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Abstract. In this paper we construct various moduli spaces of K3 sur-
faces M equipped with a surjective holomorphic map π : M → P1 with
generic fiber a complex torus (e.g., an elliptic fibration). Examples in-
clude moduli spaces of such maps with primitive fibers; with reduced,
irreducible fibers; equipped with a section; etc. Such spaces are closely
related to the moduli space of Ricci-flat metrics on M. We construct pe-
riod mappings relating these moduli spaces to locally symmetric spaces,
and use these to compute their (orbifold) fundamental groups.

These results lie in contrast to, and exhibit different behavior than,
the well-studied case of moduli spaces of polarized K3 surfaces, and
are more useful for applications to the mapping class group Mod(M).
Indeed, we apply our results on moduli space to give two applications to
the smooth mapping class group of M.

1. Introduction

Recall that a K3 surface is a closed, simply-connected complex surface M
admitting a nowhere vanishing holomorphic 2-form. Many K3 surfaces M
admit a (holomorphic) genus one fibration; that is, a surjective holomorphic
map π : M → P1 with finitely many singular fibers, and whose smooth
fibers are Riemann surfaces of genus one. Such fibrations play a central
role in the theory of K3 surfaces.

The goals of the present paper are:
(1) To construct the moduli spaces of various types of genus one fibered

K3 surfaces, for example those with primitive fiber class; those with
reduced, irreducible fibers; those equipped with a section; etc.

(2) To construct period mappings relating these moduli spaces to locally
symmetric varieties.

(3) To use the above to compute and relate the fundamental groups of
these moduli spaces.
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(4) To apply the above to give new results on the smooth mapping class
group of M.

In order for the moduli spaces we consider to be useful, particularly
for applications to understanding mapping class groups of K3 surfaces, we
want them to be Hausdorff. Applications of this type also explain our focus
on their orbifold fundamental groups. For this reason we will exclusively
deal with K3 surfaces endowed with a Kähler class. As a consequence, most
of our moduli spaces do not have a complex structure and so this brings us
in general outside the context of algebraic varieties (or stacks). This is in
contrast with the well-studied moduli spaces of polarized K3 surfaces, as
these come with a natural structure of a locally symmetric variety (and are
more relevant for the study of symplectic mapping class groups).

Associated to any genus one fibration of M is the Poincaré dual e ∈
H2(M;Z) of the class of a generic fiber. The vector e is nonzero and, since
it is the class of a fiber in a fiber bundle, is isotropic: e ·e=0. The converse is
also true: for any nonzero, isotropic e ∈ H2(M) there is a complex structure
on M and a holomorphic genus one fibration with e as the class of a generic
fiber. In this way isotropic vectors e ∈ H2(M) will be central to this paper.

Before we proceed to state the main results of this paper, a word on ter-
minology. We want to use the notions of ‘orbifold’, ‘orbifold fundamen-
tal group’ and ‘moduli space’ in such a manner that we are for instance
able to say that the moduli space of elliptic curves can be given as the orb-
ifold SL2(Z)\H and that therefore its orbifold fundamental group is SL2(Z)
(which in this case also happens to be the mapping class group of a torus).
The appropriate language is that of Deligne-Mumford stacks in the smooth
category, but for us the more elementary conventions stated in §1.6 already
do the job.

1.1. Ricci-flat metrics and complex structures. Kodaira proved that all
K3 surfaces are diffeomorphic. In this paper M denotes a closed 4-manifold
in this diffeomorphism class; we give it the orientation for which the inter-
section pairing has signature (3, 19). According to Donaldson [D], H2(M;R)
comes with a natural spinor orientation, that is, an orientation of the bundle
of positive subspaces of maximal dimension (so in this case that dimension
is 3) over the appropriate Grassmannian.

In what follows the twistor construction plays a central role, so we re-
call some of the basics. Henceforth we assume that all metrics have unit
volume. Given a Riemann metric g on M, the space Pg of its self-dual har-
monic 2-forms defines a positive 3-plane in H2(M;R). If J is a complex
structure on M for which g is a Kähler metric, then the Kähler class κ of
this metric lies in Pg and κ · κ = 2. The orthogonal complement of κ in Pg is
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a positive 2-plane that inherits via the spinor orientation a canonical orienta-
tion. This determines a complex line H2,0(M, J) ⊂ H2(M;C): if (x, y) is an
oriented orthonormal basis of the 2-plane Pg then H2,0(M, J) is spanned by
x +
√
−1y; further, when we know H2,0(M, J) then we know the full Hodge

decomposition of H2(M, J).
In case g is Ricci flat there is a converse: each κ ∈ Pg with κ · κ = 2

determines a complex structure J on M for which g is a Kähler metric that
has κ as its Kähler class. This complex structure is unique and all complex
structures J for which g is a Kähler metric so arise [HKLR]; we then say
that the pair (g, J) is a Kähler-Einstein structure on M. In particular, the
set of Kähler-Einstein structures with g as underlying (Ricci-flat) metric is
faithfully parametrized by the 2-sphere of radius

√
2 in Pg. In universal

terms, if

MRF := {Diff(M)-orbits of Ricci-flat metrics on M}

and if

MKE := {Diff(M)-orbits of Kähler-Einstein structures on M},

then once we have shown these to be moduli spaces in our sense, the forget-
ful map π :MKE :→MRF defined by π(g, J) := g is an orbifold S 2-bundle:

(1.1)
S 2 −→ MKEyπ

MRF

A starting point for this paper is the observation that a choice of nonzero
isotropic vector e ∈ H2(M;Z) determines a smooth section of (1.1), and
that in fact the following stronger result is true.

Proposition 1.1 (Metric + isotropic vector  complex structure). Let
M be the K3 manifold. Fix a nonzero isotropic vector e ∈ H2(M;Z). Then
every Ricci-flat metric g on M determines a unique complex structure Jg on
M for which g is Kähler-Einstein and e is the class of a positive divisor.
This divisor can be chosen to be the sum of a smooth genus 1 curve and a
nonnegative linear combination of smooth genus 0 curves.

See Section 3.2 for a proof. Additional conditions are needed in order
that e be represented by a smooth genus 1 curve. But if that is the case, then
e defines basepoint-free linear system of dimension 1 (a copy of P1), i.e., it
gives rise to a genus one fibration π : (M, J)→ S (where S is a copy of P1)
such that e is the Poincaré dual of the class of a fiber and (hence) e is the
image of the orientation class of S under π∗ : H2(S )→ H2(M).
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1.2. Existence theorems. Proposition 1.1 allows us to form a number of
moduli spaces of holomorphic genus one fibrations as complex structures
and fiber classes vary. The first of these is:
(1.2)

Mprim :=


Diff(M)-orbits of triples (g, J, π), where (g, J) makes M a
Kähler-Einstein K3 surface for which π is a holomorphic
genus one fibration of M with primitive fiber class


A singular fiber in a genus one fibration of M is integral if it is reduced

and irreducible; equivalently, it is nodal (Kodaira type I1) or cuspidal (Ko-
daira type II. We will call a genus one fibered structure on M integral if
each singular fiber is integral. This is a property that in the situation of
Proposition 1.1 can easily be characterized homologically: there should not
exist an α ∈ H2(M) with α · α = −2 that is perpendicular to both e and to
Pg ∩ e⊥ = Pg ∩ κ

⊥. The second moduli space we shall consider is :

Mint := the locus inMprim for which the fibration π is integral

Not every holomorphic genus one fibration on M admits a holomorphic
section. When it does, it is called an elliptic fibration, since that section
chooses a basepoint for each fiber, under which each smooth fiber becomes
an elliptic curve with this basepoint as the identity group element (each re-
duced singular fiber also becomes a group, depending on the type of fiber–
see below). Two sections of a genus one fibration differ by a holomorphic
fiberwise translation, although that isomorphism will in general not pre-
serve a given Kähler class. But in case the holomorphic genus one fibration
is integral and a section with class σ is given, then there is a canonical
choice for the Kähler class, namely e + 3σ (which is in fact the class of
an ample line bundle, see Corollary 3.3) and hence the class of a (unique)
Kähler-Einstein metric. This allows us to regard

(1.3) Mell
int := {Diff(M)-orbits of integral elliptic fibrations on M}

as a subset ofMint. There is also a map going the other way:

Jac :Mint →M
ell
int.

It assigns to a genus one fibration its Jacobian fibration, replacing fiberwise
each cubic curve by its Jacobian (see §5 for more details) and makesMell

int
appear as a retract ofMint. The Jacobian fibration is defined for a general
genus one fibration of M, but since that Jacobian fibration does not seem
to have a natural Kähler class that varies smoothly in families (as in the
integral case), we refrain from introducing a moduli spaceMell

prim.
The discriminant of a genus one fibration M → S with only integral

fibers yields a divisor D on S of degree 24, with a nodal fiber contributing
with multiplicity one and a cuspidal fiber with multiplicity two. It is the



MODULI OF GENUS ONE FIBERED K3 SURFACES 5

same as for its Jacobian fibration. Let us write M≤2
(24) for the PSL2(C) or-

bit space of positive degree 24 divisors on P1 with multiplicities ≤ 2 and
M(24) ⊂ M

≤2
(24) for the locus of reduced divisors. LetMnod ⊂ Mint be the set

of genus one fibrations all of whose singular fibers are nodal.
The following theorem summarizes the moduli spaces considered in this

paper and various natural maps between them. As indicated below, some of
these spaces (e.g.,MRF) have previously been considered in the literature.
Among our main results will be to give uniformizations of most of these
moduli spaces.

Theorem 1.2 (Existence theorem). With the notation above, the diagram

Mnod Mint Mprim MKE

Mell
nod Mell

int MRF

M(24) M≤2
(24)

Jac Jac

is one of moduli spaces (and morphisms between them) in the sense of the
conventions on moduli spaces in §1.6 below. Each of these moduli spaces
is connected.

We will abuse notation and often identify each of these moduli spaces
with its base. With the exception of Mnod and Mell

nod we will give fairly
concrete descriptions of these moduli spaces, often in terms of arithmetic
groups acting on open subsets of homogeneous spaces. This will allow us
to discuss the orbifold fundamental groups of these moduli spaces. We will
see that, apart ofM(24) andM≤2

(24) where it is evident, onlyMell
int lives in the

quasi-projective category. That moduli space is called in [Lö] the Miranda
moduli space.

The following table gives a quick, incomplete summary of the main re-
sults of this paper.

1.3. Topology of the moduli spaces. The orbifold fundamental groups of
the moduli spaces above are related to a certain arithmetic groups, as we
now explain. Let H denote H2(M;Z) equipped with its intersection form.
This is an even unimodular lattice of signature (3, 19) and these proper-
ties characterize H up to (isometric) isomorphism. The orthogonal group
O(H) is an arithmetic lattice in O(HR), a Lie group isomorphic to the real
semisimple Lie group O(3, 19).
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Table 1. A summary of some of the results of this paper.

Moduli space Uniformization πorb
1 Reference

MRF Γ\Gr+
3 (HR)◦ Γ §2.1 and

Thm.1.3
MKE Γ\E(HR) Γ §2.1 and

Thm.1.3
Mprim see §4 Γe Thm.4.1
Mell

int Γ(e)\Gr+
2 (HR)◦ Γ̃(e) Thm.1.4-(3)

Mint T 20 × [0,∞)-
bundle over
Γ(e)\Gr+

2 (HR)◦

Γe ×Γ(e) Γ̃(e) Thm.1.5

Let Mod(M) := π0(Diff(M)) be the smooth mapping class group of M.
The action of Diff(M) on M induces a representation

ρ : Mod(M)→ O(H)

whose image, which we will denote by Γ, is a priori contained in the index
2 subgroup O+(H) ⊂ O(H) preserving the spinor orientation, but is in fact
known to be equal to that group [B].

Let e ∈ H be a primitive isotropic vector. As we explain in more detail in
§2.2 below, the lattice

H(e) := e⊥/Ze
is even, unimodular lattice of signature (2, 18) (properties which character-
ize its isomorphism type). The natural action of the Γ- stabilizer Γe of e on
H(e) induces a representation

Γe → O(H(e))

whose image has index 2 (it is defined by a spinor orientation), and will be
denoted by Γ(e). This gives a (noncanonically split) short exact sequence

0→ H(e)
E
−→ Γe → Γ(e)→ 1

where H(e) can be identified with the unipotent radical of Γe, consisting of
those elements of Γe acting trivially on H(e). We can now state:

Theorem 1.3 (Topology ofMprim,MKE, andMRF). The map on orbifold
fundamental groups induced by the diagram

Mprim →MRF →MKE

is (up to conjugacy) naturally isomorphic to

Γe ⊂ Γ = Γ.
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The new part of Theorem 1.3 concerns Mprim; the other claims are re-
called in §2.1.

In what follows, we choose a fixed elliptic fibration π : M → S with
only nodal fibers as singular fibers. The discriminant D of π is then a 24
element subset of S . We use this fibration as a basepoint for the various
moduli spaces introduced here.

The group of isotopy classes of orientation-preserving diffeomorphisms
of the pair (S ,D) is the spherical braid group. That group is generated by
the set of elementary braids. An elementary braid is given by an arc in
S that connects two distinct points of D but whose interior avoids D (it is
rather an isotopy class of such) and the associated elementary braid is a half
Dehn twist whose support is contained in a regular neighborhood of that
arc, so that it exchanges the two points of D. It is not hard to show that an
orientation-preserving diffeomorphism of (S ,D) lifts to M. But in order that
it represents a loop in a moduli space of genus one fibrations, it must lift in
a fiber preserving manner, and this is not the case unless special conditions
(that pertain to the restriction of π : M → S to that arc) are met.

The symmetric space of the orthogonal group O(HR) is the Grassmannian
of positive 2-planes in H(e)R, denoted Gr+

2 (H(e)R). Let

Gr+
2 (H(e)R)◦ ⊂ Gr+

2 (H(e)R)

denote the locus of positive 2-planes that have no (−2)-vector in their or-
thogonal complement. It is of course Γ(e)-invariant.

The following theorem gives a uniformization via a period mapping of
the moduli space Mell

int; uses this to compute πorb
1 (Mell

int); and gives a mod-
ular interpretation of certain degenerations inMell

int. The first item is likely
known to experts.

Theorem 1.4 (Topology of Mell
int). The orbit space Γ(e)\Gr+

2 (H(e)R) is a
locally symmetric quasi-projective orbifold and

(1) there is an explicit period mapping (a morphism of orbifolds)

P :Mell
int → Γ(e)\Gr+

2 (H(e)R)

that is an open embedding with image Γ(e)\Gr+
2 (H(e)R)◦, the com-

plement of an irreducible, locally symmetric hypersurface.
(2) The general point of this hypersurface represents a genus one fibra-

tion of M with a fiber of Kodaira type I2 (1). .
(3) The period map P exhibits πorb

1 (Mell
int) as a group Γ̃(e) in an extension

of groups

(1.4) 1→ π1(Gr+
2 (H(e)R)◦)→ Γ̃(e)→ Γ(e)→ 1,

1Recall that such a fiber is the union of two copies of P1 intersecting transversally in 2
points.
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where π1(Gr+
2 (H(e)R)◦) is normally generated by the square of an

elementary spherical braid in S defined by an arc connecting two
discriminant points along which there is a degeneration into a sin-
gular fiber of Kodaira type I2-fiber.

(4) The natural fiberwise-involution of the universal elliptic fibering
(which can be regarded as an element of the inertia subgroup of
πorb

1 (Mell
int)) maps to minus the identity in Γ(e).

The following theorems is a computation of the oribifold fundamental
group ofMint.

Theorem 1.5 (Topology of Mint). There is a diagram of split short exact
sequences

0 H(e) πorb
1 (Mint) πorb

1 (Mell
int) 1

0 H(e) Γe Γ(e) 1E

In particular, the right hand square is cartesian, so that

πorb
1 (Mint) � Γe ×Γ(e) Γ̃(e).

We will prove the following theorem in 5.1.

Theorem 1.6 (Topology of Mnod). The inclusion Mnod ⊂ Mint induces a
surjection on orbifold fundamental groups whose kernel is normally gener-
ated by the lift to M of a third power of an elementary braid defined by an
arc in S connecting two nodal fibers along which there is a degeneration
into a cuspidal fiber.

Remark 1.7. We have not been able to obtain forMnod a concrete descrip-
tion of the same type as we have for the other moduli spaces. This is be-
cause we do not know how read off from the Hodge structure of a genus
one fibration on M whether it has a cuspidal fiber.

1.4. Universal Jacobian fibrations. Our next main result is a modular in-
terpretation of Theorem 1.5, which we now explain. Associated to any K3
surface X endowed with holomorphic integral genus 1 fibration π : X → S
is a Jacobian fibration

Jac(π)→ S ,

which is an elliptically fibered K3 surface that has the same base and the
same discriminant as π, but replaces each smooth fiber with its Jacobian.
The fibration Jac(π) → S comes with a holomorphic section, namely its
zero section, whereas π need not have one; indeed, the two fibrations are
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(fiberwise) isomorphic if and only if π admits a section. This construction
globalizes to a ‘universal Jacobian’ map

Jac :Mint →M
ell
int

converting holomorphic genus 1 fibrations to elliptic fibrations. See §5 for
more details.

Theorem 1.8 (The universal Jacobian construction). In the diagram of
moduli spaces

Mint Mell
int

Jac

the forgetful map appears as a section of Jac. The map Jac factors as an
(R/Z) ⊗ H(e)-torsor overMell

int ×R>0 followed by projection ontoMell
int such

that the forgetful map defines a section of the torsor overMell
int × {1}. In par-

ticular, the induced maps on πorb
1 induce the long exact sequence of Theorem

1.5 as well as its splitting.

1.5. Two applications. The above results on moduli spaces of elliptic fi-
brations have applications to the smooth mapping class group Mod(M) :=
π0(Diff(M)). If we are given a particular structure S on M (such as an ellip-
tic fibration with only nodal fibers as singular fibers), then there is an associ-
ated mapping class group ModS (M), defined as the connected component
group of the group of diffeomorphisms of M that preserve this structure.
ModS (M) comes with a forgetful homomorphism ModS (M) → Mod(M).
The connection with the moduli spaceMS comes from the fact that ifMS

is connected then the monodromy of universal bundle overMS induces a
representation

πorb
1 (MS )→ ModS (M).

The period mappings constructed in this paper produce homomorphisms
πorb

1 (M) → Γ that factor through Mod(M) and whose image we can often
determine. For example, the connectedness ofMnod implies the following
(see §6 for details).

Theorem 1.9 (Moishezon for maps). Given any γ ∈ O(H)+ fixing a nonzero,
isotropic vector e ∈ H2(M;Z) there exists:

(1) A complex structure J on M;
(2) A holomorphic (with respect to J) elliptic fibration π : M → P1

whose fibers have homology class e.
(3) A fiber-preserving (with respect to π) diffeomorphism f : M → M

such that f∗ = γ.

Items 1 and 2 of Theorem 1.9 are due to Moishezon (see ([FM], Cor.
7.5)), and give a new proof of that result for K3 surfaces.
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As a second application of results we will deduce the following (see The-
orem 6.2 below for a more precise statement).

Corollary 1.10 (Nielsen realization for H(e)). Given a genus one fibration
of a M with only nodal fibers and fiber class e, then H(e), when regarded as
a subgroup of the Γe, lifts to a group of fiber-preserving diffeomorphisms of
M.

Corollary 1.10 explains how the abelian group Ru(Γe) � H(e) of rank 20
appears in algebraic geometry as a monodromy group: if we fix an elliptic
K3 surface π : X → P1 with section σ, then it is the monodromy group of
the family of genus one fibered K3 surfaces whose Jacobian fibration ‘is’
the pair (π, σ). The group of diffeomorphisms given in Corollary 1.10 can
be thought of as a Mordell-Weil group of rank 20 in the smooth category,
where we note that the maximal rank in the holomorphic category is at most
18. A subsequent paper will be devoted to these mapping class groups.

1.6. Conventions on orbifold groups and orbifold structures on moduli
spaces. In this paper, an orbifold appears always as a global quotient, i.e.,
as an orbit space Γ\T of a smooth manifold T by a group Γ acting properly
discontinuously by diffeomorphisms on T . In case T is simply-connected,
we declare the orbifold fundamental group of Γ\T to be πorb

1 (Γ\T ) := Γ.
Note that we here allow the action to be non-faithful; we call its kernel,
necessarily finite, the inertia subgroup of πorb

1 (Γ\T ). If T is only connected
and T̃ → T is a universal covering with Galois group π1(T ), then the set
of all lifts of all elements of Γ to T̃ is a group Γ̃ that is an extension Γ̃ of Γ

by π1(T ). This group acts properly discontinuously on T̃ and we regard the
evident bijection Γ̃\T̃ → Γ\T as an isomorphism of orbifolds, so that Γ̃ is
the orbifold fundamental group of T .

We use a similar convention for moduli spaces. These will exclusively
concern a class of structures (denoted S ) that we can put on a manifold
M, where we assume S closed under pullback by a diffeomorphisms of M.
Then grosso modo a moduli space for S -structures on M puts an orbifold
structure on the set of Diff(M)-equivalence classes in S . To be precise,
consider orbifolds Γ\T with T simply connected that parametrize diffeo-
morphism classes of S -structures on M as follows: we are given a smooth
fiber bundleU → T with fiber diffeomorphic to M and with an S -structure
given on each fiber in a smoothly varying manner. We also assume that the
Γ-action on T has been lifted to U in a way that preserves this structure.
Then we say that such a family is universal up to Γ-action if for every fam-
ily U′ → T ′ of this type (so with T ′ simply-connected, but here no group
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Γ′ acting on it is assumed) fits in cartesian diagram

U′ −−−−−→ Uy y
T ′ −−−−−→ T

with the pair of horizontal maps being structure preserving and being unique
for this property up to postcomposition with an element of Γ. In particular
(take T ′ a singleton) a structure-preserving isomorphism between two fibers
ofU → T is then always induced by an element of Γ. It is not hard to show
thatU → T is unique up to the Γ-action (one may think of this as an almost
final object of a category: it is unique up to Γ-action). We then say that
Γ\(U → T ) (or simply Γ\T , when the remaining data are understood) is
the moduli space for manifolds diffeomorphic with M and endowed with an
S -structure.

1.7. Connection with spherical braids. We conclude this introduction
with a final remark and question. The closure of the image ofMell

int →M
≤2
(24)

is the set of degree 24 divisors (so with multiplicities ≤ 2) that can be given
by the sum of a cube and a square, i.e, that lie in a linear system generated
by 3D0 and 2D1 with D0 and D1 positive divisors of degree 8 resp. 12 (see
for instance the discussion in § 2.1 of [HL]). If we denote that locus by
D≤2

(24) ⊂ M
≤2
(24), then the resulting mapMell

int → D≤2
(24) is of degree one and is

quasi-finite (i.e., has finite fibers).
Lönne determined in [Lö] the induced map on orbifold fundamental groups

πorb
1 (Mell

int) → πorb
1 (M(24)) (where the latter is also known as the spherical

braid group). The map Mell
int → D≤2

(24) it is not proper, because we do not
allow Kodaira fibers of type I2, which also have discriminant multiplicity 2.
We can however show that the restriction to reduced discriminants:

Mell
nod → D(24) = D≤2

(24) ∩M(24)

gives a local homeomorphism that is also a normalization. Yet we do not
know the answer to the following.

Question 1.11. What is πorb
1 (D(24))? What is its image πorb

1 (M(24))?

2. Preliminary material

In this section we present some preliminary material that will be used
throughout the paper.
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2.1. Period mappings for moduli spaces of Ricci-flat metrics. We now
recall the construction ofMRF andMKE, as well as their associated period
mappings and use this to determine their fundamental groups.

Fix a K3 manifold M. As recalled in the introduction, M is oriented for
which H := H2(M;Z), endowed with the intersection pairing, is an even
unimodular lattice of signature (3, 19) and HR = H2(M;R) comes with a
spinor orientation. Both are preserved by the action of Diff(M) on H and its
image Γ is all of O(H)∩O+(HR). This is subgroup of index two in O(H) that
does not contain minus the identity, and so has trivial center. In particular,
Γ acts faithfully on the Grassmannian Gr+

3 (HR) of positive 3-planes in HR
(which, we recall, is the symmetric space of O(HR)).

Definition 2.1 (Torelli spaceT (M) of Ricci-flat metrics). LetT (M) be the
space of isometry classes of K3 manifolds X equipped with a Ricci-flat met-
ric g of unit volume and an H-marking, that is, an isomorphism H2(X)→ H
which preserves the intersection pairing and the spinor orientation. The
space T (M) is called the Torelli space of M.

Let DiffH(M) denote the kernel of the representation Diff(M) → O(H),
so that Diff(M)/DiffH(M) can be identified with Γ. The space T (M) can
then be characterized as the DiffH(M)-orbit space of the space of unit vol-
ume, Ricci-flat metrics on M. It comes with a natural Γ-action.

Remark 2.1. Another option would be to work with the Teichmüller space,
defined as a Diff(M)0 orbit space of the space of unit volume, Ricci-flat
metrics on M. Each connected component of that space is isomorphic
to T (M) and the Torelli group DiffH(M)/Diff(M)0 permutes them simply
transitively. It is still an open question whether the Torelli group of M is
trivial.

Let Gr+
3 (HR) denote the Grasmannian of positive 3-planes in HR. Assign-

ing to a metric g on M the space Pg of its self-dual harmonic 2-forms on
(M, g) defines a Γ-equivariant period mapping

(2.1) T (M)→ Gr+
3 (HR).

The Torelli Theorem for Kähler-Einstein K3 surfaces (see for instance [Loo])
asserts that P is an open embedding with image

Gr+
3 (HR)◦ ⊂ Gr+

3 (HR)

the set of positive 3-planes in HR that have no (−2)-vector of H in their
orthogonal complement. The set of such planes is a Γ-invariant, locally
finite union of codimension 3 submanifolds, so that Gr+

3 (HR)◦ is open in
Gr+

3 (HR). The induced map

P :MRF → Γ\Gr+
3 (HR)◦
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is a diffeomorphism of orbifolds. Since Gr+
3 (HR) is a nonpositively curved

symmetric space, it is contractible, and since Gr+
3 (HR)◦ is the complement

of codimension 3 submanifolds, it follows that π1(Gr+
3 (HR)◦) = 0, and so

there is an isomorphism

P∗ : π1(MRF)
�
→ Γ,

where the left-hand side is an orbifold fundamental group.
It is shown in [Loo] that T (M) supports a family

UT (M) → T (M) � Gr+
3 (HR)◦

of K3-manifolds endowed with a unit volume, Ricci-flat metric to which
the Γ-action lifts. This family has the universal property of the conventions
on moduli spaces in §1.6.

This in turn leads to a universal H-marked family of K3 surfaces endowed
with a unit volume, Ricci-flat Kähler (or Kähler-Einstein) metric as follows.
The twistor construction shows that for a given Ricci-flat metric on M, the
set of the complex structures on M for which this metric is a Kähler metric
is a 2-sphere, and if we do this universally we find a 2-sphere bundle pE :
E(M)→ T (M) such that the pull-back

p∗EUT (M) → E(M)

yields the universal family in question.
The space E(M) can also be described in terms of the period map: if

a Ricci-flat metric on M defines the positive 3-plane P ⊂ HR, then the 2-
sphere can be identified with the sphere of radius

√
2 in P. Indeed, the

imaginary part of the Kähler metric is a closed 2-form whose class is a
κP ∈ P with self-product 2 (this reflects the fact that the metric is unital).
We denote the corresponding 2-sphere bundle by E(HR)→ Gr+

3 (HR), so that
E(M) gets identified with E(HR)◦, the restriction of E(HR) to Gr+

3 (HR)◦.
This entire picture is Γ-equivariant, and so the map descends to a diffeo-

morphism

MRF → Γ\E(M),

makingMKE into a moduli space in the sense of the conventions on mod-
uli spaces in §1.6. Since pE is an S 2-bundle, the projection Γ\E(HR) →
Γ\Gr+

3 (HR)◦ induces an isomorphism on orbifold fundamental groups, so
that

(pE)∗ : π1(MKE)→ π1(MRF) � Γ

is an isomorphism.
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2.2. Groups and lattices attached to a primitive isotropic vector. This
subsection is purely group-theoretic. It gives the structure of the stabilizer
in the arithmetic group Γ of an isotropic vector. This will be crucial for
describing the fundamental groups of various moduli spaces of holomorphic
genus 1 fibrations of M.

In the rest of this paper we fix a primitive isotropic vector e ∈ H, so with
e · e = 0. It does not matter which one we choose because all such vectors
belong to the same Γ-orbit. This follows from the following well-known
fact about lattices (see for instance [LP]): if L is an even lattice, which such
as H, has a copy U ⊥ U as a direct summand (here U stands for the lattice
Z2 endowed with the quadratic form (x, y) ∈ Z2 7→ xy), then its orthogonal
group acts transitively on the primitive vectors of a given length. Any such
vector is represented in one of the U-summands and it then it follows (by
exchanging the basis vectors of the other copy of U) that the subgroup O+(L)
that preserve each spinor orientation will have the same property.

We next make some observations regarding the Γ-stabilizer Γe. This sta-
bilizer leaves invariant the short flag {0} ⊂ Ze ⊂ e⊥ ⊂ H. We shall write
He for e⊥ and H(e) for e⊥/Ze. We may identify the latter with the image of
He under the map e∧ : H → ∧2H so that H(e) � e ∧ He. The real vector
space H(e)R has signature (2, 18) and inherits from H a spinor orientation:
its bundle of positive defintite 2-planes comes with an orientation.

Since H/He can be identified with the dual of Ze, the group Γe acts triv-
ially on it and so the unipotent radical Ru(Γe) of Γe consists of the elements
of Γe that act also trivially on H(e). We denote the image of Γe in the or-
thogonal group of H(e) by Γ(e).

The following proposition collects some useful properties of these groups
and lattices.

Proposition 2.2 (Properties of Γe and related lattices). With the notation
as above, the following hold:

(1) The lattice H(e) is even unimodular of signature (2, 18) and comes
with a natural spinor orientation.

(2) Γ(e) is the index 2 subgroup of O(H(e)) that preserves this spinor
orientation.

(3) There is a (noncanonically split) exact sequence

0→ H(e)
E
−→ Γe → Γ(e)→ 1

that identifies H(e) with the unipotent radical Ru(Γe) of Γe. Here we
represent γ ∈ H(e) as a 2-vector e ∧ γ ∈ ∧2H with γ ∈ He as above
and E assigns to the latter the Eichler transformation

E(e ∧ γ) : x ∈ HQ 7→ x + (x · e)γ − (x · γ)e − 1
2 (γ · γ)(x · e)e ∈ HQ
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(4) Γ(e) contains the central element −1 and acts transitively on the set
of all primitive vectors in H(e) of a given self-product.

(5) The (−2)-vectors in He make up a Γe-orbit, and the group of Eichler
transformations that we identified with H(e) acts transitively on the
set of (−2)-vectors in H(e) that lie over a given (−2)-vector of H(e).

Proof. Choose e′ ∈ H such that e′ ·e = 1. Upon replacing e′ by e′− 1
2 (e′.e′)e

we can and will assume that e′ ·e′ = 0 so that (e, e′) spans a copy U of U. Its
orthogonal complement U⊥ is then an even unimodular lattice of signature
(2, 18) and hence isomorphic to E8(−1) ⊥ E8(−1) ⊥ U ⊥ U. It is clear
that U⊥ maps isomorphically onto H(e). It is known that the reflections
in the (−2)-vectors of such a lattice generate the index 2 subgroup of its
orthogonal group that preserves spinor orientations and that the primitive
vectors of a given self-product make up a single orbit under that group. So
H(e) has that property. This also implies that Γ(e) = O+(H(e)). That the
latter contains −1 is clear.

We next exhibit the exact sequence. Any orthogonal transformation of
HQ which fixes e and acts trivially on H(e)Q is of the form

E(e ∧ γ) : x ∈ HQ 7→ x + (x · e)γ̂ − (x · γ̂)e − 1
2 (γ · γ)(x · e)e ∈ HQ

for some γ ∈ He,Q (this indeed only depends on e ∧ γ, that is, only depends
on the image γ′ of γ in H(e)Q). Note that if x ∈ He,Q, then E(e∧γ) takes x to
x−(x · γ̂)e. So if we ask that this transformation preserves the lattice H, then
we must have that x · γ ∈ Z for all x ∈ He. Since H(e) is unimodular, this
amounts to γ′ ∈ H(e). But this necessary condition clearly also suffices. We
thus identify the kernel Γe → Γ(e) with H(e). The subgroup Γe ∩ Γe′ ⊂ Γe

maps isomorphically onto Γ(e) and so provides a splitting of the displayed
exact sequence.

The (−2)-vectors in H(e) form a single Γ(e)-orbit, and so it remains to
prove that if α, α′ ∈ He are (−2)-vectors with the same image in H(e), then
there exists an Eichler transformation of the above type that takes α to α′.
Clearly α − α′ = ne for some n ∈ Z. Since He is unimodular there exists a
γ ∈ He is such that α · γ = 1, and then E(e∧ nγ) takes α to α− ne = α′. �

3. Moduli spaces of elliptic K3-surfaces: the proof of Theorem 1.4

In this section we prove Theorem 1.4.

3.1. The integrality criterion. We begin with some basic facts that we
will need; we refer to [LP] for the assertions stated here without proof.

Let X be a K3 surface. The space H1,1(X), which is the orthogonal com-
plement of H2,0(X) ⊕ H2,0(X) in H2(X;C), is defined over R, and the in-
tersection form restricted to H1,1(X;R) has signature (1, 19). The spinor
orientation on X singles out a connected component C +

X of the space of
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x ∈ H1,1(X;R) with x · x > 0: it is the connected component that contains
all the Kähler classes. Let κ be one such class.

A class in H2(X;Z) is representable by a divisor if and only if it lies in
H1,1(X). The linear equivalence class of that divisor is then unique since
H1(X,OX) = 0, so that

Pic(X) = H2(X;Z) ∩ H1,1(X) = H2(X;Z) ∩ H2,0(X)⊥.

If v ∈ Pic(X) is nonzero and such that v·v ≥ 0 or v·v = −2, then either v or −v
is the class of a positive divisor, depending on the sign of v · κ. The positive
divisors thus obtained generate the whole semigroup Pic+(X) ⊂ Pic(X) of
positive divisor classes.

A special role is played by the classes of smooth curves on X of genus
0 and 1, often called nodal resp. elliptic classes. The adjunction formula
shows that the self-intersection number is then −2 resp. 0. The semigroup
Pic+(X) is already generated by the nodal classes, the primitive elliptic
classes and Pic(X) ∩ C +

X .
Each nodal class α defines an orthogonal reflection sα in H2(X;Z) defined

by x 7→ x + (α · x)α. It preserves both Pic(X) and C +
X . The set of all

reflections in nodal classes generate a Coxeter subgroup WX ⊂ O(H) (which
together with this generating set make it a Coxeter system) that acts as such
on H1,1(X;R) with ‘fundamental chamber’ the cone

CX := {x ∈ H1,1(X;R) : x · α ≥ 0 for every nodal class α}.

The WX-orbit of CX contains C +
X and so CX ∩ C +

X is a fundamental domain
for the action of WX on C +

X . The following is well known ([LP]):

Lemma 3.1 (Roots in Pic(X)). Every α ∈ Pic(X) with α · α = −2 is a root
for WX: it lies in the WX-orbit of a nodal class and α can be written as
a Z-linear combination of nodal classes for which all nonzero coefficients
have the same sign (and we call accordingly α a positive or a negative root;
is also the sign of the function x 7→ x · α on the interior of CX).

A class in H2(X;R) is a Kähler class if and only it lies in C +
X and has

positive intersection product with every nodal class (this is equivalent to it
lying in the interior of CX ∩ C +

X ). Any class in C +
X not fixed by a reflection

in a root lies in the WX-orbit of a Kähler class.

A primitive elliptic class e defines a dominant weight: it lies in CX. It
also defines a 1-dimensional linear system |e|, and this linear system is a
genus one fibration of X over a copy of P1. The irreducible components
of the reducible fibers of this fibration are nodal and have zero intersection
number with e. This has an important implication, namely that if d is the
class of a positive divisor, then d · e ≥ 0 with the equality sign implying that
d is a nonnegative combination of irreducible components of fibers of |e|.
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The discussion above implies the following.

Proposition 3.2 (Integrality criterion). Let e ∈ Pic+(X) be primitive with
e · e = 0. Then the following hold:

(1) e is representable as a sum of an elliptic class e′ plus a nonnegative
linear combination of nodal classes, and lies in the WX-orbit of e′.

(2) e is the class of a genus one fibration if and only if e is dominant
weight, that is e · α ≥ 0 for every nodal class.

(3) The fibration has only integral fibers if and only if e is strictly dom-
inant in the sense e · α > 0 for every nodal class.

We also have the following.

Corollary 3.3. Let e be the class of a genus one fibration with only integral
fibers. If σ is the class of a section, then κ := 3e +σ is the class of a Kähler
metric.

Proof. We verify that κ satisfies the conditions of Lemma 3.1, i.e., that κ ∈
C +

X and that κ has positive intersection product with every nodal class.
We first observe that σ is represented by a smooth genus zero curve and

hence nodal. Thus σ · σ = −2, and so κ · σ = 3 · 1 − 2 = 1 > 0. Since
κ · e = 1, it the follows that κ · κ = 3 · 1 + 1 = 4. So κ ∈ C +

X . If α is a nodal
class different from σ, then α · v > 0 and α · σ ≥ 0 and hence κ · α ≥ 0. �

Remark 3.4. The class κ is in fact the class of an ample divisor. It defines on
X a basepoint-free linear system |κ| of dimension 3, but is not very ample:
the resulting map X to P3 has as image a twisted cubic Y (a smooth rational
curve of degree 3) such that the map X → Y is the given elliptic fibration.
However, 3κ is very ample.

3.2. Kähler-Einstein metrics: proof of Proposition 1.1. Fix a primitive
isotropic vector e ∈ H. Suppose M is endowed with a Ricci-flat metric g
with associated positive oriented 3-plane P ⊂ HR. As mentioned above,
every κ ∈ P with κ · κ = 2 determines a complex structure J on M for which
the given metric is Kähler and has κ as its class. The Hodge structure of this
complex structure can be recovered from the oriented 2-plane Π := κ⊥ ∩ P
by means of the recipe described in Subsection 1.1.

The spinor orientation on H(e)R implies that each positive 2-plane Π ⊂

H(e)R defines a Hodge structure H•,•
Π

on H(e) that is polarized by the given
pairing: if (x, y) is an oriented orthonormal basis of Π, then H2,0

Π
is the

C-span of x +
√
−1y, H0,2

Π
its complex conjugate and H1,1

Π
is the complex-

ification of Π⊥. This gives the symmetric space Gr+
2 (H(e)R) the structure

of a bounded symmetric domain. Since Γ(e) is a finite index subgroup of
the orthogonal group of H(e), the Baily-Borel theory tells us that the orbit
space Γ(e)\Gr+

2 (H(e)R) is then in a natural way a quasi-projective variety.
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Similarly, a positive 2-plane Π̃ in He,R defines a Hodge structure (but no
longer polarized) on He. The projection He → H(e) becomes a morphism
of Hodge structures if we endow H(e) with the Hodge structure defined by
the image of Π̃.

Proof of Proposition 1.1. There is precisely one κ ∈ P with κ · κ = 2 such
that the linear form x ∈ P 7→ κ · x is a positive multiple of x ∈ P 7→ e · x.
This κ lifts g to a Kähler-Einstein structure (g, J) with the property that e is
perpendicular to H2,0(M, J). It follows that e is of type (1, 1) and κ · e > 0.
Proposition 3.2 then tells us that e is the class of positive divisor of the type
stated here. �

3.3. Periods of elliptic fibrations: proof of Theorem 1.4. With all of the
above in hand, we can now prove Theorem 1.4.

Proof of Item (1). Let us first make explicit the period mapping in ques-
tion. Fix a σ ∈ H with e · σ = 1 and σ · σ = −2. The classes {e, σ}
span a copy U ⊂ H of the basic hyperbolic lattice U. Further, U⊥, which is
contained in e⊥ = He, maps isomorphically onto H(e).

Suppose that X is an elliptically fibered K3-surface with only integral
fibers. This gives a fiber class eX and a section class σX spanning a copy
UX ⊂ H2(X) of U as above. Then there exists a marking H2(X;Z)

�
→ H that

takes eX to e and σX to σ. This marking is induced by a diffeomorphism
and we use that diffeomorphism to pull back all structure on X to M, so that
M gets a complex structure J for which e is the class of an elliptic, integral
fibration that has σ as the class of its section. The orbit of this structure
under the action of the stabilizer of {e, σ} in Diff(M) on M independent of
our choices.

The Hodge structure of (M, J) is given by an oriented, positive 2-plane in
U⊥R , which therefore is given by an oriented positive 2-plane Π ⊂ U⊥R . By
Proposition 3.2, Π⊥ ∩ He does not contain any root. Hence if Π′ ⊂ H(e)R is
the image of Π, then Π′⊥ ∩ H(e) does not contain a (−2)-vector.

The same argument works for families of such surfaces with a simply-
connected base T : we then obtain a holomorphic map T → Gr+

2 (H(e)R)◦

that is unique up to postcomposition with an element of Γ(e). There is thus
an induced period map

P :Mell
int → Γ(e)\Gr+

2 (H(e)R)◦.

The Torelli theorem implies that P is an isomorphism of quasi-projective
varieties.

Let α ∈ H(e) be such that α · α = −2. Then

Gr+
2 (α⊥R) = Gr+

2 (H(e)R)sα
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parametrizes the set of those Hodge structures in H for which α is of type
(1, 1). A generic point of Gr+

2 (α⊥R) will have the property that the (1, 1)-
part is the spanned {e, σ, α}. It is representable by a genus one fibration
π : M → S for which e is the fiber class, σ the class of a section and α is
the class of a divisor (a root).

Proof of Item (2). By part (4) of Proposition 2.2, the group Γ(e) acts
transitively on the set α ∈ H(e) with α · α = −2. So the deleted locus
in Γ(e)\Gr+

2 (H(e)R) (the hypersurface mentioned in the theorem) is irre-
ducible.

We must show that a general element of this hypersurface represents a
genus one fibration of M with a fiber of Kodaira type I2. First note that if
the elliptic fibration on M (with fiber class e and section class σ) comes
with a type I2 fiber, then the irreducible components of this fiber are nodal
curves. The section intersects only one of these curves, and so if α is the
class of the other, then α is a nodal class with α · σ = α · e = 0. Identifying
H(e) with the orthogonal complement of Ze + Zσ in H (so that α is now
regarded as an element of H(e)), then it is clear that this elliptic fibration
defines an element of Gr+

2 (α⊥R).
The Torelli theorem shows that the converse also holds: given a (−2)-

class α ∈ H perpendicular to both e andσ, then there exists a complex struc-
ture J on M for which the Picard group Pic(M, J) is spanned by {e, σ, α},
where e is the class of an elliptic fibration with section class σ. Replacing
α by −α if necessary, we can assume that α is effective. A positive divisor
representing α then lies in a finite union of fibers. Since the section rep-
resented by σ has zero intersection with this divisor, the fibers in question
are all reducible. The class of an irreducible component is perpendicular to
both e and σ and hence a multiple of α. It follows that α is represented by
a nodal curve contained in a fiber F.

The same argument shows that F has no other irreducible components
beside C and the irreducible component C′ that meets the section. Since the
class of C′ is e − α, we have C′ · C′ = −2 and so C′ is a nodal curve. It
also follows that C ·C′ = 2. By means of small deformation of the complex
structure we can arrange that C and C′ meet transversally so that we get a
fiber of Kodaira type I2.

Proof of Item (3). The identification of orbifold fundamental groups
Mint

ell � Γ(e)\Gr+
2 (H(e)R)◦ is now clear. In particular, the kernel of

πorb
1 (Γ(e)\Gr+

2 (H(e)R)◦)→ πorb
1 (Γ(e)\Gr+

2 (H(e)R)) � Γ(e)

is normally generated by the boundary (in Gr+
2 (H(e)R)◦) of a small closed

disk ϕ : D2 ↪→ Gr+
2 (H(e)R)) that is sα-invariant and which meets Gr+

2 (α⊥R))
transversally with ϕ−1 Gr+

2 (α⊥R)) = {0}. Then we find over D2 a degenerating
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family of elliptic fibrations with central fiber an elliptic fibration with just
one non-nodal fiber, that fiber being of type I2. This descends to a map from
the sα-orbit space of D2 to Γ(e)\Gr+

2 (H(e)R)) that is transversal to the image
of Gr+

2 (α⊥R) so that the restriction to the boundary represents a simple loop
around this hypersurface. The resulting map 〈sα〉\∂D2 → S24\M0,24 yields
a simple braid of the asserted type (with ∂D2 naturally lifting toM0,24).

Proof of Item (4). It remains to see that the fiberwise involution ι of an el-
liptic fibration M → P1 acts on e⊥/e as minus the identity. Or equivalently,
that Qe +Qσ is the fixed-point set of ι in H2(M;Q). For this it is helpful to
recall that an integral elliptic fibration is locally over its base in Weierstraß
form: it is given as

y2 = x3 + a(s)x + b(s)
with s a local coordinate on the base. In these coordinates the fiberwise
involution is given by

ι(x, y, s) = (x,−y, s).
This shows that the orbit space Mι of the elliptic fibration has the structure
of a P1-bundle over P1 (the local chart becomes (x, s)) that comes with a
section. The space H2(Mι;Q) is spanned by the class of the section and a
fiber and these are sent under the natural map H2(Mι;Q)→ H2(M;Q) to 2σ
and 2e respectively. As the image of this map is H2(M;Q)ι, the assertion
follows.

Remark 3.5. The quotient Mell
int := Γ(e)\Gr+

2 (H(e)R)◦ is the moduli space
that has been considered by Lönne in [Lö] (for the value d = 4 in that paper),
the main result being a presentation of its orbifold fundamental group. We
here find a description that brings it in relation to Γ(e) in a way that is
similar to how a braid group relates to a symmetric group: over each (−2)-
reflection in Γ(e) lies an element of infinite order represented by a simple
braid in Γ(e)\Gr+

2 (H(e)R)◦.

4. Topology ofMprim: proof of Theorem 1.3

In this section we prove Theorem 1.3.

4.1. Mprim and its topology. Recall that we have fixed a primitive isotropic
vector e ∈ H. The locus in T (H) for which e is the class of a genus one
fibration (resp. an integral genus one fibration) will be denoted by T (M)e

resp. T (M)◦e .
We have seen that the period map gives Γ-equivariant diffeomorphism

T (M) � Gr+
3 (HR)◦. In terms of this isomorphism we can characterize

T (M)e and T (M)◦e as subloci of Gr+
3 (HR)◦. Proposition 1.1 associates to

every Ricci-flat metric g on M a complex structure J for which g is a Kähler
metric (whose class we denote by κ) and e is the class an positive divisor of
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a particular type. In order that e is the class of a genus one fibration resp. an
integral genus one fibration a necessary and sufficient condition is that for
every positive root α we have α · e ≥ 0 resp. α · e > 0. These properties can
be entirely stated in terms of the positive 3-plane P ⊂ HR defined by g, and
so this gives the corresponding characterizations.

The following theorem tells us more about T (M)e. Except for the claim
that it is simply-connected, its assertions can be found, at least implicitly,
in the literature. It implies Theorem 1.3. We will given its proof in §4.2
below.

Theorem 4.1. The locus T (M)e ⊂ T (M) for which e is the class of a holo-
morphic genus one fibration of M is open and Γe-invariant. The restriction
of the universal bundleUT (M) → T (M) toT (M)e comes with a Γe-invariant
factorization

UT (M)e PT (M)e

T (M)e

where PT (M)e → T (M)e is a P1-bundle, thus exhibiting the universal prop-
erty of this restriction: it is the universal family of H-marked Kähler-Einstein
K3 surfaces endowed with a genus one fibration with class e. In particular,
the period map defines an isomorphism of orbifolds

Mprim � Γe\T (M)e.

Further, π1(T (M)e) = 0, so that there is an isomorphism

π1(Mprim) � Γe.

4.2. Proof of Theorem 4.1. The construction underlying Proposition 1.1
suggests that we consider the map

h′ : Gr+
3 (HR) → Gr+

2 (He,R)
P 7→ P ∩ He,R

and the map

h′′ : Gr+
2 (He,R) → Gr+

2 (H(e)R)
Π 7→ image of Π in H(e)R,

where we note that the positive definite 2-planes in He,R and H(e) are nat-
urally oriented, and hence define a weight two Hodge structures on H, He

and H(e). The maps h′ and h′′ can be understood accordingly, namely as
passing to a Hodge substructure and Hodge quotient structure. The link
with Proposition 1.1 is that if P is defined by a Ricci-flat metric on M, then
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h′([P]) gives the Hodge structure of the associated Kähler-Einstein struc-
ture. Observe that h′ and h′′ are Γe-equivariant (where Γe acts on Gr+

2 (H(e)R)
through Γ(e)).

Lemma 4.2. The projection h′′ : Gr+
2 (He,R) → Gr+

2 (H(e)R) lives in the
holomorphic category: the target is a Hermitian symmetric domain and h′′

has the structure of a complex affine line bundle over that domain.

Proof. It is convenient to identify Gr+
2 (He,R) with an open subset of the

quadric in P(He,C) defined by the pairing; the point associated to Π being the
image of the isotropic vector z = x +

√
−1y, where (x, y) is an orthonormal

oriented basis of ΠP. Then the fiber of h′′ passing through [z] ∈ P(He,C) is
the complex affine line parametrized by λ ∈ C 7→ [z + λe]. �

Lemma 4.3. The map h′ : Gr+
3 (HR) → Gr+

2 (He,R) is a fiber bundle of real-
hyperbolic spaces of dimension 19.

Proof. Let Π be a positive-definite 2-plane in He,R. We determine the preim-
age of [Π] ∈ Gr+

2 (He,R) under h′. The orthogonal complement of Π in HR,
Π⊥, has signature (1, 19) and h′−1[Π] is identified with the set of κ ∈ Π⊥

with κ · κ = 2 and κ · e > 0. This is indeed a real-hyperbolic space (the
symmetric space for the orthogonal group of Π⊥). �

We will be interested in the restriction of the composite

h := h′′ ◦ h′ : Gr+
3 (HR)→ Gr+

2 (H(e)R)

to T (M)e ⊂ T (M) � Gr+
3 (HR). By Lemma 4.2, h′′ has contractible fibers

and contractible domain. This is why our focus will be on h′, or rather, its
restriction to T (M)e.

To be specific, fix a positive, oriented 2-plane Π in He,R and determine the
preimage of [Π] ∈ Gr+

2 (He,R) in T (M), T (M)e and T (M)◦e (that we denote
by resp. T (M)Π, T (M)e,Π and T (M)◦e,Π). So these preimages will appear as
subsets of the real-hyperbolic space given by Lemma 4.3, i.e., the setHΠ of
κ ∈ Π⊥ with κ · κ = 2 and κ · e > 0.

We will denote the set of (−2)-vectors in H ∩ Π⊥ by RΠ and will to refer
its elements as roots. For any root α ∈ RΠ, the associated orthogonal reflec-
tion sα in H leaves Π pointwise fixed and HΠ invariant. These reflections
generate a Coxeter subgroup W(RΠ) of Γ. The reflection hyperplanes inHΠ

are locally finite and the complement of their union (which we shall denote
by H◦

Π
is therefore an open W(RΠ)-invariant subset. A connected compo-

nent of H◦
Π

is called an open hyperbolic W(RΠ)-chamber. The group WΠ

permutes these simply transitively.

Lemma 4.4. Let κ ∈ HΠ. A necessary and sufficient condition that Π + Rκ
is an element of Gr+

3 (HR)◦ is that κ ∈ H◦
Π

. In other words, T (M)Π � H
◦
Π

.
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Proof. It is clear that κ ∈ H◦
Π

is equivalent to the orthogonal complement
of Π + Rκ not containing a (−2)-vector, i.e., to Π + Rκ giving an element
of Gr+

3 (HR)◦. So any such κ is the class of a Kähler-Einstein structure for
which e represents a positive divisor. �

Lemma 4.5. Let κ ∈ HΠ. A necessary and sufficient condition that Π + Rκ
is defined by a genus one fibration (i.e., defines an element of T (M)e) is that
the open hyperbolic chamber which contains κ has the ray defined by e as
an improper point: if α ∈ RΠ is such that κ · α > 0, then e · α ≥ 0. The
chambers with this property are simply transitively permuted by the Coxeter
subgroup W(RΠ ∩ He) and their union KΠ is thus identified with T (M)e,Π.

Proof. Proposition 3.2 tells us that e is the class of a genus one fibration
(or equivalently, that Π + Rκ represents a point of T (M)e) if and only if no
reflection hyperplane separates κ from e in the sense that κ · α > 0 implies
e · α ≥ 0. In other words, the hyperbolic W(RΠ)-chamber that contains κ
must have e as an ‘improper point’; that is, it is on the boundary of the
hyperbolic space. The last assertion is a standard property of the theory of
Coxeter groups. �

Corollary 4.6. The locus T (M)e is simply-connected.

Proof. Recall that T (M) � Gr+
3 (HR)◦ is obtained from Gr+

3 (HR) by remov-
ing the fixed point sets of the reflections in (−2)-vectors in H. These are all
of codimension 3 and that is why T (M) is simply-connected.

We shall use a similar argument for T (M)e, where the role of Gr+
3 (HR)

is played by a subset Ue ⊂ Gr+
3 (HR) defined as follows: Ue is the set of

positive 3-planes P with the property that for every (−2)-vector α ∈ H with
α · e > 0, we also have that α · eP > 0, where eP is the orthogonal projection
of e in P. We first show that Ue is open and contractible.

The positive multiple of eΠ with self-product 2 lies in HΠ and so h′|Ue :
Ue → Gr+

2 (He) has as fiber Ue,Π over [Π] the intersection of the half spaces
in HΠ defined by κ · α > 0, where α runs over all α ∈ RΠ with α · e > 0.
This is an open convex (nonempty) set and so Ue → Gr+

2 (He) has con-
tractible fibers. The local finiteness of the collection of codimension 3-loci
Gr+

3 (HR)sα implies that Ue is open. Since Gr+
2 (He) is contractible, so is Ue.

The definition of Ue is such that if α ∈ H is a (−2)-vector for which
Gr+

3 (HR)sα ∩ Ue is nonempty, then α · e = 0. The intersection of this inter-
section is of codimension 3 in Ue and the locally finiteness of these inter-
sections therefore implies that U◦e := Ue ∩ Gr+

3 (HR)◦ is simply- connected.
But for any [Π] ∈ Gr+

2 (He), the fiber of U◦e → Gr+
2 (He) over [Π] is KΠ

and hence U◦e is the image of T (M)e in Gr+
3 (HR). In particular, T (M)e is

simply-connected. �
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Proof of 4.1. It remains to see that the universal bundle f : UT (M) → T (M),
when restricted to T (M)e, fe : UT (M)e → T (M)e, factors over a P1-bundle
as asserted. This amounts to a standard argument: we may regard e as the
class of a line bundle L on UT (M)e that is holomorphic on each fiber of fe.
This defines a linear system over T (M)e of relative rank one: the direct
image f∗L defines a smooth complex vector bundle over T (M)e of rank
two. If we let PT (M)e stand for the projectivization of this bundle (strictly
speaking of its dual, but that is the same in the rank two case), then this is
a smooth P1-bundle over T (M)e which is holomorphic on each fiber of fe.
The natural map

UT (M)e → PT (M)e

then gives the fiberwise elliptic fibrations over T (M)e. This completes the
proof of Theorem 4.1. �

For the discussion of the Jacobian fibration in the next section we ob-
serve.

Lemma 4.7. Let κ ∈ HΠ. A necessary and sufficient condition that Π + Rκ
is defined by an integral genus one fibration on M is that RΠ ∩ He is empty
(so that KΠ = HΠ). This is equivalent to the image of Π in H(e) having no
(−2)-vector in its orthogonal complement.

4.3. Proof of Theorem 1.5. In this subsection we prove most of Theorem
1.8. We begin with the following proposition.

Proposition 4.8. The image ofT (M)◦e in Gr+
3 (HR) is equal to h−1 Gr+

2 (H(e)R)◦

Hence T (M)◦e is a fiber bundle over Gr+
2 (H(e)R)◦ that factors as a hyper-

bolic space bundle over a holomorphic affine line bundle.
Moreover, if κP ∈ P is the unique positive multiple of the orthogonal

projection of e in P with κP · κP = 2, then the map

[P] ∈ T (M)◦e 7→ κP · e ∈ R>0

is an H(e)R-torsor, with H(e)R acting by means of Eichler transformations:
γ ∈ H(e)R acts as

E(e ∧ γ) : κ ∈ HR 7→ κ + (κ · e)γ − (κ · γ)e − 1
2 (γ · γ)(κ · e)e ∈ HR

Proof. The first statement is clear. For the second, let K denote the set of
κ ∈ HR with κ · e > 0 and κ · κ = 2. If Π′ is a positive 2-plane in H(e)R,
then for every κ ∈ K, there is unique lift of Π′ to a 2-plane Πκ ⊂ He,R that is
perpendicular to κ (see the proof of Lemma 4.2) so that then h([Πκ +Rκ]) =

[Π′]. This identifies h−1[Π′] with K and does so H(e)R-equivariantly. The
assertion then boils down to saying that the function κ ∈ K 7→ κ · e ∈ R>0

makes K a H(e)R-torsor over R>0. This is left as an exercise. �
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Corollary 4.9. The restriction of the commutative triangle of Theorem 4.1
to T (M)◦e yields the universal bundle of marked integral genus one fibra-
tions of a Kähler-Einstein K3-surface:

UT (M)◦e PT (M)◦e

T (M)◦e
It comes with a Γe-action. Taking the quotient by that action yields the
moduli spaceMint of integral genus one fibrations of a Kähler-Einstein K3-
surface.

The map T (M)◦e → Gr+
2 (H(e)◦R induces a map

(4.1) Mint � Γe\T (M)◦e → Γ(e)\Gr+
2 (H(e)◦R �M

ell
int,

which factors as a (R/Z) ⊗ H(e)-torsor overMell
int ×R>0 and for whichMell

int
defines a section of the torsor over Mell

int × {1}. In particular, the orbifold
fundamental group ofMint is a split extension of the orbifold fundamental
group ofMell

int by H(e).

Proof. All these assertions follow from Proposition 4.8 except for the iden-
tification ofMell

int as a section. For this recall that the Kähler class we assign
an elliptically fibered structure on M with only integral fibers and fiber class
e and section class σ is σ+ 3e. Since (σ+ 3e) · e = 1, the locusM`

int defines
a section of the torsor overMell

int × {1}. �

This proves Theorem 1.5.

5. The universal Jacobian fibration

Let X be a K3-surface endowed with holomorphic genus 1 fibration π :
X → S with discriminant D. Recall from the introduction the associated
Jacobian fibration Jac(π) → S . Concretely, the inclusion ZX ⊂ OX induces
a map R1 f∗Z → R1 f∗OX. The Jacobian fibration is over S ◦ := S r supp(D)
given as the cokernel of this map (with the section given as the zero section)
and this is all we need to know for what follows. We shall assume that the
fiber class f ∈ H2(X) of π is primitive. This makes f ⊥/Z f free abelian and
the intersection pairing induces a pairing on f ⊥/Z f . It also inherits a Hodge
structure from the one on H2(X) (as a subquotient) that is polarized by this
pairing. Let us refer to this polarized Hodge structure as the Leray-primitive
subquotient of H2(X).

Note that if we are given a section of π with class σ ∈ H2(X), then
the Leray-primitive subquotient of H2(X) is naturally realized as a direct
summand of H2(X), namely as the orthogonal complement Zσ + Z f . As σ
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and f are of type (1, 1), the Hodge structure on H2(X) is then completely
encoded by the one on its Leray-primitive subquotient.

For our purpose, the key result we need is the following.

Proposition 5.1. Assume that all the fibers of π are irreducible. Then the
Leray-primitive subquotients of H2(Jac(X/S )) and H2(X) are canonically
isomorphic as polarized Hodge structures.

The importance of Proposition 5.1 is that it implies the following.

Theorem 5.2. The natural map

Mint � Γe\T (M)◦e → Γ(e)\Gr+
2 (H(e)◦R �M

ell
int

in Theorem 4.1 has the modular interpretation of passing to the Jacobian
fibration. This is equivalent to passing to the Leray-primitive subquotient.

Proof. Indeed, if π : M → P1 is a genus one fibration with fiber class e,
then the polarized Hodge structure on H2(Jac(π)) of the Jacobian fibration
splits as the span of the fiber class e and the section class (both are of type
(1, 1)) and its perp. That perp is naturally identified with Leray-primitive
subquotient e⊥/e. The theorem follows. �

Theorem 5.2 immediately implies Theorem 1.8. Proposition 5.1 will fol-
low if we succeed in describing the Leray-primitive subquotient of H2(X)
entirely in terms of the map R1 f∗Z → R1 f∗OX. This is what we will do. It
will be based on the Leray spectral sequence for π,

Ep,q
2 = Hp(S ,Rqπ∗Z)⇒ Hp+q(X),

Proposition 5.1 then follows from Proposition 5.3 below.

Proposition 5.3. The above Leray spectral sequence degenerates on the
second page. Moreover,

(1) the Leray filtration on H2(X) is given by

0 ⊂ Z f ⊂ f ⊥ ⊂ H2(X)

with successive nonzero quotients H2(S ) � Z f , H1(S ,R1 f∗Z) �
f ⊥/Z f and H2(S , π∗Z) � f ⊥/Z f ,

(2) the pairing on the Leray-primitive subquotient f ⊥/Z f is via its iden-
tification with H1(S ,R1 f∗Z) given by the cup product

H1(S ,R1 f∗Z) ⊗ H1(S ,R1 f∗Z)→ H2(S ,R2 f∗Z) � Z,

(3) if we regard f ⊥/Z f as a subquotient of H2(X) in the category of
Hodge structures, then the F1 of its Hodge filtration is under this
isomorphism equal to the kernel of the natural map

H1(S ,R1 f∗C)→ H1(S ,R1 f∗OX).
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Proof. The only possible nonzero differentials of the Leray sequence of π
are

d0,1
2 : H0(S ,R1π∗Z)→ H2(S , π∗Z) = H2(S ) � Z and

d0,2
2 : H0(S ,R2π∗Z)→ H2(S ,R1π∗Z).

The kernel of d0,1
2 contributes to H1(X) and the cokernel of d0,2

2 contributes
to H3(X). Since X is simply-connected, both cohomology groups are zero
and hence these differentials are zero as well. So the Leray sequence de-
generates.

The natural map π∗ : H2(S ) = H2(S , π∗Z)→ H2(X) is takes the generator
of H2(S ) to f and so Z f appears in the Leray filtration on H2(X). Since
the fibers of π are all irreducible, R2π∗Z is the constant sheaf Z on S and
so H0(S ,R2π∗Z) = Z. The natural map H2(X) → H0(S ,R2π∗Z) � Z is
then given by integration over a fiber. Via Poincaré duality this is given by
a ∈ H2(X) 7→ a · f and hence nonzero. This also shows that f ⊥ is a member
of the Leray filtration on H2(X). It then follows that H1(S ,R1 f∗Z) � f ⊥/Z f .
This proves (1)

Assertion (2) is a general compatibility property of the Leray spectral
sequence.

For (3) we note that R1π∗Z|S ◦ is a polarized variation of Hodge struc-
ture of weight 1, with the nontrivial member of the Hodge filtration being
given by the kernel of the natural map OS ⊗ R1π∗Z)→ R1π∗OX restricted to
S ◦. The theory of polarized variation of Hodge structures (see Cox-Zucker,
[CZ] §1) affirms that then H1(S ,R1 f∗ZX) comes with a polarized Hodge
structure of weight 2, which coincides the one that we get from f ⊥/Z f via
its identification with H1(S ,R1 f∗ZX). �

5.1. Proof of Theorem 1.6. We first confine ourselves to integral elliptic
fibrations; the formation of the Jacobian will then enable us to lift our find-
ings to the context of genus one fibrations.

An integral elliptic fibration admits a Weierstraß form. To be precise, fix
a P1-bundle over P1, denoted F → P1, endowed with a section σ0 with self-
intersection −4 (this makes it a Hirzebruch surface; the given data determine
its isomorphism class). The curves on F that have intersection number 3
with a fiber and 0 with σ0 make up a linear system, so are parametrized
by a projective space, and its smooth members define a Zariski-open subset
that we shall denote by B.

Let B ∈ B. Then B and σ0 will be disjoint and we can form the double
cover XB → F ramified over the union of σ0 and B. This double cover
comes endowed with maps π : XB → F → P1 and a natural lift σ : P1 → XB

of σ0 as well as with a (Galois) involution. This is in fact an integral elliptic
fibration (the involution acts as minus the identity in each fiber). The fiber
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XB,s, s ∈ P1 is smooth, nodal or cuspidal according to whether B meets Fs

in 3, 2 or 1 points.
Conversely all integral elliptic fibrations so arise up to isomorphism. This

was Miranda’s point of departure for the construction of his coarse moduli
spaces of elliptic fibrations [M]: The group Aut(F) is an affine algebraic
group which it automatically preserves the fibration and the section. It acts
properly on B (so with finite isotropy groups) and if we divide out B by
that action we recoverMell

int.
The condition that XB,s is a cuspidal fiber is equivalent to Fs meeting

B in a point with multiplicity 3. This defines in B a closed, irreducible
hypersurface Bc ⊂ B whose generic point parametrizes the XB’ s that have
precisely one such fiber. Let j : ∆ → B be a holomorphic map from
the complex unit disk such that j∗Bc = (0) as divisors. This defines a
family π : X → ∆ × P1 of integral elliptic fibrations. All singular fibers of
X → ∆ × P1 are nodal, save for one over (0, s) for some s ∈ P1. If o ∈ X0,s

is the cusp, then we find that after a suitable coordinate change on ∆ and a
choice of a suitable local coordinate u of P1 at s, this family takes near (0, s)
the simple Weierstraß form

y2 = x3 + tx + u

The critical points of π are given by (x, y) = (±
√
−t, 0) on which π takes

the value s = ±2t
√
−t. In other words, for t , 0, we find two nodal fibers

over the point satisfying s2 = −4t3. If we let t traverse counterclockwise a
circle |t| = ε with ε > 0 small, then the two critical values trace out the third
power of a simple braid. This settles the analogue of Theorem 1.6 inMell

int.
Theorem 1.6 itself (i.e., the corresponding result forMint), then follows

via Corollary 4.9.

6. Applications to the mapping class group

Our results on moduli spaces have consequences for the mapping class
group of M. In order to state these, let us first agree on the following termi-
nology and notation. Noting that the group Diff(M) × Diff(P1) acts on the
set of genus one fibrations π : M → P1 that have 24 nodal fibers

(h, h′) · π := h′ ◦ π ◦ h−1,

then we say that (h, h′) is an automorphism of π if (h, h′) fixes π. Denote
the stabilizer of π in Diff(M) × Diff(P1) by Diff(π). If in addition h′ is
the identity (so that h is simply a diffeomorphism of M that preserves each
fiber of π), then we say that h is an automorphism over P1. We denote the
subgroup of such elements by Diff(M/P1). We denote the corresponding
component groups accordingly by Mod(π) resp. Mod(M/P1).
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So Mod(M/P1) is the kernel of the evident forgetful homomorphism from
Mod(π) to the spherical braid group on 24 strands. Such mapping classes
may arise as monodromies: if π : M → P1 shows up as a fiber (over o ∈ T ,
say) in a family of genus one fibered K3 manifolds

U P

T

where P → T is a P1-bundle, and the relative discriminant D of U → P
is an unramified degree 24 cover of T , then such a family is locally trivial
in the smooth category. So its structural group is Diff(M) × Diff(P1) and
the monodromy of this family is a homomorphism π1(T, o) → Mod(π). If
the degree 24 cover is trivial, then a trivialization of that cover extends to P
and hence we can take the structural group to be Diff(M). The monodromy
group then takes its values in Mod(M/P1).

There is such a family over Mnod, in the sense of our conventions on
moduli spaces in §1.6. The fact thatMnod is connected as a moduli space
implies the following. The first part of the Corollary below is a special
case of a result due to Moishezon ([FM], Cor. 7.5). The second assertion is
central to this paper.

Corollary 6.1. The group Diff(M) × Diff(P1) acts transitively on the set
of holomorphic genus one fibrations of M with primitive fiber class (the
complex structure varying) with 24 singular fibers (necessarily all nodal).

If π : M → P1 is such a genus one fibration with fiber class e, then the
image of Diff(π) in Γ under the map Diff(M)→ Γ ⊂ O(H)+ is all of Γe.

6.1. Fiber-preserving diffeomorphisms. Recall that an affine structure on
manifold is specified by an atlas whose coordinate changes are affine-linear
and which is maximal for that property; this is equivalent to give a flat,
torsion free connection on its tangent bundle.

We begin with the observation that if E is a closed genus 1 surface en-
dowed with an affine structure, then the identity component of the automor-
phism group of E is isomorphic to the 2-torus T 2 � (R/Z)2 for which E is
a torsor. Denote that group by Tr(E) and refer to it as the translation group
of E. A complex structure on E determines such an affine structure because
there is then a unique flat metric compatible with the complex structure that
gives that fiber unit volume.

The situation is similar for a once or twice-punctured 2-sphere: an affine
structure makes such a surface a torsor of the identity component of its
automorphism group, which is then isomorphic to the additive group resp.
the multiplicative group of the complex field.
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Let π : M → P1 be a genus fibration with only nodal fibers as singular
fibers and with discriminant D. The complex structure determines in each
fiber an affine structure (depending smoothly on the base point). So the
structure group of π, at least over P1 r D, is the semi-direct product T 2 o
SL2(Z). This determines a subgroup Diffaff(π) ⊂ Diff(π) as the subgroup of
fibration preserving diffeomorphisms that also preserve this fiberwise-affine
structure. We put

Diffaff(M/P1) := Diff(M/P1) ∩ Diffaff(π),

Tr(M/P1) := {fiberwise translations}

Note that Tr(M/P1) is an abelian subgroup of Diff+
aff(M/P1) that is normal in

Diff+
aff(π). We call its connected component group the smooth Mordell-Weil

group of π, denoting it

MW(M/P1) := π0(Tr(M/P1).

We could also include fiberwise involutions (acting as minus the identity
in a 2-torus). Since these exist globally, this gives us a semi-direct product
Tr(M/P1) o µ2 contained in Diffaff(M/P1). We have a corresponding semi-
direct product MW(M/P1) o µ2 in Diffaff(M/P1).

For any of the other diffeomorphism groups, its connected component
group will be denoted in the usual manner (replace Diff by Mod).

If π : M → P1 appears as a member of a family U → P → T of
such fibrations whose discriminant is locally constant, then the monodromy
defines an element of Modaff(π) = π0(Diffaff(π)).

Theorem 6.2. Let π : M → P1 be a genus one fibration with primitive
fiber class e and 24 singular, nodal fibers. Then the action of Modaff(π) on
H = H2(M) has image Γe.

Moreover, the smooth Mordell-Weil group MW(M/P1) maps onto the
unipotent radical Ru(Γe) of Γe (which we recall, can be identified with the
rank 20 lattice H(e) = e⊥/Ze) and there is a Nielsen realization for this
subgroup in the sense that the map Diff+

aff(M/P1) → MW(M/P1) admits a
section homomorphism. This section extends to the semidirect product with
µ2 giving a group homomorphism Ru(Γe) o µ2 → Diff(M/P1).

Proof. The first part of the theorem follows from Theorem 4.1.
For the proof of the second assertion, we invoke part of Theorem 1.8. We

here focus on the fiber of the universal Jacobian that contains our (given)
π : M → P1. This is a R/Z ⊗ H(e) torsor over the ray R>0 whose geometric
monodromy is a copy of H(e) contained in Tr(M/P1). So this defines a
section as desired. The choice of a section of M → P1 extends this to the
semidirect product with µ2. �
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