Math 312, Autumn 2008

Problem Set 2 (due Oct 15)

Reading. Rudin, Chapter 2 (but not only quickly for pp 35 – 47)

Exercises: Chapter 2: 3, 8,9,15,24,25

Exercise 1 Given an example of an algebra \mathcal{F} on a set X and a countably additive measure μ on \mathcal{F} for which there is more than one extension of μ to $\sigma(\mathcal{F})$ that is a measure. (Recall that this implies that μ is not σ -finite.) In your example, state which extension arises from the outer measure as in the proof of the Carathéodory Extension Theorem.

Exercise 2 Does there exist a countably additive probability measure on the Borel subsets of [0,1) such that every open interval gets positive measure and the collection of measurable sets is all subsets of [0,1)?

Exercise 3 Consider [0,1] with Lebesgue measure as a probability space. Write each $\omega \in [0,1]$ in its dyadic expansion $\omega = \omega_1 \omega_2 \cdots$, i.e.,

$$\omega = \sum_{n=1}^{\infty} \frac{\omega_n}{2^n}.$$

This expansion is unique for almost every x (which suffices for this exercise). Define the random variable:

$$Y(\omega) = \sum_{n=1}^{\infty} \frac{2\omega_n}{3^n}.$$

- 1. What is the distribution function for Y? Show it is continuous.
- 2. Find a Borel subset B of [0,1] which has zero Lebesgue measure for which $\mathbf{P}\{Y \in B\} = 1$.

Exercise 4 Suppose $f:(X,\mathcal{F})\to\mathbb{R}$ is measurable and $g:\mathbb{R}\to\mathbb{R}$ is Borel measurable. Let

$$\sigma(f) = \{ f^{-1}(B) : B \text{ Borel } \}$$

Show that $\sigma(f)$ is a σ -algebra and that $\sigma(f)$ is the smallest σ -algebra \mathcal{G} for which $f:(X,\mathcal{G})\to\mathbb{R}$ is measurable. Show that $\sigma(g\circ f)\subset\sigma(f)$ and give an example to show that the inclusion can be strict.

Exercise 5 Suppose X is a nonnegative random variable and $\alpha > 0$.

1. Show that

$$\mathbf{E}[X^{\alpha}] = \alpha \int_0^{\infty} x^{\alpha - 1} \mathbf{P}\{X \ge x\} dx.$$

2. Show that $\mathbf{E}[X^{\alpha}] < \infty$ if and only if

$$\sum_{n=1}^{\infty} n^{\alpha - 1} \mathbf{P} \{ X \ge n \} < \infty.$$

Exercise 6 Consider a pertuntation σ chosen at random from the uniform distribution on the symmetric group of n elements. Let

$$X = \#\{j : \sigma(j) = j\}.$$

1. Show that

$$\left| \mathbf{P}\{X = 0\} - \frac{1}{e} \right| \le \frac{1}{(n+1)!}.$$
 (1)

2. Show that if k is a positive integer,

$$\lim_{n \to \infty} \mathbf{P}\{X = k\} = \frac{1}{k! \, e}.$$

3. A popular science magazine a number of years ago gave a problem to determine

$$\lim_{n\to\infty} \mathbf{P}\{X=0\}.$$

The official solution was that the probability was exactly

$$\left(1-\frac{1}{n}\right)^n$$

and hence had limit 1/e. Show that the answer above is NOT exactly correct for large n by estimating how close it is to 1/e.