pencil on the right, there are a few (rare) cases for which there
exist more than one choice for the top arrow. A similar phenomenon occurs at the Petersen
curve.

Remark 2.6. Since Γ is torsion free and contained in PSL2(Z), it is in fact free, and it can
be identified with the fundamental group of B◦, with the customary ambiguity: we need to
choose a base point. Here a natural choice is the point co ∈ B defining the Wiman curve–and

1The name dodecahedral configuration will become clear later.
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Figure 3: The base B of the Wiman-Edge pencil C . It is a 2-sphere with 5 marked points (colored red in
the figure) corresponding to the 5 singular members of C . As explained in Theorem 1.1, the complement B◦
of these 5 points in B, which represents the moduli space of smooth genus 6 curves with an A5 action, has a
finite area hyperbolic metric with 5 cusps, one for each deleted point. The cusp x∞ has width 2, the cusps
xc and x′c have width 3 and the cusps xir and x′ir have width 5. The point xo defines the Wiman curve and
ι is the reflection in the axis through xo and x∞.

an isomorphism is then given up to inner automorphism. The base B◦ is a 5-punctured
sphere and so Γ is free on 4 generators.

In order to prove the theorems stated above, we need some preparation. We do part of
this in greater generality than is needed here, as we believe that this makes the discussion
more transparent, while it involves no additional effort.

2.2 Coverings of orbifolds of genus zero

We denote by π0,n the group with generators a1, . . . , an subject to the relation a1 . . . an = 1.
This is of course the fundamental group of an n-punctured genus zero surface, where ai
represents a simple loop around the ith puncture. We begin by introducing notation for data
that are useful for encoding a finite group action on a Riemann surface.

Definition 2.7 (The set G(p)). Given a group G and a descending sequence of positive
integers p = (p1 ≥ · · · ≥ pn) of length n ≥ 3 with pn > 1, we denote by G̃(p) the set of
surjective group homomorphisms g : π0,n → G such that g(ai) has order pi (i = 1, . . . , n).
We can of course think of g as an n-tuple (g1, . . . , gn) ∈ Gn with g1g2 . . . gn = 1 and whose
members generate G. Note that Aut(G) acts on G̃(p) by postcomposition on the left. In
particular G acts via Inn(G) on G̃(p) by simultaneous conjugation. Define G(p) to be the
quotient

G(p) := G\G̃(p)

so that the Aut(G)-action on G̃(p) induces an Out(G)-action on G(p).

Denote by M̃od0,p the group of automorphisms of π0,n that permute the conjugacy classes
of the ai in such a manner that if ai is mapped to the conjugacy class of aj , then pi = pj .
It acts in an obvious manner (by precomposition, so on the right) on G̃(p), and this action
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evidently commutes with the Aut(G) action. Note that M̃od0,p contains the group of inner
automorphisms of π0,n as a normal subgroup. We write Mod0,p for the quotient group. So
Mod0,p is a group of outer automorphisms of π0,n; we may regard it as the mapping class
group of an orbifold of type (0; p1, . . . , pn).

The outer automorphisms of π0,n that preserve the conjugacy class of each ai form a
subgroup of Mod0,p that can be identified with the mapping class group Mod0,n of an n-
punctured sphere that preserves the punctures. It is a normal subgroup of Mod0,p with factor
group the subgroup Sp ⊂ Sn of σ ∈ Sn which fix the map i 7→ pi, so that we have a short
exact sequence

1→ Mod0,n → Mod0,p → Sp → 1.

These groups also have an interpretation as (orbifold) fundamental group: Mod0,n is the
fundamental group of the fine moduli space M0,n of n-pointed genus zero curves (the space
of injective maps {1, . . . , n} → P2 modulo projective equivalence) and Mod0,p is the orbifold
fundamental group of the space M0,p parametrizing orbifolds of type (0; p1, . . . , pn). The
latter is in general not a fine moduli space, but underlies a Deligne-Mumford stack.

For any g ∈ G̃(p), precomposition of g with the inner automorphism defined by a ∈ π0,n
is the same as postcomposition with the inner automorphism defined by g(a) ∈ π0,n, and

so the right action of M̃od0,p on G̃(p) decends to a right action of Mod0,p on G(p) that
commutes with the action of Out(G).

We use this setup to encode the data of a G-cover of an orbifold of type (0; p1, . . . , pn).
We shall see that the set G(p)/Mod(p) classifies the closed connected surfaces with a faithful
G-action for which the associated orbifold is of type (0; p1, . . . , pn). Points of G(p)/Mod0,n

enumerate in addition the irregular orbits (the ith orbit has size |G|/pi).

Constructing the moduli space

We now explain how one constructs the entire moduli space of Riemann surfaces endowed
with a faithful action of a finite group G whose associated orbifold is of type (0; p1, . . . , pn).
We shall here assume that n ≥ 3 and that each pi is ≥ 2. Let P be a copy of the Riemann
sphere. Given an injection q : {1, . . . , n} → P , i 7→ qi, put Uq := P r {q1, . . . , qn}. Choose
a basepoint q0 ∈ Uq and a set of standard generators of π1(Uq, q0) that identifies π1(Uq, q0)
with π0,n. So ai is represented by a simple (positively oriented) loop around qi (i = 1, . . . , n)
such that a1 . . . an = 1 is the only relation (we traverse composite loops in the given order,
so from left to right).

Given g ∈ G̃(p), then a homomorphism π1(Uq, q0) → G is defined by ai 7→ gi. This
homomorphism is surjective and hence defines a connected G-covering Uq(g) → Uq. By
the theory of coverings, g′ ∈ G̃(p) is in the same G-orbit as g precisely if there exists a
G-isomorphism Uq(g′) ∼= Uq(g) over Uq. This isomorphism need not be unique, because
a G-covering Uq(g) → Uq may have automorphisms over Uq. But such an automorphism
must be a deck transformation which commutes with all other deck transformations, in other
words, must belong to the center of G. Therefore, we assume from now on that G has trivial
center. Note that this holds both for A5 and for S5.

We apply the Riemann extension theorem to extend Uq(g)→ Uq uniquely to a ramified
G-covering Pq(g)→ P , so that Pq(g) is a nonsingular projective curve and with ramification
order pi over qi. Because of the above assumption, a G-isomorphism Pq(g′) ∼= Pq(g) exists
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over P if and only if g′ and g lie in the same G-orbit. So if we regard (P,q) as an orbifold
of type (0; p1, . . . , pn), then the smooth connected G-covers of (P,q) (so those which resolve
the orbifold singularities) form a G(p)-torsor.

If we now allow q to vary, then the P -isomorphism types of these covers define a covering
of the configuration space P (n) of injective maps q : {1, . . . , n} ↪→ P with fiber isomorphic
to G(p). The action of Aut(P ) on P lifts to this covering, despite the fact that Aut(P ) ∼=
PSL2(C) is not simply-connected. The reason is that traversing a nontrivial loop in Aut(P )
based at the unit acts on π1(Uq, q0) as an inner automorphism and so will act trivially on
the cover. When we divide out by this Aut(P )-action (which is easily accomplished by fixing
the first three components of P (n)) we obtain a diagram

C
B̂G(p)

→ B̂G(p)→M0,n, (2.1)

in which the first morphism has the interpretation of a fine moduli space of systems (C, φ;O1, . . . ,On),
where C is a connected compact Riemann surface, φ : G ↪→ Aut(C) an injective homo-
morphism such that G\C has genus zero and O1, . . . ,On is a faithful enumeration of the
irregular orbits such that Oi has order |G|/pi. Here we declare (C, φ;O1, . . . ,On) and
(C ′, φ′;O′1, . . . ,O′n) to be equivalent if there exist a G-isomorphism of C onto C ′ over P
that respects the indexing of the irregular orbits. Since G is centerless, this isomorphism is
unique, so that the fibers of C

B̂G(p)
→ B̂G(p) are smooth curves endowed with a G-action.

The second morphism is given by formation of the G-orbifold, where we use the numbering
of the irregular orbits.

The finite group Sp acts on P (n) by permuting the factors. This commutes with the
Aut(P )-action, but the product action need no longer be free, for some nontrivial element
in Aut(P ) could permute nontrivially the ramification points (q1, . . . , qn), while preserving
their weights. In other words, the residual action of the finite group Sp on the diagram (2.1)
may have fixed points in M0,n and can act nontrivially on a fiber over such a point. So the
quotient by this action is a priori a Deligne-Mumford stack

CBG(p) → BG(p)→M0(p). (2.2)

Its modular interpretation is that of (2.1), except that the irregular orbits are no longer
numbered. Observe that a fiber of BG(p) → M0(p) over a non-orbifold point is as a
Out(G)×Mod(p)-set identified with G(p), where the action Mod(p) is as a group of covering
transformations of BG(p)→M0(p), so that the connected components of BG(p) are indexed
by the set G(p)/Mod(p).

Remark 2.8. We have to resort to Deligne-Mumford stacks, because there might exist a
G-curve admitting an automorphism which nontrivially permutes its irregular orbits. We
shall see that this happens for the Wiman curve.

2.3 Proofs of the three theorems

In view of the previous discussion, Theorem 2.1 is an immediate consequence to the following
lemma.

Lemma 2.9. The set S5(6, 4, 2) (in the notation of §2.2) is a principal S5-orbit. An orbit
representative is ((123)(45), (1245), (14)(23)).
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Proof. Since the elements of S5 of order 6 make up a single conjugacy class, we can assume
that g1 = (123)(45). Suppose that g2, g3 ∈ S5 is such that (g1, g2, g3) satisfy the definition
of S5(6, 4, 2). Note that g2 must be a 4-cycle. We must show that any two choices of g2 are
conjugate via an element of the centralizer Z(g1) of g1 in S5. Note that Z(g1) is generated
by g1. The Z(g1)-conjugacy classes of 4-cycles are represented by (1234), (1324), (1245)
and (2145). If g2 is one of these elements, then we find that g1g2 is of order 5, 3, 2 and 3
respectively. So (1245) is the unique representative with the required property. We then find
that g3 = (14)(23).

We now turn to the proofs of Theorems 2.2 and 1.1. So here n = 4 and (p1, p2, p3, p4) =
(3, 2, 2, 2). We begin with three combinatorial lemmas.

Lemma 2.10. Let A5(r) denote the set of elements of A5 of order r. Consider the action of
A5 on A5(3)× A5(2) by simultaneous conjugation. Then this action is free, and every orbit
is represented by precisely one of the following pairs (we name each case after the conjugacy
class of the subgroup of A5 generated by the pair):

Sev
3 ((123), (23)(45)), so that any pair (g1, g2) in this orbit generates a subgroup conjugate

to Sev
3 and g1g2 has order 2,

A4 either ((123), (12)(34)) or ((123), (12)(35)), so that any pair (g1, g2) in one of these orbits
generates a subgroup conjugate to A4 and g1g2 has order 3,

A5 either ((123), (14)(25)) or ((123), (15)(24)), so that any pair (g1, g2) in one of these orbits
generates a subgroup conjugate to A5 and g1g2 has order 5.

Proof. It is helpful to picture a k-cycle of Sr as an oriented k-polygon with vertex set a
k-element subset of {1, . . . , r} (for k = 2 this amounts to an unoriented edge). So an element
(g1, g2) ∈ A5(3)×A5(2) is represented by oriented triangle and an unordered pair of disjoint
edges. We then see that only three types are possible:

Sev
3 the pair of disjoint edges meets the triangle in an edge only (the other edge is then the

unique edge disjoint with the triangle),

A4 the pair of disjoint edges meets the triangle in the union of an edge and the opposite
vertex,

A5 the pair of disjoint edges meets the triangle in two distinct vertices.

This graph-like classification (where we ignore the labeling of the vertices) is a geometric
way of describing the S5-orbits in A5(3)× A5(2). So there are three of these. It is straight-
forward to check that in the first case the S5-orbit is also a A5-orbit, and in the two other
cases splits into two such orbits. The other assertions are also straightforward.

Lemma 2.11. Fix h ∈ A5(r) and consider the set of pairs (h1, h2) ∈ A5(2) × A5(2) such
that h = h1h2. For r = 2, 3, 5, this set consists of exactly r items: for r = 2, h1 and h2 must
commute and the two pairs only differ by their order (they generate a Kleinian Vierergruppe),
whereas for r = 3 and r = 5 this is a free 〈h 〉-orbit (acting by simultaneous conjugation).
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The proof of this lemma is left as an exercise.

Proposition 2.12. The (g1, g2, g3, g4) ∈ A5(3, 2, 2, 2) come in three types, according to the
order r of g1g2: two elements with r = 2, six elements with r = 3 and ten elements with
r = 5. The stabilizer of a1a2 in Mod(3, 2, 2, 2) preserves each type, acts transitively on the
set of elements with r = 2, and has two orbits for r = 3, 5.

The nontrivial element of Out(A5) ∼= S5/A5 acts on A5(3, 2, 2, 2) by exchanging the last
two items for r = 2 and exchanging the two Mod(3, 2, 2, 2)-orbits for r = 3, 5.

The action of Mod(3, 2, 2, 2) on A5(3, 2, 2, 2) is transitive.

Proof. For the first assertion we must count the A5-orbits in Ã5(3, 2, 2, 2). Lemma 2.10 allows
us represent each orbit by a g = (g1, g2, g3, g4) with (g1, g2) as in that lemma. This leads us to
the three types, according to the order r of g1g2: for r = 2 we have one case and for r = 3, 5
we have two cases to consider. Lemma 2.10 also asserts that simultaneous A5-conjugation
acts freely on A5(3)× A5(2) and so for a given (g1, g2) ∈ A5(3)× A5(2), it remains to count
the number of (g3, g4) ∈ A5(2) × A5(2) for which g3g4 = (g1g2)

−1. This is what Lemma
2.11 does for us, and thus the first assertion follows. Note that a transposition in S5 (which
represents the nontrivial element of Out(A5) exchanges the two pairs (g3, g4) that we get for
r = 2 and exchanges the two orbits that we get for r = 3, 5.

The stabilizer of a1a2 in Mod(3, 2, 2, 2) will of course preserve the type. One such element
is given by

(a1, a2, a3, a4) 7→ (a1, a2, (a1a2)a3(a1a2)
−1, (a1a2)a4(a1a2)

−1).

This has on A5(3, 2, 2, 2) of course a similar effect with ai replaced by gi. Lemma 2.11 shows
that for r = 3 and r = 5 we get all the elements in Ã5(3, 2, 2, 2) with (g1, g2) prescribed and
of order 3 or 5. When r = 2 we use the element of Mod(3, 2, 2, 2) given by (a1, a2, a3, a4) 7→
(a1, a2, a3a4a

−1
3 , a3), which has the effect on (g1, g2, g3, g4) of exchanging g3 and g4. This

proves the second assertion.
The last assertion will follow if we prove that Mod(3, 2, 2, 2) acts transitively on the types.

We start with g = ((123), (14)(25), (12)(34), (15)(24)), for which the product of the first two
items has order 5. The element of Mod(3, 2, 2, 2) defined by

(a1, a2, a3, a4) 7→ (a1, a3, a
−1
3 a2a3, a4) and its inverse

(a1, a2, a3, a4) 7→ (a1, a2a3a
−1
2 , a2, a4)

takes g to ((123), (12)(34), . . . ) resp. ((123), (13)(45), . . . ) for which the product of the first
two items has order 3 resp. 2.

Proof of Theorem 2.2. The number and the labeling of 18 cases follow from Proposition 2.12.
It remains to show that the intersection graphs are as asserted. We do this with the help of
Lemma 2.10: it tells us that the vertices are in bijection the A5-left cosets of 〈 g1, g2 〉 ⊂ A5

and the edges are in bijection with the A5-left cosets of the cyclic subgroup 〈 g1g2 〉, the
incidence relation being given by inclusion. This is then straightforward.

Proof of Theorem 1.1. Let us first observe that local charts of the moduli space B◦ of com-
pact, connected Riemann surfaces of genus 6 with faithful A5-action are obtained by a total
order on the four orbifold points and taking their cross ratio. This implies that the map
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B◦ → PSL2(Z)\H resolves the orbifold singularities of PSL2(Z)\H. In other words, this iden-
tifies B◦ with a quotient Γ\H, where Γ ⊂ PSL2(Z) is a torsion-free subgroup. The index of Γ
in PSL2(Z) will of course be the degree of B◦ → PSL2(Z)\H, i.e., 18. It follows from Propo-
sition 2.12 that Γ has five cusps with width 2, 3, 3, 5 and 5. The Riemann-Hurwitz formula
shows that if we fill in each of the five cusps, the resulting Riemann surface PSL2(Z)\Ĥ has
genus zero.

The degenerations in question are obtained by shrinking γ (for this is how we tend to
the cusp of PSL2(Z)\H). The extension of CB◦ → B◦ to CB → B is formally taken care of
by the general theory of Hurwitz schemes [1], but as the present case is a relatively simple
instance of this, we briefly indicate how this is done. By shrinking γ we make of course also
the connected components of f−1γ shrink and each such a ‘vanishing component’ creates a
node. To be precise, a local model at such a point is the double cover w2 = z2 − t (with
ramification points the two roots of z2 − t) and when t moves in the unit disk, then over
t = 0 the cover acquires an ordinary node. In global terms, an A5-cover of (P ; q1, q2, q3, q4)
becomes a stable curve when q3 and q4 coalesce and its dual intersection graph is then as
described above. That these graphs are as asserted then follows from Theorem 2.2.

Applying an outer automorphism of A5 must define an involution ι in Γ ⊂ PSL2(Z). It
will have the point of B◦ defining the Wiman curve as fixed point for which the orbifold
is representable (P1;∞,−1, 0, 1). This involution is therefore representable by a Möbius
transformation in the PSL2(Z)-conjugacy class of

(
0 1
−1 0

)
. It must normalize Γ and so it

generates with Γ a subgroup Γ̃ ⊂ PSL2(Z) which contains Γ as a subgroup of index 2. The
involution ι fixes the cusp of width 2, interchanges the two cusps of width 3, and interchanges
the two cusps of width 5.

Remark 2.13. The theorems in this section do not include the assertion that Figure 3 is
the correct representation of Γ\Ĥ. We know however that the latter has the structure of a
polygonal complex with the solid n-gons in bijective correspondence with the cusps of width
n in such a manner that in each vertex exactly three of these meet. In our case we have
two pentagons, two triangles and one ‘bigon’ and then the reader will easily find that this
figure is essentially the only way these can fit together to yield a closed surface (necessarily
of genus zero).

3 Geometric models of the Wiman-Edge pencil

In this section we first give a concrete geometric picture of each type of degeneration of the
Wiman-Edge pencil. This is followed by three geometric descriptions of the Wiman-Edge
pencil: the first one is directly based on the main results of Section 2 and the other two come
from putting a natural piecewise flat resp. hyperbolic structure on the fibers.

3.1 Geometric models for the three degeneration types

Recall that we have essentially three types of nodal degenerations for genus 6 curves with A5-
symmetry, distinguished by their dual intersection graphs, or what amounts to the same, their
configurations of vanishing cycles: the Petersen curve, the K5-curve and the dodecahedral
curve. For each of these cases we give a geometric model and use polar coordinates (of
Fenchel-Nielsen type) to describe the degeneration.
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For the Petersen and the K5-curve this is accomplished by the boundary of a regular
neighborhood of an embedding the graph in real 3-space. Over each midpoint of an edge
we have a (vanishing) circle and these circles decompose the surface into ten 3-holed spheres
resp. five 4-holed spheres, see Figure (1). The A5-stabilizer of such a holed sphere S acts
transitively on its boundary components and is a copy of S3 resp. A4.

Thus a A5-invariant hyperbolic structure on the surface such that each vanishing circle
becomes a geodesic, gives on S a hyperbolic metric invariant for which ∂S is geodesic and
invariant under its stabilizer group. All boundary components of S thus have the same
length r, and it is not hard to check that r is a complete invariant of the isometry type of S.
Conversely, if we are given r > 0, then a number of copies of a hyperbolic holed sphere with
symmetry and geodesic boundary length r can be assembled to produce a closed hyperbolic
surface with A5-symmetry, although this involves an additional (angular) parameter θ which
prescribes how boundary components of spheres are identified. The degeneration in question
is obtained by letting r tend to zero.

For the irreducible degeneration we proceed as follows. Let D be a regular dodecahedron
and choose an isomorphism of its isometry group with A5. Then the group A5 acts transitively
on the set of 12 faces of D, each of which is a regular pentagon. From each pentagonal
face of D we remove an open disk of a small radius (the same for every face) centered at
its barycenter so that the resulting surface D′ is a A5-invariant 12-holed sphere. Next we
identify opposite boundary components of D′ in a A5-equivariant manner, for example by
means of the antipodal map. Since there are 6 such pairs, the resulting surface Σ has genus
6 and comes with a faithful action of A5 by orientation preserving homeomorphisms. Notice
that the image of each face of D′ makes up a cylinder in Σ. These 12 cylinders pave Σ in
particular way: one boundary component of a cylinder meets 5 others (let us call this the
pentagonal component) and the other boundary component (the smooth component) meets
it opposite copy.

The surface Σ also inherits from D a flat metric which has the 20 vertices of D as its cone
points, each with angular defect π/5. The underlying conformal structure extends across
such points and makes it a Riemann surface with A5-action. The interior of each cylinder
will be even a cylinder in the conformal sense, but its closure has only symmetry under a
cyclic group of order 5: along the pentagonal component it has now at each vertex of the
pentagon an interior angle of size 2π/3. A fundamental domain for this symmetry group
is conformally equivalent to a hyperbolic 4-gon with angles π/2, π/2, π/3, π/3. Its isometry
type is determined by the length ` of its first edge (between the straight angles). Note that
it has an obvious axis of symmetry. Five copies of this 4-gon make up a cylinder Z(r) of the
desired type; the geodesic boundary component has length r = 5`. We have no freedom in the
way these 12 copies of Z(r) are glued onto one another along their pentagonal components,
so that r is a complete invariant of the 12-holed sphere. But we have an additional angular
parameter θ when identifying opposite boundary components. The degeneration is defined
by letting r tend to zero.

In all three cases, the pair (r, θ) is a pair of Fenchel-Nielsen coordinates.

3.2 Geometric interpretation of the tesselation of B
Let P be a complex orbifold of type (0; 3, 2, 2, 2). We observed that if we choose an embedded
segment γ that connects two orbifold points of order 2, then for every smooth A5-cover
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Figure 4: The three types of vanishing cycles depicted on an icosahedral surface of genus 6 (opposite
pentagons must be identified).

f : C → P , f−1γ is a closed submanifold of dimension one which decomposes C into genus
zero surfaces with boundary. If γ′ is another such embedded segment that meets γ in just
one orbifold point, but has a different tangent direction half-line at that point, then the two
one-dimensional submanifolds f−1γ and f−1γ′ will meet transversally. We show how to do
this in a prescribed and consistent manner so that we end up with a combinatorial model of
sorts of the Wiman-Edge pencil.

Denote by q∞ ∈ P the order 3 orbifold point. We regard P r {q∞} is an affine complex
line. The set Q of three orbifold points of P of order 2 then make up a (possibly degenerate)
triangle in this affine line.

Observe that the group PSL2(Z) has in H the fundamental domain the hyperbolic quad-
rangle (with one improper point at infinity) F ⊂ H defined by

F = {z : 0 ≤ <(z) ≤ 1, |z| ≥ 1 and |z − 1| ≥ 1}.

This gives rise to a tesselation of H with two PSL2(Z)-orbits of vertices, namely of ρ :=
exp(π

√
−1/3) and of

√
−1; and two PSL2(Z)-orbits of edges, namely of the (bounded) arc

Eb centered at 0 connecting ρ and
√
−1, and the unbounded half line Eu on the imaginary

axis with imaginary part > 1. Observe that F is bounded by Eu, Eb and the translates
E′b :=

(
1 −1
1 0

)
Eb and E′u := ( 1 1

0 1 )Eu. We also note that the PSL2(Z)-orbit of Eb is the
familiar trivalent graph that is a PSL2(Z)-equivariant deformation retract of H. So its image
in Γ\H (which we shall denote by K) will be a deformation retract of Γ\H.

When we interpret PSL2(Z)\H as the coarse moduli space of elliptic curves, the points
of Eb and Eu represent elliptic curves that admit a real structure; that is, elliptic curves
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that have an antiholomorphic involution. Such an antiholomorphic involution is here given
as an antiholomorphic involution of P . It is then determined by its fixed-point set in P .
This is a real form of P (a real projective line). In our case this fixed-point set must pass
through q∞, and so is given in P r {q∞} as a straight line. To see this, let us enumerate
the members {q1, q2, q3} of Q in such a manner that [q2, q3] is a side of minimal length and
(q1, q2, q3) defines the complex orientation of P r {q∞} when the triangle is nondegenerate.
This labeling is almost always unique; the situations for which this is not the case correspond
to edges or vertices of F , namely: Eu parameterizes the situations for which q3 lies on the
segment [q1, q2]; E

′
u for when q2 lies on the segment [q1, q3]; Eb for when q3 is equidistant to

q1 and q2; E
′
b for when q2 is equidistant to q1 and q3, and (hence) ρ corresponds to q1, q2, q3

making up an equilateral triangle, i to the case when q3 = 1
2q1 + 1

2q2, and i+ 1 the situation
for which q2 = 1

2q1 + 1
2q3. In these cases the line defining the antiholomorphic symmetry is

obvious: it is either a line spanned by two points of Q or a line of points equidistant to two
points of Q.

3.3 A model based on affine geometry

The three sides of Q have a well-defined length ratio. Denote by γP the union of the sides
of this triangle of minimal length. So either γP consists of a single edge, or consists of two
edges of equal length making an angle > π/3, or consists of the three sides of an equilateral
triangle. So over Eb, γ(P ) adds to [q2, q3] the side [q1, q3], over E′b the side [q1, q3] and hence
over ρ we have all three sides. The map that assigns to P the isomorphism type of γP defines
on the moduli space of such orbifolds a ‘spine’ which, as we will now explain, is familiar via
the identification of this moduli space with PSL2(Z)\H.

If f : C → P is an A5-cover and γP consists of one edge, then the preimage f−1γP is
as described by Theorem 2.2: this is a codimension one submanifold that decomposes C
into genus zero surfaces-with-boundary. But if γP consists of two edges, then a deformation
retraction PrγP onto q∞ lifts to Crf−1γP , and this shows that every connected component
of C r f−1γP is a topological disk. If γP consists of three sides, then a similar argument
shows that the same is true for a connected components of C r f−1γP .

3.4 A model based on piecewise flat structures

The theory of Jenkins-Strebel differentials provides another combinatorial model of the
Wiman-Edge pencil. This amounts to putting on the complement of the size 20 orbit of
every fiber a complete flat structure with a finite number of singularities.

Let P be an orbifold P of type (0; 3, 2, 2, 2) in the holomorphic category. Denote the
orbifold point of order 3 by q∞ and regard P ◦ := P r {q∞} as an affine complex line. We
denote the 3-element set of order 2 orbifold points by Q. For any a ∈ P ◦ there exists a
unique meromorphic quadratic differential ηP,a on P characterized by the property that it
has divisor −(2q∞)−Q+ aP and with double residue at q∞ equal to −1. So if we choose an
affine coordinate z for P ◦, then

ηP,a = − z − z(a)∏
q∈Q(z − z(q))dz

2.

At a point where ηP,a has neither a zero nor a pole, there exists a local coordinate w such
that ηP,a = dw2. So |ηP,a| defines a flat metric at such a point. If ηP,a has order k ≥ −1 at
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z, then this metric extends there, and makes the space there locally a Euclidean cone with
total angle (k+ 2)π. For k = −2, the metric does not extend and a punctured neighborhood
will be metrically an infinite cylinder. But ηP,a gives more than a metric. If we regard it as
a meromorphic function on the tangent bundle of P , then the tangent vectors on which ηP,a
takes a real nonnegative value define a foliation on P with singularities.

In order that ηP,a be a Jenkins-Strebel differential, all the leaves of this foliation save for a
finite number must be compact. The theory asserts that this happens for exactly one choice
of a. We then write aP for a and ηP for ηP,a. The compact leaves then encircle the point
at infinity and have length 2π (when the length is measured via ηP ), and the noncompact
leaves make up a tree DP connecting the three orbifold points of order 2 with total length π.
So the metric |ηP | makes P ◦ rDP isometric to the product of the unit circle and an open
Euclidean half line.

When aP /∈ Q, the tree DP has three edges connecting aP with a point of Q, otherwise
DP degenerates in an obvious way into a graph with two edges. The form ηP endows P ◦

with a flat Euclidean structure which has singularities in Q (with angular excess −π for any
q ∈ Q and +π at a, albeit that the singularities at q ∈ Q and aP cancel each other out
when aP = q. This gives P a ribbon structure with DP the associated “ribbon tree”; see for
example [9]. The ribbon structure manifests itself only when aP /∈ Q and then amounts to a
cyclic ordering of Q.

Since the metrized ribbon tree DP is a complete invariant of P (see for example [9]), the
moduli space of complex orbifolds of type (0; 3, 2, 2, 2) is thus identified with the space of
triples of nonnegative real numbers with sum π of which at most one is zero and which are
cyclically ordered when all are nonzero. By dividing these lengths by π, we can interpret
such triples as the barycentric coordinates of a 2-simplex; we thus have this moduli space
identified with the standard 2-simplex modulo its cyclic group of automorphisms (of order
3) minus the image of the point that represents the vertex set of the simplex. This space is
homeomorphic to a sphere minus a point, the missing point corresponding to the case when
(exactly) two points of Q coalesce to a single point q0; this is evidently a degenerate case.
The associated Jenkins-Strebel differential is then

ηP = −dz2/(z − z(q0))(z − z(q1)), (degen)

where q1 denotes the remaining point (we carry P along in the notation, but P should now be
thought of as a degenerate orbifold) and the associated graph DP will be an arc connecting
q0 with q1.

If f : C → P is a smooth A5-cover (so that f−1q∞ is a size 20-orbit), then f∗ηP defines
on f−1P ◦ = C r f−1q∞ a complete A5-invariant flat Euclidean structure with singularities.
The singular locus of this metric is f−1aP , for the angular excess of the preimage of an order
2 orbifold point 6= aP will vanish because of the branching. When aP /∈ Q, the angular excess
at any point of f−1aP is +π, otherwise it will be 2π, because of the ramification. In fact,
f∗ηP is a Jenkins-Strebel differential associated to the pair (C, f−1q∞). It is characterized
by the property that its double residue at each point of f−1q∞ is −9. Its associated metrized
ribbon graph is f−1DP and has f−1aP as its set of genuine vertices (i.e., vertices that are
not of order 2). A connected component of C r f−1DP triply covers the open disk P rDP

with ramification over q∞ and hence is itself an open disk. When aP /∈ Q, the closure of
such a component has the structure of a one point compactification of a metrical product of
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a circle of circumference 6π and a Euclidean half line R≥0. Its boundary is a 9-gon contained
in f−1DP which has as vertex set its intersection with f−1aP . Each of its nine edges contains
a ramification point of f . So this gives C a canonical A5-invariant cell structure.

Let us see what happens when two points of Q coalesce to a point q0. We denote by
q1 the inert point so that now Q0 = {q0, q1} and (in anticipation of the orbifold structure
we have yet to define) we denote the projective line with the three points q∞, q0, q1 by P0.
Then ηP0 and DP0 have the simple form (degen) displayed above. The A5-covers over such
a degenerate orbifold P0 are nodal curves such that the preimage of q0 is the set of nodes.
Let C0 be the normalization of an irreducible component of the associated cover. Theorem
2.2 tells us that C0 is a copy of P1 and has stabilizer conjugate to Sev

3 (Petersen graph), A4

(K5 graph) or A5 (irreducible case). The map f0 : C0 → P0 has ramification of order 3 over
q∞ and of order 2 over q1 as before, but the ramification over q0 depends on the case.

When C is smooth, any point of C lying over Q has stabilizer of order 2. When two
such points are forced to merge in a single branch point of C0 then this point on C0 has as
its stabilizer the subgroup of the generated by two elements of order 2 in the stabilizer of
C0. This will be of order 2 in the Petersen case, 3 in the K5 case and 5 in the dodecahedral
(irreducible) case. In other words, we may regard q0 as an orbifold point for the cover
C0 → P0 of order 2, 3 or 5 respectively.

The pull-back f∗0 ηP0 will still be a Jenkins-Strebel differential, and its order of vanishing
in a point of f−10 q0 will be respectively 0, 1 and 3. In the last two cases, the associate graph
is just f−10 DP0 , but in the first case this graph is in fact empty: each connected component
is an infinite cylinder foliated by circles, one of these being f−10 DP0 . We therefore put
DC0 := f−10 DP0 . So in the Petersen case, DC0 is a circle containing the three points of
f−10 q0 and the three points of f−10 q1. In the K5 case resp. dodecahedral case, each connected
component of DC0 is the 1-skeleton of a regular tetrahedron resp. icosahedron having f−10 q0
as vertex set and f−10 q1 as the set of midpoints of the edges. These regular polyhedra are
however punctured at the barycenters of their faces and the piecewise flat metric makes every
closed face deprived from its barycenter a half cylinder. In other words, in each of the three
cases every face—a solid equilateral triangle—is replaced by the product of its boundary and
a Euclidean half line. (So from this perspective we end up with an icosahedral model rather
than a dodecahedral model as depicted in Figure 2.)

We thus obtain another combinatorial model of the Wiman-Edge pencil. It differs from
the one we found in §3.3. For example, ifQ has cyclic symmetry of order 3 (so that we can take
our affine coordinate z such that z(Q) are the third roots of unity), then the graph considered
in §3.3 is the triangle spanned by Q, whereas DP consists of the three rays emenating from
the barycenter of this triangle to its vertices. But the underlying tesselation of B is the same
as for the model based on affine geometry, because the loci of exceptional orbifolds has the
same characterization. For example, when `1 = `2 means that q3 is equidistant to q1 and
q2. We then have a real structure on P for which {q1, q2} is a conjugate pair and ηP will be
defined over R relative to this structure. The situation is similar when the three points of Q
are collinear.

3.5 A model based on hyperbolic geometry

We here endow each smooth member Ct of the Wiman-Edge pencil with the unique hyper-
bolic metric compatible with its complex structure. The A5-action on Ct by biholomorphic
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automorphisms then preserves this hyperbolic metric, giving its orbit space the structure of
a hyperbolic orbifold. We therefore begin our discussion with considering such orbifolds.

So let P be an orbifold of type (0; 3, 2, 2, 2) in the holomorphic category, but endowed
with the associated complete hyperbolic structure: so the total angle at the order 3 point
q∞ is 2π/3 and the total angle at an order 2 point q ∈ Q is π. Let δ be a geodesic arc in
P connecting two orbifold points of order 2 which does not pass through the other orbifold
points. If f : C → P is an A5-cover, then f−1δ consists of a collection of pairwise disjoint
closed geodesics. These geodesics decompose C into hyperbolic genus zero surfaces-with-
boundary. Note that if we let the two points of Q connected by δ coalesce to a single point
q0, then we obtain we have a complete orbifold hyperbolic structure on P0r {q0, q∞} (which
induces a complete hyperbolic structure on its orbifold covering).

The distance between δ and the remaining point q1 of Q will be realized be a geodesic
δ′. If δ′ hits δ in its interior, then it will do so orthogonally. If δ′ meets δ in an endpoint,
then since point is an orbifold point of order 2, the passage to a local orbifold cover shows
that δ′ meets δ in the opposite direction (so that both lie on a complete geodesic). Since
q∞ is on orbifold point of order 3, δ′ does not pass through q∞. So U := P r {δ ∪ δ′} is a
topological disk having q∞ as an interior point. This hyperbolic decomposition of P gives
rise to a paving of C into hyperbolic right-angled hexagons whose alternating sides have
equal length, namely 2`(δ) and 2`(δ′). To see this, note that each connected component Ũ
of f−1U triply covers U with the unique point q̃∞ ∈ Ũ that lies over q∞ as the only point
of ramification. In particular, the boundary ∂Ũ triply covers δ ∪ δ′ and we then easily find
that Ũ is indeed the interior of a hyperbolic right-angled hexagon of the asserted type.

Noteworthy is the case when P is invariant under an involution, as this yields the Wiman
curve. Then there exists an affine coordinate z for P r {q∞} such that z(Q) = {−1, 0, 1},
the involution taking z to −z. We take here δ∪δ′ = [−1, 1] (which is indeed the union of two
geodesics). So then our right-angled hexagons have all sides of equal length. The right angles
are at points of the orbit f−1(0) and the two orbits f−1(1) and f−1(−1) consists of midpoints
of edges. When the involution lifts to C, then this lift and the covering transformations endow
C with an S5-action, so that C will be a copy of the Wiman curve.

If we succeed in shrinking δ to a point q0, while taking along a δ′ as above, then α′ becomes
a geodesic ray α′0 from q1 to the cusp q0. Now f−10 α′0 will be a tesselation of C0 r f−10 q0 into
ideal triangles (which may be regarded as degenerate right angled hexagons). But we do not
know whether we can do this in a uniform manner as we did for piecewise flat structures on
P using Jenkins-Strebel differentials.

4 The Wiman curve via hyperbolic triangle groups

The goal of this section is to investigate the natural hyperbolic structure on the Wiman
curve. We shall later establish that it is in fact a Shimura curve of indefinite quaternionic
type.

4.1 Spinor norm

This subsection merely serves to recall the definition and a few simple properties related to
the notion of spinor norm.
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Let V be a finite-dimensional vector space over a field F endowed with a quadratic form
q : V → F . This means that q(λv) = λ2q(v) for λ ∈ F and v ∈ V and that the map
b : V × V → F given by

b(v, v′) := q(v + v′)− q(v)− q(v′)
is bilinear. Note that b(v, v) = 2q(v), so that we can recover q from b if char(F ) 6= 2. Given
u ∈ V with q(u) 6= 0, then the orthogonal reflection su : V → V with respect to u is the
element of O(V ) defined by

su(v) := v − q(u)−1b(v, u)u.

It is clear that su = su′ if and only if u′ = λu for some λ ∈ F× and so the image of q(u)
in F×/(F×)2 is an invariant of su. The spinor norm is a group homomorphism ε : O(V )→
F×/(F×)2 characterized by the property that it assigns to su the image of q(u) in F×/(F×)2.
We denote its kernel by O#(V ). When every element of F is a square (which is for instance
the case when F = F2 or F = C), then O(V ) = O#(V ) and this notion is devoid of interest.

This is not so when F = R, for we may then identify F×/(F×)2 with {±1}. In that
case we have the following alternate definition of the spinor norm. If q has signature (p, n),
then the negative definite linear subspaces W ⊂ V of dimension n make up a contractible
open subset D(q) in the Grassmannian (it is the symmetric space of O(V )) and hence the
tautological n-plane bundle over D(q) is trivial. So this bundle can be oriented. Any reflection
su : V → V will leave invariant a negative definite n-plane N . It will act on N as the identity
resp. as a reflection (and hence be orientation-reversing in N) if q(u) > 0 resp. q(u) < 0.
Thus the spinor norm of g ∈ O(V ) is 1 if and only if the action of g on this bundle is
orientation preserving. The spinor norms attached to q and −q define a homomorphism
O(V )→ {±1}×{±1} whose kernel is the identity component of O(V ); if q is indefinite, then
this map is also onto. Note that the product of these two spinor norms is the determinant
det : O(V )→ {±1}. In particular, the two spinor norms coincide on SO(V ), and the common
value on g ∈ SO(V ) is 1 if and only if it induces an orientation preserving diffeomorphism of
D(q).

4.2 Triangle groups of compact hyperbolic type

For a triple (p1, p2, p3) with pi ∈ {2, 3, 4, . . . ,∞} (and here ordered as p1 ≥ p2 ≥ p3), the
triangle group ∆(p1, p2, p3) is the Coxeter group defined by generators s1, s2, s3 subject to
the relations s2i = (si−1si+1)

pi = 1, where we let i run over Z/(3). The Tits reflection
representation (as described for example in Bourbaki) makes ∆(p1, p2, p3) a subgroup of
GL3(R), as follows: we define a symmetric bilinear form b : R3 × R3 → R by b(ei, ei) = 1
and b(ei, ej) := − cos(π/pi+j) for i 6= j; we then assign to si the b-orthogonal reflection with
respect to ei:

si(x) = x− 2b(x, ei)ei.

The reflection representation is actually defined to be the dual of this representation: a fun-
damental chamber is then given by the ξ ∈ (R3)∨ that are positive on each ei. When b is
nondegenerate, the passage to the dual is not necessary, as this representation is then self-
dual and we can take as the fundamental chamber the set defined by b(x, ei) > 0. The index
two subgroup ∆+(p1, p2, p3) ⊂ ∆(p1, p2, p3) of orientation-preserving elements is generated
by gi := si−1si+1 (i ∈ Z/3) and has as a complete set of relations gpii = 1 (for pi = ∞ read
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this as the empty relation) and g1g2g3 = 1.

Now assume that we are in the compact hyperbolic case: this means that each pi is finite
and that 1/p1 + 1/p2 + 1/p3 < 1. Then b is indeed nondegenerate with signature (2, 1) and
there is a unique connected component C+ of the of set b(x, x) < 0 for which the closure
of the fundamental chamber is contained in C+ ∪ {0}. So the projection of C+ in the real
projective plane P2(R) is a hyperbolic disk D (which is in fact the symmetric space of O(b))
and the closed fundamental chamber defines a solid geodesic triangle Π in D. The classical
Schwarz theory (which is here subsumed by the theory of reflection groups) tells us that
∆(p1, p2, p3) acts faithfully and properly discretely on D and has the compact Π as a strict
fundamental domain. So for any i ∈ Z/(3), the hyperbolic quadrangle Π ∪ siΠ serves as a
fundamental domain for ∆+(p1, p2, p3).

4.3 The triangle group attached to the Wiman curve

Let us now focus on the case of interest here, where (p1, p2, p3) = (6, 4, 2). So then

b(e2, e3) = − cos(π/6) = −1
2

√
3,

b(e3, e1) = − cos(π/4) = −1
2

√
2,

b(e1, e2) = − cos(π/2) = 0.

This can be made part of system of root data in several ways. We take α1 := 2e1 and
α2 :=

√
6e2, α3 :=

√
2e3 so that

b(αi, αj) =

 4 0 −2
0 6 −3
−2 −3 2

 .

This allows us to define a generalized root system for which the αi are the simple roots and
αi
∨ := 2b(αi,−)/b(αi, αi) is the coroot corresponding to αi. Then αi

∨(αj) (an entry of the
Cartan matrix) is integral and si(x) = x− 2αi

∨(x)αi. So the root lattice

L := Zα1 + Zα2 + Zα3

is invariant under ∆(6, 4, 2) and b is an even, integral, symmetric bilinear form on L. In
particular, we have an associated quadratic form q : L → Z, q(v) = 1

2b(v, v). (We could
have taken α1 to be e1 instead of 2e1, but then b would not be even and so q would not be
Z-valued.) The discriminant of b is easily computed to be −12.

Let us observe that if we write x =
∑

i xiαi, then

2q(x) = b(x, x) = 4x21 + 6x22 + 2x23 − 4x1x3 − 6x2x3 = (2x1 − x3)2 − 3x22 + (x3 − 3x2)
2,

If we reduce this modulo 3, we get (2x1−x3)2+x23 and this quadric has no solution in P2(F3).
So the conic Kq ⊂ P2 defined by q has no rational point.

We thus get ∆(6, 4, 2) ↪→ O(q) and hence ∆+(6, 4, 2) ↪→ SO(q). Vinberg’s theory of
hyperbolic reflection groups shows that ∆(6, 4, 2) the O(q)-stabilizer of the cone C+, that is,
to O#(q). So ∆+(6, 4, 2) = SO#(q).
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Let us consider the reduction mod 5 of q,

qF5 : LF5 → F5.

Since b has discriminant −12, we know that bF5 is nondegenerate, but as −12 is not a square
mod 5, it is not equivalent to the standard diagonal form modulo 5. The identity

q(−α1 + 2α2 + 2α3) = 10

shows that Kq(F5) is nonempty, and so we can identify Kq(F5) with P1(F5). We thus obtain
a homomorphism

O(q)→ Aut(Kb(F5)) ∼= PGL2(F5).

It is known that PGL2(F5) ∼= S5.

Lemma 4.1. The natural homomorphism SO#(q) → Aut(Kb(F5)) ∼= S5 is surjective with
kernel the principal level 5 subgroup of SO#(q) (denoted here by Γ5). The group Γ5 is torsion
free so that the image of each gi in PGL2(F5) has the same order as gi.

Proof. Let us first show that the kernel is as asserted. Suppose g ∈ SO#(q) acts as the
identity on Kb(F5). Let F5 be an algebraic closure of F5. An automorphism of P1(F5) which
is the identity on P1(F5) must be the identity (as it fixes three distinct points). So g acts as
the identity on Kb(F5). Since we have a natural identification of Sym2(Kb(F5)) with P̌2(F5)
(a line in P2(F5) meets Kb(F5) in a degree 2 divisor), it follows that g acts as the identity
on P̌2(F5) and hence also as the identity on P(LF5). So g ∈ SO#(q) will act on LF5 as scalar
multiplication, say by λ ∈ F×5 . Since det(g) = 1, we must have λ3 = 1. Since, F×5 is cyclic of
order 4, it follows that λ = 1.

For the remaining part we use Serre’s observation that if an element of GL(n,Z) has finite
order, then for any ` ≥ 3, its mod ` reduction has the same order. We thus find that g1, g2
define in S5 elements of order 6 and 4 respectively such that g1g2 has order 2. This does not
yet imply that g1 and g2 generate S5: we must exclude the possibility that they generate a
subgroup conjugate to S3×S2). So it suffices to find an element in ∆+(6, 4, 2) whose image
in Aut(Kb(F5)) has order 5, or in view of the preceding, whose image in SO#(qF5) has order
5. One checks that (s1s2s3)

2 ∈ ∆+(6, 4, 2) has this property.

It follows that Γ5 acts freely on D, so that Γ5\D is a compact orientable hyperbolic
surface. It comes with a faithful action of SO#(LF5) ∼= S5 and a Riemann-Hurwitz count
shows that it has genus 6. We conclude:

Theorem 4.2. If we endow D with an orientation such that Γ5\D becomes a compact con-
nected Riemann surface of genus 6 with a faithful action of SO#(LF5) ∼= S5, then Γ5\D is
isomorphic to the Wiman curve.

Remark 4.3 (The antiholomorphic involution). The orientation reversing elements of
∆(6, 4, 2) are reflections. There are three conjugacy classes of these, represented by s1, s2, s3.
That these are indeed distinct is a consequence of the evenness of the arguments of ∆(6, 4, 2),
for this implies that we have a surjection ∆(6, 4, 2) → (Z/2)3 which sends si to the ith
generator. Each si determines a S5-conjugacy class of antiholomorphic involutions of C.
We can interpret this by saying that there are exactly 3 isomorphism types of nonsingular
projective curves of genus 6 with S5-action that are defined over R.
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5 Modular interpretation of the Wiman curve

The goal of this section is to prove Theorem 1.3. As mentioned in the introduction we prove
in fact somewhat more precise result (Theorem 5.4). We continue with the terminology used
in §4.3.

5.1 Hodge structures parametrized by the Wiman curve

We fix an orientation on LR. As we will explain, this turns D into symmetric domain for
SO#(LR) which parametrizes weight zero Hodge structures on L.

We first observe that an element of D is uniquely represented by a vector f in the cone C+

(defined in Subsection 4.3 with q(f) = −1. We shall use this to identify D with a connected
component of the hyperboloid in LR defined by this identity. Note that for f ∈ D the
orthogonal complement of f is positive definite. So if (e′, e′′) is an orthogonal oriented basis
of this orthogonal complement then the complex structure on the tangent space of D at f is
given by the transformation which takes e′ to e′′ and e′′ to −e′. Note that e := e′ +

√
−1e′′

is the −
√
−1 eigenspace for this complex structure and that the map

TfD→ C⊗R TfD→ C⊗R TfD/Ce

is then an isomorphism of complex lines. This shows that the map D → P(LC) which
assigns to f the complex-linear span of e is holomorphic. Note that e has the property that
bC(e, e) = 0 and bC(e, e) > 0. This defines a weight zero Hodge structure on L which only
depends on f : L1,−1

f , L−1,1f , L0,0
f is spanned by e, ē, f respectively. This Hodge structure is

polarized by −b. The locus in P(LC) defined bC(e, e) = 0 and bC(e, e) > 0 has two connected
components and the map just defined f ∈ D 7→ [L1,−1

f ] ∈ P(LC) identifies D with one of these

in the holomorphic category. In particular, D becomes a symmetric domain for SO#(LR).
Thus the Wiman curve parametrizes Hodge structures of this type. There exists an

isometric embedding of L in a K3-lattice (this is an even unimodular lattice of signature
(3, 19)) and any two such differ by an orthogonal transformation of the K3-lattice. This
enables us to let the Wiman curve parametrize K3-surfaces (in fact, Kummer surfaces), but
we prefer to set up things in a more canonical fashion which for instance takes explicitly into
account the A5-symmetry. This involves a Kuga-Satake construction in the spirit of Deligne
[4].

5.2 The Clifford algebra associated to our triangle group

The Clifford algebra associated to the quadratic lattice (L, q) is by definition the quotient
C(q) of the tensor algebra of L by the 2-sided ideal generated by the even tensors of the
form v ⊗ v − q(v), v ∈ L. This algebra clearly comes with an action of O(q). The anti-
involution which reverses the order of a pure tensor, a = v1 ⊗ · · · ⊗ vr 7→ a∗ := vr ⊗ · · · ⊗ v1,
descends to an anti-involution in C(q). In view of the fact that aa∗ = q(v1) · · · q(vr), the
map a ∈ C(q)→ aa∗ ∈ Z is a quadratic function which extends q. We therefore continue to
denote it by q; it is known as the norm on C(q). So if q(a) 6= 0, then a is invertible in C(q)Q
with 2-sided inverse q(a)−1a∗.

For r = 0, 1, 2, . . . , the images of the tensors of order ≤ r define a filtration of C(q)
as an algebra whose associated graded algebra is the exterior algebra of L. In particular,
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C(q) is a free Z-module of rank 23 = 8. The splitting into even and odd tensors defines a
corresponding splitting C(q) = C+(q)⊕ C−(q), with C+(q) being a subalgebra C(q) of rank
4.

Lemma 5.1. The algebra C+(q) is a division algebra of indefinite quaternion type. In other
words, for every a ∈ C+(q) r {0}, q(a) 6= 0 and C+(q)R is isomorphic to EndR(R2)

Proof. The fact that q does not represent zero implies that C+(q) is a division algebra. For
this we must show that q(a) 6= 0 when a ∈ C+(q) r {0}. If β ∈ LQ is nonzero, then extend
β to an orthogonal basis β = β1, β2, β3 of LQ. Then it is clear that right multiplication with
β takes the basis 1, β1β2, β2β3, β3β1 of C−(V )Q to a basis of C−(V )Q. In particular, aβ 6= 0.
It follows that aLQ is a 3-dimensional subspace of the 4-dimensional subspace C−(V )Q. So
dim(LQ ∩ aLQ) ≥ 2. Now choose β ∈ LQ such that aβ is a nonzero element of LQ. Then
0 6= q(aβ) = q(a)q(β) and so q(a) 6= 0.

The assertion that C+(q)R ∼= EndR(R2) follows from the fact that qR has hyperbolic
signature.

Note that if v, x ∈ L, then in C(q) we have

vxv = v(−vx+ b(x, v)) = −q(v)x+ b(x, v)v,

which in case q(v) 6= 0, is just −q(v) times the orthogonal reflection sv in v.
We define the group Spin(qR) as the group of units u of C+(q)R with q(u) = 1 and

with the property that conjugation with u preserves LR. This conjugation acts in C(q)R
as an orthogonal transformation and the resulting group homomorphism Spin(qR)→ O(qR)
has image SO#(qR) and kernel {±1}. The group Spin(qR) acts (faithfully) on C+(q)R by
left multiplication (this is the spinor representation) and also by right multiplication after
inversion. The two actions clearly commute and as we noted, the diagonal action (so given
by conjugation) factors through SO#(qR).

We write Spin(q) for the preimage of SO#(q) in Spin(qR) so that we have an exact
sequence

1→ {±1} → Spin(q)→ SO#(q)→ 1.

We can use the root basis α1, α2, α3 of L to obtain presentations of C(q) and C+(q). A
presentation for C(q) has these basis elements as generators and is such that αiαj + αjαi =
b(αi, αj). So

α1α1 = 2, α2α2 = 3, α3α3 = 1,
α1α2 + α2α1 = 0, α2α3 + α3α2 = −3, α3α1 + α1α3 = −2.

In particular, α−11 = 1
2α1, α

−1
2 = 1

3α2 and α−13 = α3. For x ∈ L,

α1xα1 = −2s1(x), α2xα2 = −3s2(x), α3xα3 = −s3(x).

Note that a1 := α2α3, a2 := α3α1 and a3 := α1α2 generate C+(q). In fact, a1 and a2 will
do, since a1a2 = −a3. We also have:

a21 + 3a1 + 3 = 0, a22 + 2a2 + 2 = 0, a23 + 6 = 0
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Note that for x ∈ L, aixa
−1
i = gi(x), so that g̃i := ai/

√
q(ai) ∈ Spin(qR) is a lift of gi and

hence lies in Spin(q). This implies that g̃61, g̃42 and g̃23 are all equal to −1. One checks that
in addition, g̃1g̃2g̃3 = −1. Since the gi generate ∆+(6, 4, 2) = SO#(q), the g̃i will generate
Spin(q).

We identified Γ5 ⊂ SO#(q) as the principal level 5 subgroup of SO#(q). So its preimage
Γ̂5 in Spin(q), which is central a extension of Γ5 by {±1}, is the subgroup of Spin(q) that
will act as the identity on the mod 5 reduction of L. Hence it will act trivially on the mod
5 reduction of C+(q). The converse holds up to sign, in the sense that if g ∈ SO#(q) acts
as the identity on C+(q) ⊗ F5, then g ∈ {±1}.Γ5. To see this, note that we may identify
C+(q)/Z with ∧2L. The assertion is then a consequence of the fact that if g acts trivially on
(∧2L)F5

∼= ∧2F5
LF5 , then g acts as ±1 on LF5 .

5.3 Abelian surfaces parametrized by the Wiman curve

We noted that every f ∈ D defines a weight zero Hodge structure Lf on L polarized by
−b. We extend this to a Hodge structure on the tensor algebra of L. The 2-sided ideal
we divide out by to get C(q) is a subHodge structure, and thus C(q) receives a Hodge
structure. The decomposition C(q) = C+(q) ⊕ C−(q) is then one into Hodge structures.
This Hodge structure has bidegrees (1,−1), (0, 0) and (−1, 0) only. To be concrete, let
e = e′ +

√
−1e′′ ∈ LC be as in Subsection 5.1, so that e spans L1,−1

f and b(e, ē) > 0. Then f

spans L0,0
f , ē spans L−1,1f and (ef, eē, ēe, ēf) is a basis of C+(q)C (note that eē+ ēe = 1) with

bidegrees (1,−1), (0, 0), (0, 0) and (−1, 1) respectively. Now jf := e′e′′ ∈ C+(q)R satisfies

the identity 1
2eē = 1−

√
−1jf and hence only depends on L1,−1

f , is of bidegree (0, 0) and has
the property that jf jf = e′e′′.− e′′e′ = −1. So right multiplication by jf defines a complex
structure Jf on C+(q)R. It takes e′ to e′′ and e′′ to −e′ and so Jb lifts the complex structure
in TfD under the covering projection Spin(qR)→ SO#(qR).

It is clear that this complex structure is preserved by the action of C+(q)R on the left of
C+(q)R, so that this turns (C+(q)R, Jf ) into a complex representation of C+(qC) of dimension
2.

Lemma 5.2. Every complex structure on C+(q)R which leaves the left C+(q)R-module struc-
ture invariant is equal to Jf or −Jf for some f ∈ D.

Proof. This is perhaps best seen by choosing an R-algebra isomorphism C+(q)R with EndR(W ),
where W is a real vector space of dimension 2. Via the natural identification EndR(W ) ∼=
W ⊗RW

∨, this identifies Spin(qR) with SL(W )×SL(W∨). A complex structure on EndR(W )
which preserves the left EndR(W )-module structure amounts to a complex structure on W∨.
The group SL(W∨) permutes these complex structures and two are in the same orbit if and
only if they define the same orientation.

We note that the generator e of L1,−1
f satisfies

Jf (e) = (e′ +
√
−1e′′)e′e′′ = e′′ −

√
−1e′ = −

√
−1e,

so that e lies in the −
√
−1-eigenspace of Jf . It is in fact straightforward to verify that

the −
√
−1-eigenspace of Jf in C+(q)C equals C−(q)CL

1,−1
f ⊂ C+(q)C. This implies that
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C−(q)CL
1,−1
f depends holomorphically on f . Hence so does the complex torus

Af := C+(q)\C+(q)C/C−(q)CL
1,−1
f .

Observe that its first homology group H1(Af ) is naturally identified with the lattice under-
lying C+(q) (with its weight −1 Hodge structure); we may of course also think of Af as
C+(q)\C+(q)R, where C+(q)R has the complex structure defined by Jf .

Consider the map

h : H1(Af )×H1(Af ) = C+(q)2 → C+(q), (a, b) 7→ ab∗.

This can be regarded as a C+(q)-valued hermitian form on H1(Af ) with respect to the anti-
involution a 7→ a∗. The elements h(a, b) − h(b, a) clearly lie in the (−1)-eigenspace of this
involution in C+(q)Q and in fact span that space over Q (for h(a, 1)−h(1, a) = a−a∗). This
is a subspace of C+(q)Q of dimension 3 which supplements Q. If we identify C+(q) with
H1(Af ) as above, then after dualization we get the map

E : C+(q)∨ → H1(Af )⊗H1(Af )
∪−→ H2(Af )

The preceding implies that E has rank 3.

Lemma 5.3. The left action of C+(q) on itself yields an embedding of algebras C+(q) ↪→
End(Af ) and the image E lies in the Neron-Severi group of Af .

Proof. The first part of this assertion is clear. For the second statement, it suffices to show
that the image of E lies in H1,1(Af ), or equivalently, that h is zero on C−(q)CL

1,−1
f ×

C−(q)CL
1,−1
f . But the vector e which spans L1,−1

f is isotropic and so ee = 0 in C(q)C. It
follows that h(xe, ye) = xeey∗ = 0 for all x, y ∈ C(qC).

We thus obtain a family AD over D with an action of Spin(q). Note that the action of
Spin(q) on D factors through SO#(q) = Spin(q)/{±1} and that −1 ∈ Spin(q) acts in each
Af as the natural involution. With the help of Lemma 5.2 we then find:

Theorem 5.4. The orbit space of this action by Γ̂5 yields a moduli stack of Kummer sur-
faces {±1}\AC0 → C0. To be precise, it classifies abelian surfaces A endowed with an
isomorphism End(A)F5

∼= C+(qF5) which is the mod 5 reduction of an algebra isomorphism
End(A) ∼= C+(q) and for which H1(A;Z) is a principal End(A)-module. This affords C0 with
the structure of a Shimura curve of indefinite quaternionic type.
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