Math 312, Autumn 2007 Problem Set 5

Rudin, Chapter 5: 4, 5, 6, 8, 9, 11, 15, 18, 22 Probability Notes: Exercise 5.7, 5.8

Exercise 1 Suppose H is a Hilbert space with a countable basis $\{u_1, u_2, \ldots\}$. Define Λ : $H \to H$ to be the linear function with

$$\Lambda(u_n) = n^{-1} u_n, \quad n = 1, 2, \dots$$

- Show that Λ is bounded and find $\|\Lambda\|$.
- Let $U = \{v \in H : ||v|| < 1\}$. Show that ΛU does not contain δU for any $\delta > 0$.
- Why does this not contradict the open mapping theorem?