Math 312, Autumn 2007
Problem Set 8

Rudin, Chapter 8: 3, 5 (this has many parts!), 12, 15
Exercise 1 Suppose X_{1}, X_{2}, \ldots are independent, identically distributed random varaibles with $\mathbf{P}\left\{X_{j}=0\right\}<1$. Let $S_{n}=X_{1}+\cdots+X_{n}$ and N a positive integer. Let

$$
T=\min \left\{n:\left|S_{n}\right| \geq N\right\}
$$

Show that there exist positive numbers c, a such that for all n,

$$
\mathbf{P}\{T \geq n\} \leq c e^{-a n}
$$

Conclude that $\mathbf{E}[T]<\infty$.
Exercise 2 Prove Jensen's inequality for conditional expectation: suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex and X is an integrable random variable such that $f(X)$ is also integrable. Then

$$
\mathcal{E}[f(X) \mid \mathcal{G}] \geq f(\mathcal{E}[X \mid G])
$$

(Hint: One approach starts as follows. Show that for any convex f there is a countable collection of real numbers α_{j}, β_{j} such that

$$
\left.f(x)=\sup \left[\alpha_{j} x+\beta_{j}\right] . \quad\right)
$$

Exercise 3 Suppose that M_{n} is a martingale with respect to a filtration \mathcal{F}_{n}.

1. Show that if $p \geq 1, m<n$ and E is \mathcal{F}_{m}-measurable, then

$$
\mathbf{E}\left[\left|M_{n}\right|^{p} 1_{E}\right] \geq \mathbf{E}\left[\left|M_{m}\right|^{p} 1_{E}\right]
$$

2. Let

$$
M_{n}^{*}=\max \left\{\left|M_{1}\right|, \ldots,\left|M_{n}\right|\right\}
$$

Show that for each integer n and each $\lambda>0$,

$$
\mathbf{P}\left\{M_{n}^{*} \geq \lambda\right\} \leq \frac{1}{\lambda} \mathbf{E}\left[\left|M_{n}\right|\right] .
$$

Hint: consider the set

$$
E_{j}=\left\{M_{j-1}^{*}<\lambda, M_{j}^{*} \geq \lambda\right\} .
$$

3. Show that for each $p>1$, there is a $c_{p}<\infty$ such that for all martingales,

$$
\mathbf{E}\left[\left(M_{n}^{*}\right)^{p}\right] \leq c_{p} \mathbf{E}\left[\left|M_{n}\right|^{p}\right] .
$$

(Optional: find the optimal c_{p}.)
4. Give an example to show that this is not true for $p=1$.

