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1 Introduction

Let ¥, be a closed, orientable, connected surface of genus g > 1. The
mapping class group Mod(X,) is the group Homeo™ (3,)/Homeon(X,) of
isotopy classes of orientation-preserving homeomorphisms of 3,. It has been
a recurring theme to compare the group Mod(X,) and its action on the
Teichmiiller space 7 (3,) to lattices in simple Lie groups and their actions
on the associated symmetric spaces.

Indeed, the groups Mod(X,) share many of the properties of (arithmetic)
lattices in semisimple Lie groups. For example they satisfy the Tits alter-
native, they have finite virtual cohomological dimension, they are residually
finite, and each of their solvable subgroups is polycyclic.

A well-known dichotomy among the lattices in simple Lie groups is be-
tween lattices in rank one groups and higher-rank lattices, i.e. those lattices
in simple Lie groups of R-rank at least two. It is somewhat mysterious
whether Mod(X,) is similar to the former or the latter. Some higher rank
behavior of Mod(X,) is indicated by the cusp structure of moduli space,
by the fact that Mod(%,) has Serre’s property (FA) [CV], and by Ivanov’s
version (see, e.g. [Iv2]) for Mod(3,) of Tits’s Theorem on automorphism
groups of higher rank buildings.

In this note we add two more properties to the list (see, e.g. [Ivl, Iv2,
Iv3] and the references therein) of properties which exhibits similarities of
Mod(X2,) with lattices in rank one groups: every infinite order element of
Mod(X,) has linear growth in the word metric, and Mod(%,) is not bound-
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edly generated. In addition, we present a restriction on low-dimensional
representations of Mod(X,) which has a higher rank flavor.

Dehn twists have linear growth. In Section 2 we prove that Dehn
twists have linear growth with respect to the word metric on the mapping
class group of an oriented surface of finite type (Theorem 1.1). This answers
a question of Ivanov in [Iv1]. A proof in the case of punctured surfaces was
given by Mosher [Mo] using his techniques for constructing an automatic
structure on the mapping class group.

This result implies in particular that the embedding of the mapping class
group as an orbit in Teichmiiller space is not a Lipschitz equivalence (Theo-
rem 2.1). This should be viewed in comparison with the opposite conclusion
for higher-rank lattices, by Lubotzky-Mozes-Raghunathan [LMR1].

Theorem 1.1 Let ¥, ,, be an oriented surface of genus g and m punctures.
Fiz a finite generating set for Mod(X,,,) and let || - || denote minimal word
length with respect to these generators. Then every Dehn twist t has linear
growth in Mod(¥g.,), i.e. there exists a constant ¢ > 0 so that

[£*] = c|n|
for all n.

Equivalently, one can say that ¢ has positive translation distance in the
sense of Gersten and Short [GS], that is

—
d(t) = liminf > 0.
n—00 n
More generally, by previously known results we can conclude the follow-
ing.

Theorem 1.2 Every element of infinite order in Mod(X, ,,) has linear growth.

Theorem 1.2 should be compared with [LMR1], which shows that non-
cocompact, irreducible lattices in higher rank contain elements with loga-

rithmic growth (so-called U-elements). This does not happen for lattices in
rank one groups (see [LMR1, LMR2]).

The bounded generation property. Recall that a group I' is boundedly
generated if there is a finite set of elements {ay,...,a,} of I' so that every
element g € I' can be written
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for some my,...,m, € Z. In other words, I is the (set-theoretic) product
of a finite number of cyclic groups. It was shown by Tawgen [Ta] to hold for
most (and conjecturally for all) non-cocompact lattices in higher rank simple
Lie groups. On the other hand, word-hyperbolic groups are not boundedly
generated (see §3.5), and therefore neither are cocompact lattices in rank
one groups. It also seems likely that non-cocompact lattices in rank one
groups are not boundedly generated.

Theorem 1.3 For g > 1, the group Mod(X,) is not boundedly generated.
In fact we prove a stronger result:

Theorem 1.4 For every g > 1 and every prime p, the group Mod(X,) has a
finite index subgroup H whose pro-p completion Hp is not a p-adic analytic

group.

If a group is boundedly generated then so is every finite-index subgroup.
Also, the pro-p completion of a boundedly generated group is p-adic analytic.
Thus Theorem 1.4 implies Theorem 1.3.

Recall that a pro-finite group is boundedly generated if it is the set-
theoretic product of finitely many pro-cyclic groups. It is known ([Lu, PR])
that arithmetic groups have the congruence subgroup property if and only if
their profinite completion is boundedly generated. This property is known
to hold for all non-cocompact, higher-rank lattices and for most cocompact
ones. An analogue of the congruence subgroup property for Mod(X,) has
been conjectured by Ivanov [Ivl]. On the other hand, Theorem 1.4 has the
following consequence.

Corollary 1.5 The pro-finite completion of Mod(X,) is not boundedly gen-
erated as a profinite group

It should be stressed, however, that Corollary 1.5 does not contradict
Ivanov’s conjecture, as the equivalence between the congruence subgroup
property and bounded generation of the profinite completion is valid only
for arithmetic groups.

Low-dimensional representations of Mod(X,). It is a well-known
open question whether the mapping class group Mod (%), g > 1 has a faith-
ful linear representation ¢ : Mod(¥,) — GL(n,C) for some n > 2. In
Section 4 we show that such representations, even for finite index subgroups
of Mod(X,), do not exist for n < 2y/g — 1.

Theorem 1.6 Let H be any finite index subgroup of Mod(¥,),g > 2. Then
there is no faithful representation v : H — GL(n,C) for n < 2,/g — 1.



2 Growth of Dehn twists

To show that a power 17} of a Dehn twist cannot be expressed as a product
of a smaller than linear number of generators, we need a way to measure
the “twistiness” of any element of Mod(X) around «, in such a way that 7.
twists n times and any generator twists a bounded amount. Note that this
cannot be made group-theoretically precise, since Mod(X) does not admit a
non-trivial homomorphism to Z (see, e.g. [Hal)

In the rest of the section we will assume that ¥ is hyperbolic of finite
volume. This rules out Xy, for n < 3, for which Mod(S) is trivial or finite,
and the torus ¥ o, for which Mod(X) = SL(2, Z) and the theorem is known.
(At any rate since SL(2,Z) is also Mod(X;;) and Mod(X¢4) this case is
covered).

2.1 The annulus complex and relative twists

Let Y = S! x [0,1] be an oriented annulus and let A(Y") denote the set of
arcs joining S* x {0} to St x {1}, up to homotopy with endpoints fixed. If a
and b in A(Y') do not share any endpoints then we can define their algebraic
intersection number a - b. (The arcs inherit an orientation from any fixed
orientation on [0, 1], and if this orientation is reversed then the senses of the
intersections are unchanged.) We also define a - a = 0.

A lift of any a € A(Y) to Y = R x [0, 1] has endpoints (ag,0) and (a;,1),
well-defined up to translation (of both) by Z. We can immediately check
that, with appropriate choice of orientation of Y,

a.b:Lbl—alj—Lbo—aoj

(where |x| denotes the largest integer less than or equal to x). It then
follows that
a-c=a-b+b-c+A (1)

where A € {0,1,—1}, for any a,b,c € A(Y) such that the intersection
numbers are defined.

Now to any essential simple closed curve « in ¥ we can associate a closed
annulus Y = Y, as follows: Let g, be an isometry of H? representing the
conjugacy class of «, and let Y = (ﬁ2 \ Fiz(g9a))/{ga), where H is the
standard closed-disk compactification of H?. For any simple curve 3 in
Y we can consider its lift to int(Y). If § is not homotopic to « then its
endpoints are distinct from those of o and hence each component of its lift
extends to a properly embedded arc in Y.



Let lift,(3) denote the subset of components that connect the two
boundaries of Y, viewed as a subset of A(Y). This set is always finite,
and nonempty if § crosses « at least once.

The set of all arcs that arise in this way have mutually disjoint endpoints
since any two elements of 71 (S) acting on H? with asymptotic axes must be
the same up to finite powers. Thus the intersection numbers are well-defined
among all these lifts. Let us now define, for «, 8 and v simple closed curves
in X, a subset of Z:

Ta(B,7) = {b-c:belift,(8),c € lift,(7)}.

(If 8 or = is disjoint from « then this is the empty set). Since the components
of lift,(3) are mutually disjoint (and similarly for lift,()), we obtain from
(1) that diam(7(5,7)) < 2.

Figure 1: The effect of a Dehn twist on the lift to the annulus

Let t = T, be a (leftward) Dehn twist on a. The effect of " for n > 0
on 3, lifted to the components of lift,(3), is to twist each component n
times around the annulus, and shift the endpoints a little up on S x {1}
and a little down on S* x {0} (if n < 0 then up and down are interchanged).
The shift of endpoints comes from the intersections of lift, () with the non-
closed components of the lift of a to Y (see Figure 1). It follows directly
that

7a(3,1"(0)) C {n,n+ 1} (2)

Furthermore, we have the following properties. If 5 and + intersect «,
then their intersection number bounds their relative twisting:

max |74 (8, 7)| < i(8,7) +1 (3)

(Here i(-,-) denotes unoriented geometric intersection number, and by |A]
for A C R we mean {|a| : a € A}.)



To see this, note first that if i(3,v) = 0 then 74(8,7) = {0} so we may
assume i(3,7) > 1. Let b and ¢ be components of lift,(3) and lift,(v),
respectively. We may assume that b and ¢ intersect exactly k = |b- ¢| times
in the annulus. If kK = 2 there is nothing to prove, so assume k > 2. Let
b1,...,br_1 be successive segments of b bounded by points of b N ¢, and let
c1,...,Ck_1 be the corresponding segments of ¢, so that A; = b; x ¢; is a
simple closed curve homotopic to the core of Y, and A; and A; are distinct
for ¢ < j. If A; and A; map to the same curve in ¥ then the region they
bound is identified to make a torus covering 3, contradicting the assumption
that 3 is hyperbolic. Thus all the b; have distinct projections to X, and in
particular there are at least k—1 intersection points of 8 with ~y. This proves
inequality (3).

Finally, for 3, and d crossing a we have:
max 740, 0) < max 7,(0, ) + max 74(7,9) + 2 (4)
and similarly
min 7,(3,0) > min7,(5,7) + min 7,(y,0) — 2. (5)

These follow immediately from applying equation (1) to the components of
lift,(5), lift, (), and lift,(9).

2.2 Proof of Theorem 1.1

Let t be a Dehn twist on o. Without loss of generality assume that ¢ is a
leftward twist, so that (2) holds.

A set M of simple closed curves binds ¥ if every nontrivial, nonperiph-
eral curve in ¥ intersects some element of M. Let us choose a particular
binding set P as follows: extend « to a pants decomposition of ¥ (a maxi-
mal collection of disjoint non-homotopic essential curves), and then for each
pants curve 3 add a curve 8’ which crosses 3 once or twice, and misses the
other pants curves. Let o/ be the curve in P that crosses .

Now for any set M of simple closed curves in X, define

T(M) = U 1o, ).

pneM

In particular, 7(P) = {0}. Note that 7(M) is always nonempty when M
binds X.

Let X be some fixed finite generating set for Mod(3). Assume without
loss of generality that n > 0, and suppose we can write t” as a word w =



g1 00 gm, with each g; € X. Let w; denote the subword g; o---0g;, and
let P; = w;(P). We will prove that

max 7(Pjy1) < max7(Pj) + K (6)

for a fixed K.
Define

B =max{i(8,7): B € P,y € g(P),g € X}

which is finite since the maximum is over a finite set. Since w;i1(P) =
w;j(gj+1(P)) for any j, and intersection number is Mod(X)-invariant, we
have for each j, for all 8 € P; and v € Pj;1, that

i(8,7) < B.

Inequality (3) then implies that, for any 8 € P; and v € Pj;1 which cross
a, max |7,(6,7)| < B+ 1. Then applying (4), we find that

max 7, (o, y) < max7,(c’, 8) + B + 3.

This establishes (6). Now, since we know (using (2)) that 7(w(P)) =
To(d t"(a')) C {n,n + 1}, it follows that the length m of w is at least
n/(B + 3). This concludes the proof.

Note that the constants can be made explicit if the set of generators X is
adapted nicely to P — for example if they are Dehn twists on the components

of P.

2.3 Corollaries

Theorem 1.2, that every infinite order element of Mod(X) has linear growth,
is now easy to put together from known results. The case of simultaneous
Dehn twists around a collection of disjoint curves is done in the same way
as for a single curve, computing the twisting numbers separately for each
component. The case of an element A which is pseudo-Anosov or is reducible
and has a power which is pseudo-Anosov on some subsurface is already
known — the argument uses the exponential growth of lengths of curves under
h (see Mosher [Mo]). By Thurston’s classification of elements of Mod(X)
[FLP], these are all possible cases.

The second corollary of Theorem 1.1 is the following statement for the
Teichmiiller space 7 (3) of 3, on which Mod(X) acts properly discontinu-
ously. Fixing a basepoint z¢ € 7 (X), we may embed Mod(X) in 7(X) as an
orbit, i.e. g — g(x¢). Endowing 7 (X) with the Teichmiiller metric dr, we
induce a metric on Mod(X) by inclusion. We then have



Theorem 2.1 The word metric on Mod(X) and the metric induced by in-
clusion as an orbit in T (X) are not Lipschitz equivalent.

Here Lipschitz equivalent means distances in the two metrics are within
bounded ratio.

To obtain this result one just needs to know that the translation distance
of a Dehn twist in Teichmiiller space,

inf dr(z,t
ponl 7(z,t(x)),

is zero, and furthermore
dr(z,t"(x)) = O(log |n|)

for any x € 7(3). In fact Marden-Masur show [MM] that each z is con-
tained in a totally geodesic copy of the hyperbolic plane (a Teichmiiller disk)
invariant by ¢, on which t acts as a parabolic isometry.

The situation is similar for non-cocompact lattices in rank-one Lie groups.
For example a parabolic element in a non-cocompact lattice in SO(n,1) =
Isom(H™) has linear growth in the word metric but logarithmic growth in
the left-invariant metric on SO(n, 1).

By contrast, the situation in a higher-rank semisimple linear Lie group G
is the opposite. Lubotzky-Mozes-Raghunathan have shown [LMR1] that for
an irreducible lattice I' in G the word metric and the metric induced from G
are Lipschitz-equivalent. For example, a unipotent element of SL(3,Z) has
logarithmic growth both in SL(3,R) and in the word metric of SL(3,Z).
11
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an element of SL(2,Z), but as a matrix in SL(3,Z) via the “upper left hand
corner” embedding SL(2,Z) — SL(3, Z) it has logarithmic growth.

As a concrete example, the matrix A = has linear growth as

3 Pro-p groups and mapping class groups

3.1 Some pro-p preliminaries

Let us briefly recall some definitions from the theory of pro-p groups. Further
details and proofs may be found in [DDMS].

A profinite group G is a compact, Hausdorff topological group which is
(topologically) isomorphic to an inverse limit of finite groups. Let p be a
fixed prime. The profinite group G is a pro-p group if it is topologically
isomorphic to an inverse limit of finite p-groups.



The pro-p completion Hy of a group H is defined as the inverse limit
H; =lim H/N

where the limit is taken over all normal subgroups whose index is a power
of p. For example, the p-adic numbers Q,, are the pro-p completion of Q.

A profinite group G is finitely generated (as a profinite group) if it con-
tains a finite subset S C G so that the topological closure of the group
generated by S equals all of G.

A profinite group is p-adic analytic if it has the structure of a Lie group
over Q,. In particular every such group has a well-defined dimension.

A p-adic analytic profinite group always contains a pro-p subgroup of
finite index. See [DDMS] for various characterizations of p-adic analyticity
of pro-p groups. A typical example of a compact p-adic analytic group is
any closed subgroup of SL(n,Zy); in fact this ends up being all examples
(see [DDMS]). In particular, closed subgroups of compact, p-adic analytic
groups are analytic. It is also known that an analytic pro-p group is finitely
generated (as a pro-p group).

3.2 Analyticity and extensions

In many cases, if the pro-p completion G, of a group G is taken, then the
closure of a subgroup N in G} is very small with respect to N; (the pro-p
completion of N). In other words, the pro-p topology of G induces on N a
topology which is much weaker than the pro-p topology of N. The following
lemma asserts (when N is f.g. normal in a discrete ) that, after passing to
a finite index subgroup L, “most of” Nj is preserved.

Lemma 3.1 Let
1—-—N—-G—H—1

be an exact sequence of discrete groups. Assume that N is finitely generated.
Then G has a finite index subgroup L containing N, so that the closure N
of N in the pro-p completion of L is mapped onto Ny/Z(Ny), the pro-p
completion of N modulo its center.

Proof. G acts on N by conjugation. This defines a homomorphism p : G —
Aut(N). We also have the natural homomorphism 1 : Aut(N) — Aut(N;).
Since N is finitely generated, the group N is finitely generated as a pro-p
group. As such, it is known (see Theorem 5.6 of [DDMS]) that Aut(N;) is a



virtually pro-p group, that is, Aut(/NV;) has a normal open pro-p subgroup.
In fact
K = Ker(Aut(Nﬁ) — Aut(N[;/[Nﬁ, Nﬁ]N]Z;))
is a normal pro-p subgroup of finite index in Aut(Np).
Let L = (¢ o p) ' (K). Then L has finite index in G. Moreover, L
contains N since N acts trivially on Nj/[Nj, Ng]NJ. So we have a map 1o p

from L into the pro-p group K. Now if j : L — Lj is the canonical map
from L into its pro-p completion, then we have a map 7 : L; — K so that

moj=(Yop)lL
Let N be the closure of j(N) in Ly. Then

7(N) = %o p()

and it is easy to see that 1) o p(IN) is just equal to the group of inner auto-
morphisms of N, that is:

m(N) =1 op(N) = Ny/Z(Np)

Thus N, which is a quotient of N, is also mapped onto N;/Z(N;) and
the lemma is proven. ©

We will need the following elementary lemma about nilpotent groups.

Lemma 3.2 IfT is a finitely generated, torsion-free nilpotent group of class
k, then the dimension of I'p is at least k.

Proof. The lemma follows easily by induction on k. ¢

Let us recall that a finitely generated group NN is called residually torsion-
free nilpotent if, for every g € N, there exists a torsion-free nilpotent group
Ny and a homomorphism ¢ : N — Ny with ¢(g) # 0.

Lemma 3.3 Let N be a finitely generated residually torsion-free nilpotent
group which is not nilpotent. Then for every prime p, the groups Nj and
N;/Z(Np) are not p-adic analytic groups.

Proof. Assume N;/Z(N;) is a p-adic analytic group of dimension 7. Let
M be any finitely generated torsion-free nilpotent group which is a quotient
of N. By our assumptions on IV, there are infinitely many such groups M of

10



arbitrarily high nilpotency class, for otherwise N itself would be nilpotent.
Let M be such a quotient of N of class at least r + 2. Hence M /Z (M) is of
class at least r + 1. By Lemma 3.3 applied to M/Z(M), we have that the
dimension of (M/Z(M)); is at least 4+ 1. But this group is a quotient of
N;/Z(Np), which is of dimension r, a contradiction.

Hence Npy/Z(Np) is not p-adic analytic. Since quotient groups of p-adic
analytic groups are p-adic analytic ([DDMS], Theorem 10.7), it follows that
Nj is not p-adic analytic. ¢

Combining Lemma 3.1 and Lemma 3.3 gives the following.

Corollary 3.4 Let
1-N—-G—H-—->1

be an exact sequence of discrete groups. Assume that N is finitely generated,
residually torsion-free nilpotent, but not nilpotent. Then G has a finite index
subgroup L containing N so that Ly is not p-adic analytic.

Proof. By Lemma 3.1, G has such a subgroup L for which N, the closure of
N in L;, is mapped onto Ny/Z(Np). By Lemma 3.3, the group Ny/Z(Np) is
not p-adic analytic. Thus N and Lj; are not p-adic analytic since subgroups
and quotient groups of analytic pro-p groups are analytic ([DDMS], Theorem
10.7). ¢

3.3 Proof of Theorem 1.4

We can now prove Theorem 1.4. First, for g = 1, the group Mod(%,) is
isomorphic to SL(2,Z), which has a finite index nonabelian free subgroup,
and so its pro-p completion is not p-adic analytic and thus not boundedly
generated.

We now consider the case g > 2. An old theorem of Dehn states that,
for all g > 1, the group Mod(%,) is isomorphic to Out™(,), where m, is the
fundamental group of ¥4, Out(m,) is the group of outer automorphisms of
T4, and Out™(m,) is a subgroup of index two in Out(my)

The natural action of Homeo(X,) on Hy (34, Z) clearly descends to an
action of Mod(%,). This action preserves the pairing on H;(%,,Z) = Z9
given by intersection number, so leaves the standard symplectic form on
H,(X4,Z) invariant, giving the well-known exact sequence:

1 — T(g) — Mod(3y) — Sp(2¢,Z) — 1

11



The kernel T'(g) is called the Torelli group of genus g. The group T'(g) has
the following properties:

1. Tt is finitely generated when g > 3 (see [J]).
2. It is residually torsion-free nilpotent for g > 2 (see [BL]).

3. It is not nilpotent. While this seems to be well-known, and is for
example implicit in [Hai|, here is a short argument which actually
proves the stronger result that 7'(g) contains a nonabelian free group:

Consider essential, separating, simple closed curves o, 3 in ¥, with
i(a, ) = 2. Then « and g fill out a 4-holed sphere, and the Dehn
twists T,, and T} lie in the subgroup corresponding to the mapping
class group of this subsurface (preserving the holes). We claim that
they generate a free group.

To see this, note that the torus covers the sphere with 4 branch points,
and the Dehn twists on « and § in the sphere lift to squares of Dehn
twists on the torus. That is, they correspond to the matrices

1 2 10 .
(0 1) and (2 1) in PSL(2, Z)

These generate a free group, as one can easily see by looking at an
appropriate fundamental domain in H? and applying the standard
Schottky argument.

Applying Corollary 3.4 to the exact sequence above now gives the con-
clusion of Theorem 1.4 for g > 3.

For g = 2 the above proof breaks down since the Torelli group 7'(2) is
not finitely generated. In fact it was shown by Mess [Me] that 7'(2) is an
infinitely generated free group. We can still modify the arguments above to
cover the case g = 2 as well. We sketch here a proof of how to do this.

For each prime p, let m, denote the composition

Mod(X,) — Sp(29,Z) — Sp(29,Z/pZ)

and let L = ker(m,). Consider Ls. Let N be the closure of the Torelli
group in Ls. If N is not finitely generated we are done, i.e. L, cannot be
p-adic analytic since every closed subgroup of an analytic group is finitely
generated. So suppose that N is finitely generated. We will show that N
has quotients of arbitrarily large dimension, so that N (hence L;) is not
p-adic analytic.

12



To this end, consider the image of N in Out((I';/T;);), where I'; is
defined inductively as follows: I'y = m(X,) and I';4q = [['1,I] for ¢ > 1.
Consider the pro-p completion (I'1 /I';). As I'; is characteristic in I'y, there
is a homomorphism

Out(T1) — Out(I'y/T;) — Out((I'1/T)p)

which induces a homomorphism % from L to a pro-p subgroup of Out((I'1 /I';)).
As the image of v is contained in a pro-p group, we have that ¢ can be ex-
tended to Lj. One can then check, & la the analysis in Andreadakis [An],
that the image of N in Out((I'1/T;);) is a nilpotent analytic group whose di-
mension is growing to infinity with ¢ (since N is not nilpotent). This proves
that N is not finite dimensional, i.e. is not analytic.

o

3.4 Automorphism groups of free groups

Let Aut(F,) (resp. Out(F},)) denote the automorphism group (resp. outer
automorphism group) of the free group F), of rank n. The same technique
as was used to prove Theorem 1.4 and Theorem 1.3 applies to Aut(F,,) and
Out(Fy,).

Theorem 3.5 For every n > 2 and every prime p, the group Aut(F)) has
a finite index subgroup L whose pro-p completion Ly is not p-adic analytic;
similarly for Out(Fy,). In particular neither Aut(Fy,) nor Out(F,) is bound-
edly generated.

Remark. The latter result for Aut(F,,) was proved by Sury [Su].

Proof. We describe the proof for Out(F},). For n > 3 the proof is exactly
the same as the case Mod(X,) = Out(m1(Xy)). The corresponding Torelli
subgroup

T = ker(Out(F,,) — SL(n,Z))

is indeed finitely generated and residually torsion-free nilpotent (see [BL]
and the references therein). Further, 7" is not nilpotent. One can do this
explicitly (as in the case for the Torelli subgroup of Mod(%,) above), or
for n > 4 as follows: if T' were nilpotent then one could deduce from [Lu2]
(which holds for n > 4) that Out(F},) is linear, which contradicts [FP].
Applying Corollary 3.4 now finishes the proof.

13



For n = 2, the group Out(F},) is isomorphic to GL(2,Z), which has a
nonabelian free subgroup of finite index, hence its pro-p completion is not
analytic. In particular it is not boundedly generated. ¢

3.5 Word-hyperbolic groups are not boundedly generated

We would like to record the following.

Proposition 3.6 A non-elementary word-hyperbolic group is not boundedly
generated.

Proof. Gromov has shown that every non-elementary word-hyperbolic
group G has an infinite torsion quotient H. If G were boundedly gener-
ated then so would H be. But it is clear that a boundedly generated torsion
group must be finite. ¢

4 Low-dimensional representations of Mod(X,)

In this section we prove Theorem 1.6.

Let C = {C1,...,C} be a collection of essential, homotopically distinct,
simple closed curves such that i(Cj, Cg4;) = i(Cyqs,Ci) = 1 foreach 1 < i <
g and i(Cy, Cj) = 0 otherwise.

For any simple closed curve a, let T, denote the Dehn twist about a.
Then i(a, 8) = 0 if and only if T,, commutes with 7. In fact (see, e.g.
[Iv2], Theorem 7.5C), powers T, o Thy,m,n € Z* commute if and only if
i(a, 5) =0

Now let any finite index subgroup H of Mod(3,) be given. As H has
finite index, there exists [ > 0 so that Y(l;i € H forall 1 <1< 2g.

For any subset S C C we denote by T} the subgroup of Mod(X,) gener-
ated by {T} : C € S}. Let

S={ScC:T, < H isabelian} = {S c C:if a,3 € S then i(a,3) = 0}

Now let

N = max dim(¢(T§))

where H denotes the Zariski closure of the subgroup H in GL(n, C) and dim
denotes the dimension of an algebraic group. Let B = {C;,,...,C;.} be an
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element of S which both realizes this maximum and such that r is minimal
over all elements of S realizing this maximum.

We claim that r < N. As ¢(T%) is abelian, it is enough to show that,
for an abelian algebraic group A = <ay,...,a, > where the set {a;} is
minimal as above, that » < dim(A). To see this, one proceeds by induction
on 7, the case r = 1 being clear. By the minimality assumption, Ay =
<ai,...,a_1 > has dimension at most N — 1, for otherwise we could throw
away a,. As the product of algebraic groups is algebraic (see, e.g. [Sp], p.31),
the Zariski closure of a product is the product of Zariski closures. Hence
{a1,...,a,—1} is minimal for As, so by induction r — 1 < N — 1. Hence
r<N.

Since in an algebraic group the centralizer of a single element is clearly
algebraic, and the intersection of algebraic groups is algebraic, we see that
the Zariski closure of a finitely-generated abelian group is also abelian. In
particular ¢ (T%) is an abelian algebraic subgroup of GL(n,C). By an old
result of Schur [Sc] any such subgroup of SL(n, C) has dimension at most
|n?/4] < n?/4. But any maximal abelian subgroup of GL(n, C) is of the
form Z A, where A is such a subgroup on SL(n, C) and Z denotes the center
of GL(n,C). Hence any abelian algebraic subgroup of GL(n,C), in partic-
ular ¢(T%), has dimension at most n?/4 + 1.

We now clearly have

r<N<n?/4+1
so the hypothesis n < 2y/g — 1 gives
g>ni/a+1>7r
Hence there are curves aq, s € C so that :
(a) i(ag,v) =0 for i = 1,2 and for each v € B.
(b) i(aq, ) = 1.
Recall that powers T3, T, m,n € Z" commute if and only if i(a, 3) = 0.

By (a), each T,, commutes with ng. By the maximality property of B, for
i = 1,2 the abelian algebraic group ¥(T% U T,,) has dimension NN, and so

must contain 1 (7%) as a finite-index subgroup. In particular there exist
positive integers mi, mo so that

Y(To,)™ € Y(Th) for i = 1,2

Hence (T31') and ¥(T3?) commute. But by (b) we have that no power
of Ti,, commutes with any power of T,,. Hence it must be that 1 is not
faithful. o
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