Math 312, Autumn 2008 Problem Set 7

Reading. Rudin, Chapter 7; Probability notes, 6 and 6.1. Rudin, Chapter 7: 1,2,5,6,7,12,13,19

Exercise 1 Suppose X_1, X_2, X_3, \ldots are independent random variables with mean zero and variance σ^2 . Let $S_n = X_1 + \cdots + X_n$ and let \mathcal{F}_n be the σ -algebra generated by X_1, \ldots, X_n .

- 1. If m < n, find $\mathcal{E}[S_n^2 \mid \mathcal{F}_m]$.
- 2. Suppose $\mathbf{E}[X_i^3] = 0$ for all j. If m < n, find $\mathcal{E}[S_n^3 | \mathcal{F}_m]$.
- 3. Suppose for each m, B_m is a bounded \mathcal{F}_{m-1} -measurable random variable. (We assume that B_1 is a constant random variable.) Let

$$W_n = \sum_{j=1}^n B_j X_j$$

If m < n, find $\mathcal{E}[W_n \mid \mathcal{F}_m]$ and $\mathcal{E}[W_{m+1}^2 \mid \mathcal{F}_m]$.

Exercise 2 Suppose $(X, \mathcal{F}, \mathbf{P})$ is a probability space and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset$ is an increasing sequence of sub- σ -algebras of \mathcal{F} . A random variable $T : \Omega \to \{0, 1, 2, \ldots\} \cup \{\infty\}$ is called a stopping time if for each n, the event $\{T \leq n\}$ is in \mathcal{F}_n . Let \mathcal{F}_T denote the set of events $A \in \mathcal{F}$ such that for each n, $A \cap \{T \leq n\} \in \mathcal{F}_n$. Show that \mathcal{F}_T is a σ -algebra.

Exercise 3 Suppose μ is a finite, positive Borel measure on \mathbb{R}^k . We will call μ d-dimensional *if*

$$\lim_{r \to 0} \frac{\log \mu(\mathcal{B}(x, r))}{\log r} = d, \quad a.e.(\mu).$$

- 1. Let μ denote the Cantor measure (the measure generated by the Cantor function). Show that μ is d-dimensional for some 0 < d < 1 and find d.
- 2. Show that if μ is absolutely continuous with respect to Lebesgue measure, then μ is a k-dimesional measure.
- 3. Show that if $\mu(\mathbb{R}^k \setminus V) = 0$ for a countable set V, then μ is 0-dimensional.
- 4. (Harder) Construct examples to show that the converses of the last two statements are false. (You may restrict to k = 1.)