Math 312, Autumn 2009 Problem Set 4

Reading: Rudin, Chapter 4.

Rudin, Chapter 4: 1, 2, 6, 7, 9, 10, 13, 14, 17

Probability Notes: 4.5, 4.6

Exercise 1 Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space and let $H_{\mathcal{F}}$ denote the real Hilbert space $L^2(\Omega, \mathcal{F}, \mathbf{P})$ of square-integrable (real valued) random variables. Suppose $\mathcal{G} \subset \mathcal{F}$ is a sub σ -algebra, and let $H_{\mathcal{G}}$ denote the corresponding Hilbert space of \mathcal{G} -measurable, square-integrable random variables.

- 1. Show that $H_{\mathcal{G}}$ is a closed subspace of $H_{\mathcal{F}}$.
- 2. If $X \in H_{\mathcal{F}}$ denote by $\mathcal{E}(X \mid G)$ the projection of X onto $H_{\mathcal{G}}$. Show that for all events $A \in \mathcal{G}$,

$$\mathbf{E}[X 1_A] = \mathbf{E}[\mathcal{E}(X \mid \mathcal{G}) 1_A] \tag{1}$$

- 3. Suppose X is a random variable in (Ω, F, \mathbf{P}) with $\mathbf{E}[|X|] < \infty$ (note that we do not assume that $\mathbf{E}[X^2] < \infty$). Show that there is an integrable random variable $\mathcal{E}(X \mid \mathcal{G})$ that is \mathcal{G} -measurable and such that (1) holds for all $A \in \mathcal{G}$. (You may wish to consider $X \geq 0$ first. You may not use the Radon-Nikodym theorem.)
- 4. Suppose that X, Y are square-integrable random variables and Y is \mathcal{G} -measurable. Show that

$$\mathcal{E}(XY \mid \mathcal{G}) = Y \, \mathcal{E}(X \mid \mathcal{G}).$$

- 5. Suppose $\tilde{\mathcal{G}}$ is independent of \mathcal{G} and X is $\tilde{\mathcal{G}}$ -measurable. What is $\mathcal{E}(X \mid \mathcal{G})$?
- 6. Show that

$$\mathbf{E}\left[\mathcal{E}(X\mid\mathcal{G})^2\right] \le \mathbf{E}[X^2],$$

where we allow infinity as a possible value for the expectation. Give an example to show that the left-hand side can be finite and the right-hand side infinite.