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Abstract

We bound the value of the Casson invariant of any integral homology 3-sphere M by
a constant times the distance-squared to the identity, measured in any word metric on
the Torelli group Z, of the element of 7 associated to any Heegaard splitting of M. We
construct examples which show this bound is asymptotically sharp.

1 Introduction

The Casson invariant A\(M) € Z is a fundamental and well-studied invariant of integral
homology 3-spheres M. Roughly speaking, \(M) is half the algebraic number of conjugacy
classes of irreducible representations of 71 (M) into SU(2). See [1] for a thorough exposition
of the Casson invariant.

The mapping class group Mod, of a closed, orientable, genus g surface ¥ is the group of
homotopy classes of orientation-preserving homeomorphisms of ¥,. The subgroup of Mod,
consisting of elements acting trivially on H;(2,;Z) is called the Torelli group, and is denoted
by Z,.

Let M be an integral homology 3-sphere, and let f : ¥, — M be a Heegaard embedding.
For any ¢ € 7,4, denote by My the homology 3-sphere obtained by cutting M along f(%,)
and gluing back the resulting two handlebodies M ™ and M~ along their boundaries via the
homeomorphism ¢. Note that any integral homology 3-sphere can be obtained from M = S3
in this way.

In this note we give a sharp asymptotic bound on |A(My)]| in terms of the word metric on
Z,4. To explain our result, we fix g > 2 and pick once and for all a finite set S of generators for
T4; the fact that Z,, is finitely generated when g > 2 is a deep result of D. Johnson (see [3]).
Denote by || - || the induced word norm on Zy; i.e. ||¢] is the length of the shortest word in
S*! which equals ¢. Different choices of finite generating sets for Z ¢ give word norms whose
ratios are bounded by a constant. For a fixed Heegaard embedding f : ¥, — M, Morita [4]
has defined a kind of normalized Casson invariant \y : T, — 7 via

Af(9) = A(Mp) = A(M).
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In particular, if M = S3 and h : ¥, — S? is the unique genus g Heegaard embedding then
A(S3) = 0, so the normalized Casson invariant )\, satisfies \j,(¢) = )\(Sg’)).

Theorem 1.1 Let M be an oriented integral homology 3-sphere, let g > 2, and let f : ¥, —
M be a Heegaard embedding. Then there ezists a constant C' > 0 so that |A;(¢)| < C||@||* for
every ¢ € L,. This bound is sharp in the sense that there exists an infinite sequence {¢,} of
elements of I, so that for some constant K > 0 we have |A¢(¢y,)| > K||¢n|* for all n.

2 Morita’s formula

Our proof of Theorem 1.1 relies in an essential way on a beautiful formula due to Morita [4] for
Af(¢), which we now explain (following §4 of [4]). This formula measures the extent to which
Ay fails to be a homomorphism. This failure is encoded as a function d; : 74 x I, — Z defined
as follows. Let 7,1 denote the Torelli group of an oriented, genus g surface with one bound-
ary component ¥ ;. In other words, Z,; is the group of homotopy classes of orientation-
preserving homeomorphisms of ¥, which fix the boundary pointwise, modulo homotopies
which do the same and where the homeomorphisms act trivially on H := H;(3,;Z). Gluing
a disc to 0% 1 induces a natural surjective homomorphism = : Z,1 — Z,, and there is a
corresponding commutative diagram of Johnson homomorphisms (c.f. [2] for a discussion of
these homomorphisms 7 and their remarkable properties):

Tg1 — N3H
™l !
I, — A3H/H

The map f : ¥, — M induces homomorphisms H — H;(M + Z) whose kernels we denote
by H™ and H™, respectively. It is then easy to see that HT ® R and H~ ® R are maximal
isotropic subspaces of the symplectic vector space H ® R, and that

H=H"® H".

Moreover, since M is an integral homology 3-sphere, there is a symplectic basis {z1,...,
Tg, Y1, - - - ,yg} for H with x; € H' and y; € H~. Now, given any two ¢, € Z,, choose any

lifts ¢, to Z, 1. Using the obvious basis for A3H coming from our choice of basis for H, we
can write

7'(<Z~5) = { Z Qijk Yi N Y; N yk] + other terms,
i<j<k

() = [ Z biji T3 N xj A :Ek:| + other terms
i<j<k

for some a1, b;ji € Z. Morita defines

or(¢, ) = Z ijkbijik

i<j<k
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and proves that d7(¢, 1) does not depend on either the choice of lifts ®,1 or the choice of
symplectic basis for H. Morita then proves, as Theorem 4.3 of [4], that the following formula
holds for all ¢,9 € Z,:

Ap(@h) = Ap(@) + Ap(¥) + 207 (0, 9). (1)

3 Proof of Theorem 1.1

Let {z1,...,24,y1,...,Yg} be the standard basis for H := H;(X4; Z) discussed in the previous
section. For any vector v € AH, we denote by ¢(v) the maximum of the absolute values of
the coefficients of v with respect to the induced basis for A3H.

We want to relate A;(¢) to the word length of ¢ in Z,, but Morita’s formula (1) is
computed using elements of Z, 1, not of Z,. To address this point, we first recall that gluing
a disk to 0%, 1 induces an exact sequence

1= m(T'Sy) = Tg1 =Ty — 1

where TIZQ is the unit tangent bundle of X,. For each generator s € S of 7, choose a single
lift 5 € 7,1, and denote by S the union of these elements. We can then choose as a generating
set for Z, 1 the set S together with a finite generating set for (T'%,). With these choices
of generating sets, we note that each ¢ € Z,; has some lift ¢ so that

I16lz,, =lgllz,. (2)

This equality follows by writing out ¢ as a product of elements of S, then lifting generator
by generator. Henceforth whenever we choose a lift of an element ¢ € Z,, we will always
choose a lift ¢ satisfying (2). The main point is that in computing with (1), we are allowed
to choose any lifts, since Morita proves that d¢(¢,1) does not depend on the choice of lifts.
Thus we can choose lifts which do not alter word length.

Now since S is finite, there exists C} so that

U(r(3)) < C; for all s € S*L. (3)
Since 7 is a homomorphism to the abelian group A3H, it follows from (3) that
U(1(d)) < Cyl|d|| forall g € T, 1. (4)

Finally, consider ¢,v¢ € I, together with lifts 6,1 satisfying (2). If a;ji, (resp. bij) are the

coordinates of 7(¢) (resp. 7(¢)) as in the previous section, then



0p(d, )| = ‘ Z aijkbijk‘

i<j<k
< | X U@y

1<j<k (5)
< > G igll el

i<j<k
< Galloll 1wl

where Cy = <2?;q> C?.

Now given any ¢ € Z,, write ¢ = s1 - - - s5,,, where each s; is an element of S*1 and where
n =||¢||. An iterated use of Morita’s formula (1) gives

/\f(gb) = /\f(Sl)+/\f(82"'3n)+25f(51,82"'8n)

= Ap(s1) + Ap(s2) + Ap(s3- - 8n) +207(s1, 82~ 8n) + 207 (52,83~ 8n)
: (6)

n . n—1
= D Aflsn) +2) Sp(si sig1 - sn).
i=1 i=1

Since S is finite, there exists C3 > 0 so that |[A¢(s)| < Cs for every s € S. For some C > 0,
we thus have

n n—1
Ar(@)l < Z [Af(sn)| +2 Z |67 (8i5 8it1+ 5n)|
i=1 =1

n—1

< Cyn+2) Co-1-(n—1i)
=1

< Cn?=Clgl*

The first claim of the theorem follows.

We now consider the second claim. Johnson proved (see, e.g. [2]) that the homomor-
phisms 7 are surjective. Hence there exists some v € Z, so that for some lift v € 7, we
have

T(ﬂ) =x1 AN22 ANx3+ Y1 ANy \ys,

and hence
T(0") = n(x1 Axg Az3) +n(yr Ay2 Ays). (7)



Note that the choice of v depends in a nontrivial way on the Heegaard embedding f : ¥, — M,
so v is not given explicitly. By equation (6), we have

n n—1
A" = A pw) +2> 8w, "), (8)
=1 i=1

Now let K1 = |A¢(v)|, which is a constant since v is fixed. By (7) and the definition of dy,
we have for any m > 0 that ¢7(v,v™) = m. Thus by equation (8) there is some N such that
foralln > N

n n—1
MO = | A ) +2Y (=)
=1 1=1

v

n—1 n
SN P
i=1 i=1
> K2n2
for some Ko > 0. If ||v|| = K3, then clearly |[v"| < K3n. Thus

K
A (™) > Kan? > K—%Hl/"||2 for all n > N.
3

Setting K = L% we get the desired sequence {v"}>° . establishing the asymptotic tightness

3
of the upper bound.
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