Math 312, Autumn 2008
Problem Set 3

Reading. Rudin, Chapter 3; Probability notes, Sections 3 and 4.
Problems Rudin: Chapter 3: 4,5,9,11,16,23,25
(Note: Problem 5 is really a problem about random variables, and you might want to "translate" the problem into probability notation.)
Probability Notes: Exercise 4.1.
Exercise 1 Let X be a random variable with $\mathbf{E}[|X|]<\infty$. Let $X_{n}=X 1\left\{\left|X_{n}\right| \leq n\right\}$. Show that if $\alpha>1$,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E}\left[\left|X_{n}\right|^{\alpha}\right]}{n^{\alpha-1}}=0
$$

Exercise 2 Suppose X_{1}, X_{2}, \ldots are independent random variables each with mean zero. Let

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

Prove that for every $\lambda>0$,

$$
\mathbf{P}\left\{\omega: \max _{1 \leq j \leq n} S_{j}(\omega) \geq \lambda\right\} \leq \frac{\mathbf{E}\left[S_{n}^{2}\right]}{\lambda^{2}} .
$$

(Hint: Let $T=\min \left\{j: S_{j} \geq \lambda\right\}$, let A_{j} be the event $\{T=j\}$. Show that for every $j \leq n$,

$$
\mathbf{E}\left[S_{n}^{2} 1_{A_{j}}\right] \geq \mathbf{E}\left[S_{j}^{2} 1_{A_{j}}\right] \geq \lambda^{2} \mathbf{P}\left(A_{j}\right)
$$

Exercise 3 Suppose X_{1}, X_{2}, \ldots are independent, identically distributed random variables with mean zero and let $\hat{X}_{n}=X_{n} 1\left\{\left|X_{n}\right| \leq n\right\}$,

$$
S_{n}=\hat{X}_{1}+\cdots+\hat{X}_{n}
$$

The goal of this exercise is to show

$$
\sum_{n=1}^{\infty} 2^{-2 n} \operatorname{Var}\left[S_{2^{n}}\right]<\infty
$$

by proving the following steps.

1. For each n,

$$
\operatorname{Var}\left[S_{2^{n}}\right] \leq 2^{n} \mathbf{E}\left[X_{1}^{2} 1\left\{\left|X_{1}\right| \leq 2^{n}\right\}\right]
$$

2.

$$
\sum_{n=1}^{\infty} 2^{-2 n} \operatorname{Var}\left[S_{2^{n}}\right] \leq \mathbf{E}\left[X_{1}^{2} \sum_{n=1}^{\infty} 2^{-n} 1\left\{\left|X_{1}\right| \leq 2^{n}\right\}\right]
$$

3.

$$
\sum_{n=1}^{\infty} 2^{-n} 1\left\{\left|X_{1}\right| \leq 2^{n}\right\} \leq \frac{1}{\left|X_{1}\right|}
$$

