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Abstract

The Wiman-Edge pencil is the universal family C /B of projective, genus 6, complex-
algebraic curves admitting a faithful action of the icosahedral group A5. The goal of this
paper is to prove that the monodromy of C /B is commensurable with a Hilbert modular
group; in particular is arithmetic. We then give a modular interpretation of this, as well
as a uniformization of B.
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1 Introduction

The Wiman-Edge pencil is the universal family C /B of projective, genus 6, complex-algebraic
curves admitting a faithful action of the icosahedral group A5. It has 5 singular members;
including a reducible curve of 10 lines with intersection pattern the Petersen graph, and a
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union of 5 conics with intersection pattern the complete graph on 5 vertices. Discovered
by Wiman [9] (1895) and Edge [6] (1981), the Wiman-Edge pencil appears in a variety of
contexts, including:

1. C /B is a natural pencil of curves on the quintic del Pezzo surface S. It is invariant
by the full automorphism group of S, i.e., the symmetric group of degree five, S5,
with each Ct ∈ B being A5-invariant, and with a unique smooth member C0 that is
S5-invariant, called the Wiman curve.

2. B is the moduli space of K3-surfaces with (a certain) faithful µ2 × A5 action; see §5.3.

3. C /B is the quotient of one of the two 1-parameter families of lines on a nonsingular
member of the Dwork pencil of Calabi-Yau quintic threefolds by it’s group of automor-
phisms.

For a number of recent papers on the Wiman-Edge pencil, see [3, 4, 5, 10].

Given a family of varieties, it is a basic problem to compute its monodromy, to relate this
to geometric properties of the family, and to use this information to uniformize (if possible)
the base in terms of a period mapping, via Hodge structures. While general theory has
been developed around these questions, explicit computations can be quite difficult, and
accordingly there are fewer of these. The purpose of this paper is to solve these problems
for the Wiman-Edge pencil C /B. We prove that the monodromy of C /B is commensurable
with a Hilbert modular group; in particular that it is arithmetic. We then give a modular
interpretation of this, and use it to uniformize B.

Restricting to the smooth locus C /B◦, we obtain a family of smooth, genus 6 curves,
and so (choosing, say, the Wiman curve C0 as representing the base point) a monodromy
representation

ρ : π1(B◦)→ Aut(H1(C0;Z)) ∼= Sp12(Z) (1.1)

that records how the fibers Ct twist along loops in B◦. The isomorphism in (1.1) comes
from the fact that diffeomorphisms of C0 preserve the algebraic intersection number on C0,
which is a symplectic pairing on H1(C0;Z). But the monodromy preserves more structure,
for example it commutes with the A5 action on C0. The main result of this paper is to
determine (up to finite index) the monodromy group ρ(π1(B◦)). To state our main result, let

Oo := Z + Z.2X ∼= Z + Z
√

5

be the index 2 subring of the ring of integers of Q(
√

5). We will see that the monodromy
representation ρ factors through SL2(Oo). In fact we will prove the following.

Theorem 1.1 (Arithmeticity of the monodromy). The monodromy group of the Wiman-
Edge pencil is isomorphic to a finite index subgroup of SL2(Oo); in particular it is arithmetic.

In §5 we apply Theorem 1.1 to various period mappings associated to the Wiman-Edge
pencil. For example, let H denote the hyperbolic upper half-plane. The group SL2(O0)
acts properly discontinuously on H × H. The quotient of this action is a quasi-projective,
complex-algebraic surface, called a Hilbert modular surface.
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The above monodromy representation ρ is induced by an algebraic map

B◦ = Γ\H→ SL2(Oo)\H2,

called the period map, which assigns to a curve with faithful A5-action its Jacobian with the
induced A5-action. In §5.1 we use Theorem 1.1 and its proof to study this period map.

Finally, in §5.3, we show that one can attach to the Wiman-Edge Pencil a family of K3
surfaces with base B. We then show how this description can be used to uniformize B. We
find:

Theorem 1.2 (Uniformization of B). The smooth, projective curve B (which we recall, is
a copy of P1) supports in a natural manner a family of polarized K3 surfaces endowed with a
particular faithful action of µ2 × A5 (described explicitly in §5.3), and the associated period
map gives B the structure of a Shimura curve.

Method of proof of Theorem 1.1. As is usual with computations of monodromies, the
proof of Theorem 1.1 consists of two main steps. First, in §3, we find constraints on the
monodromy in order to narrow its target to a copy of SL2(Oo); such restrictions come not
only from the necessary commutation with the A5-actions on the members of the family, but
also from torsion in the Picard group of C0, as well as an involutive structure coming from
the extra symmetry of the Wiman curve. The final result is to prove that in fact ρ takes its
values in SL2(Oo).

The second step in the proof of Theorem 1.1, which we accomplish in §4, is to prove that
the image of ρ has finite index. To do this, we first use Picard-Lefschetz theory to find the
conjugacy classes of the local monodromies about each of the 5 cusps of B◦. These cusps
correspond to the singular members of C : two irreducible curves, 6-noded rational curves
Cir and C ′ir; two curves Cc and C ′c, each consisting of 5 conics whose intersection graph is
the complete graph on 5 vertices; and a union C∞ of 10 lines whose intersection graph is
the Petersen graph. The group S5 acts on C with A5 leaving each member of C invariant.
This action has two S5-invariant members: the singular curve C∞ and the Wiman curve C0.
The main effort of §4 is to understand these degenerations and the structures they preserve.
After improving “up to conjugacy” to actual elements, we are able to apply an arithmeticity
criterion due to Benoist-Oh [1] to deduce Theorem 1.1.

2 Some algebra of ZA5-modules

We found in an earlier paper ([5], Cor. 3.6) that the first homology group H1(Co;C) of
the Wiman curve is, as a CS5-module, twice an irreducible representation EC of degree
six. Since it is known that the characters of the irreducible QS5-modules are those of
the irreducible CS5-modules, it follows that H1(Co;Q) is as a QS5-module also twice an
irreducible representation of degree six (denoted here by EQ). This implies that if we replace
Co by an arbitrary smooth member C, then it is still true that H1(C;Q) ∼= E2

Q as QA5-
modules.

The main goal of this section and the subsequent one is to lift this to the integral level,
while also taking into account the intersection pairing. In other words, we want to identify
H1(Co) as a symplectic ZS5-module. This will be used in §4 to determine the monodromy
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of the Wiman-Edge pencil. The present section is only concerned with the algebraic aspects
of the symplectic ZS5-modules that appear here.

Convention. In this section we identify A5 with a triangle group defined by the group
of motions of a regular icosahedron. By this we mean that we make use of the following
presentation of A5: a set of generators is

σ5 = (01234),

σ2 = (04)(23),

σ3 = (142)

and a complete set of relations is given by prescribing their order (indicated by the subscript)
and the identity σ2σ3σ5 = 1. We make this more concrete in Remark 2.7.

2.1 Irreducible ZS5-modules of degree six

Recall that the reflection representation of S5 is the quotient of its ‘natural’ representation on
C5 (given by permutation of its basis vectors) modulo the main diagonal C ↪→ C5 (which is a
trivial representation). It is irreducible and so is the degree 6 representation EC := ∧2(C5/C).
It is clear that this construction is defined over Q (even over Z) and so let us write EQ
for the irreducible QS5-module ∧2(Q5/Q). If we consider this a QA5-module, it is still
irreducible, but if we extend the scalars to Q(

√
5), it will split into two absolutely irreducible

representations of dimension 3. To be precise (we will recall and explain this below), the
endomorphism ring K := EndQA5 EQ is isomorphic to Q(

√
5) and if we tensor EQ over K

with R via one of the two field embeddings σ, σ′ : K ↪→ R, we obtain real forms of the two
complex A5-representations of degree 3 that differ from each other by an outer automorphism
of A5 (these were denoted in [5] by I and I ′.)

An obvious integral form of EQ is the ZS5-module ∧2(Z5/Z). If {fi}i∈Z/5 is the standard
basis of Z5 and fij denotes the image of fi ∧ fj (i 6= j) in ∧2(Z5/Z), then the set {fij}i 6=j
generates ∧2(Z5/Z) and a complete set of linear relations among them is fij = −fji and∑

j fij = 0. Note that {fij}i 6=j is an A5-orbit and consists of 10 antipodal pairs. We take as

our integral form the ZS5-submodule Eo of ∧2(Z5/Z) defined as follows. Let φ : Z5 → Z be
the coordinate sum (this is a generator of Hom(Z5,Z)S5) and denote by Eo the image of the
ZS5-homomorphism

δ : ∧3(Z5)
ιφ−→ ∧2(Z5)→ ∧2(Z5/Z), (Definition Eo)

where ιφ is the inner product with φ and the second map is the obvious one. In other words,
Eo is generated by the vectors δ(fi ∧ fj ∧ fk) = fij + fjk + fkj . The lattice Eo comes with an
A5-invariant basis, given up to signs:

Lemma 2.1. Let e :=
∑

i fi,i+1 ∈ ∧2(Z5/Z). Then the A5-orbit of e is the union of a basis
of Eo and its antipode. In particular, there exists a (unique) A5-invariant inner product

s : Eo × Eo → Z

for which this basis is orthonormal.
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Proof. We first note that that e is fixed by the 5-cycle (01234) and that (14)(23) takes e
to −e. So the A5-orbit of e consists of antipodal pairs, at most 60/(2.5) = 6 in number.
Since EQ is irreducible, it must be spanned by this orbit and so we have equality: we have
6 antipodal pairs and the A5-stabilizer of e is generated by (01234). It remains to show that
this orbit spans Eo.

The identity (f01+f12+f20)+(f02+f23+f30)+(f03+f34+f40) = e shows that Eo contains
e and hence the ZA5.e-submodule generated by e. On the other hand, it is straightforward
to check that e and its translates under (04)(23) and (124) sum up to δ(f1 ∧ f2 ∧ f4) =
f12 + f24 + f41 and since ∧3(Z5) is generated by the A5-orbit of f1 ∧ f2 ∧ f4, it follows that
ZA5.e contains Eo.

Remark 2.2. The A5-orbit of e and the inner product s determine each other, but this
A5-orbit is not a S5-orbit, and so s is not S5-invariant. Indeed, the S5-stabilizer of e is its
A5-stabilizer (namely the cyclic group of order 5 generated by (01234)) and so the S5-orbit
of e has size 24. On the other hand, it is clear that the vectors in Eo that have unit length
for s make up the A5-orbit of e, and so s cannot be S5-invariant.

For later use, we show that there is an equivariant map from Eo to the F5S5-module
N5 introduced in Subsection 3.1. In terms of our basis, this module is the set of Z-linear
combinations of f0, . . . , f4 with coordinate sum zero, modulo the sublattice generated by the
elements (−5fi +

∑
j∈Z/5 fj)i∈Z/5. Since {fi ∧ fj ∧ fk}0≤i<j<k≤4 is a basis of ∧3Z5, we can

define a homomorphism ψ̃ : ∧3Z5 → N5 by assigning to fi ∧ fj ∧ fk the image of fl − fm
in N5 which is characterized by the property that (i, j, k, l,m) is an even permutation of
(0, 1, 2, 3, 4). This map is clearly onto and it is easy to see that it is also S5-equivariant.

Lemma 2.3. The homomorphism ψ̃ factors through a surjection ψ : Eo → N5 of ZS5-
modules.

Proof. We must show that the kernel of the map ∧3(Z5)
ιφ−→ ∧2(Z5)→ ∧2(Z5/Z) is contained

in the kernel of ψ̃. The kernel of the former is generated by the S5-orbit of f0∧f1∧(f2+f3+f4)
and ψ̃(f0 ∧ f1 ∧ (f2 + f3 + f4)) = (f3 − f4) + (f4 − f2) + (f2 − f3) = 0.

Some special orbits in Eo

We now select an element from each antipodal pair in the A5-orbit of e:

e0 := σ2(e) = f41 + f13 + f32 + f20 + f04

ei = σi5e0, (i ∈ Z/5).

The icosahedral generators act on this basis as follows:

σ5 : e0 7→ e1 7→ e2 7→ e3 7→ e4 7→ e0 (fixes e),

σ2 : e↔ e0 ; e1 ↔ e4 ; e2 ↔ −e2 ; e3 ↔ −e3 (fixes e+ e0),

σ3 : e 7→ e0 7→ e1 7→ e ; e2 7→ e4 7→ −e3 7→ e2 (fixes e+ e0 + e1).

This is the matrix representation of A5 that we will use. We first note that the sublattice
E ⊂ E0 consisting of integral linear combinations of our basis with even coefficient sum is
A5-invariant and of index 2 in Eo.

The next lemma reproduces some of the preceding in terms of this basis:
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Lemma 2.4. The A5-stabilizer of e is generated by σ5. Its A5-orbit generates Eo over Z and
consists of the 6 antipodal pairs ∆ir := {±e,±e0, . . . ,±e4}.

The A5-stabilizer of e+e0 is generated by σ2. Its A5-orbit generates E over Z and consists
of the 15 antipodal pairs ∆∞ := {±(e+ ei),±(ei + ei+1),±(ei+1 − ei+1)}i.

The A5-stabilizer of e+e0+e1 is generated by σ3. Its S5-orbit equals its A5-orbit, generates
Eo over Z and consists of the 10 antipodal pairs ∆c := {±(e+ei+ei+1),±(ei−ei−2−ei+2)}i.

The lattice E is S5-invariant.

Proof. We already established the first assertion.
Since σ2 stabilizes e+ e0, its orbit has at most 30 elements. That it contains the 15 pairs

listed is straightforward to verify (for example, σi5(e + e0) = e + ei and then note that for
i = 0, 1, 2, 3, 4, the vector σ2(e + ei) equals resp. e0 + e, e0 + e4, e0 − e2, e0 − e3, e0 + e1).
This orbit is contained in E and the subset (e1 − e2, e2 − e3, e3 − e4, e4 − e0, e0 − e, e0 + e) of
this orbit is a basis of E.

We next consider the orbit of e+ e0 + e1. We compute

e+ e0 + e1 = f12 + f24 + f41

and this shows that e + e0 + e1 is not only stabilized by σ3 = (142), but also by the trans-
position (03). This implies that its S5-orbit of e + e0 + e1 equals its A5-orbit. This orbit
has at most 20 elements and we show that this orbit contains the 10 pairs listed. We have
σ2σ5(e+e0 +e1) = σ2(e+e1 +e2) = e0 +e4−e2 and the σ5-orbits of e+e0 +e1 and e0 +e4−e2

yield all the listed pairs up to sign. Since σ2
5σ2σ

−2
5 (e0 + e4 − e2) = σ2

5σ2(e3 + e2 − e0) =
σ2

5(−e3 − e2 − e) = −e1 − e0 − e, it is also invariant under taking the opposite. This orbit
generates Eo: it contains σ2(e+ e0 + e1)− (e+ e0 + e1) = e4 − e1 and with it then the span
of the A5-orbit of e4 − e1, that is E. Since e+ e0 + e1 /∈ E and E has index 2 in Eo, we get
all of Eo.

As to the last statement, we have seen in the proof of Lemma 2.1 that δ(f1 ∧ f2 ∧ f4) =
e + e0 + e1. Since the A5-orbit of the latter generates Eo, it follows that E can also be
characterized as the set of Z-linear combinations of the δ(fi ∧ fj ∧ fk) with even coefficient
sum. This lattice is clearly S5-invariant.

The s-dual of E, denoted E∨, consists by definition of the e ∈ EQ with s(e, e′) ∈ Z for
all e′ ∈ Eo. It contains Eo as a sublattice of index 2 and a representative of the nontrivial
coset is ε := 1

2(e+
∑

i∈Z/5 ei). We have E∨/E ∼= Z/2⊕Z/2 with the nonzero elements being

represented by ε, e and ε + e. The action of A5 on E∨/E is trivial; this can be verified by
computation, but this also follows from the fact that A5 is simple so that any action of A5

on a 3-element set must be trivial.

Remark 2.5. This situation is familiar in the theory of root systems: the α ∈ E with
s(α, α) = 2 make up a root system of type D6 that generates E (so E is the root lattice)
and E∨ the weight lattice. The fact that A5 acts trivially on E∨/E implies that A5 embeds
in the Weyl group of this root system.)

2.2 Commutants of ZA5-modules

We shall see that the ZA5-modules above admit endomorphisms that are nontrivial in the
sense that they are not multiples of the identity. One such element is X ∈ End(E∨), defined
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by

X(ε) :=ε+ e,

X(ei) :=ε− (ei+2 + ei−2).

Lemma 2.6. The endomorphism X is selfadjoint with respect to s and satisfies X2 = X+1.
In particular, X preserves E and E∨ so that X also acts on E∨/E. We have X(e) = ε
and (so) X acts transitively on the set of the (3) nonzero elements of E∨/E. Moreover, X
commutes with the A5-action.

Proof. We only verify the last assertion, as checking the others is straightforward. Since σ5

and σ2 generate A5, it suffices to check that these elements commute with X. This is obvious
for σ5. In the case of σ2, we must verify that

σ2 : X(e)↔ X(e0) ; X(e1)↔ X(e4) ; X(e2)↔ −X(e2) ; X(e3)↔ −X(e3).

This is also straightforward.

Thus E becomes a module over the ring O := Z[X]/(X2 −X − 1). Notice that the map
X 7→ 1

2 + 1
2

√
5 identifies K = Q[X]/(X2 −X − 1) with the number field Q(

√
5) and O with

its ring of integers. Any unit of O is an integral power of X up to sign. It is clear that E is a
torsion free O-module of rank 3 and EQ a K-vector space of dimension 3. Since K has class
number 1, E is in fact a free O-module. For the same reason this is true for E∨. Since X
acts transitively on the nonzero elements of E∨/E, there are no intermediate O-submodules
E ( L ( E∨. We note that the K-stabilizer of Eo in EQ is the subring

Oo := Z + Z.2X ∼= Z + Z
√

5

of O of index 2. The group of units of Oo is generated by −1 and X3 = 2X+1; it contains the
subgroup of totally positive units of Oo as a subgroup of index 2, and the latter is generated
by X6 = 8X + 5.

Remark 2.7 (The icosahedral realizations). When we regard EQ as a KA5-module of
degree 3, it is absolutely irreducible. For example, we have two field embeddings σ, σ′ : K ↪→
R characterized by σ(X) = 1

2(1 +
√

5) resp. σ′(X) = 1
2(1−

√
5) which are exchanged by the

nontrivial Galois involution of K and the associated RA5-modules R⊗K,σEQ and R⊗K,σ′EQ
are irreducible. Since the K-action on EQ is self-adjoint with respect to s, the inner product
extends to a symmetric K-bilinear form sK : EQ × EQ → K and the two field embeddings
define A5-invariant inner products on IR and I ′R preserved by the A5-action. The convex hull
of the A5-orbit of the image of e in each of these is a regular icosahedron relative to this
inner product, thus making explicit the realization of A5 as the icosahedral group.

Lemma 2.8. The commutant of the ZA5-module E resp. Eo is O resp. Oo. Conjugation
with an element of S5 r A5 induces in these rings the Galois involution (which sends X to
1−X).

Proof. Since EK is absolutely irreducible as A5-representation, EndKA5(EK) = K by Schur’s
lemma. So EndZA5(E) is a subring of K. The integrality implies that this subring must be
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contained in O. On the other hand, the previous lemma shows that it contains O so that we
have equality. The proof that EndZA5(Eo) = Oo is similar.

We also know that EC is irreducible as an CS5-module, and so Schur’s lemma implies
that the commutant of the ZS5-module E is just Z. Hence conjugation with an element of
S5 rA5 induces a nontrivial involution of the ring O with fixed point ring Z. There is only
such involution, namely the Galois involution of O.

It is clear that E∨ is also O-invariant. The definition of X shows that the action of O on
E∨/E factors through a faithful action of O/2O. But 2O is a prime ideal of O so that the
finite ring O/2O is a field with 4 elements (hence denoted F4). It has the order 2 subring
Oo/2O as its prime field F2 ⊂ F4. Thus E∨/E acquires the structure of a 1-dimensional
vector space over O/2O = F4. The subgroup Eo/E ⊂ E∨/E is a module over Oo/2O = F2,
and so defines an F2-form of the F4-line E∨/E.

Remark 2.9. One may check that the S5-orbit of e is the union of two A5-orbits, namely
of e and of (2X + 1)e. Since the latter is a vector of s-length 3, this makes it evident that s
is not preserved by S5. Nevertheless, since 2X takes E∨ to E, S5 will preserve each coset
of E in E∨ (in other words, will act as the identity in E∨/E).

2.3 The functors V and Vo

Let H be a finitely generated ZA5-module. Then the isogeny module

Vo(H) := HomZA5(Eo, H) resp. V (H) := HomZA5(E,H)

is in a natural manner an Oo-module resp. O-module (acting by precomposition). So Vo
resp. V is a functor from the category of finitely generated ZA5-modules to the category
of finitely generated Oo-modules resp. O-modules. Restriction defines a natural transfor-
mation Vo → V . The evaluation map Vo(H) × Eo → H factors through a homomorphism
Vo(H)⊗Oo E → H of ZA5-modules. There will be two cases of special interest to us.

First assume that H is free as a Z-module. Then both isogeny modules are torsion free,
but in the case of Vo(H), it need not be free. In fact, Vo applied to the chain E ⊂ Eo ⊂ E∨

yields the chain of Oo-modules O ×2−−→ Oo ⊂ O, and O is not free as a Oo-module. On the
other hand, V (H) is a free O-module, as O has class number 1. (Indeed, if we apply V to
the above chain we find that E ⊂ Eo induces an isomorphism V (E) = V (Eo) = O and that

Eo ⊂ E∨ induces V (Eo) = O ×2−−→ O = V (E∨).)
Suppose now H is also endowed with a A5-invariant symplectic form (x, y) ∈ H ×H 7→

x · y ∈ Z. Then for every pair v1, v2 ∈ Vo(C), the form

(x, y) ∈ Eo × Eo 7→ v1(x) · v2(y) ∈ Z

is also A5-invariant. This means that there exists a unique A5-equivariant endomorphism
A(v1, v2) of Eo such that

v1(x) · v2(y) = s(A(v1, v2)(x), y)

for all x, y ∈ E. But any such endomorphism is in Oo. Using the fact that X is self-adjoint
with respect to s, one checks that the resulting map A : Vo(C)× Vo(C)→ Oo is symplectic:
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it is Oo-bilinear, antisymmetric and becomes nondegenerate over K.

The other case is of interest is when H is the F5A5-module N5 defined in Subsection 3.1.
Recall that we constructed in Lemma 2.3 a surjection ψ : Eo → N5. So this is a nontrivial
element of Vo(N5). As N5 is an F5-vector space, so will be Vo(N5). At the same time it is
an Oo-module. Indeed, the prime 5 ramifies in Oo, for Oo is additively generated by 1 and
2X − 1 and 2X − 1 is a square root of 5. So 2X − 1 generates a prime ideal Oo with residue
field F5 and the Oo-module structure on Vo(N5) factors through this residue field.

Lemma 2.10. The Oo-module Vo(N5) is a vector space over F5 of dimension one, generated
by ψ.

Proof. Let ψ′ ∈ Vo(N5). Since f01 +f12 +f20 generates Eo as a A5-module, it suffices to prove
that ψ′(f01 + f12 + f20) is unique up to a scalar in F5. Let us represent ψ′(f01 + f12 + f20)
by
∑

i aifi with ai ∈ Z such that
∑

i ai = 0. If we sum over the orbit of (012), we find that
3ψ′(f01 + f12 + f20) is represented by an element of the form a(f0 + f1 + f2) + bf3 + cf4 with
3a+ b+ c = 0. This element is also represented by

a(f0 +f1 +f2)+bf3 +cf4−a(f0 +f1 +f2 +f3−4f4) = (b−a)f3 +(c+4a)f4 = (b−a)(f3−f4).

This proves that ψ′(f01 + f12 + f20) is unique up to scalar.

3 Structures preserved by the monodromy

The Wiman-Edge pencil B◦ is a family of genus 6 smooth algebraic curves. Since the action
of π1(B◦) on the integral first homology of the fiber preserving algebraic intersection number,
we obtain a monodromy representation π1(B◦)→ Sp12(Z). The monodromy action preserves
a lot more structure, for example it intertwines the A5 automorphism group of each fiber.
Our goal in this section is to find and describe other structure preserved by the monodromy,
thus giving strong restrictions on its image.

3.1 Torsion in the Picard group of the Wiman-Edge pencil

Recall that the Wiman-Edge pencil (when regarded as lying on the del Pezzo surface S)
has as its base locus the irregular S5-orbit Σ in S of size 20. We follow [5] and denote by
H2

0 (S) ⊂ Pic(C) the orthogonal complement of the anticanonical class. This is a negative
definite lattice spanned by its elements of self-intersection −2. Each such (−2)-vector can be
represented by the difference of two disjoint lines and together they make up a root system
of type A4.

For the discussion in this subsection, we shall regard S as obtained from P2 by blowing
up in 4 points in general position. Then a basis of H2

0 (S) is (`, ε0, ε1, ε2, ε3), where the εi’s
are the classes of the exceptional curves and ` is the image of a class of a line in P2 (see
§3 of [5], where the notation slightly differs from the one used there). The anti-canonical
class of S is −3` + ε0 + ε1 + ε2 + ε3, a root basis of its orthogonal complement H2

0 (S) is
(α1, α2, α3, α4) = (ε0 − ε1, ε1 − ε2, ε2 − ε3, ` − ε1 − ε2 − ε3) and the 10 line classes of S are
{εi}3i=0 and {` − εi − εj}0≤i<j≤3. The S5-action is realized as the Weyl group of this root
system and we choose an identification which makes S4 correspond with the stabilizer of `,
i.e., the full symmetric group of {εi}3i=0.
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A finite group associated with the root system in H2(S)

The intersection pairing identifies the dual lattice H2
0 (S)∨ = Hom(H2

0 (S),Z) with a sublat-
tice of H2

0 (S;Q) of vectors that have integral intersection product with vectors in H2
0 (S).

This is the weight lattice of the above root system; it contains H2
0 (S). It is known that

H2
0 (S)∨/H2

0 (S) is cyclic of order 5, with a generator representable by the fundamental
weight $4 ∈ H2

0 (S)∨ defined by $4 · αi = −δi4 (this is also the orthogonal projection
of −` in H2

0 (S);Q)). The orbit of $4 under the Weyl group generates H2
0 (S)∨. Since

5$4 = α1 + 2α2 + 3α3 + 4α4 is indivisible in H2
0 (S),

N5 := H2
0 (S)/5H2

0 (S)∨

is an F5-vector space of dimension 4 − 1 = 3. Essentially by construction, the intersection
pairing induces a nonsingular quadratic form N5 × N5 → F5. Note that N5 is an F5S5-
module on which S5 acts orthogonally (it is an incarnation of the standard representation
SL2(F5) of degree 3, which indeed leaves invariant a quadratic form). In terms of the usual
description of the root system A4 (see for example [2]), H2

0 (S) is identified with the corank
one sublattice of Z5 consisting of vectors with coordinate sum zero and 5H2

0 (S)∨ with the
sublattice generated by the vectors with four coordinates equal to −1 and the remaining
coordinate equal to 4. The S5-action is the obvious one and from this we easily see that
every S5-invariant element of N5 and every S5-invariant F5-valued linear form on N5 is
zero. Since F5A5 has only the trivial representation in dimension one, this implies that N5

is irreducible as an F5A5-module.

A map to the Jacobian

Let C be a member of the Wiman-Edge pencil. Every point of Σ lies in the smooth part of
C so that it defines a Cartier divisor of degree one on C. We thus obtain a homomorphism
H0(Σ) → Pic(C). This map restricts to a homomorphism H̃0(Σ) → Pic0(C), where the
source is reduced homology and the target is the degree zero part of Pic(C) (which is also
the Jacobian of C, when C is smooth). A line in S meets C in Σ in an opposite pair in Σ
whose sum represents the image of this line under the restriction map H2(S) = Pic(S) →
Pic(C). So if H̃0(Σ)+ ⊂ H̃0(Σ) stands for the sublattice for which opposite pairs have the
same coefficient, then the homomorphism H̃0(Σ)+ → Pic0(C) factors through a surjection
H̃0(Σ)+ → H2

0 (S). Observe that all these maps are A5-equivariant.

Proposition 3.1. When C is smooth, the kernel of the restriction map H2
0 (S) → Pic0(C)

factors through an A5-equivariant embedding of N5 in the 5-torsion of Pic0(C).

The proof rests on the fact that if we restrict the A5-action to Klein’s Vierergruppe
V4 ⊂ S4 (the abelian subgroup of A4 whose nontrivial elements are the three elements of
order 2), then the orbit space is still of genus zero:

Lemma 3.2. Let C → V4\C := C form the orbit space. Then C is rational and the degree
4 cover C → C has nine singular fibers in which we have simple ramification.

Proof. In order to apply Riemann-Hurwitz, we need to determine the ramification data. Since
H1(C;C) is as a A5-representation of type 2I + 2I ′, the trace of every order 2 element of S5

on H1(C;C) is −4 and so the Lefschetz number of such an element is 1−(−4)+1 = 6. Hence
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it has as many fixed points. The stabilizer of a point of C is cyclic and so the fixed point sets
of distinct order 2 elements are disjoint. We therefore find that C → C has 6.3 = 18 points
of simple ramification. Since C → C is a Galois cover of degree 4, it follows that we have
18/2 = 9 singular fibres. The identity of Euler numbers 4e(C) − 18 = e(C) = −10 shows
that e(C) = 2. This proves that C is rational.

Since Pic0 of a rational curve is trivial, the fibers of C → C all define the same class in
Pic(C). We will use the preceding lemma via this implication.

Proof of Proposition 3.1. Every element of Σ has an A5-stabilizer of order 3 and so is not a
ramification point of the projection C → C. It follows that Σ is the union of 60/(4 · 3) = 5
regular fibers of C → C. We want to understand how the antipodal involution of Σ acts in
these fibers.

Since we agreed that the subgroup S4 of S5 is realized as the permutation group of
{εi}i, the Vierergruppe V4 becomes a subgroup of this permutation group. We see that the
V4-orbits in the set of line classes are the 4-element set {εi}i and the three 2-element sets of
the form {` − εi − εj , ` − εk − εl}, where i, j, k, l are mutually distinct. The image of

∑
i εi

in Pic(C) is the represented by the sum of 4 antipodal pairs and since V4 permutes the εi’s
transitively, it follows that they are also the sum of two regular fibers of C → C. By the same
reasoning, the image of the V4-invariant element (`− ε0 − ε1) + (`− ε2 − ε3) is represented
2 antipodal pairs in a single fiber. These fibers are linearly equivalent and so the kernel of
Pic(S)→ Pic(C) contains n := −

∑
i εi + 2(2`− ε0 − ε1 − ε2 − ε3) = 4`− 3

∑
i εi. This is a

sum of roots: n =
∑

0≤i<j<k≤3(`− εi− εj − εk) = α1 + 2α2 + 3α3 + 4α4. It is in fact equal to
5$4. Since n is fixed by a reflection, its A5-orbit is the full S5-orbit. The lattice generated
by this orbit is 5H2

0 (S)∨ and as the kernel must be invariant under A5, it will contain this
sublattice. This proves the factorization.

So restriction defines a homomorphism from N5 → Pic(C)[5]. This map is A5-equivariant
and hence its kernel is a A5-invariant subspace of N5. Since N5 is irreducible, this kernel is
either trivial or all of H2

0 (S)/5H2
0 (S)∨. Suppose the latter. This then means that for every

antipodal pair in C its sum is a degree 2 divisor whose class is independent of that pair. The
linear system of this class then defines a pencil of degree 2 on C for which the antipodal
pairs are fibers. A degree 2 pencil on a curve of positive genus must define a hyperelliptic
involution and hence is intrinsic to the curve. In our case, this hyperelliptic involution must
be normalized by the A5-action. But the automorphism group of C is contained in S5

(with equality for the Wiman curve) and no element of S5 normalizes A5. As this yields a
contradiction, this proves that N5 → Pic(C)[5] has trivial kernel.

Remark 3.3. Since Pic0(C)[5] can be identified with Hom(H1(C), µ5), we have an embed-
ding of N5 in Hom(H1(C), µ5). Dually, this yields an surjection H1(C) � Hom(N5, µ5). If
we choose a primitive 5th root of unity (which identifies µ5 with F5) and use the quadratic
form to identify N5 with its dual, then we obtain an isomorphism Hom(N5, µ5) ∼= N5 and
there results a surjection H1(C) � N5. Proposition 3.1 has therefore a topological conse-
quence: the surjection H1(C) � N5 is locally constant as C varies in the smooth fibers of the
Wiman-Edge pencil, and so this imposes restriction (a ‘level structure’) on the monodromy
of this family. We shall see this illustrated when we compute the monodromy group in §3
and §4.
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Remark 3.4. In the above argument we divided out by the Klein Vierergruppe. If we
divide out by the bigger group A4 instead, then the orbit space a fortiori of genus zero. This
intermediate orbit space defines a (non-Galois) cover of the A5-orbit space P̃ → P of degree
5. Such a covering can be given by a rational function f on the smooth rational curve P̃ of
degree 5. The monodromy group of f is A5 so that the Galois closure of the associated degree
5 extension of rational function fields C(P̃ )/C(f) defines an A5-covering. This covering will
be a copy of C → P .

If C is a smooth member C of the Wiman-Edge pencil then H1(C) is a symplectic
ZA5-module, and we then abbreviate Vo(H1(C)) by Vo(C). Recall that in Remark 3.3 we
found (after identifying µ5 with F5) a natural surjection H1(C)→ N5 of ZA5-modules. The
following is then immediate from Lemma 2.10:

Corollary 3.5. There is a natural surjection Vo(C) → F5 that is locally constant when C
varies in the smooth members of the Wiman-Edge pencil.

3.2 The homology of the Wiman curve as a symplectic ZS5-module

The goal of this subsection is to determine H1(Co) as a symplectic ZS5-module. This
information will help us to determine the global monodromy group of the Wiman-Edge
pencil.

Recall that the S5-action on the Wiman curve Co makes it a S5-orbifold cover of an orb-
ifold Po of type (0; 6, 4, 2) and that the restriction of the action to A5 defines an intermediate
orbifold P of type (0; 3, 2, 2, 2) such that P → Po is of degree 2 and ramifies over the orbifold
points of orders 6 and 4. In order to identify H1(Co) as a symplectic ZS5-module, we take
a closer look at this situation.

Let w be the affine coordinate on Po such that the orbifold points of order 6, 4 and 2
are given by w = ∞, w = 0 and w = 1 respectively (this makes a Po as a projective line
defined over R (even over Q). Then P is also defined over R: it admits an affine coordinate
z for which w = z2, so that the orbifold point of order 3 is given by z =∞, and the orbifold
points of order 2 are z = 0, 1,−1. Note that z is unique up to sign.

The preimage of the real projective line (that is, where w is real) in Co defines a S5-
invariant triangulation of Co; if we endow Co with its hyperbolic structure, then this is in
fact a hyperbolic triangulation. Let K ⊂ Co be a 2-simplex of this triangulation which maps
onto the upper half plane of Po. We denote the vertices of K by p6, p4, p2 according to the
order of their stabilizer. The stabilizer of such a point is cyclic and the orientation of Co
singles out a natural generator τj (counter clockwise rotation over 2π/j around pj). It is
elementary to see that the cycle type of these generators is (3, 2) for τ6, (4) for τ4 (so both
are odd) and (2, 2) for τ2 (so τ2 is even) and that τ6τ4τ2 = 1; see §2.3 of [7]. In fact, Theorem
2.1 of [7] implies that any ordered triple (τ6, τ4, τ2) of generators S5 whose orders are as their
subscript and satisfy τ6τ4τ2 = 1, differ from the triple above by an inner automorphism. So
any such triple comes from some choice of K. We shall exploit this below.

Let K∗ ⊂ Co be the geodesic 2-simplex adjacent to K that has in common with K the
edge p4p6. Then K ∪K∗ is a fundamental domain of the S5-action on Co. We denote the
vertex of K∗ distinct from p4 and p6 by p′2. So p′2 = τ−1

4 p2 and its S5-stabilizer is generated
by τ ′2 := τ−1

4 τ2τ4. Every edge of K or K∗ lies on a closed geodesic that lies over an interval
in Po(R).
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Figure 1: The closed oriented geodesics ~α, ~α′ and ~β on the Wiman curve.

We write α resp. α′ for the complete geodesic in Co that contains the geodesic segment
[p4, p2] resp. [p4, p

′
2]. Both map to the segment [0, 1] in Po(R), but their images in P are

distinct and consist of [0, 1] resp. [0,−1]. It is clear that both τ2
4 and τ2 leave α invariant and

act in α as a reflection. They generate in α a reflection group with [p4, p2] as fundamental
domain. Since [p4, p2] maps injectively to the S5-orbit space, it follows that this subgroup
of S5 is in fact the S5-stabilizer of α. Both generators are even permutations, and so this
stabilizer is in fact a subgroup of A5. The product τ2

4 τ2 is easily shown to be of order 3
(otherwise, see our specific choice for the τi’s below), and so this stabilizer is a dihedral
reflection group of order 6. It follows that α has 120/6 = 20 S5-translates and 60/6 = 10
A5-translates. Since α′ is a translate of α under an odd permutation (namely τ4), it cannot
be a A5-translate. Note that if ~α stands for α with the orientation defined by [p4, p2], then
the stabilizer of ~α is the cyclic group generated by τ2

4 τ2 and hence its A5-obit consists of 10
oppositely oriented pairs.

We will also be interested in the geodesic β on Co that contains the geodesic segment
[p′2, p2]. This geodesic is also closed; it maps in Po to the unit circle |w| = 1 and hence
(upon perhaps replacing z by −z) its image in P will be the semicircle |z| = 1, <(z) ≥ 0.
A similar argument shows that the stabilizer of β is the reflection group generated by the
even permutations τ2 and τ ′2. The product τ2τ

′
2 has order 5 and hence the stabilizer of β is a

dihedral subgroup A5 of order 10, whereas the stabilizer of ~β (the orientation being given by
[p′2, p2]) is generated by τ2τ

′
2. It follows that β has 120/10 = 12 S5-translates and 60/10 = 6

A5-translates. A S5-translate which is not an A5-translate is for instance β′ := τ4(β). Its
image in P will be the semicircle |z| = 1, <(z) ≤ 0.

Since the A5-orbit of α resp. β is the preimage of an arc in P that connects two orbifold
points of order 2, it must consist of resp. 10, 6 closed geodesics that are pairwise disjoint. As
shown in §2 of [7], these A5-orbits make up a configuration of K5-type resp. dodecahedral
type. The same is true for the A5-orbits of α′ and β′. Recall that at the beginning of §2 we
specified the generators σ5 = (01234), σ3 = (142) and σ2 = (04)(23) for A5.

Lemma 3.6. We can choose K such that the associated triple (τ6, τ4, τ2) in S5 has the
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property that σ3 resp. σ5 generates the stabilizer of ~α resp. ~β and σ−1
5 σ3σ5 stabilizes ~α′ :=

τ4(~α).

Proof. We take
τ6 = (012)(34), τ4 = (0432), τ2 = (03)(12).

Then τ6τ4τ2 = 1. Since τ2
4 = (03)(24), α is stabilized by τ2

4 τ2 = (03)(24)(03)(12) =
(24)(12) = (142) = σ3.

Furthermore, τ ′2 = τ4τ2τ
−1
4 = (0432)(03)(12)(0234) = (01)(24) and β is stabilized by

τ2τ
′
2 = (03)(12)(01)(24) = (02413) = σ2

5 and hence also by σ5.
Finally, α′ is stabilized by τ ′2τ

2
4 = (01)(24)(03)(24) = (01)(03) = (031). But we also have

σ−1
5 σ3σ5 = (04321)(142)(01234) = (031).

From now on we assume that K and (τ6, τ4, τ2) are as in Lemma 3.6.

Lemma 3.7. Every A5-translate of α′ meets α transversally in at most one point. Similarly,
exactly three A5-translates of β meet α resp. α′, and they do so simply in at most one point.

Proof. The A5-translates of α′ meet the fundamental segment [p4, p2] of α in p4 only and
through that point passes just one member, namely α′ = τ4α. It then follows that the
S5-translates of α distinct from α meeting α is the collection {σi3α′}i. These are pairwise
distinct, proving the first assertion.

The property regarding β is proved in a similar fashion. The cyclic group generated by
σ5 resp. σ3 is the A5-stabilizer of ~α resp. ~β. Any A5-translate of β which intersects α is of
the form σi3β for some i ∈ Z/3. The A5-stabilizer of σi3

~β is generated by σi3σ5σ
−i
3 . We have

σ3σ5σ
−1
3 = (142)(01234)(124) = (04132) and σ−1

3 σ5σ3 = (124)(01234)(142) = (02431) and
neither is a power of σ5 = (01234). So these stabilizers are pairwise distinct. Hence so are
the {σi3~β}i∈Z/3, so that β meets α in at most one point.

Changing the orientation of Co has the effect of replacing τ4 by its inverse, and this
exchanges K and K∗, α and α′, but preserves β. So β meets α′ in at most one point.

Note that ~α · ~α′ = 1, ~β · ~α = 1 and ~β · ~α′ = 1. They define classes in H1(Co) which we
continue to denote by the same symbol. We write ∆(α) for the A5-orbit of ~α in H1(Co).
This is a set of 10 antipodal pairs. We define ∆(α′) and ∆(β) likewise: these are sets of 10
resp. 6 antipodal pairs.

The following proposition gives us the structure of H1(Co) as a symplectic S5-module
that we need in order to determine the monodromy group. The group S5 acts in both Eo and
H1(Co), but elements of Vo(Co) = HomZA5(Eo, H1(Co)) will rarely be S5-equivariant. This
gives therefore rise to an anti-involution ι in Vo(Co): for τ ∈ S5, the element ι(v) := τvτ−1 is
also in Vo(Co) and only depends on the image of τ in S5/A5

∼= Z/2. The resulting involution
is anti-linear with respect to the Galois involution in Oo: for λ ∈ Oo and v ∈ Vo(Co), we
have ι(λv) = λ′ι(v).

Proposition 3.8. There exists a basis (v, v′) of Vo(Co) with the following properties:

(i) The map E2
o → H1(Co) given by (a1, a2) 7→ v(a1) + X3v′(a2) is an isomorphism of

ZS5-modules which maps each summand onto a Lagrangian submodule of H1(Co), and
is symplectic in the sense that A(v,X3v′) = 1.
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(ii) The anti-involution ι in Vo(Co) takes (v, v′) to ±(v′, v) (we leave the sign as an unknown
here).

(iii) We have v(∆c) = ∆(α), v′(∆c) = ∆(α′) and (v − v′)(X3∆ir) = ∆(β).

The proof of Proposition 3.8 will use the following Lemma.

Lemma 3.9. Suppose that ∆ ⊂ EQ consists of 10 (resp. 15) antipodal pairs and has the
property that s takes on ∆ × ∆c values in {−1, 0, 1}. In the second case, assume also that
at most three antipodal pairs of ∆ are not perpendicular to a member of ∆c. Then ∆ equals
X−3∆c (resp. ∆ir or X−3∆ir).

Proof. Since ∆c generates Eo and s is unimodular on Eo, our assumption implies that ∆ ⊂
Eo. The fact that ∆c resp. ∆ir generates Eo also implies that ∆ is the image of ∆c resp. ∆ir

under a A5-equivariant homomorphism Eo → Eo, so is given by a scalar λ ∈ Oo. This scalar
is unique up to sign, for any element of O×o which leaves ∆ invariant will be of finite order
and hence equal to ±1.

A straightforward computation shows that X−3 = 2X − 3 sends the vector e + e0 + e1

to e2 − e3 + e4. Noting that {1, 2X − 3} is a Z-basis of Oo, we write λ out on this basis:
λ = p+ qX−3 = p+ q(2X − 3) with p, q ∈ Z.

Assume now that ∆ = λ∆c. We have e+ e1 + e2 ∈ ∆c and so by our assumption

s(λ(e+ e0 + e1), e+ e0 + e1) = s(p(e+ e0 + e1) + q(e2 − e3 + e4), e+ e0 + e1) = 3p,

s(λ(e+ e0 + e1), e+ e1 + e2) = s(p(e+ e0 + e1) + q(e2 − e3 + e4), e+ e1 + e2) = 2p+ q

both lie in {−1, 0, 1}. It follows that p = 0 and q = ±1, so that λ = ±X−3.
If ∆ = λ∆ir, then λ(e+ e0 + e1) = p(e+ e0 + e1) + q(e2− e3 + e4) has s-inner product of

absolute value ≤ 1 with the elements of ∆c. This means that |p| ≤ 1 and |q| ≤ 1. It remains
to show that (p, q) is either (±1, 0) or (0,±1). If (p, q) 6= (0, 0), then for every i ∈ Z/5,

s(λei, e+ e0 + e1) = s(ei, λ(e+ e0 + e1)) = s(ei, p(e2 − e3 + e4) + q(e+ e0 + e1) 6= 0,

so that at least 5 antipodal pairs in ∆ would be not orthogonal to e + e0 + e1. This we
excluded.

Proof of Proposition 3.8. Recall that e + e0 + e1 is stabilized by σ3 and that its A5-orbit
generates Eo. Since H1(Co;Q) is isotypical as a QA5-module (of type EQ), it then follows
that there exists a v ∈ Vo(Co)Q = HomZA5(Eo, H1(Co;Q)) such that v(e + e0 + e1) = ~α.
Then v will take its values in H1(Co) and so will lie in Vo(Co). By Lemma 3.6, the vector
~α′ ∈ H1(Co) is stabilized by σ−1

5 σ3σ5. Since σ−1
5 σ3σ5 stabilizes σ−1

5 (e + e0 + e1), it follows
that there exists a v′ ∈ Vo(Co) such that v′σ−1

5 (e+ e0 + e1) = ~α′.
Consider the pairing (x, y) ∈ Eo × Eo 7→ v(x) · v′(y). This pairing is A5-invariant. We

saw in Lemma 3.7 that it takes on ∆c × ∆c values only in {−1, 0, 1}. It then follows from
Lemma 3.9 that v(x) · v′(y) = ±s(x,X−3y) when x, y ∈ ∆c. In order to determine the sign,
we note that v(e+ e0 + e1) · v′σ−1

5 (e+ e0 + e1) = ~α · ~α′ = 1 and

s(e+ e0 + e1, X
−3σ−1

5 (e+ e0 + e1)) =

= s(X−3(e+ e0 + e1), σ−1
5 (e+ e0 + e1)) = s(e2 − e3 + e4, e+ e4 + e0) = 1
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This shows that v(x) · v′(y) = s(x,X−3y). Equivalently: A(v,X3v′) = 1. So (v,X3v′) is a
symplectic basis of Vo(Co) in the sense that the A5-equivariant map Eo ⊕ Eo → H(Co;Z)
defined by (v,X3v′) pulls back the intersection pairing on H(Co;Z) to the symplectic pairing
on Eo ⊕ Eo defined by s. Since the latter is unimodular (since s is), this also implies that
the map Eo ⊕ Eo → H(Co;Z) is an isomorphism of symplectic modules.

According to Lemma 2.4, ∆c is S5-invariant. On the other hand, τ4 ∈ S5 r A5 takes
α to α′, and so it follows that that ι(v) = τ4vτ

−1
4 is an element of Vo(Co) that takes ∆c to

∆(α′). But v′ also has this property. It is the only element of Vo(Co) with this property up
to sign, for any two elements of Vo(Co) for which the images of ∆c coincide will differ by a
factor in O×o which is of finite order, in other words, will differ by a sign. As we are only
interested in the effect of conjugation with ι, this sign is unimportant for us and we leave it
as an unknown: we have ι(v) = ±v′. The map ι is an antilinear involution of Vo(Co) and so
v = ι2(v) = ι(±v′), which shows that ι(v′) = ±v.

Finally, since the A5-stabilizers of e and ~β are generated by σ5, there exists a u ∈ Vo(Co)
such that u(e) = ~β. The set ∆(β) consists of 6 antipodal pairs in H1(Co). Lemma 3.7 tells us
that the hypotheses of Lemma 3.9 are fulfilled (second case): (x, y) ∈ ∆ir ×∆c 7→ u(x) · v(y)
takes its values in {−1, 0, 1} with for a given y ∈ ∆c, a nonzero value occurring for at
most three antipodal pairs in ∆ir. It then follows that either u(x) · v(y) = ±s(x, y) or
u(x) · v(y) = ±s(x,X−3y). We have u(e) · v(e+ e0 + e1) = ~β · ~α = 1, s(e, e+ e0 + e1) = 1 and
s(e,X−3(e+ e0 + e1)) = s(e, e2 − e3 + e4) = 0. It follows that u(x) · v(y) = s(x, y), in other
words, A(u, v) = 1.

The same argument works if we replace v by v′: u(x) · v′(y) = ±s(x, y) or u(x) · v′(y) =
±s(x,X−3y). Since we have u(e) · v′(e + e4 + e0) = ~β · ~α′ = 1, s(e, σ−1

5 (e + e0 + e1)) =
s(σ5(e), e+ e0 + e1) = 1 and

s(e,X−3σ−1
5 (e+ e0 + e1)) = s(e, σ−1

5 X−3(e+ e0 + e1)) =

= s(σ5(e), e2 − e3 + e4) = s(e, e2 − e3 + e4) = 0,

it follows that u(x) · v′(y) = s(x, y), so that A(u, v′) = 1. Since A(v, v′) = X−3, this proves
that u = X3(v − v′) and so ∆(β) = (v − v′)(X3∆ir).

Remark 3.10. The second property implies that if an endomorphism T of Vo(Co) has on
the basis (v, v′) the matrix

(
a b
c d

)
, then ιT ι has the matrix

(
d′ c′

b′ a′

)
.

Remark 3.11. We can realize ∆(α), ∆(β) and their ι-transforms as sets of vanishing cycles
as follows. Consider in P the union of the four arcs α, α′, β, β′. So this is the union of the
unit circle and its center line [−1, 1]. It contains all the order 2-orbifold points. By moving
these points we deform Co as a A5-curve. In the present case, each of the four arcs determines
a simple way to do this and gives a path in B from co to one of the points cc, c

′
c, cir, c

′
ir. For

the arc α, we move the central point 0 along the ray [0, 1] to its end point 1 and for the
arc β we move 1 along the semi-circle to its end point −1 (we fix the other orbifold points)
and we do the obvious analogue for α′ and β′. The arcs γα, γβ, γα′ , γβ′ in B thus obtained
have the property that they do not meet away from co and avoid discriminant points except
at the end point. We assume the labeling such that the end points are cc, c

′
c, cir and c′ir

respectively. Notice that ι exchanges the items of γα, γα′ and γβ, γβ′

To the arc γα from co to cc there is associated element [γα] ∈ πi(B◦, co) represented by
a positive simple loop based at co around the end point cc of γα and similarly for the other
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arcs. The four elements [γα], [γβ], [γα′ ], [γβ′ ] generate πi(B◦, co) freely and [γα][γβ][γα′ ][γβ′ ]
(read from right to left) represents a negative simple loop around c∞.

3.3 The local system of isogeny modules of the Wiman-Edge pencil

The Vo(Ct) define a local system Vo of symplectic Oo-modules of rank 2 over B◦. The
involution ι of B◦ (that is given by precomposition with a non-inner automorphism of A5)
lifts to an isomorphism between the pull-back ι∗Vo and the twist of Vo as a Oo-module by
the Galois involution. In other words, the involution ι lifts in an anti-linear manner to Vo.
As proved in Theorem 1.1 (see also Remark 2.5) of [7], there is an identification B◦ = Γ\H
with Γ ⊂ PSL2(Z) being torsion free and so Vo pulls back to H as a trivial symplectic local
system with Γ-action. The basis (v, v′) of Vo(Co) constructed in Proposition 3.8 extends to
one of the pull-back of Vo to H (so we use co as our base point). Now the Γ-action (and
hence the monodromy of Vo) is given by a homomorphism

ρ : Γ→ SL2(Oo)

that is compatible with the involutions named ι (it acts in SL2(Oo) as prescribed by Remark
3.10. (So this yields a group homomorphism between the semi-direct products defined by
these involutions; this can be understood as a monodromy representation of a local system
on the Deligne-Mumford stack B◦/ι.)

Our goal is to describe this monodromy representation. We first do this locally.

The cusps of SL2(Oo)

We observed that O/2O ∼= F4 and that the Galois involution of O induces in O/2O the
Frobenius map (so its fixed point set is the prime field Oo/2O = F2). Reduction modulo
2 defines a homomorphism SL2(O) → SL2(F4). It is surjective and the permutation repre-
sentation of SL2(F4) on P1(F4) identifies SL2(F4) with the alternating group A5. (It is also
known that the full permutation group of P1(F4) is the semi-direct product of SL2(F4) and
the Frobenius.)

We shall write SL2(O)[2] for the kernel of SL2(O) → SL2(F4). Since P1(F4) has 5 ele-
ments, SL2(O)[2] has as many cusps (= SL2(O)[2]-orbits in P1(K)). These are represented
by [1 : 0], [0 : 1], [1 : 1], [X : 1], [1 : X]. Note that the involution I : (x0, x1) 7→ (x1, x0)
exchanges [1 : 0] and [0 : 1] and [X : 1] and [1 : X], whereas the Frobenius only exchanges
[X : 1] and [1 : X] (for [X2 : 1] = [1 : X−2] = [1 : −X + 2] and [1 : X] define the same
element of P1(F4)).

It is clear that SL2(Oo) is the preimage of SL2(F2), when regarded as a subgroup of
SL2(F4). The subgroup SL2(F2) ⊂ SL2(F4) has two orbits in P1(F4), namely {[1 : 0], [1 :
1], [0 : 1]} and {[X : 1], [1 : X]}, and so SL2(Oo) has only 2 cusps (which we shall denote
∞0 resp. ∞X), both of which are invariant under the involution I. This has the following
implication.

Lemma 3.12. A rank one Oo-submodule L ⊂ O2
o which is primitive in the sense that O2

o/L
is torsion free, is a SL2(Oo)-transform of either

(type ∞0) the first summand of O2
o (the associated SL2(Oo)-cusp is ∞0), or
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(type ∞X) the image of a ∈ O 7→ (2a, 2Xa) ∈ O2
o (the associated SL2(Oo)-cusp is ∞X).

Proof. By regarding Q⊗Z L = K ⊗Oo L as a K-linear subspace of K2 of dimension one, we
get an element of P1(K). Since the SL2(Oo)-orbits in P1(K) are represented by [1 : 0] and
[1 : X], we can assume that either Q⊗Z L is the first summand of K2 or the graph of X. In
the first case, it is clear that L is the first summand of O2

o . In the second case, we note that
if u ∈ Oo is such that Xu ∈ Oo, then by writing u as an integral linear combination of 1 and
X, we find that u ∈ 2O. Conversely, every element of 2O has that property.

The cusps of the principal level 2 subgroup of SL2(Oo)

We next consider the mod 2 reduction of Oo and SL2(Oo). A Z-basis of Oo consists of 1 and
Y := 2X. Since Y 2 = 4X + 4 = 2Y + 4 ∈ 2Oo, it follows that Oo/2Oo ∼= F2[Y ]/(Y 2) as a
ring. Its group of units is {1, 1 + Y }. So a nonzero submodule of (Oo/2Oo)2 generated by
a single element are the ones generated by (1, 0), (1, Y ), (1, 1), (1 + Y, 1), (Y, Y ), (Y, 1), (0, 1).
These seven submodules are pairwise distinct. Note that the involution (x0, x1) 7→ (x1, x0)
exchanges the items of {[1 : 0], [0 : 1]} and {[Y : 1], [1 : Y ]} and fixes the other three [1 : 1],
[1 + Y : 1], [Y : Y ]. The reduction homomorphism SL2(Oo)→ SL2(Oo/2Oo) is onto.

4 Arithmeticity of the monodromy

In § 3 we proved that the monodromy representation of the Wiman-Edge pencil has target
SL2(Oo), giving a representation ρ : Γ → SL2(Oo). The goal of this section is to prove
Theorem 1.1, that the image of ρ has finite index in SL2(Oo). The first step in doing this is to
compute the image under ρ of the generators of Γ. As explained above, Γ is generated by loops
around the cusps, i.e. the degenerations of the pencil. We start by applying classical Picard-
Lefschetz theory to compute the conjugacy classes of these local monodromies. Computing
them on the nose requires more work, which we do later in the section.

4.1 The monodromy around a cusp

In order to gain a better understanding of what ρ is like, let us recall that Γ is a free group
and is generated by simple loops around the punctures of the 5-punctured sphere B◦. We
therefore concentrate on the monodromy around each puncture.

Assume that Cs is singular, and choose a disk-like neighborhood U of s in {s}∪B◦ (so that
Cs ⊂ CU is a homotopy equivalence). Choose also η ∈ U r{s} and write C for Cη. Then the
natural map H1(C) → H1(CU ) ∼= H1(Cs) is onto, and the kernel is a A5-invariant isotropic
sublattice. If Gs denotes the dual intersection graph of Cs then there is a natural homotopy
class of maps Cs → Gs. Since the irreducible components of the normalization of Cs are all of
genus zero, this homotopy class induces an isomorphism on the first (co)homology. We note
that in each case H1(Gs) is free of rank 6, and so the kernel of H1(C)→ H1(Cs) ∼= H1(Gs) is
in fact a primitive Lagrangian sublattice. The intersection pairing identifies this kernel with
the dual H1(Gs) of H1(Cs), so that we have an exact sequence of ZA5-modules

0→ H1(Gs)→ H1(C)→ H1(Gs)→ 0 , (vanishing sequence)

where H1(Gs) → H1(C) is the composition of H1(Gs) → H1(C) with the isomorphism
H1(C) ∼= H1(C) defined by the intersection pairing. The sequence is preserved by the
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monodromy operator of the family CUr{s}, with the monodromy acting nontrivially only on
the middle term. Its difference with the identity (which is also called the variation of the
monodromy) is therefore given by a homomorphism

νs : H1(Gs)→ H1(Gs) (variation of the local monodromy)

of ZA5-modules. This homomorphism can be read off from Gs. To see this, we recall that the
monodromy is given by the classical Picard Lefschetz formula. Each node of Cs determines
a vanishing circle on C up to isotopy, and hence, after orienting it, an element of H1(C) up
to sign (a vanishing cycle). We denote the collection of vanishing cycles by ∆C ⊂ H1(C). It
is clear from the preceding that ∆C lies in the image of H1(Gs)→ H1(C) ∼= H1(C). In fact,
∆C generates that image. The monodromy around Cs is a multi Dehn twist which acts on
H1(C) as:

Ts : x ∈ H1(C) 7→ x+
∑

δ∈∆C/{±1}(δ · x)δ ∈ H1(C)

(the sum makes sense because replacing δ by −δ does not alter (δ · x)δ). We now see
that if we identify H1(Gs) with the dual of H1(Gs), then νs ∈ Hom(H1(Gs), H

1(Gs)) ∼=
H1(Gs)⊗H1(Gs) is represented by the symmetric tensor

ts :=
∑

δ∈∆C/{±1} δ ⊗ δ ∈ H1(Gs)⊗H1(Gs).

We shall refer to ts as the variation tensor. It is the sum over the squares of the edges of
Gs and so canonically associated with Gs. It is of course also A5-invariant. By construction
Ts(x) − x is obtained by contracting ts on the right with the image [x] of x in H1(Gs) and
regard the resulting element of H1(Gs) as sitting in H1(C) via Poincaré duality. In order to
determine ts in each case, we first note that the inverse form of s (i.e., the quadratic form
on E∨o ) is the tensor

š = e⊗ e+
∑

i∈Z/(5) ei ⊗ ei ∈ Eo ⊗ Eo.

Proposition 4.1 (Variation tensors of the singular fibers). For a singular fiber Cs of
the Wiman-Edge pencil, its homology as a A5-module and its variation tensor are as follows:

1. When Cs is irreducible, there exists an isomorphism vs : Eo ∼= H1(Gs) of ZA5-modules
(so the associated cusp is ∞0) such that ts = vs ⊗ vs(š).

2. When Cs consists of five conics, there exists an isomorphism vs : Eo ∼= H1(Gs) (so the
associated cusp is ∞0) such that ts = (3 + 4X)vs ⊗ vs(š).

3. When Cs consists of ten lines, there exists an isomorphism vs : E ∼= H1(Gs) (so the
associated cusp is ∞X) such that ts = (4 + 2X)v ⊗ v(š).

Proof when Cs is irreducible. In this case G := Gs has one vertex with 6 loops attached.
Choose an orientation of each loop of G. This selects a vanishing cycle from each of our six
antipodal pairs and the associated classes in H1(G) make up a basis and the variation of the
monodromy assigns to the oriented loop the associated vanishing cycle. An A5-isomorphism
v : E0

∼= H1(G) ⊂ H1(C) is defined by assigning to e one such vanishing cycle. It is clear
that then ts is as asserted.
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Proof when Cs is the union of 5 conics. In this case Gs is the K5 graph (which has S5 as
its automorphism group). It has 20 oriented edges and A5 acts transitively on this set. We
have in fact an A5-equivariant bijection between the order 3-elements in A5 (the conjugacy
class of 3-cycles) and the oriented edges of K5 by assigning to the 3-cycle h = (τ1τ2τ3) the
oriented edge [τ4, τ5] which is characterized by the property that the permutation i 7→ τi
is even. Note that this assigns to the inverse element (τ1τ3τ2) the oppositely oriented edge
[τ5, τ4]. Thus the group Z1(K5) of simplicial 1-cochains on K5 is identified with the Z-module
of rank 10 generated by the order 3 elements h ∈ A5, subject to the relations h + h−1 = 0.
Its ZA5-module structure is defined by conjugation. The 1-coboundary submodule B1(K5)
has rank 4 and is spanned by the vertices subject to the relation that the sum of the vertices
is zero. So B1(K5)C is the reflection representation; it is irreducible as a A5-module.

According to Lemma 2.4, the A5-orbit ∆c of e+ e0 + e1 ∈ Eo consists of the 10 opposite
pairs {±(e + ei + ei+1)}i∈Z/(5),±(ei − ei−2 − ei+2)}i∈Z/(5), spans Eo over Z and σ3 ∈ A5

generates the A5-stabilizer of e+ e0 + e1. A ZA5-module epimorphism Z1(K5)→ Eo is then
defined by demanding that it takes the oriented edge fixed by σ3 to e+ e0 + e1. Since EQ is
irreducible as a QA5-module, the image of B1(K5)Q in EQ is zero. So B1(K5) is contained
in the kernel of Z1(K5)→ Eo. But B1(K5) is a primitive submodule of Z1(K5) (for H1(K5)
is torsion free) and has the same rank as this kernel. So it is equal to the kernel and we have
an induced isomorphism ZA5-module isomorphism vs : Eo → H1(K5).

The associated quadratic tensor is the image under vs ⊗ vs of∑
i∈Z/(5)(e+ ei−1 + ei+1)⊗2 +

∑
i∈Z/(5)(ei − ei−2 − ei+2)⊗2.

If we write this tensor as u ⊗ e +
∑

i ui ⊗ ei we find that u = 5e +
∑

i ei−1 +
∑

i ei+1 =
3e+ 2(e+

∑
i ei) = 3e+ 4ε = (3 + 4X)(e). Likewise we find that ui = (3 + 4X)(ei).

Proof when Cs is the union of 10 lines. In this case Gs is the Petersen graph P . Recall that
the vertices of P are indexed by the 2-element subsets of Z/5 (a set of size 10) and that two
such 2-element subsets span an edge if and only they are disjoint (a set of size 15). This
makes it plain that A5 acts transitively on its set of oriented edges (a set of 15 antipodal
pairs), so that the stabilizer of an oriented edge is of order 2. The elements of order 2 in A5

make up a single conjugacy class, and a given order 2 element preserves just one edge in an
orientation preserving manner. The centralizer of that element is a copy of Z/2 ⊕ Z/2; it
preserves the edge, but may reverse orientation.

Similarly, e + eo ∈ E has as its A5-stabilizer a subgroup of order 2 (namely σ2). It is
clear that if g ∈ A5 maps e + eo to −(e + eo), then it must centralize σ2. It follows that
there exists a A5-equivariant bijection of the set of oriented edges of P onto the A5-orbit of
e+ eo with the property that orientation reversal corresponds to taking antipode. In view of
Lemma 2.4 this homomorphism is onto.

Recall that EC is an CA5-module isomorphic to IC⊕ I ′C, where IC and I ′C are irreducible
of degree 3. So to prove that Z1(P ) → E factors through an isomorphism H1(P ) → E, it
suffices to show that the coboundary space B1(P ;C), does not contain a copy of IC or I ′C.
As we observed in the proof of Lemma 2.1 of part I [5], the vertex set of P spans a CA5-
module which decomposes into a trivial representation and two irreducible representations
of dimension 4 and 5. Hence the latter two will span B1(P ;C). In particular, neither IC
nor I ′C appears in B1(P ;C) and so we have an isomorphism H1(P ) → E. We denote by
vs : E ∼= H1(P ) its inverse.
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The associated quadratic tensor is then the image under vs ⊗ vs of∑
i∈Z/(5)(e+ ei)

⊗2 +
∑

i∈Z/(5)(ei + ei+1)⊗2 +
∑

i∈Z/(5)(ei−1 − ei+1)⊗2.

Proceeding as in the previous case, we write this as u ⊗ e +
∑

i ui ⊗ ei and find that u =
5e+

∑
i ei = 4e+ 2ε = (4 + 2X)(e) and likewise that ui = (4 + 2X)(ei).

Remark 4.2. The descriptions in Proposition 4.1 also tell us what the monodromy varia-
tions, or rather their SL2(Oo)-conjugacy classes, are in terms of Vo(η): as this endomorphism
of Vo(η) is Oo-linear, they are in the three cases given by respectively the images of v ⊗ v,
(3+4X)v⊗v, and (4+2X)v⊗v in Vo(η)⊗OoVo(η) (in the last case this element lies a priori
only in V(η)⊗O V(η), but one checks that it actually lies in the image of Vo(η)⊗Oo Vo(η)).

As we might expect, each of these three conjugacy classes is Galois invariant. In the first
case this is obvious. To see this in the two other cases, recall that the group of units of Oo
is generated by X3 = 2X + 1. So we can change the representative of the conjugacy class
by conjugation with the diagonal matrix in SL2(Oo) with diagonal entries X3 and X−3. Its
effect on

(
1
0

)
⊗K

(
1
0

)
is multiplication with X6. Since (3 + 4X)′ = 7 − 4X = X−6(3 + 4X),

it follows that the conjugacy class defined by the five conics is indeed Galois invariant. This
also the case for the conjugacy class defined by the ten lines: A := ( 1 −1

2 −1 ) ∈ SL2(Z) takes(
1
X′

)
=
(

1
1−X

)
to
(
X

1+X

)
= X

(
1
X

)
and hence takes (4 + 2X ′)

(
1
X′

)
⊗K

(
1
X′

)
to

(6− 2X)X2

(
1

X

)
⊗K

(
1

X

)
= (4 + 2X)

(
1

X

)
⊗K

(
1

X

)
.

We can be more precise in that we can obtain actual monodromies rather than just
their conjugacy classes. Recall that the involution of the Wiman-Edge pencil determines an
involution ι of B with fixed points co and c∞ representing the Wiman curve resp. the union of
ten lines. This involution is covered by an involution of Vo which is anti-linear: if V′o denotes
the same local system but for which the Oo-module structure has been precomposed with
nontrival Galois element X 7→ X ′ = 1 −X, then we have an identification Vo ∼= ι∗V′o such
that applying this twice gives the identity. The singular fibers 6= C∞ come in two (unordered)
pairs {Cir, C ′ir}, {Cc, C ′c} and lie over points denoted cir, c

′
ir = ι(cir) resp. cc, c

′
c = ι(cc). We

focus on the affine line B r {c∞}.
We observed in Remark 3.11 that the elements of π1(B◦, co) ∼= Γ defined by γα, γα′ and

γβ, γβ′ freely generate π1(B◦, co) ∼= Γ; that ι exchanges each pair; and that a simple negative
loop around c∞ is represented by the product [γα][γβ][γα′ ][γβ′ ]. We shall abuse notation a
bit by writing ρ(γα) for ρ([γα]) and likewise for the other generators.

Corollary 4.3. The monodromies satisfy the following identities:

ρ(γα) =

(
1 −1 + 2X
0 1

)
, ρ(γα′) =

(
1 0

1− 2X 1

)
and

ρ(γβ) =

(
1 +X3 X3

−X3 1−X3

)
, ρ(γβ′) =

(
1 +X−3 X−3

−X−3 1−X−3

)
.

These elements determine the monodromy representation of Vo and generate its monodromy
group. This monodromy group fixes the map O2

o → F5 defined by taking the symplectic
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product with
(

1
−1

)
(= v − v′) followed by the reduction Oo → F5. Up to a scalar this is the

map Vo(Co)→ F5 found in Corollary 3.5.

Proof. The set of vanishing cycles for the degeneration along γα is v(∆c). According to
Proposition 4.1, the variation tensor of ρ(γα) is then (3 + 4X)š(v ⊗ v). Now note that
(3 + 4X)A(v, v′) = (3 + 4X)(−3 + 2X) = −1 + 2X. Hence ρ(γα)(v) = v and

ρ(γα)(v′) = v′ + (3 + 4X)A(v, v′)v = v′ + (−1 + 2X)v

so that ρ(γα) is as asserted. Proposition 3.8 also shows that the set of vanishing cycles for
the degeneration along γβ is the image of ∆ir under u = X3v −X3v′. We have A(u, v′) =
A(u, v) = +1 and so

ρ(γβ)(v) = v + u = (1 +X3)v −X3v′,

ρ(γβ)(v′) = v′ + u = X3v + (1−X3)v′,

which yields the matrix for ρ(γβ). The matrices for ρ(γα′) and ρ(γβ′) are then obtained using
Remark 3.10 and the fact that (−1 + 2X)′ = 1− 2X and (X3)′ = −X−3.

We note that the images of ρ(γα) and ρ(γα′) are trivial in SL2(F5). The images of
ρ(γβ) and ρ(γβ′) must generate the same one-parameter subgroup U ⊂ SL2(F5), namely the
additive copy of F5 defined by the quadratic tensor

(
1
−1

)
⊗
(

1
−1

)
. So the monodromy fixes

pointwise the line in F5 ⊗ Vo(Co) spanned by v − v′ and it is the only line spanned by that
property. So it is the one determined by Corollary 3.5.

Question 4.4. It is well-known that the reduction homomorphism SL2(Z) → SL2(F5) is
onto and hence so is SL2(Oo)→ SL2(F5). Are there no other restrictions on the monodromy
group other than the one given in Corollary 4.3, in the sense that it contains the kernel of
the reduction map SL2(Oo)→ SL2(F5)?

We note that γβγαγβ′γα′ represents a negative loop around c∞ and so its image under ρ is
in the conjugacy class of the unipotent element defined by the variation −2(2 +X)vs⊗ vs(š)
for some vector vs of type ∞X (as defined in Lemma 3.12). Hence the following proposition
gives an additional check on our computations.

Proposition 4.5. Let v∞ := v + Xv′. Then ρ(γαγβγ
′
αγ
′
β) is given by the variation tensor

−2(2 +X)v∞ ⊗ v∞(š).

Proof. We put B := ρ(γαγβ), so that ρ(γαγβγ
′
αγ
′
β) = BιBι. We compute

B = ρ(γα)ρ(γβ) =

(
1 −1 + 2X
0 1

)(
1 +X3 X3

−X3 1−X3

)
=

(
−1− 2X −3
−1− 2X −2X

)
.

Then in view of Remark 3.10,

ιBι = ρ(γβ′)ρ(γα′) =

(
−2X ′ −1− 2X ′

−3 −1− 2X ′

)
=

(
−2 + 2X −3 + 2X
−3 −3 + 2X

)
and so

BιBι =

(
−1− 2X −3
−1− 2X −2X

)
.

(
−2 + 2X −3 + 2X
−3 −3 + 2X

)
=

(
7− 2X 8− 6X
−2 + 4X −5 + 2X

)
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It follows that

BιBι− 1 = 2

(
3−X 4− 3X
−1 + 2X −3 +X

)
= −2(2 +X)

(
−X−2 X−3

−X−1 X−2

)
.

Now note that A(v∞, v)v∞,= −X−2(v+Xv′) = −X−2v−X−1v′ and A(v′∞, v
′)v∞ = X−3(v+

Xv′) = X−3v + X−2v′ and so the last matrix is indeed the matrix of the endomorphism
x ∈ Vo(Co) 7→ −2(2 +X)A(v∞, x)v∞ ∈ Vo(Co).

4.2 Arithmeticity

Now that we know the image of the generators of Γ under the monodromy representation,
we can prove arithmeticity of the monodromy group. We use a criterion due to Benoist-Oh,
namely Theorem 1.1 of [1]. That theorem gives the following as a special case.

Theorem 4.6 (Benoist-Oh). Let K be a real quadratic number field, OK its ring of integers,
and Ω < K a lattice. Let Λ < SL2(OK) be the subgroup generated by a matrix of the form(
a b
c d

)
with c 6= 0, together with the set of matrices

{( 1 ω
0 1

)
: ω ∈ Ω

}
.

If σ, σ′ : K → R are the two real embeddings of K, then the associated embedding SL2(OK)→
SL2(R)× SL2(R) maps Λ onto a lattice in SL2(R)× SL2(R); in particular Λ has finite index
in SL2(OK).

Proof of Theorem 1.1. It suffices to check that ρ(Γ) satisfies the criteria of Theorem 4.6. Of
course it suffices to do this after a single conjugation by an element of SL2(R)×SL2(R); that
is, after a single change of basis.

For parabolic property, we note that the elements ρ(γβ) and ρ(γβ′) both stabilize v + v′.
The variation construction shows that under the above homomorphism, ρ(γβ) resp. ρ(γβ′) is
the image of X3 = 2X + 1 resp. X−3 = 3 − 2X. The additive span Ω of these elements is
of finite index in Oo and so Ω is a lattice in K. We conclude that the parabolic condition of
Theorem 4.6 is satisfied.

We now claim that, after conjugating ρ(Γ) so that the parabolic subgroup P := 〈ρ(γβ), ρ(γβ′〉
has upper triangular form with 1 on the diagonal, ρ(Γ) contains a matrix of the form(
a b
c d

)
with c 6= 0. If this were not the case then the Zariski closure G of the image

of monodromy group in SL2(C)×SL2(C) would lie in the group of upper triangular matrices.
We claim that G is in fact all of SL2(C)× SL2(C), a contradiction, finishing the proof of the
theorem.

To prove the claim, note that the images ρ(γα) and ρ(γα′) in SL2(C)× SL2(C) are(
( 1 −

√
5

0 1
), ( 1

√
5

0 1
)
)

resp.
(
( 1 0√

5 1 ), ( 1 0
−
√

5 1 )
)
.

It is clear that G contains the subgroup generated by the one-parameter subgroups obtained
by replacing

√
5 by a complex variable. These two groups generate the subgroup of SL2(C)×
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SL2(C) that is in fact the graph of an automorphism u of SL2(C), namely that assigns to g ∈
SL2(C) the transpose inverse of g followed by conjugation with ( 0 1

1 0 ). Any connected algebraic
subgroup of SL2(C)×SL2(C) which strictly contains this graph is equal to SL2(C)×SL2(C).
Let U ⊂ SL2(C) be the image of the one parameter group t ∈ C 7→ ( 0 t

1 0 ). The parabolic
property shows that G also contains the U × U and so it follows that G = SL2(C)× SL2(C)
as asserted.

5 The period map

In this section we use Theorem 1.1 to study various period maps associated to the Wiman-
Edge pencil.

5.1 The period map of the Wiman-Edge pencil

We shall see that the monodromy representation ρ : π1(B◦) → SL2(Oo) is induced by an
algebraic map from B◦ to a quotient of a period domain D isomorphic to H2 by an action
of SL2(Oo). This is the period map, which assigns to a curve with faithful A5-action its
Jacobian with the induced A5-action. (Beware however, that there is a priori no obvious
relation between Γ as a subgroup in PSL2(Z) and its image in SL2(Oo).) The quotient
Y ◦ := SL2(Oo)\D is a quasi-projective, complex-algebraic surface, called a Hilbert modular
surface. In this subsection we prove some properties of the period mapping; in particular we
prove that it comes equipped with some extra structure.

The two ring embeddings σ, σ′ : Oo ↪→ R define an algebra-isomorphism (σ, σ′) : R ⊗Z
Oo = R ⊗Q K ∼= R ⊕ R. So for a member C of the Wiman-Edge pencil we have the
decomposition

H1(C;R) = R⊗Z H1(C) ∼= R⊗Z Vo(C)⊗Oo Eo
Note that for C = Co, the basis (v, v′) of Vo(Co) introduced in Proposition 3.8 yields the
R-basis {σv, σv′, σ′v, σ′v′} for R⊗Z V (Co). The anti-involution ι exchanges v and v′ up to a
common sign, but also exchanges the two real embeddings of K. In other words, it exchanges
the basis elements σv, σ′v′ resp. σ′v, σv′ up to a common sign. The Oo-module Vo(Co) does
not have a Z-basis consisting of elements invariant under ι, but the K-vector space Vo(Co)Q
does, namely (v + v′, X3(v − v′)) or (v − v′, X3(v + v′)), depending on whether ι exchanges
v and v′ of v and −v′.

Let (w,w′) be such a basis. Assuming that C is smooth, then H1(C) acquires a Hodge
structure of weight −1 polarized by the intersection pairing. It is completely given by the
complex subspace F 0H1(C) ⊂ H1(C;C). This is an A5-invariant subspace that can be
written as the graph of a A5-equivariant map from the image of w′C to the image of wC. The
positivity property of the associated Hermitian form implies that there exist τ, τ ′ ∈ H such
that F 0H1(C) is spanned by images of τσw + σw′ and τ ′σ′w + σ′w′. The action of SL2(K)
on H2 is then the standard one:(

a b
c d

)
(τ, τ ′) =

(σ(a)τ + σ(b)

σ(c)τ + σ(d)
,
σ′(a)τ ′ + σ′(b)

σ′(c)τ ′ + σ′(d)

)
We prefer however to work with (v, v′). Let us simply write D for the space of Hodge

structures of weight −1 on Vo(Co) of the above type so that (by the above discussion) D
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is a domain isomorphic to H2. Then Y ◦ := SL 2(Oo)\D is an algebraic surface equipped
with an involution ι. We note that the fixed-point set (Y ◦)ι of ι in Y ◦ contains the image
D◦ ⊂ Y ◦ of what corresponds to the diagonal of H2. Since the stabilizer of the diagonal in
SL2(Oo) is SL2(Z), the latter is just a copy of the j-line SL2(Z)\H. The closure D of D◦ in
Y adds the cusp∞0, and is of course contained in Y ι. But Y ι has other curves as irreducible
components. It also contains the other cusp.

Proposition 5.1. The period map

Π◦ : B◦ = Γ\H→ SL2(Oo)\D = Y ◦

is an ι-equivariant closed embedding. It extends to an ι-equivariant morphism Π : B → Y
such that Π−1Y ι is the union of the 5 points of BrB◦ and the point associated to the Wiman
curve. The preimage of ∞X is the C∞-point of B r B◦ and the preimage of ∞0 consists of
the other four points over which there is a singular fiber.

Proof. The ι-equivariance has already been established. The rest of the proposition follows
essentially from the Torelli theorem, which asserts that a smooth projective curve can be re-
constructed from its Jacobian as a principally polarized abelian variety. An automorphism of
the latter is up to the composition with the involution −1 in J(C) induced an automorphism
of the curve. This automorphism is then unique unless the curve is hyperelliptic. A curve C
in the Wiman-Edge pencil is nonhyperelliptic and hence Aut(C) is identified with the group
of automorphisms of J(C) as a polarized abelian variety modulo ±1. Thus Π can be under-
stood as the lift of the usual period map which also takes into account the identification of a
group of automorphisms of the curve with A5 up to inner automorphism. It is therefore an
embedding. The cusps in B define stable degenerations. This implies that Π◦ is proper and
extends to a morphism from B (which adds five points) to the Baily-Borel compactification
Y of SL2(Oo)\D (which adds two cusps).

5.2 Relation with the Clebsch-Hirzebruch model

We briefly explain the relation between our Hilbert modular surface Y ◦ and another one that
was investigated by Hirzebruch [8] and described by him in terms of the Clebsch surface.

Recall that the natural map SL2(O) → SL2(O/2O) ∼= SL2(F4) is onto with kernel
the principal level 2 congruence subgroup SL2(O)[2] and that SL2(Oo) is the preimage of
SL2(F2) ⊂ SL2(F4). (Note that SL2(F2) can be identified with the full permutation group
of the three elements of P1(F2).) This is replicated by applying the functor Vo to the chain
E ⊂ Eo ⊂ E∨, for as we observed earlier, we then get (2O)2 ⊂ O2

o ⊂ O2. The group SL2(O)[2]
contains −1, hence acts on D through PSL2(O)[2] := SL2(O)[2]/{±1}. This action is faithful
and even free so that Y ◦[2] := SL2(O)[2]\D is a smooth surface. Its Baily-Borel compact-
ification Y ◦[2] ⊂ Y [2] is a normal projective surface obtained by adding the five points of
P1(F4). All five points are cusp surface singularities of the same type; following Hirzebruch
they are resolved by a toroidal resolution Ŷ [2] → Y [2] for which the preimage of each cusp
is a triangle of rational curves of self-intersection −3. We thus end up with a smooth surface
Ŷ [2] endowed with an action of SL2(F4), or rather, of PSL2(F4). As we mentioned earlier,
PSL2(F4) ∼= A5, but since we do not know whether that is a curious coincidence or that
PSL2(F4) is naturally identified with the automorphism group of a general member of the
Wiman-Edge pencil, we prefer to make the notational distinction.
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Recall that what we called in [5] the Klein plane and denoted by P , a projective plane with
faithful SL2(F4)-action. It is obtained from complexification followed by projectivization of
a real irreducible representation of degree 3 in which PSL2(F4) is identified with the group of
motions of a regular icosahedron. The 12 vertices of the icosahedron determine an PSL2(F4)-
orbit in P of size 6. The blowup P̃ → P of this orbit is then a cubic surface with PSL2(F4)-
action. It is the classical Clebsch surface: it is isomorphic to the cubic surface in the diagonal
hyperplane

∑
i zi = 0 in P4 (a copy of P3) defined by

∑
i z

3
i = 0, where A5 of course acts by

permuting coordinates. Since the Clebsch surface actually comes with an S5-action, so must
P̃ . The barycenters of the 20 faces of the icosahedron determine SL2(F4)-orbit in P of size
10 and appear on P̃ as its set of Eckardt points, that is, the set of points of P̃ through which
pass three distinct lines on P̃ . Hirzebruch proves in [8] that Ŷ [2] is equivariantly isomorphic
to the blowup P̂ → P̃ at this size 10 orbit. It is in particular a rational surface. It follows
that our period map defines a morphism from the base of the Wiman-Edge pencil B to the
SL2(F2)-orbit space of P̂ . It would be worthwhile to determine its image in terms of the
above construction.

5.3 The associated family of K3 surfaces

There is another period map for the Wiman-Edge pencil, which in the terminology of Kudla-
Rapoport, is of occult type. Recall that the Wiman-Edge pencil is realized on a quintic del
Pezzo surface S whose automorphism group (a copy of S5) preserves the pencil and induces
in each member Ct ⊂ S the A5-action. There exists a section αt of ω−2

S with divisor Ct.

Then
√
αt defines a surface Ŝt in the total space of ω−1

S (the determinant bundle of the

tangent bundle) such that the projection Ŝt → St is a double cover ramified along Ct. Then
α̂t :=

√
αt is unambiguously defined on Ŝt as a 2-vector and is there nowhere vanishing.

Proposition 5.2. The surface Ŝt is a K3-surface (with an ordinary double point over every
node of Ct). The A5-action on S lifts uniquely to one on Ŝt (and hence commutes with the
involution) and the orthogonal complement of the QA5-embedding H2(S;Q) ↪→ H2(Ŝt;Q) is
as a QA5-module isomorphic to 3.1 ⊕ V ⊕ 2W . The 3-dimensional summand on which A5

acts trivially has signature (2, 1), and its complexification contains H2,0(Ŝt).

Proof. The inverse of α̂t is a nowhere zero 2-form. In order to conclude that Ŝt is a K3
surface, it suffices to shows that H1(Ŝt) = 0. If π : Ŝt → S is the projection, then we have
H1(Ŝt) = H1(S;π∗Z). The cokernel of ZS → π∗Z is a rank one local system L on S r Ct
and since H1(S) = 0, it follows that H1(Ŝt) embeds in H1(S;π∗Z/ZS) = H1

c (SrCt;L). But
S r Ct is affine, and hence H1

c (S r Ct;L) = 0.
A priori, there is a central extension of order 2 of A5 that lifts the A5-action on S, with the

nontrivial center acting as involution. The complex line H2,0(Ŝt) in H2(Ŝt;C) is preserved
by this central extension with the center acting nontrivially. This implies that the central
extension must be split. In particular, the A5-action on S lifts to Ŝt. It is unique, since any
homomorphism from A5 to a cyclic group is trivial.

The A5-representation H2(Ŝt;Q) contains H2(St;Q) as a direct summand that is nonde-
generate for the intersection pairing and so the orthogonal complement, denoted H2(Ŝt;Q)−,
is a QA5-module of dimension 22− 5 = 17. We determine its character by computing some
Lefschetz numbers. We assume here that Ct is smooth, so that the A5-character of H1(Ct;Q)
is 2EQ.
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The element (01234) has 2 fixed points in S; this is best seen using the modular inter-
pretation (S, S r C∞) = (M0,5,M0,5). The fixed points are then represented by the stable
5-tuples on P1 given by (1, ζ5, ζ

2
5 , ζ

3
5 , ζ

4
5 ) and (1, ζ2

5 , ζ
4
5 , ζ5, ζ

3
5 ), where ζ5 is a 5th root of unity

6= 1. These do not lie on C∞ and hence not on Ct for general t (in fact, each of the singular
dodecahedral curves contains one of them). It follows that (01234) has 4 fixed points in Ŝt.
So the trace of (01234) acting on H2(Ŝt;Q)− is 4 − 2 = 2. On the other hand, (012) has 4
fixed points and they are represented by taking as the first three points (1, ζ3, ζ

2
3 ) and letting

the last two be arbitrary chosen in {0,∞}. So exactly two lie outside C∞ so that (012) has
2.2 + 2 = 6 fixed points in Ŝt. It follows that its trace on H2(Ŝt;Q)− is 6− 4 = 2.

Write
H2(Ŝt;Q)− = a1⊕ bV ⊕ cW ⊕ dE

as QA5-modules. The character table of A5 shows that we have a + 4b + 5c + 6d = 17,
a−b+d = 2, a+b−c = 2. We noted that H2,0(Ŝt)⊕H0,2(Ŝt) is a subspace of H2(Ŝt;C)− on
which A5 acts trivially. This subspace cannot be constant in t, and so we must have a ≥ 3.
We then find that the only solution is (a, b, c, d) = (3, 1, 2, 0).

We observed that the complexification 3-dimensional subspace of H2(Ŝt;Q)− defined by
the trivial character contains H2,0(Ŝt). This implies that its signature is (2, 1).

With the above in hand, we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Since (H2(Ŝt;Q)−)A5 has signature (2, 1), a connected component of
its associated symmetric domain, which we shall denote by C, is of dimension one: it is copy of
H. This domain parametrizes the Hodge structures of theK3-surfaces with a faithful action of
µ2×A5 of the type above. If M is the subgroup of the orthogonal transformations of H2(Ŝt) of
spinor norm one and acting trivially on the vectors perpendicular to (H2(Ŝt;Q)−)A5 , then our
period map is defined on all of B and lands in the Shimura curve M\C. The Torelli theorem
for K3-surfaces implies that this morphism is injective. So it must be an isomorphism. In
particular, M\C is compact. This means that the intersection form on (H2(Ŝt;Q)−)A5 does
not represent zero, and that M\C is of quaternionic type.

We remark that the structure of B as a Shimura curve of quaternionic type cannot be
induced from the period map defined by the Hodge structure H1(Ct), for the latter has cusps
(and goes to a Hilbert modular surface). Simply put, the monodromy along a simple loop
around a puncture is of finite order for the former and of infinite order for the latter, so the
monodromy representation Γ→M is not injective.
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