Math 312, Autumn 2007
Problem Set 1

Rudin: pp 31-32, 1, 5, 6, 9, 12

Exercise 1 Consider the symmetric group $S_{n}$, i.e., the set of permutations on $\{1,2, \ldots, n\}$. Consider the probability measure on $S_{n}$ that assigns measure $1 / n$ ! to each permutation $\sigma$. For each permutation, let $X$ denote the number of fixed points, i.e., the number of $j$ such that $\sigma(j)=j$. Compute $\mathbf{E}[X]$ and $\mathbf{E}\left[X^{2}\right]$. (Hint: $X=X_{1}+\cdots+X_{n}$ where $X_{j}$ is the indicator function of the event $\{\sigma(j)=j\}$.)

Exercise 2 Call I a basic interval in $[0,1)$ if $I=\emptyset$, or $I=[a, b)$ for some $0 \leq a<b \leq 1$.

1. Let $\mathcal{F}_{0}$ be the set of all sets $A$ of the form

$$
A=A_{1} \cup \cdots \cup A_{n}
$$

where $n$ is a positive integer and $A_{1}, \ldots, A_{n}$ are disjoint basic intervals. Show that $\mathcal{F}_{0}$ is an algebra but not a $\sigma$-algebra.
2. Show that $\sigma\left(\mathcal{F}_{0}\right)$ is the Borel subsets of $[0,1)$.
3. Let $F: \mathbb{R} \rightarrow[0, \infty)$ be an increasing (i.e., nondecreasing) function. Define $\mu$ on $\mathcal{F}_{0}$ by $\mu(\emptyset)=0, \mu\left([a, b)=F(b-)-F(a-)\right.$ and if $A=A_{1} \cup \cdots \cup A_{n}$, with $A_{1}, \ldots, A_{n}$ disjoint then

$$
\mu(A)=\mu\left(A_{1}\right)+\cdots+\mu\left(A_{n}\right) .
$$

Show that $\mu$ is well defined and countably additive on $\mathcal{F}_{0}$.
4. We will show that this implies that $\mu$ can be extended uniquely to the Borel subsets. Assume this. What is $\mu(\{a\})$ ?

Exercise 3 Suppose $\mathcal{F}$ is a collection of subsets of a set $X$ containing the empty set, closed under complementation, and satisfying the following: if $A_{1}, A_{2}, \ldots \in \mathcal{F}$ are disjoint, then $\cup_{n=1}^{\infty} A_{n} \in \mathcal{F}$.

1. Show that if $\mathcal{F}$ is also an algebra, then $\mathcal{F}$ is a $\sigma$-algebra.
2. Does $\mathcal{F}$ have to be an algebra?

Exercise 4 Suppose $f: \mathbb{R} \rightarrow[0, \infty)$ is a continuous function satisfying

$$
\int_{-\infty}^{\infty}|x| f(x) d x<\infty
$$

Let

$$
F(s)=\int_{-\infty}^{\infty} \cos (s x) f(x) d x
$$

Show that $F$ is differentiable and compute the derivative. (Hint: use the dominated convergence theorem to justify the interchange of derivative and integral.)

Exercise 5 If $X$ is a set, then an outer measure on $X$ is a function $\mu^{*}$ from the set of subsets of $X$ to $[0, \infty]$ satisfying: $\mu^{*}(\emptyset)=0$; if $A \subset B$. then $\mu^{*}(A) \leq \mu^{*}(B)$; and countable subadditivity, i.e., for all $A_{1}, A_{2}, \ldots$,

$$
\mu^{*}\left[\bigcup_{n=1}^{\infty} A_{n}\right] \leq \sum_{n=1}^{\infty} \mu^{*}\left(A_{n}\right)
$$

Given an outer measure, let $\mathcal{F}$ denote the collection of all subsets $A$ such that for every $E \subset X$,

$$
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right)
$$

Show that $\mathcal{F}$ is a $\sigma$-algebra. (Hint: it is probably easiest to first show it is an algebra and then to show it is closed under disjoint countable unions.)

