Math 312, Autumn 2007

Final Problem Set

Rudin, Chapter 5, 17; Chapter 6, 11 (you may assume Problem 10 as being given); Chapter 9: 2 (but please change the word characteristic to indicator in the problem!), 6, 8, 19

Exercise 1 A Hamel basis for a complex vector space V is a collection of vectors $\left\{v_{\alpha}\right\}$ such that each $v \in V$ can be written in a unique way as

$$
v=\sum_{\alpha} c_{\alpha} v_{\alpha}
$$

where $c_{\alpha} \in \mathbb{C}$ and all but a finite number of the c_{α} are zero. The existence of Hamel bases can be shown using the axiom of choice. Regardless of whether or not you believe in the axiom of choice, show that if H is a Hilbert space then any Hamel basis is either finite or uncountable.

Exercise 2 If f is a measurable function on \mathbb{R}, let

$$
I_{f}=\left\{1 \leq p<\infty ;\|f\|_{p}<\infty\right\}
$$

where we are using Lebesgue measure.

1. Which subsets of $[1, \infty)$ equal I_{f} for some f ?
2. Which subsets of $[1, \infty)$ equal I_{f} for some f that vanishes on $\{|x| \geq 1\}$?

Exercise 3 We have considered primarily bounded linear functionals on a Hilbert space. Let H be a Hilbert space with a countably infinite basis. Prove or disprove the following: every linear map $\Phi: H \rightarrow \mathbb{C}$ is bounded. (You may assume axiom of choice.)

Exercise 4 Let X_{1}, X_{2}, \ldots be independent random variables with mean zero and such that $\mathbf{P}\left\{\left|X_{j}\right|>1\right\}=0$.

1. Suppose that

$$
\sum \operatorname{Var}\left[X_{n}\right]<\infty
$$

Show that with probability one that the limit

$$
\begin{equation*}
\sum_{j=1}^{n} X_{j} \tag{1}
\end{equation*}
$$

converges.
2. Show that if

$$
\sum \operatorname{Var}\left[X_{n}\right]=\infty
$$

then with probability one the limit in (1) does not exist.
Exercise 5 Let X_{1}, X_{2}, \ldots be independent random variables each normal mean zero, variance one. Let

$$
S_{n}=X_{1}+\cdots+X_{n}, \quad S_{n}^{*}=\max \left|S_{j}\right| ; j=1,2, \ldots, n
$$

and let

$$
Y=\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{n \log \log n}}, \quad Y^{*}=\limsup _{n \rightarrow \infty} \frac{S_{n}^{*}}{\sqrt{n \log \log n}}
$$

1. Show that there exist $c_{0}, c_{1} \in[0, \infty]$ such that with probability one $Y=c_{0}, Y^{*}=c_{1}$. (Use the Kolmogorov Zero-One Law).
2. Explain why for every $\lambda>0$ and every integer n,

$$
\mathbf{P}\left\{S_{n}^{*} \geq \lambda\right\} \leq 2 \mathbf{P}\left\{\left|S_{n}\right| \geq \lambda\right\} \leq 4 \mathbf{P}\left\{S_{n} \geq \lambda\right\}
$$

3. Find a $c_{2}<\infty$ such that

$$
\sum_{n=3}^{\infty} \mathbf{P}\left\{S_{2^{n}}^{*} \geq c_{2} \sqrt{2^{n} \log \log 2^{n}}\right\}<\infty
$$

4. Show that $c_{1}<\infty$.
5. Find a $c_{3}>0$ such that

$$
\sum_{n=3}^{\infty} \mathbf{P}\left\{S_{2^{n}}-S_{2^{n-1}} \geq c_{3} \sqrt{2^{n} \log \log 2^{n}}\right\}=\infty
$$

6. Show that with probability one

$$
\limsup _{n \rightarrow \infty} \frac{S_{2^{n}}-S_{2^{n-1}}}{\sqrt{2^{n} \log \log 2^{n}}} \geq c_{3}
$$

7. Show that $c_{0}>0$.
(If you get stuck on parts of the problem, feel free to do other parts assuming previous parts.)
