Math 312, Autumn 2008 Problem Set 5

Reading: Rudin Chapter 5 (through p. 108) Probability Notes, Section 5

Rudin, Chapter 5: 2, 6, 8, 9, 10, 11, 15, 18, 19, 22 Probability Notes: Exercise 5.7, 5.8

Exercise 1 Suppose *H* is a Hilbert space with a countable basis $\{u_1, u_2, \ldots\}$. Let $\Lambda : H \to H$ be a continuous linear function with

$$\Lambda(u_n) = n^{-1} u_n, \quad n = 1, 2, \dots$$
 (1)

- Explain why there exists a unique continuous linear Λ satisfying (1) and find $\|\Lambda\|$.
- Let $U = \{v \in H : ||v|| < 1\}$. Show that ΛU does not contain δU for any $\delta > 0$.
- Why does this not contradict the open mapping theorem?