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Abstract

We prove that any real-analytic, volume-preserving action of a lat-
tice T in a simple Lie group with Q-rank(I') > 7 on a closed 4-manifold
of nonzero Euler characteristic factors through a finite group action.

1 Results

Zimmer conjectured in [Zil] that the standard action of SL(n,Z) on the
n-torus is minimal in the following sense:

Conjecture 1 (Zimmer). Any smooth, volume-preserving action of any
finite-index subgroup I' < SL(n,Z) on a closed r-manifold factors through a
finite group action if n > r.

While Conjecture 1 has been proved for actions which also preserve an
extra geometric structure such as a pseudo-Riemannian metric (see, e.g.
[Zil]), almost nothing is known in the general case. For r = 2 and n > 4,
the conjecture was proved for real-analytic actions in [FS1]. Quite recently,
Polterovich [Po] has brought ideas from symplectic topology to the problem,
using these to give a proof of Conjecture 1 for orientable surfaces of genus
> 1. In [FS2] we will point out how his methods actually prove Conjecture
1 for the torus as well. For r = 3, Conjecture 1 is known only in some
special cases where I' contains some torsion and the action is real-analytic
(see [FS1)).

In this note we prove the following result.
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Theorem 2 (Actions on 4-manifolds with x (M) # 0). Let ' be a
lattice in a simple Lie group G such that Q-rank(I') > 7. Then any real-
analytic, volume-preserving action of I' on a closed 4-manifold of nonzero
Euler characteristic factors through a finite group action.

In particular, Theorem 2 applies to any finite-index subgroup of SL(n, Z),
n>7.

The main ingredient in the proof of Theorem 2 is Theorem 7.1 of [FS1]
on real-analytic actions which preserve a volume form. This theorem, which
is the most difficult result in [FS1], gives a codimension-two invariant sub-
manifold for centralizers of elements with fixed-points. One can then apply
results of [FS1] and [Re], which show that real-analytic (not necessarily
area-preserving) actions of certain lattices on 2-dimensional manifolds must
factor through finite groups.

For the case of symplectic actions, some further progress on Conjecture
1 can be found in [Po] and [FS2].

2 Proof of Theorem 2

Before giving the proof of Theorem 2, we will need two algebraic properties
of lattices with large Q-rank.

Proposition 3 (Some algebraic properties of lattices). Let I' be a
lattice in a simple algebraic group over Q. Then the following hold:

1. If d = Q-rank(I") > 7 then T' contains commuting subgroups A and B
which are isomorphic to irreducible lattices with Q-ranks 2 and d — 3
respectively.

2. If Q-rank(I') > 4 then I' contains a torsion-free nilpotent subgroup
which is not metabelian.

Proof. The proof of the first statement is similar to that of Proposition 2.1
of [FS1]. By Margulis’s Arithmeticity Theorem (see, e.g., [Zi2], Theorem
6.1.2), I' is commensurate with the group of Z-points of a simple algebraic
group G defined over Q. Hence without loss of generality we can assume
that I itself is the group of Z-points in such a group G.

Since G is simple, the root system ® of G is irreducible, and the Dynkin
diagram determined ® therefore appears in the list given in Section 11.4 of
[Hu]. By going through this list, one sees that in every case where d > 7, one
may “erase a vertex v” of the diagram to obtain a a graph with 2 components:



one with two vertices and another which is a Dynkin diagram with at least
d — 3 vertices. Let G; and G5 be the root subgroups corresponding to these
two components of the Dynkin diagram. Then the group of Q-points of G
has Q-rank at least 2, the group of Q-points of G5 has Q-rank at least d — 3,
and (G; commutes with Gs.

Now I'; = I' N G; is an arithmetic lattice in G; for ¢ = 1,2, since by a
theorem of Borel-Harish-Chandra (see, e.g. [Zi2]) the Z-points of an alge-
braic group defined over Q form a lattice in the group of R-points. Then
A =T4 and B =T's have the required properties.

To prove the second statement, note that since Q-rank(I') > 4, we can
find a connected, nilpotent Lie subgroup N which is defined over Q and has
derived length 3, i.e. is not metabelian. As I'N NV is the group of Z-points of
the Q-group N, it is a lattice in IV, and in particular is Zariski-dense in V.
Hence I' N N is nilpotent and has no metabelian subgroup of finite index.
As ' N must have a tosrion-free subgroup of finite index, the assertion
follows. ¢

We now turn to the proof of Theorem 2. Let M be a closed 4-manifold
with nonzero Euler characteristic. Let I" be an irreducible lattice in a simple
Lie group G, and assume d = Q-rank(I") > 7. By part (1) of Proposition 3, T’
contains commuting subgroups A and B which are isomorphic to irreducible
lattices with Q-ranks 2 and d — 3 > 4 respectively.

Let g be any infinite order element of A. By an old theorem of Fuller
[Fu], any homeomorphism of a closed manifold of nonzero Euler charac-
teristic has a periodic point; the proof is an application of the Lefschetz
fixed-point theorem and basic number theory. Hence some positive power
of 7y has a fixed point.

We will also need the following two facts. First, since Q-rank(B) >
d— 3 > 4, it follows from Margulis’s Superrigidity Theorem that any repre-
sentation of B into GL(4, R) has finite image. Second, since I is a lattice in
a simple Lie group G with R-rank(G) > 2, the Margulis Finiteness Theorem
(see, e.g., Theorem 8.1 of [Zi2]) gives that I" is almost simple in the sense
that any normal subgroup of I' must be finite or of finite index.

We are now in a position to apply Theorem 7.1 of [FS1]. For the reader’s
convenience we recall the statement here. We say that a group action p :
I' — Diff(M) is infinite if p has infinite image.

Theorem 7.1 of [FS1]: Let ' be an almost simple group. Suppose we are
given an infinite, volume-preserving, real-analytic action of I' on a closed,



connected n-manifold M. Suppose further that I' contains commuting sub-
groups A and B with the following properties:

o There exists an element v € A, noncentral in I, having a fixed point
mn M.

e A is isomorphic to an irreducible lattice of Q-rank > 2.
e B is noncentral in T.

o Any representation of any finite-index subgroup of B in GL(n,R) has
finite image.

Then there is a nonempty, connected, real-analytic submanifold W C M
of codimension at least 2 which is invariant under a finite-index subgroup
B’ of B. Furthermore, the action of this subgroup on W is infinite.

Remark. The action of B’ on the surface W produced by this theorem is
NOT necessarily area preserving.

We now conclude the proof of Theorem 2. Since B’ is a lattice in a simple
Lie group and Q-rank(B’) > 4, it follows from part (2) of Proposition 3 that
B’ contains a torsion-free nilpotent subgroup H which is not metabelian.
But Rebelo [Re| showed that any nilpotent group of real-analytic diffeomor-
phisms of a compact, oriented surface must be metabelian. It follows that
the action of H on W is not effective.

Since H is torsion-free, there is an infinite-order element of H < B’
which acts trivially on W. Since B’ has finite index in the almost simple
group B, and hence is almost simple, some finite index subgroup C of B’
acts trivially on W; in particular C has a global fixed point in M. Since C
is isomorphic to a lattice of Q-rank at least 4, by Lemma 3.2 of [FS1] we
have that a finite index subgroup D of C' acts trivially on M. Since I' is
almost simple, it follows that some finite index normal subgroup of I' acts
trivially on M, and we are done. ¢
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