Math 312, Autumn 2007
Problem Set 7

Rudin, Chapter 7: 1,2,5,6,7,12,13,19
Exercise 1 Suppose $X_{1}, X_{2}, X_{3}, \ldots$ are independent random variables with mean zero and variance σ^{2}. Let $S_{n}=X_{1}+\cdots+X_{n}$ and let \mathcal{F}_{n} be the σ-algebra generated by X_{1}, \ldots, X_{n}.

1. If $m<n$, find $\mathcal{E}\left[S_{n}^{2} \mid \mathcal{F}_{m}\right]$.
2. Suppose $\mathbf{E}\left[X_{j}^{3}\right]=0$ for all j. If $m<n$, find $\mathcal{E}\left[S_{n}^{3} \mid \mathcal{F}_{m}\right]$.
3. Suppose for each m, B_{m} is a bounded \mathcal{F}_{m-1}-measurable random variable. (We assume that B_{1} is a constant random variable.) Let

$$
W_{n}=\sum_{j=1}^{n} B_{j} X_{j} .
$$

If $m<n$, find $\mathcal{E}\left[W_{n} \mid \mathcal{F}_{m}\right]$ and $\mathcal{E}\left[W_{m+1}^{2} \mid \mathcal{F}_{m}\right]$.
Exercise 2 Suppose $(X, \mathcal{F}, \mathbf{P})$ is a probability space and $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \mathcal{F}_{3} \subset$ is an increasing sequence of sub- σ-algebras of \mathcal{F}. A random variable $T: \Omega \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ is called a stopping time if for each n, the event $\{T \leq n\}$ is in \mathcal{F}_{n}. Let \mathcal{F}_{T} denote the set of events $A \in \mathcal{F}$ such that for each $n, A \cap\{T \leq n\} \in \mathcal{F}_{n}$. Show that \mathcal{F}_{T} is a σ-algebra.

Exercise 3 Suppose μ is a finite, positive Borel measure on \mathbb{R}^{k}. We will call μd-dimensional if

$$
\lim _{r \rightarrow 0} \frac{\log \mu(\mathcal{B}(x, r))}{\log r}=d, \quad \text { a.e. }(\mu)
$$

1. Let μ denote the Cantor measure (the measure generated by the Cantor function). Show that μ is d-dimensional for some $0<d<1$ and find d.
2. Show that if μ is absolutely continuous with respect to Lebesgue measure, then μ is a k-dimesional measure.
3. Show that if $\mu\left(\mathbb{R}^{k} \backslash V\right)=0$ for a countable set V, then μ is 0 -dimensional.
4. (Harder) Construct examples to show that the converses of the last two statements are false. (You may restrict to $k=1$.)
