The Casson invariant and the word metric on the Torelli group

Nathan Broaddus, Benson Farb, Andrew Putman *

July 13, 2007

Abstract

We bound the value of the Casson invariant of any integral homology 3-sphere M by a constant times the distance-squared to the identity, measured in any word metric on the Torelli group \mathcal{I} , of the element of \mathcal{I} associated to any Heegaard splitting of M. We construct examples which show this bound is asymptotically sharp.

1 Introduction

The Casson invariant $\lambda(M) \in \mathbb{Z}$ is a fundamental and well-studied invariant of integral homology 3-spheres M. Roughly speaking, $\lambda(M)$ is half the algebraic number of conjugacy classes of irreducible representations of $\pi_1(M)$ into SU(2). See [1] for a thorough exposition of the Casson invariant.

The mapping class group Mod_g of a closed, orientable, genus g surface Σ_g is the group of homotopy classes of orientation-preserving homeomorphisms of Σ_g . The subgroup of Mod_g consisting of elements acting trivially on $\operatorname{H}_1(\Sigma_g;\mathbb{Z})$ is called the *Torelli group*, and is denoted by \mathcal{I}_g .

Let M be an integral homology 3-sphere, and let $f: \Sigma_g \to M$ be a Heegaard embedding. For any $\phi \in \mathcal{I}_g$, denote by M_ϕ the homology 3-sphere obtained by cutting M along $f(\Sigma_g)$ and gluing back the resulting two handlebodies M^+ and M^- along their boundaries via the homeomorphism ϕ . Note that any integral homology 3-sphere can be obtained from $M = S^3$ in this way.

In this note we give a sharp asymptotic bound on $|\lambda(M_{\phi})|$ in terms of the word metric on \mathcal{I}_g . To explain our result, we fix g > 2 and pick once and for all a finite set S of generators for \mathcal{I}_g ; the fact that \mathcal{I}_g is finitely generated when g > 2 is a deep result of D. Johnson (see [3]). Denote by $\|\cdot\|$ the induced word norm on \mathcal{I}_g ; i.e. $\|\phi\|$ is the length of the shortest word in $S^{\pm 1}$ which equals ϕ . Different choices of finite generating sets for \mathcal{I}_g give word norms whose ratios are bounded by a constant. For a fixed Heegaard embedding $f: \Sigma_g \to M$, Morita [4] has defined a kind of normalized Casson invariant $\lambda_f: \mathcal{I}_g \to \mathbb{Z}$ via

$$\lambda_f(\phi) := \lambda(M_\phi) - \lambda(M).$$

^{*}The first two authors are supported in part by the NSF

In particular, if $M = S^3$ and $h : \Sigma_g \to S^3$ is the unique genus g Heegaard embedding then $\lambda(S^3) = 0$, so the normalized Casson invariant λ_h satisfies $\lambda_h(\phi) = \lambda(S_\phi^3)$.

Theorem 1.1 Let M be an oriented integral homology 3-sphere, let g > 2, and let $f : \Sigma_g \to M$ be a Heegaard embedding. Then there exists a constant C > 0 so that $|\lambda_f(\phi)| \le C||\phi||^2$ for every $\phi \in \mathcal{I}_g$. This bound is sharp in the sense that there exists an infinite sequence $\{\phi_n\}$ of elements of \mathcal{I}_g so that for some constant K > 0 we have $|\lambda_f(\phi_n)| \ge K||\phi_n||^2$ for all n.

2 Morita's formula

Our proof of Theorem 1.1 relies in an essential way on a beautiful formula due to Morita [4] for $\lambda_f(\phi)$, which we now explain (following §4 of [4]). This formula measures the extent to which λ_f fails to be a homomorphism. This failure is encoded as a function $\delta_f: \mathcal{I}_g \times \mathcal{I}_g \to \mathbb{Z}$ defined as follows. Let $\mathcal{I}_{g,1}$ denote the Torelli group of an oriented, genus g surface with one boundary component $\Sigma_{g,1}$. In other words, $\mathcal{I}_{g,1}$ is the group of homotopy classes of orientation-preserving homeomorphisms of $\Sigma_{g,1}$ which fix the boundary pointwise, modulo homotopies which do the same and where the homeomorphisms act trivially on $H := H_1(\Sigma_g; \mathbb{Z})$. Gluing a disc to $\partial \Sigma_{g,1}$ induces a natural surjective homomorphism $\pi: \mathcal{I}_{g,1} \to \mathcal{I}_g$, and there is a corresponding commutative diagram of Johnson homomorphisms (c.f. [2] for a discussion of these homomorphisms τ and their remarkable properties):

$$\begin{array}{ccc} \mathcal{I}_{g,1} & \xrightarrow{\tau} & \wedge^3 H \\ \pi \downarrow & & \downarrow \\ \mathcal{I}_g & \xrightarrow{\tau} & \wedge^3 H/H \end{array}$$

The map $f: \Sigma_g \to M$ induces homomorphisms $H \to H_1(M^{\pm}; \mathbb{Z})$ whose kernels we denote by H^+ and H^- , respectively. It is then easy to see that $H^+ \otimes \mathbb{R}$ and $H^- \otimes \mathbb{R}$ are maximal isotropic subspaces of the symplectic vector space $H \otimes \mathbb{R}$, and that

$$H = H^+ \oplus H^-$$
.

Moreover, since M is an integral homology 3-sphere, there is a symplectic basis $\{x_1, \ldots, x_g, y_1, \ldots, y_g\}$ for H with $x_i \in H^+$ and $y_i \in H^-$. Now, given any two $\phi, \psi \in \mathcal{I}_g$, choose any lifts $\tilde{\phi}, \tilde{\psi}$ to $\mathcal{I}_{g,1}$. Using the obvious basis for $\wedge^3 H$ coming from our choice of basis for H, we can write

$$\tau(\tilde{\phi}) = \left[\sum_{i < j < k} a_{ijk} \ y_i \wedge y_j \wedge y_k \right] + \text{other terms},$$

$$\tau(\tilde{\psi}) = \left[\sum_{i < j < k} b_{ijk} \ x_i \wedge x_j \wedge x_k \right] + \text{other terms}$$

for some $a_{ijk}, b_{ijk} \in \mathbb{Z}$. Morita defines

$$\delta_f(\phi, \psi) = \sum_{i < j < k} a_{ijk} b_{ijk}$$

and proves that $\delta_f(\phi, \psi)$ does not depend on either the choice of lifts $\tilde{\phi}, \tilde{\psi}$ or the choice of symplectic basis for H. Morita then proves, as Theorem 4.3 of [4], that the following formula holds for all $\phi, \psi \in \mathcal{I}_q$:

$$\lambda_f(\phi\psi) = \lambda_f(\phi) + \lambda_f(\psi) + 2\delta_f(\phi, \psi). \tag{1}$$

3 Proof of Theorem 1.1

Let $\{x_1, \ldots, x_g, y_1, \ldots, y_g\}$ be the standard basis for $H := H_1(\Sigma_g; \mathbb{Z})$ discussed in the previous section. For any vector $v \in \wedge^3 H$, we denote by $\ell(v)$ the maximum of the absolute values of the coefficients of v with respect to the induced basis for $\wedge^3 H$.

We want to relate $\lambda_f(\phi)$ to the word length of ϕ in \mathcal{I}_g , but Morita's formula (1) is computed using elements of $\mathcal{I}_{g,1}$, not of \mathcal{I}_g . To address this point, we first recall that gluing a disk to $\partial \Sigma_{g,1}$ induces an exact sequence

$$1 \to \pi_1(T^1\Sigma_q) \to \mathcal{I}_{q,1} \xrightarrow{\pi} \mathcal{I}_q \to 1$$

where $T^1\Sigma_g$ is the unit tangent bundle of Σ_g . For each generator $s \in S$ of \mathcal{I}_g , choose a single lift $\tilde{s} \in \mathcal{I}_{g,1}$, and denote by \widetilde{S} the union of these elements. We can then choose as a generating set for $\mathcal{I}_{g,1}$ the set \widetilde{S} together with a finite generating set for $\pi_1(T^1\Sigma_g)$. With these choices of generating sets, we note that each $\phi \in \mathcal{I}_g$ has some lift $\tilde{\phi}$ so that

$$\|\tilde{\phi}\|_{\mathcal{I}_{a,1}} = \|\phi\|_{\mathcal{I}_a}.\tag{2}$$

This equality follows by writing out ϕ as a product of elements of S, then lifting generator by generator. Henceforth whenever we choose a lift of an element $\phi \in \mathcal{I}_g$, we will always choose a lift $\tilde{\phi}$ satisfying (2). The main point is that in computing with (1), we are allowed to choose any lifts, since Morita proves that $\delta_f(\phi, \psi)$ does not depend on the choice of lifts. Thus we can choose lifts which do not alter word length.

Now since \hat{S} is finite, there exists C_1 so that

$$\ell(\tau(\tilde{s})) \le C_1 \quad \text{for all } s \in \widetilde{S}^{\pm 1}.$$
 (3)

Since τ is a homomorphism to the abelian group $\wedge^3 H$, it follows from (3) that

$$\ell(\tau(\tilde{\phi})) \le C_1 \|\tilde{\phi}\| \quad \text{for all } \tilde{\phi} \in \mathcal{I}_{g,1}.$$
 (4)

Finally, consider $\phi, \psi \in \mathcal{I}_g$ together with lifts $\tilde{\phi}, \tilde{\psi}$ satisfying (2). If a_{ijk} (resp. b_{ijk}) are the coordinates of $\tau(\tilde{\phi})$ (resp. $\tau(\tilde{\psi})$) as in the previous section, then

$$|\delta_{f}(\phi, \psi)| = \left| \sum_{i < j < k} a_{ijk} b_{ijk} \right|$$

$$\leq \left| \sum_{i < j < k} \ell(\tau(\tilde{\phi})) \ell(\tau(\tilde{\psi})) \right|$$

$$\leq \sum_{i < j < k} C_{1}^{2} \|\phi\| \|\psi\|$$

$$\leq C_{2} \|\phi\| \|\psi\|$$

$$(5)$$

where $C_2 = \binom{2g}{3}C_1^2$.

Now given any $\phi \in \mathcal{I}_g$, write $\phi = s_1 \cdots s_n$, where each s_i is an element of $S^{\pm 1}$ and where $n = ||\phi||$. An iterated use of Morita's formula (1) gives

$$\lambda_{f}(\phi) = \lambda_{f}(s_{1}) + \lambda_{f}(s_{2} \cdots s_{n}) + 2\delta_{f}(s_{1}, s_{2} \cdots s_{n})
= \lambda_{f}(s_{1}) + \lambda_{f}(s_{2}) + \lambda_{f}(s_{3} \cdots s_{n}) + 2\delta_{f}(s_{1}, s_{2} \cdots s_{n}) + 2\delta_{f}(s_{2}, s_{3} \cdots s_{n})
\vdots
= \sum_{i=1}^{n} \lambda_{f}(s_{n}) + 2\sum_{i=1}^{n-1} \delta_{f}(s_{i}, s_{i+1} \cdots s_{n}).$$
(6)

Since S is finite, there exists $C_3 > 0$ so that $|\lambda_f(s)| \le C_3$ for every $s \in S$. For some C > 0, we thus have

$$|\lambda_f(\phi)| \leq \sum_{i=1}^n |\lambda_f(s_n)| + 2\sum_{i=1}^{n-1} |\delta_f(s_i, s_{i+1} \cdots s_n)|$$

$$\leq C_3 n + 2\sum_{i=1}^{n-1} C_2 \cdot 1 \cdot (n-i)$$

$$\leq C n^2 = C ||\phi||^2.$$

The first claim of the theorem follows.

We now consider the second claim. Johnson proved (see, e.g. [2]) that the homomorphisms τ are surjective. Hence there exists some $\nu \in \mathcal{I}_g$ so that for some lift $\tilde{\nu} \in \mathcal{I}_{g,1}$ we have

$$\tau(\tilde{\nu}) = x_1 \wedge x_2 \wedge x_3 + y_1 \wedge y_2 \wedge y_3,$$

and hence

$$\tau(\tilde{\nu}^n) = n(x_1 \wedge x_2 \wedge x_3) + n(y_1 \wedge y_2 \wedge y_3). \tag{7}$$

Note that the choice of ν depends in a nontrivial way on the Heegaard embedding $f: \Sigma_g \to M$, so ν is not given explicitly. By equation (6), we have

$$\lambda_f(\nu^n) = \sum_{i=1}^n \lambda_f(\nu) + 2\sum_{i=1}^{n-1} \delta_f(\nu, \nu^{n-i}).$$
 (8)

Now let $K_1 = |\lambda_f(\nu)|$, which is a constant since ν is fixed. By (7) and the definition of δ_f , we have for any m > 0 that $\delta_f(\nu, \nu^m) = m$. Thus by equation (8) there is some N such that for all $n \geq N$

$$|\lambda_f(\nu^n)| = \left| \sum_{i=1}^n \lambda_f(\nu) + 2 \sum_{i=1}^{n-1} (n-i) \right|$$

$$\geq 2 \sum_{i=1}^{n-1} (n-i) - \sum_{i=1}^n K_1$$

$$\geq K_2 n^2$$

for some $K_2 > 0$. If $\|\nu\| = K_3$, then clearly $\|\nu^n\| \le K_3 n$. Thus

$$|\lambda_f(\nu^n)| \ge K_2 n^2 \ge \frac{K_2}{K_3^2} ||\nu^n||^2$$
 for all $n \ge N$.

Setting $K = \frac{K_2}{K_3^2}$ we get the desired sequence $\{\nu^n\}_{n=N}^{\infty}$ establishing the asymptotic tightness of the upper bound.

References

- [1] S. Akbulut and J. D. McCarthy, Casson's invariant for oriented homology 3-spheres, Princeton Univ. Press, Princeton, NJ, 1990.
- [2] D. Johnson, A survey of the Torelli group, in Low-dimensional topology (San Francisco, Calif., 1981), 165–179, Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983.
- [3] D. Johnson, The structure of the Torelli group. I. A finite set of generators for \(\mathcal{I}\), Ann. of Math.
 (2) 118 (1983), no. 3, 423-442.
- [4] S. Morita, On the structure of the Torelli group and the Casson invariant, Topology **30** (1991), no. 4, 603–621.

Department of Mathematics, University of Chicago 5734 S. University Ave. Chicago, IL 60637 USA

Emails: broaddus@math.uchicago.edu (Nathan Broaddus), farb@math.uchicago.edu (Benson Farb), andyp@math.uchicago.edu (Andrew Putman)