Exercise 1 Suppose X_1, X_2, X_3, \ldots are independent random variables with mean zero and variance σ^2. Let $S_n = X_1 + \cdots + X_n$ and let \mathcal{F}_n be the σ-algebra generated by X_1, \ldots, X_n.

1. If $m < n$, find $\mathbb{E}[S_n^2 | \mathcal{F}_m]$.

2. Suppose $\mathbb{E}[X_j^3] = 0$ for all j. If $m < n$, find $\mathbb{E}[S_n^3 | \mathcal{F}_m]$.

3. Suppose for each m, B_m is a bounded \mathcal{F}_{m-1}-measurable random variable. (We assume that B_1 is a constant random variable.) Let

$$W_n = \sum_{j=1}^{n} B_j X_j.$$

If $m < n$, find $\mathbb{E}[W_n | \mathcal{F}_m]$ and $\mathbb{E}[W_{m+1}^2 | \mathcal{F}_m]$.

Exercise 2 Suppose $(X, \mathcal{F}, \mathbb{P})$ is a probability space and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \ldots$ is an increasing sequence of sub-σ-algebras of \mathcal{F}. A random variable $T : \Omega \to \{0, 1, 2, \ldots \} \cup \{\infty\}$ is called a stopping time if for each n, the event $\{T \leq n\}$ is in \mathcal{F}_n. Let \mathcal{F}_T denote the set of events $A \in \mathcal{F}$ such that for each n, $A \cap \{T \leq n\} \in \mathcal{F}_n$. Show that \mathcal{F}_T is a σ-algebra.

Exercise 3 Suppose μ is a finite, positive Borel measure on \mathbb{R}^k. We will call μ d-dimensional if

$$\lim_{r \to 0} \frac{\log \mu(B(x, r))}{\log r} = d, \text{ a.e.}(\mu).$$

1. Let μ denote the Cantor measure (the measure generated by the Cantor function). Show that μ is d-dimensional for some $0 < d < 1$ and find d.

2. Show that if μ is absolutely continuous with respect to Lebesgue measure, then μ is a k-dimensional measure.

3. Show that if $\mu(\mathbb{R}^k \setminus V) = 0$ for a countable set V, then μ is 0-dimensional.

4. (Harder) Construct examples to show that the converses of the last two statements are false. (You may restrict to $k = 1$.)