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Preface

Random walk – the stochastic process formed by successive summation of independent, identically

distributed random variables – is one of the most basic and well-studied topics in probability

theory. For random walks on the integer lattice Zd, the main reference is the classic book by

Spitzer [16]. This text considers only a subset of such walks, namely those corresponding to

increment distributions with zero mean and finite variance. In this case, one can summarize the

main result very quickly: the central limit theorem implies that under appropriate rescaling the

limiting distribution is normal, and the functional central limit theorem implies that the distribution

of the corresponding path-valued process (after standard rescaling of time and space) approaches

that of Brownian motion.

Researchers who work with perturbations of random walks, or with particle systems and other

models that use random walks as a basic ingredient, often need more precise information on random

walk behavior than that provided by the central limit theorems. In particular, it is important to

understand the size of the error resulting from the approximation of random walk by Brownian

motion. For this reason, there is need for more detailed analysis. This book is an introduction

to the random walk theory with an emphasis on the error estimates. Although “mean zero, finite

variance” assumption is both necessary and sufficient for normal convergence, one typically needs

to make stronger assumptions on the increments of the walk in order to get good bounds on the

error terms.

This project embarked with an idea of writing a book on the simple, nearest neighbor random

walk. Symmetric, finite range random walks gradually became the central model of the text.

This class of walks, while being rich enough to require analysis by general techniques, can be

studied without much additional difficulty. In addition, for some of the results, in particular, the

local central limit theorem and the Green’s function estimates, we have extended the discussion to

include other mean zero, finite variance walks, while indicating the way in which moment conditions

influence the form of the error.

The first chapter is introductory and sets up the notation. In particular, there are three main

classes of irreducible walks in the integer lattice Zd — Pd (symmetric, finite range), P ′
d (aperiodic,

mean zero, finite second moment), and P∗
d (aperiodic with no other assumptions). Symmetric

random walks on other integer lattices such as the triangular lattice can also be considered by

taking a linear transformation of the lattice onto Zd.
The local central limit theorem (LCLT) is the topic for Chapter 2. Its proof, like the proof of the

usual central limit theorem, is done by using Fourier analysis to express the probability of interest
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Preface 7

in terms of an integral, and then estimating the integral. The error estimates depend strongly

on the number of finite moments of the corresponding increment distribution. Some important

corollaries are proved in Section 2.4; in particular, the fact that aperiodic random walks starting

at different points can be coupled so that with probability 1 − O(n−1/2) they agree for all times

greater than n is true for any aperiodic walk, without any finite moment assumptions. The chapter

ends by a more classical, combinatorial derivation of LCLT for simple random walk using Stirling’s

formula, while again keeping track of error terms.

Brownian motion is introduced in Chapter 3. Although we would expect a typical reader to

already be familiar with Brownian motion, we give the construction via the dyadic splitting method.

The estimates for the modulus of continuity are given as well. We then describe the Skorokhod

method of coupling a random walk and a Brownian motion on the same probability space, and

give error estimates. The dyadic construction of Brownian motion is also important for the dyadic

coupling algorithm of Chapter 7.

The Green’s function and its analog in the recurrent setting, the potential kernel, are studied

in Chapter 4. One of the main tools in the potential theory of random walk is the analysis of

martingales derived from these functions. Sharp asymptotics at infinity for the Green’s function

are needed to take full advantage of the martingale technique. We use the sharp LCLT estimates of

Chapter 2 to obtain the Green’s function estimates. We also discuss the number of finite moments

needed for various error asymptotics.

Chapter 5 may seem somewhat out of place. It concerns a well-known estimate for one-dimensional

walks called the gambler’s ruin estimate. Our motivation for providing a complete self-contained

argument is twofold. Firstly, in order to apply this result to all one-dimensional projections of a

higher dimensional walk simultaneously, it is important to shiw that this estimate holds for non-

lattice walks uniformly in few parameters of the distribution (variance, probability of making an

order 1 positive step). In addition, the argument introduces the reader to a fairly general technique

for obtaining the overshoot estimates. The final two sections of this chapter concern variations of

one-dimensional walk that arise naturally in the arguments for estimating probabilities of hitting

(or avoiding) some special sets, for example, the half-line.

In Chapter 6, the classical potential theory of the random walk is covered in the spirit of [16]

and [10] (and a number of other sources). The difference equations of our discrete space setting

(that in turn become matrix equations on finite sets) are analogous to the standard linear partial

differential equations of (continuous) potential theory. The closed form of the solutions is important,

but we emphasize here the estimates on hitting probabilities that one can obtain using them. The

martingales derived from the Green’s function are very important in this analysis, and again special

care is given to error terms. For notational ease, the discussion is restricted here to symmetric walks.

In fact, most of the results of this chapter hold for nonsymmetric walks, but in this case one must

distinguish between the “original” walk and the “reversed” walk, i.e. between an operator and

its adjoint. An implicit exercise for a dedicated student would be to redo this entire chapter for

nonsymmetric walks, changing the statements of the propositions as necessary. It would be more

work to relax the finite range assumption, and the moment conditions would become a crucial

component of the analysis in this general setting. Perhaps this will be a topic of some future book.

Chapter 7 discusses a tight coupling of a random walk (that has a finite exponential moment)

and a Brownian motion, called the dyadic coupling or KMT or Hungarian coupling, originated in

Kómlos, Major, and Tusnády [7, 8]. The idea of the coupling is very natural (once explained), but
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hard work is needed to prove the strong error estimate. The sharp LCLT estimates from Chapter

2 are one of the key points for this analysis.

In bounded rectangles with sides parallel to the coordinate directions, the rate of convergence of

simple random walk to Brownian motion is very fast. Moreover, in this case, exact expressions are

available in terms of finite Fourier sums. Several of these calculations are done in Chapter 8.

Chapter 9 is different from the rest of this book. It covers an area that includes both classical

combinatorial ideas and topics of current research. As has been gradually discovered by a number

of researchers in various disciplines (combinatorics, probability, statistical physics) several objects

inherent to a graph or network are closely related: the number of spanning trees, the determinant

of the Laplacian, various measures on loops on the trees, Gaussian free field, and loop-erased walks.

We give an introduction to this theory, using an approach that is focused on the (unrooted) random

walk loop measure, and that uses Wilson’s algorithm [18] for generating spanning trees.

The original outline of this book put much more emphasis on the path-intersection probabilities

and the loop-erased walks. The final version offers only a general introduction to some of the main

ideas, in the last two chapters. On the one hand, these topics were already discussed in more

detail in [10], and on the other, discussing the more recent developments in the area would require

familiarity with Schramm-Loewner evolution, and explaining this would take us too far from the

main topic.

Most of the content of this text (the first eight chapters in particular) are well-known classical

results. It would be very difficult, if not impossible, to give a detailed and complete list of refer-

ences. In many cases, the results were obtained in several places at different occasions, as auxiliary

(technical) lemmas needed for understanding some other model of interest, and were therefore not

particularly noticed by the community. Attempting to give even a reasonably fair account of the

development of this subject would have inhibited the conclusion of this project. The bibliography

is therefore restricted to a few references that were used in the writing of this book. We refer

the reader to [16] for an extensive bibliography on random walk, and to [10] for some additional

references.

This book is intended for researchers and graduate students alike, and a considerable number

of exercises is included for their benefit. The appendix consists of various results from probability

theory, that are used in the first eleven chapters but are however not really linked to random walk

behavior. It is assumed that the reader is familiar with the basics of measure-theoretic probability

theory.

♣ The book contains quite a few remarks that are separated from the rest of the text by this typeface. They

are intended to be helpful heuristics for the reader, but are not used in the actual arguments.

A number of people have made useful comments on various drafts of this book including stu-

dents at Cornell University and the University of Chicago. We thank Christian Beneš, Juliana

Freire, Michael Kozdron, José Truillijo Ferreras, Robert Masson, Robin Pemantle, Mohammad Ab-

bas Rezaei, Nicolas de Saxcé, Joel Spencer, Rongfeng Sun, John Thacker, Brigitta Vermesi, and

Xinghua Zheng. The research of Greg Lawler is supported by the National Science Foundation.
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Introduction

1.1 Basic definitions

We will define the random walks that we consider in this book. We focus our attention on random

walks in Zd that have bounded symmetric increment distributions although we occasionally discuss

results for wider classes of walks. We also impose an irreducibility criterion to guarantee that all

points in the lattice Zd can be reached.

Fig 1.1. The square lattice Z2

We start by setting some basic notation. We use x, y, z to denote points in the integer lattice

Zd = {(x1, . . . , xd) : xj ∈ Z}. We use superscripts to denote components, and we use subscripts

to enumerate elements. For example, x1, x2, . . . represents a sequence of points in Zd, and the

point xj can be written in component form xj = (x1
j , . . . , x

d
j ). We write e1 = (1, 0, . . . , 0), . . . , ed =

(0, . . . , 0, 1) for the standard basis of unit vectors in Zd. The prototypical example is (discrete

time) simple random walk starting at x ∈ Zd. This process can be considered either as a sum of a

sequence of independent, identically distributed random variables

Sn = x+X1 + · · ·+Xn

9



10 Introduction

where P{Xj = ek} = P{Xj = −ek} = 1/(2d), k = 1, . . . , d, or it can be considered as a Markov

chain with state space Zd and transition probabilities

P{Sn+1 = z | Sn = y} =
1

2d
, z − y ∈ {±e1, . . .± ed}.

We call V = {x1, . . . , xl} ⊂ Zd \ {0} a (finite) generating set if each y ∈ Zd can be written as

k1x1 + · · ·+ klxl for some k1, . . . , kl ∈ Z. We let G denote the collection of generating sets V with

the property that if x = (x1, . . . , xd) ∈ V then the first nonzero component of x is positive. An

example of such a set is {e1, . . . , ed}. A (finite range, symmetric, irreducible) random walk is given

by specifying a V = {x1, . . . , xl} ∈ G and a function κ : V → (0, 1] with κ(x1) + · · · + κ(xl) ≤ 1.

Associated to this is the symmetric probability distribution on Zd

p(xk) = p(−xk) =
1

2
κ(xk), p(0) = 1−

∑

x∈V
κ(x).

We let Pd denote the set of such distributions p on Zd and P = ∪d≥1Pd. Given p the corresponding

random walk Sn can be considered as the time-homogeneous Markov chain with state space Zd and

transition probabilities

p(y, z) := P{Sn+1 = z | Sn = y} = p(z − y).

We can also write

Sn = S0 +X1 + · · · +Xn

where X1,X2, . . . are independent random variables, independent of S0, with distribution p. (Most

of the time we will choose S0 to have a trivial distribution.) We will use the phrase P-walk or

Pd-walk for such a random walk. We will use the term simple random walk for the particular p

with

p(ej) = p(−ej) =
1

2d
, j = 1, . . . , d.

We call p the increment distribution for the walk. Given p ∈ P, we write pn for the n-step

distribution

pn(x, y) = P{Sn = y | S0 = x}

and pn(x) = pn(0, x). Note that pn(·) is the distribution of X1 + · · · + Xn where X1, . . . ,Xn are

independent with increment distribution p.

♣ In many ways the main focus of this book is simple random walk, and a first-time reader might find it useful

to consider this example throughout. We have chosen to generalize this slightly, because it does not complicate

the arguments much and allows the results to be extended to other examples. One particular example is simple

random walk on other regular lattices such as the planar triangular lattice. In Section 1.3, we show that walks on

other d-dimensional lattices are isomorphic to p-walks on Zd.

If Sn = (S1
n, . . . , S

d
n) is a P-walk with S0 = 0, then P{S2n = 0} > 0 for every even integer n; this

follows from the easy estimate P{S2n = 0} ≥ [P{S2 = 0}]n ≥ p(x)2n for every x ∈ Zd. We will call

the walk bipartite if pn(0, 0) = 0 for every odd n, and we will call it aperiodic otherwise. In the
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latter case, pn(0, 0) > 0 for all n sufficiently large (in fact, for all n ≥ k where k is the first odd

integer with pk(0, 0) > 0). Simple random walk is an example of a bipartite walk since S1
n+ · · ·+Sdn

is odd for odd n and even for even n. If p is bipartite, then we can partition Zd = (Zd)e ∪ (Zd)o
where (Zd)e denotes the points that can be reached from the origin in an even number of steps

and (Zd)o denotes the set of points that can be reached in an odd number of steps. In algebraic

language, (Zd)e is an additive subgroup of Zd of index 2 and (Zd)o is the nontrivial coset. Note

that if x ∈ (Zd)o, then (Zd)o = x+ (Zd)e.

♣It would suffice and would perhaps be more convenient to restrict our attention to aperiodic walks. Results

about bipartite walks can easily be deduced from them. However, since our main example, simple random walk,

is bipartite, we have chosen to allow such p.

If p ∈ Pd and j1, . . . , jd are nonnegative integers, the (j1, . . . , jd) moment is given by

E[(X1
1 )j1 · · · (Xd

1 )jd ] =
∑

x∈Zd

(x1)j1 · · · (xd)jd p(x).

We let Γ denote the covariance matrix

Γ =
[

E[Xj
1X

k
1 ]
]

1≤j,k≤d
.

The covariance matrix is symmetric and positive definite. Since the random walk is truly d-

dimensional, it is easy to verify (see Proposition 1.1.1 (a)) that the matrix Γ is invertible. There

exists a symmetric positive definite matrix Λ such that Γ = ΛΛT (see Section 12.3). There is a

(not unique) orthonormal basis u1, . . . , ud of Rd such that we can write

Γx =

d
∑

j=1

σ2
j (x · uj)uj , Λx =

d
∑

j=1

σj (x · uj)uj .

If X1 has covariance matrix Γ = ΛΛT , then the random vector Λ−1X1 has covariance matrix I.

For future use, we define norms J ∗,J by

J ∗(x)2 = |x · Γ−1x| = |Λ−1x|2 =

d
∑

j=1

σ−2
j (x · uj)2, J (x) = d−1/2 J ∗(x). (1.1)

If p ∈ Pd,
E[J (X1)

2] =
1

d
E[J ∗(X1)

2] =
1

d
E
[

|Λ−1X1|2
]

= 1.

For simple random walk in Zd,

Γ = d−1 I, J ∗(x) = d1/2 |x|, J (x) = |x|.
We will use Bn to denote the discrete ball of radius n,

Bn = {x ∈ Zd : |x| < n},
and Cn to denote the discrete ball under the norm J ,

Cn = {x ∈ Zd : J (x) < n} = {x ∈ Zd : J ∗(x) < d1/2 n}.
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We choose to use J in the definition of Cn so that for simple random walk, Cn = Bn. We will write

R = Rp = max{|x| : p(x) > 0} and we will call R the range of p. The following is very easy, but it

is important enough to state as a proposition.

Proposition 1.1.1 Suppose p ∈ Pd.
(a) There exists an ǫ > 0 such that for every unit vector u ∈ Rd,

E[(X1 · u)2] ≥ ǫ.

(b) If j1, . . . , jd are nonnegative integers with j1 + · · ·+ jd odd, then

E[(X1
1 )j1 · · · (Xd

1 )jd ] = 0.

(c) There exists a δ > 0 such that for all x,

δ J (x) ≤ |x| ≤ δ−1 J (x).

In particular,

Cδn ⊂ Bn ⊂ Cn/δ.

We note for later use that we can construct a random walk with increment distribution p ∈ P from

a collection of independent one-dimensional simple random walks and an independent multinomial

process. To be more precise, let V = {x1, . . . , xl} ∈ G and let κ : V → (0, 1]l be as in the

definition of P. Suppose that on the same probability space we have defined l independent one-

dimensional simple random walks Sn,1, Sn,2, . . . , Sn,l and an independent multinomial process

Ln = (L1
n, . . . , L

l
n) with probabilities κ(x1), . . . , κ(xl). In other words,

Ln =
n
∑

j=1

Yj,

where Y1, Y2, . . . are independent Zl-valued random variables with

P{Yk = (1, 0, . . . , 0)} = κ(x1), . . . ,P{Yk = (0, 0, . . . , 1)} = κ(xl),

and P{Yk = (0, 0, . . . , 0)} = 1− [κ(x1) + · · ·+ κ(xl)]. It is easy to verify that the process

Sn := x1 SL1
n,1

+ x2 SL2
n,2

+ · · · + xl SLl
n,l

(1.2)

has the distribution of the random walk with increment distribution p. Essentially what we have

done is to split the decision as to how to jump at time n into two decisions: first, to choose an

element xj ∈ {x1, . . . , xl} and then to decide whether to move by +xj or −xj.

1.2 Continuous-time random walk

It is often more convenient to consider random walks in Zd indexed by positive real times. Given

V, κ, p as in the previous section, the continuous-time random walk with increment distribution p is

the continuous-time Markov chain S̃t with rates p. In other words, for each x, y ∈ Zd,

P{S̃t+∆t = y | S̃t = x} = p(y − x)∆t+ o(∆t), y 6= x,
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P{S̃t+∆t = x | S̃t = x} = 1−





∑

y 6=x
p(y − x)



 ∆t+ o(∆t).

Let p̃t(x, y) = P{S̃t = y | S̃0 = x}, and p̃t(y) = p̃t(0, y) = p̃t(x, x+ y). Then the expressions above

imply

d

dt
p̃t(x) =

∑

y∈Zd

p(y) [p̃t(x− y)− p̃t(x)].

There is a very close relationship between the discrete time and continuous time random walks

with the same increment distribution. We state this as a proposition which we leave to the reader

to verify.

Proposition 1.2.1 Suppose Sn is a (discrete-time) random walk with increment distribution p and

Nt is an independent Poisson process with parameter 1. Then S̃t := SNt has the distribution of a

continuous-time random walk with increment distribution p.

There are various technical reasons why continuous-time random walks are sometimes easier to

handle than discrete-time walks. One reason is that in the continuous setting there is no periodicity.

If p ∈ Pd, then p̃t(x) > 0 for every t > 0 and x ∈ Zd. Another advantage can be found in the

following proposition which gives an analogous, but nicer, version of (1.2). We leave the proof to

the reader.

Proposition 1.2.2 Suppose p ∈ Pd with generating set V = {x1, . . . , xl} and suppose S̃t,1, . . . , S̃t,l
are independent one-dimensional continuous-time random walks with increment distribution q1, . . . ,

ql where qj(±1) = p(xj). Then

S̃t := x1 S̃t,1 + x2 S̃t,2 + · · · + xl S̃t,l (1.3)

has the distribution of a continuous-time random walk with increment distribution p.

If p is the increment distribution for simple random walk, we call the corresponding walk S̃t
the continuous-time simple random walk in Zd. From the previous proposition, we see that the

coordinates of the continuous-time simple random walk are independent — this is clearly not true

for the discrete-time simple random walk. In fact, we get the following. Suppose S̃t,1, . . . , S̃t,d are

independent one-dimensional continuous-time simple random walks. Then,

S̃t := (S̃t/d,1, . . . , S̃t/d,d)

is a continuous time simple random walk in Zd. In particular, if S̃0 = 0, then

P{S̃t = (y1, . . . , yd)} = P{S̃t/d,1 = y1} · · · P{S̃t/d,l = yl}.

Remark. To verify that a discrete-time process Sn is a random walk with distribution p ∈ Pd
starting at the origin, it suffices to show for all positive integers j1 < j2 < · · · < jk and x1, . . . , xk ∈
Zd,

P{Sj1 = x1, . . . , Sjk = xk} = pj1(x1) pj2−j1(x2 − x1) · · · pjk−jk−1
(xk − xk−1).

To verify that a continuous-time process S̃t is a continuous-time random walk with distribution p
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starting at the origin, it suffices to show that the paths are right-continuous with probability one,

and that for all real t1 < t2 < · · · < tk and x1, . . . , xk ∈ Zd,

P{S̃t1 = x1, . . . , S̃tk = xk} = p̃t1(x1) p̃t2−t1(x2 − x1) · · · p̃tk−tk−1
(xk − xk−1).

1.3 Other lattices

A lattice L is a discrete additive subgroup of Rd. The term discrete means that there is a real

neighborhood of the origin whose intersection with L is just the origin. While this book will focus

on the lattice Zd, we will show in this section that this also implies results for symmetric, bounded

random walks on other lattices. We start by giving a proposition that classifies all lattices.

Proposition 1.3.1 If L is a lattice in Rd, then there exists an integer k ≤ d and elements

x1, . . . , xk ∈ L that are linearly independent as vectors in Rd such that

L = {j1 x1 + · · ·+ jk xk, j1, . . . , jk ∈ Z}.

In this case we call L a k-dimensional lattice.

Proof Suppose first that L is contained in a one-dimensional subspace of Rd. Choose x1 ∈ L \ {0}
with minimal distance from the origin. Clearly {jx1 : j ∈ Z} ⊂ L. Also, if x ∈ L, then jx1 ≤ x <

(j + 1)x1 for some j ∈ Z, but if x > jx1, then x− jx1 would be closer to the origin than x1. Hence

L = {jx1 : j ∈ Z}.
More generally, suppose we have chosen linearly independent x1, . . . , xj such that the following

holds: if Lj is the subgroup generated by x1, . . . , xj , and Vj is the real subspace of Rd generated

by the vectors x1, . . . , xj , then L ∩ Vj = Lj. If L = Lj, we stop. Otherwise, let w0 ∈ L \ Lj and let

U = {tw0 : t ∈ R, tw0 + y0 ∈ L for some y0 ∈ Vj}
= {tw0 : t ∈ R, tw0 + t1x1 + · · ·+ tjxj ∈ L for some t1, . . . , tj ∈ [0, 1]}.

The second equality uses the fact that L is a subgroup. Using the first description, we can see

that U is a subgroup of Rd (although not necessarily contained in L). We claim that the second

description shows that there is a neighborhood of the origin whose intersection with U is exactly

the origin. Indeed, the intersection of L with every bounded subset of Rd is finite (why?), and

hence there are only a finite number of lattice points of the form

tw0 + t1x1 + · · ·+ tjxj

with 0 < t ≤ 1; and 0 ≤ t1, . . . , tj ≤ 1. Hence there is an ǫ > 0 such that there are no such lattice

points with 0 < |t| ≤ ǫ. Therefore U is a one-dimensional lattice, and hence there is a w ∈ U such

that U = {kw : k ∈ Z}. By definition, there exists a y1 ∈ Vj (not unique, but we just choose one)

such that xj+1 := w + y1 ∈ L. Let Lj+1, Vj+1 be as above using x1, . . . , xj , xj+1. Note that Vj+1

is also the real subspace generated by {x1, . . . , xj , w0}. We claim that L ∩ Vj+1 = Lj+1. Indeed,

suppose that z ∈ L ∩ Vj+1, and write z = s0w0 + y2 where y2 ∈ Vj. Then s0w0 ∈ U , and hence

s0w0 = lw for some integer l. Hence, we can write z = lxj+1 + y3 with y3 = y2 − ly1 ∈ Vj. But,

z − lxj+1 ∈ Vj ∩ L = Lj . Hence z ∈ Lj+1.
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♣The proof above seems a little complicated. At first glance it seems that one might be able to simplify
the argument as follows. Using the notation in the proof, we start by choosing x1 to be a nonzero point in L
at minimal distance from the origin, and then inductively to choose xj+1 to be a nonzero point in L \ Lj at
minimal distance from the origin. This selection method produces linearly independent x1, . . . , xk; however, it is
not always the case that

L = {j1x1 + · · ·+ jkxk : j1, . . . , jk ∈ Z}.

As an example, suppose L is the 5-dimensional lattice generated by

2e1, 2e2, 2e3, 2e4, e1 + e2 + · · ·+ e5.

Note that 2e5 ∈ L and the only nonzero points in L that are within distance two of the origin are ±2ej, j =

1, . . . , 5. Therefore this selection method would choose (in some order) ±2e1, . . . ,±2e5. But, e1 + · · · + e5 is

not in the subgroup generated by these points.

It follows from the proposition that if k ≤ d and L is a k-dimensional lattice in Rd, then we

can find a linear transformation A : Rd → Rk that is an isomorphism of L onto Zk. Indeed, we

define A by A(xj) = ej where x1, . . . , xk is a basis for L as in the proposition. If Sn is a bounded,

symmetric, irreducible random walk taking values in L, then S∗
n := ASn is a random walk with

increment distribution p ∈ Pk. Hence, results about walks on Zk immediately translate to results

about walks on L. If L is a k-dimensional lattice in Rd and A is the corresponding transformation,

we will call |detA| the density of the lattice. The term comes from the fact that as r → ∞, the

cardinality of the intersection of the lattice and ball of radius r in Rd is asymptotically equal to

|detA| rk times the volume of the unit ball in Rk. In particular, if j1, . . . , jk are positive integers,

then (j1Z)× · · · × (jkZ) has density (j1 · · · jk)−1.

Examples.

• The triangular lattice, considered as a subset of C = R2 is the lattice generated by 1 and eiπ/3,

LT = {k1 + k2 e
iπ/3 : k1, k2 ∈ Z}.

Note that e2iπ/3 = eiπ/3 − 1 ∈ LT. The triangular lattice is also considered as a graph with the

above vertices and with edges connecting points that are Euclidean distance one apart. In this

case, the origin has six nearest neighbors, the six sixth roots of unity. Simple random walk on

the triangular lattice is the process that chooses among these six nearest neighbors equally likely.

Note that this is a symmetric walk with bounded increments. The matrix

A =

[

1 −1/
√

3

0 2/
√

3

]

.

maps LT to Z2 sending {1, eiπ/3, e2iπ/3} to {e1, e2, e2− e1}. The transformed random walk gives

probability 1/6 to the following vectors: ±e1,±e2,±(e2 − e1). Note that our transformed walk

has lost some of the symmetry of the original walk.
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Fig 1.2. The triangular lattice LT and its transformation ALT

• The hexagonal or honeycomb lattice is not a lattice in our sense but rather a dual graph to

the triangular lattice. It can be constructed in a number of ways. One way is to start with

the triangular lattice LT. The lattice partitions the plane into triangular regions, of which some

point up and some point down. We add a vertex in the center of each triangle pointing down.

The edges of this graph are the line segments from the center points to the vertices of these

triangles (see figure).

Fig 1.3. The hexagons within LT

Simple random walk on this graph is the process that at each time step moves to one of the

three nearest neighbors. This is not a random walk in our strict sense because the increment

distribution depends on whether the current position is a “center” point or a “vertex” point.

However, if we start at a vertex in LT, the two-step distribution of this walk is the same as the walk

on the triangular lattice with step distribution p(±1) = p(±eiπ/3) = p(±e2iπ/3) = 1/9; p(0) = 1/3.

When studying random walks on other lattices L, we can map the walk to another walk on Zd.
However, since this might lose useful symmetries of the walk, it is sometimes better to work on the

original lattice.

1.4 Other walks

Although we will focus primarily on p ∈ P, there are times where we will want to look at more

general walks. There are two classes of distributions we will be considering.

Definition
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• P∗
d denotes the set of p that generate aperiodic, irreducible walks supported on Zd, i.e., the set

of p such that for all x, y ∈ Zd there exists an N such that pn(x, y) > 0 for n ≥ N .

• P ′
d denotes the set of p ∈ P∗

d with mean zero and finite second moment.

We write P∗ = ∪dP∗
d ,P ′ = ∪P ′

d.

Note that under our definition P is not a subset of P ′ since P contains bipartite walks. However,

if p ∈ P is aperiodic, then p ∈ P ′.

1.5 Generator

If f : Zd → R is a function and x ∈ Zd, we define the first and second difference operators in x by

∇xf(y) = f(y + x)− f(y),

∇2
xf(y) =

1

2
f(y + x) +

1

2
f(y − x)− f(y).

Note that ∇2
x = ∇2

−x. We will sometimes write just ∇j,∇2
j for ∇ej ,∇2

ej
. If p ∈ Pd with generator

set V , then the generator L = Lp is defined by

Lf(y) =
∑

x∈Zd

p(x)∇xf(y) =
∑

x∈V
κ(x)∇2

xf(y) = −f(y) +
∑

x∈Zd

p(x) f(x+ y).

In the case of simple random walk, the generator is often called the discrete Laplacian and we will

represent it by ∆D,

∆Df(y) =
1

d

d
∑

j=1

∇2
jf(y).

Remark. We have defined the discrete Laplacian in the standard way for probability. In graph

theory, the discrete Laplacian of f is often defined to be

2d∆Df(y) =
∑

|x−y|=1

[f(x)− f(y)].

♣We can define

Lf(y) =
∑

x∈Zd

p(x) [f(x+ y)− f(y)]

for any p ∈ P∗
d . If p is not symmetric, one often needs to consider

LRf(y) =
∑

x∈Zd

p(−x) [f(x+ y)− f(y)].

The R stands for “reversed”; this is the generator for the random walk obtained by looking at the walk with time

reversed.

The generator of a random walk is very closely related to the walk. We will write Ex,Px to denote
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expectations and probabilities for random walk (both discrete and continuous time) assuming that

S0 = x or S̃0 = x. Then, it is easy to check that

Lf(y) = Ey[f(S1)]− f(y) =
d

dt
Ey[f(S̃t)]

∣

∣

∣

∣

t=0

.

(In the continuous-time case, some restrictions on the growth of f at infinity are needed.) Also,

the transition probabilities pn(x), p̃t(x) satisfy the following “heat equations”:

pn+1(x)− pn(x) = Lpn(x),
d

dt
p̃t(x) = Lp̃t(x).

The derivation of these equations uses the symmetry of p. For example to derive the first, we write

pn+1(x) =
∑

y∈Zd

P{S1 = y;Sn+1 − S1 = x− y}

=
∑

y∈Zd

p(y) pn(x− y)

=
∑

y∈Zd

p(−y) pn(x− y) = pn(x) + Lpn(x).

The generator L is also closely related to a second order differential operator. If u ∈ Rd is a unit

vector, we write ∂2
u for the second partial derivative in the direction u. Let L̂ be the operator

L̂f(y) =
1

2

∑

x∈V
κ(x) |x|2 ∂2

x/|x|f(y).

In the case of simple random walk, L̂ = (2d)−1 ∆, where ∆ denotes the usual Laplacian,

∆f(x) =

d
∑

j=1

∂xjxjf(y);

Taylor’s theorem shows that there is a c such that if f : Rd → R is C4 and y ∈ Zd,

|Lf(y)− L̂f(y)| ≤ cR4M4, (1.4)

where R is the range of the walk and M4 = M4(f, y) is the maximal absolute value of a fourth

derivative of f for |x− y| ≤ R. If the covariance matrix Γ is diagonalized,

Γx =

d
∑

j=1

σ2
j (x · uj)uj ,

where u1, . . . , ud is an orthonormal basis, then

L̂f(y) =
1

2

d
∑

j=1

σ2
j ∂

2
uj
f(y).

For future reference, we note that if y 6= 0,

L̂[logJ ∗(y)2] = L̂[logJ (y)2] = L̂



log

d
∑

j=1

σ−2
j (y · uj)2



 =
d− 2

J ∗(y)2
=

d− 2

dJ (y)2
. (1.5)
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♣The estimate (1.4) uses the symmetry of p. If p is mean zero and finite range, but not necessarily symmetric,

we can relate its generator to a (purely) second order differential operator, but the error involves the third

derivatives of f . This only requires f to be C3 and hence can be useful in the symmetric case as well.

1.6 Filtrations and strong Markov property

The basic property of a random walk is that the increments are independent and identically dis-

tributed. It is useful to set up a framework that allows more “information” at a particular time

than just the value of the random walk. This will not affect the distribution of the random walk

provided that this extra information is independent of the future increments of the walk.

A (discrete-time) filtration F0 ⊂ F1 ⊂ · · · is an increasing sequence of σ-algebras. If p ∈ Pd,
then we say that Sn is a random walk with increment distribution p with respect to {Fn} if:

• for each n, Sn is Fn-measurable;

• for each n > 0, Sn − Sn−1 is independent of Fn−1 and P{Sn − Sn−1 = x} = p(x).

Similarly, we define a (right continuous, continuous-time) filtration to be an increasing collection

of σ-algebras Ft satisfying Ft = ∩ǫ>0Ft+ǫ. If p ∈ Pd, then we say that S̃t is a continuous-time

random walk with increment distribution p with respect to {Ft} if:

• for each t, S̃t is Ft-measurable;

• for each s < t, S̃t − S̃s is independent of Fs and P{S̃t − S̃s = x} = p̃t−s(x).

We let F∞ denote the σ-algebra generated by the union of the Ft for t > 0.

If Sn is a random walk with respect to Fn, and T is a random variable independent of F∞,

then we can add information about T to the filtration and still retain the properties of the random

walk. We will describe one example of this in detail here; later on, we will do similar adding of

information without being explicit. Suppose T has an exponential distribution with parameter λ,

i.e., P{T > λ} = e−λ. Let F ′
n denote the σ-algebra generated by Fn and the events {T ≤ t} for

t ≤ n. Then {F ′
n} is a filtration, and Sn is a random walk with respect to F ′

n. Also, given F ′
n, then

on the event {T > n}, the random variable T − n has an exponential distribution with parameter

λ. We can do similarly for the continuous-time walk S̃t.

We will discuss stopping times and the strong Markov property. We will only do the slightly

more difficult continuous-time case leaving the discrete-time analogue to the reader. If {Ft} is a

filtration, then a stopping time with respect to {Ft} is a [0,∞]-valued random variable τ such that

for each t, {τ ≤ t} ∈ Ft. Associated to the stopping time τ is a σ-algebra Fτ consisting of all

events A such that for each t, A∩ {τ ≤ t} ∈ Ft. (It is straightforward to check that the set of such

A is a σ-algebra.)

Theorem 1.6.1 (Strong Markov Property) Suppose S̃t is a continuous-time random walk with

increment distribution p with respect to the filtration {Ft}. Suppose τ is a stopping time with respect

to the process. Then on the event {τ <∞} the process

Yt = S̃t+τ − S̃τ ,
is a continuous-time random walk with increment distribution p independent of Fτ .
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Proof (sketch) We will assume for ease that P{τ <∞} = 1. Note that with probability one Yt has

right-continuous paths. We first suppose that there exists 0 = t0 < t1 < t2 < . . . such that with

probability one τ ∈ {t0, t1, . . .}. Then, the result can be derived immediately, by considering the

countable collection of events {τ = tj}. For more general τ , let τn be the smallest dyadic rational

l/2n that is greater than τ . Then, τn is a stopping time and the result holds for τn. But,

Yt = lim
n→∞

S̃t+τn − S̃τn .

We will use the strong Markov property throughout this book often without being explicit about

its use.

Proposition 1.6.2 (Reflection Principle.) Suppose Sn (resp., S̃t) is a random walk (resp.,

continuous-time random walk) with increment distribution p ∈ Pd starting at the origin.

(a) If u ∈ Rd is a unit vector and b > 0,

P{ max
0≤j≤n

Sj · u ≥ b} ≤ 2 P{Sn · u ≥ b},

P{sup
s≤t

S̃s · u ≥ b} ≤ 2 P{S̃t · u ≥ b}.

(b) If b > 0,

P{ max
0≤j≤n

|Sj | ≥ b} ≤ 2 P{|Sn| ≥ b},

P{ sup
0≤s≤t

|S̃t| ≥ b} ≤ 2 P{|S̃t| ≥ b}.

Proof We will do the continuous-time case. To prove (a), fix t > 0 and a unit vector u and let

An = An,t,b be the event

An =

{

max
j=1,...,2n

S̃jt2−n · u ≥ b
}

.

The events An are increasing in n and right continuity implies that w.p.1,

lim
n→∞

An =

{

sup
s≤t

S̃s · u ≥ b
}

.

Hence, it suffices to show that for each n, P(An) ≤ 2 P{S̃t · u ≥ b}. Let τ = τn,t,b be the smallest j

such that S̃jt2−n · u ≥ b. Note that

2n
⋃

j=1

{

τ = j; (S̃t − S̃jt2−n) · u ≥ 0
}

⊂ {S̃t · u ≥ b}.

Since p ∈ P, symmetry implies that for all t, P{S̃t · u ≥ 0} ≥ 1/2. Therefore, using independence,

P{τ = j; (S̃t − S̃jt2−n) · u ≥ 0} ≥ (1/2) P{τ = j}, and hence

P{S̃t · u ≥ b} ≥
2n
∑

j=1

P
{

τ = j; (S̃t − S̃jt2−n) · u ≥ 0
}

≥ 1

2

2n
∑

j=1

P{τ = j} =
1

2
P(An).
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Part (b) is done similarly, by letting τ be the smallest j with {|S̃jt2−n | ≥ b} and writing

2n
⋃

j=1

{

τ = j; (S̃t − S̃jt2−n) · S̃jt2−n ≥ 0
}

⊂ {|S̃t| ≥ b}.

Remark. The only fact about the distribution p that is used in the proof is that it is symmetric

about the origin.

1.7 A word about constants

Throughout this book c will denote a positive constant that depends on the dimension d and the

increment distribution p but does not depend on any other constants. We write

f(n, x) = g(n, x) +O(h(n)),

to mean that there exists a constant c such that for all n,

|f(n, x)− g(n, x)| ≤ c |h(n)|.

Similarly, we write

f(n, x) = g(n, x) + o(h(n)),

if for every ǫ > 0 there is an N such that

|f(n, x)− g(n, x)| ≤ ǫ |h(n)|, n ≥ N.

Note that implicit in the definition is the fact that c,N can be chosen uniformly for all x. If f, g

are positive functions, we will write

f(n, x) ≍ g(n, x), n→∞,

if there exists a c (again, independent of x) such that for all n, x,

c−1 g(n, x) ≤ f(n, x) ≤ c g(n, x).

We will write similarly for asymptotics of f(t, x) as t→ 0.

As an example, let f(z) = log(1 − z), |z| < 1, where log denotes the branch of the complex

logarithm function with log 1 = 0. Then f is analytic in the unit disk with Taylor series expansion

log(1− z) = −
∞
∑

j=1

zj

j
.

By the remainder estimate, for every ǫ > 0,
∣

∣

∣

∣

∣

∣

log(1− z) +

k
∑

j=1

zj

j

∣

∣

∣

∣

∣

∣

≤ |z|k+1

ǫk (k + 1)
, |z| ≤ 1− ǫ.
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For a fixed value of k we can write this as

log(1− z) = −





k
∑

j=1

zj

j



+O(|z|k+1), |z| ≤ 1/2, (1.6)

or

log(1− z) = −





k
∑

j=1

zj

j



+Oǫ(|z|k+1), |z| ≤ 1− ǫ, (1.7)

where we write Oǫ to indicate that the constant in the error term depends on ǫ.

Exercises

Exercise 1.1 Show that there are exactly 2d − 1 additive subgroups of Zd of index 2. Describe

them and show that they all can arise from some p ∈ P. (A subgroup G of Zd has index two if

G 6= Zd but G ∪ (x+G) = Zd for some x ∈ Zd.)

Exercise 1.2 Show that if p ∈ Pd, n is a positive integer, and x ∈ Zd, then p2n(0) ≥ p2n(x).

Exercise 1.3 Show that if p ∈ P∗
d , then there exists a finite set {x1, . . . , xk} such that:

• p(xj) > 0, j = 1, . . . , k,

• For every y ∈ Zd, there exist (strictly) positive integers n1, . . . , nk with

n1 x1 + · · ·+ nk xk = y. (1.8)

(Hint: first write each unit vector ±ej in the above form with perhaps different sets

{x1, . . . , xk}. Then add the equations together.)

Use this to show that there exist ǫ > 0, q ∈ P ′
d, q

′ ∈ P∗
d such that q has finite support and

p = ǫ q + (1− ǫ) q′.

Note that (1.8) is used with y = 0 to guarantee that q has zero mean.

Exercise 1.4 Suppose that Sn = X1 + · · · + Xn where X1,X2, . . . are independent Rd-valued

random variables with mean zero and covariance matrix Γ. Show that

Mn := |Sn|2 − (trΓ)n

is a martingale.

Exercise 1.5 Suppose that p ∈ P ′
d ∪ Pd with covariance matrix Γ = ΛΛT and Sn is the corre-

sponding random walk. Show that

Mn := J (Sn)
2 − n

is a martingale.
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Exercise 1.6 Let L be a 2-dimensional lattice contained in Rd and suppose x1, x2 ∈ L are points

such that

|x1| = min{|x| : x ∈ L \ {0}},

|x2| = min{|x| : x ∈ L \ {jx1 : j ∈ Z} }.
Show that

L = {j1x1 + j2x2 : j1, j2 ∈ Z}.
You may wish to compare this to the remark after Proposition 1.3.1.

Exercise 1.7 Let S1
n, S

2
n be independent simple random walks in Z and let

Yn =

(

S1
n + S2

n

2
,

S1
n − S2

n

2

)

,

Show that Yn is a simple random walk in Z2.

Exercise 1.8 Suppose Sn is a random walk with increment distribution p ∈ P∗ ∪ P. Show that

there exists an ǫ > 0 such that for every unit vector θ ∈ Rd, P{S1 · θ ≥ ǫ} ≥ ǫ.
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Local Central Limit Theorem

2.1 Introduction

If X1,X2, . . . are independent, identically distributed random variables in R with mean zero and

variance σ2, then the central limit theorem (CLT) states that the distribution of

X1 + · · ·+Xn√
n

(2.1)

approaches that of a normal distribution with mean zero and variance σ2. In other words, for

−∞ < r < s <∞,

lim
n→∞

P
{

r ≤ X1 + · · ·+Xn√
n

≤ s
}

=

∫ s

r

1√
2πσ2

e−
y2

2σ2 dy.

If p ∈ P1 is aperiodic with variance σ2, we can use this to motivate the following approximation:

pn(k) = P{Sn = k} = P
{

k√
n
≤ Sn√

n
<
k + 1√
n

}

≈
∫ (k+1)/

√
n

k/
√
n

1√
2πσ2

e−
y2

2σ2 dy ≈ 1√
2πσ2n

exp

{

− k2

2σ2n

}

.

Similarly, if p ∈ P1 is bipartite, we can conjecture that

pn(k) + pn(k + 1) ≈
∫ (k+2)/

√
n

k/
√
n

1√
2πσ2

e−
y2

2σ2 dy ≈ 2√
2πσ2n

exp

{

− k2

2σ2n

}

.

The local central limit theorem (LCLT) justifies this approximation.

♣ One gets a better approximation by writing

P{Sn = k} = P
{

k − 1
2√
n
≤ Sn√

n
<
k + 1

2√
n

}

≈
∫ (k+ 1

2
)/

√
n

(k− 1
2
)/

√
n

1√
2πσ2n

e−
y2

2σ2 dy.

If p ∈ Pd with covariance matrix Γ = ΛΛT = Λ2, then the normalized sums (2.1) approach a

joint normal random variable with covariance matrix Γ, i.e., a random variable with density

f(x) =
1

(2π)d/2 (det Λ)
e−|Λ−1x|2/2 =

1

(2π)d/2
√

det Γ
e−(x·Γ−1x)/2.

24
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(See Section 12.3 for a review of the joint normal distribution.) A similar heuristic argument can

be given for pn(x). Recall from (1.1) that J ∗(x)2 = x · Γ−1x. Let pn(x) denote the estimate of

pn(x) that one obtains by the central limit theorem argument,

pn(x) =
1

(2πn)d/2
√

det Γ
e−

J∗(x)2

2n =
1

(2π)d nd/2

∫

Rd

e
i s·x√

n e−
s·Γs

2 dds. (2.2)

The second equality is a straightforward computation, see (12.14). We define pt(x) for real t > 0

in the same way. The LCLT states that for large n, pn(x) is approximately pn(x). To be more

precise, we will say that an aperiodic p satisfies the LCLT if

lim
n→∞

nd/2 sup
x∈Zd

|pn(x)− pn(x)| = 0.

A bipartite p satisfies the LCLT if

lim
n→∞

nd/2 sup
x∈Zd

|pn(x) + pn+1(x)− 2pn(x)| = 0.

In this weak form of the LCLT we have not made any estimate of the error term |pn(x)− pn(x)|
other than that it goes to zero faster than n−d/2 uniformly in x. Note that pn(x) is bounded by

c n−d/2 uniformly in x. This is the correct order of magnitude for |x| of order
√
n but pn(x) is

much smaller for larger |x|. We will prove a LCLT for any mean zero distribution with finite second

moment. However, the LCLT we state now for p ∈ Pd includes error estimates that do not hold for

all p ∈ P ′
d.

Theorem 2.1.1 (Local Central Limit Theorem) If p ∈ Pd is aperiodic, and pn(x) is as defined

in (2.2), then there is a c and for every integer k ≥ 4 there is a c(k) <∞ such that for all integers

n > 0 and x ∈ Zd the following hold where z = x/
√
n:

|pn(x)− pn(x)| ≤
c(k)

n(d+2)/2

[

(|z|k + 1) e−
J∗(z)2

2 +
1

n(k−3)/2

]

, (2.3)

|pn(x)− pn(x)| ≤
c

n(d+2)/2 |z|2 . (2.4)

We will prove this result in a number of steps in Section 2.3. Before doing so, let us consider

what the theorem states. Plugging k = 4 into (2.3) implies that

|pn(x)− pn(x)| ≤
c

n(d+2)/2
. (2.5)

For “typical” x with |x| ≤ √n, pn(x) ≍ n−d/2. Hence (2.5) implies

pn(x) = pn(x)

[

1 +O

(

1

n

)]

, |x| ≤ √n.

The error term in (2.5) is uniform over x, but as |x| grows, the ratio between the error term and

pn(x) grows. The inequalities (2.3) and (2.4) are improvements on the error term for |x| ≥ √n.

Since pn(x) ≍ n−d/2 e−J ∗(x)2/2n, (2.3) implies

pn(x) = pn(x)

[

1 +
Ok(|x/

√
n|k)

n

]

+Ok

(

1

n(d+k−1)/2

)

, |x| ≥ √n,
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where we write Ok to emphasize that the constant in the error term depends on k.

An even better improvement is established in Section 2.3.1 where it is shown that

pn(x) = pn(x) exp

{

O

(

1

n
+
|x|4
n3

)}

, |x| < ǫn.

Although Theorem 2.1.1 is not as useful for atypical x, simple large deviation results as given in

the next propositions often suffice to estimate probabilities.

Proposition 2.1.2

• Suppose p ∈ P ′
d and Sn is a p-walk starting at the origin. Suppose k is a positive integer

such that E[|X1|2k] <∞. There exists c <∞ such that for all s > 0

P
{

max
0≤j≤n

|Sj | ≥ s
√
n

}

≤ c s−2k. (2.6)

• Suppose p ∈ Pd and Sn is a p-walk starting at the origin. There exist β > 0 and c <∞ such

that for all n and all s > 0,

P
{

max
0≤j≤n

|Sj | ≥ s
√
n

}

≤ c e−βs2 . (2.7)

Proof It suffices to prove the results for one-dimensional walks. See Corollaries 12.2.6 and 12.2.7.

♣ The statement of the LCLT given here is stronger than is needed for many applications. For example, to

determine whether the random walk is recurrent or transient, we only need the following corollary. If p ∈ Pd

is aperiodic, then there exist 0 < c1 < c2 < ∞ such that for all x, pn(x) ≤ c2 n
−d/2, and for |x| ≤ √n,

pn(x) ≥ c1 n
−d/2. The exponent d/2 is important to remember and can be understood easily. In n steps, the

random walk tends to go distance
√
n. In Zd, there are of order nd/2 points within distance

√
n of the origin.

Therefore, the probability of being at a particular point should be of order n−d/2.

The proof of Theorem 2.1.1 in Section 2.2 will use the characteristic function. We discuss LCLTs

for p ∈ P ′
d, where, as before, P ′

d denotes the set of aperiodic, irreducible increment distributions p

in Zd with mean zero and finite second moment. In the proof of Theorem 2.1.1, we will see that

we do not need to assume that the increments are bounded. For fixed k ≥ 4, (2.3) holds for p ∈ P ′
d

provided that E[|X|k+1] < ∞ and the third moments of p vanish. The inequalities (2.5) and (2.4)

need only finite fourth moments and vanishing third moments. If p ∈ P ′
d has finite third moments

that are nonzero, we can prove a weaker version of (2.3). Suppose k ≥ 3, and E[|X1|k+1] < ∞.

There exists c(k) <∞ such that

|pn(x)− pn(x)| ≤
c(k)

n(d+1)/2

[

(|z|k + 1) e−
J∗(z)2

2 +
1

n(k−2)/2

]

.

Also, for any p ∈ P ′
d with E[|X1|3] <∞,

|pn(x)− pn(x)| ≤
c

n(d+1)/2
, |pn(x)− pn(x)| ≤

c

n(d−1)/2 |x|2 .

We focus our discussion in Section 2.2 on aperiodic, discrete-time walks, but the next theorem
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shows that we can deduce the results for bipartite and continuous-time walks from LCLT for

aperiodic, discrete-time walks. We state the analogue of (2.3); the analogue of (2.4) can be proved

similarly.

Theorem 2.1.3 If p ∈ Pd and pn(x) is as defined in (2.2), then for every k ≥ 4 there is a

c = c(k) <∞ such that the follwing holds for all x ∈ Zd.

• If n is a positive integer and z = x/
√
n, then

|pn(x) + pn+1(x)− 2 pn(x)| ≤
c

n(d+2)/2

[

(|z|k + 1) e−J ∗(z)2/2 +
1

n(k−3)/2

]

. (2.8)

• If f t > 0 and z = x/
√
t,

|p̃t(x)− pt(x)| ≤
c

t(d+2)/2

[

(|z|k + 1) e−J ∗(y)2/2 +
1

t(k−3)/2

]

. (2.9)

Proof (assuming Theorem 2.1.1) We only sketch the proof. If p ∈ Pd is bipartite, then S∗
n := S2n

is an aperiodic walk on the lattice Zde. We can establish the result for S∗
n by mapping Zde to Zd as

described in Section 1.3. This gives the asymptotics for p2n(x), x ∈ Zde and for x ∈ Zdo, we know

that

p2n+1(x) =
∑

y∈Zd

p2n(x− y) p(y).

The continuous-time walk viewed at integer times is the discrete-time walk with increment dis-

tribution p̃ = p̃1. Since p̃ satisfies all the moment conditions, (2.3) holds for p̃n(x), n = 0, 1, 2, . . . .

If 0 < t < 1, we can write

p̃n+t(x) =
∑

y∈Zd

p̃n(x− y) p̃t(y),

and deduce the result for all t.

2.2 Characteristic Functions and LCLT

2.2.1 Characteristic functions of random variables in Rd

One of the most useful tools for studying the distribution of the sums of independent random

variables is the characteristic function. If X = (X1, . . . ,Xd) is a random variable in Rd, then its

characteristic function φ = φX is the function from Rd into C given by

φ(θ) = E[exp{iθ ·X}].

Proposition 2.2.1 Suppose X = (X1, . . . ,Xd) is a random variable in Rd with characteristic

function φ.

(a) φ is a uniformly continuous function with φ(0) = 1 and |φ(θ)| ≤ 1 for all θ ∈ Rd.

(b) If θ ∈ Rd then φX,θ(s) := φ(sθ) is the characteristic function of the one-dimensional random

variable X · θ.
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(c) Suppose d = 1 and m is a positive integer with E[|X|m] <∞. Then φ(s) is a Cm function of

s; in fact,

φ(m)(s) = im E[XmeisX ].

(d) If m is a positive integer, E[|X|m] <∞, and |u| = 1, then
∣

∣

∣

∣

∣

∣

φ(su)−
m−1
∑

j=0

ij E[(X · u)j ]
j!

sj

∣

∣

∣

∣

∣

∣

≤ E[|X · u|m]

m!
|s|m.

(e) If X1,X2, . . . ,Xn are independent random variables in Rd, with characteristic functions

φX1 , . . . , φXn , then

φX1+···+Xn(θ) = φX1(θ) · · ·φXn(θ).

In particular, if X1,X2, . . . are independent, identically distributed with the same distribution as

X, then the characteristic function of Sn = X1 + · · ·+Xn is given by

φSn(θ) = [φ(θ)]n.

Proof To prove uniform continuity, note that

|φ(θ1 + θ)− φ(θ)| = |E[eiX(θ1+θ) − eiXθ]| ≤ E[|eiXθ1 − 1|],
and the dominated convergence theorem implies that

lim
θ1→0

E[|eiXθ1 − 1|] = 0.

The other statements in (a) and (b) are immediate. Part (c) is derived by differentiating; the

condition E[|X|m] < ∞ is needed to justify the differentiation using the dominated convergence

theorem (details omitted). Part (d) follows from (b), (c), and Taylor’s theorem with remainder.

Part (e) is immediate from the product rule for expectations of independent random variables.

We will write Pm(θ) for the m-th order Taylor series approximation of φ about the origin. Then

the last proposition implies that if E[|X|m] <∞, then

φ(θ) = Pm(θ) + o(|θ|m), θ → 0. (2.10)

Note that if E[X] = 0 and E[|X|2] <∞, then

P2(θ) = 1− 1

2

d
∑

j=1

d
∑

k=1

E[XjXk] θj θk = 1− θ · Γθ
2

= 1− E[(X · θ)2]
2

.

Here Γ denotes the covariance matrix for X. If E[|X|m] <∞, we write

Pm(θ) = 1− θ · Γθ
2

+

m
∑

j=3

qj(θ), (2.11)

where qj are homogeneous polynomials of degree j determined by the moments of X. If all the

third moments of X exist and equal zero, q3 ≡ 0. If X has a symmetric distribution, then qj ≡ 0

for all odd j for which E[|X|j ] <∞.
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2.2.2 Characteristic functions of random variables in Zd

If X = (X1, . . . ,Xd) is a Zd-valued random variable, then its characteristic function has period 2π

in each variable, i.e., if k1, . . . , kd are integers,

φ(θ1, . . . , θd) = φ(θ1 + 2k1π, . . . , θ
d + 2kdπ).

The characteristic function determines the distribution of X; in fact, the next proposition gives a

simple inversion formula. Here, and for the remainder of this section, we will write dθ for dθ1 · · · dθd.

Proposition 2.2.2 If X = (X1, . . . ,Xd) is a Zd-valued random variable with characteristic func-

tion φ, then for every x ∈ Zd,

P{X = x} =
1

(2π)d

∫

[−π,π]d
φ(θ) e−ix·θ dθ.

Proof Since

φ(θ) = E[eiX·θ] =
∑

y∈Zd

eiy·θ P{X = y},

we get
∫

[−π,π]d
φ(θ) e−ix·θ dθ =

∑

y∈Zd

P{X = y}
∫

[−π,π]d
ei(y−x)·θ dθ.

(The dominated convergence theorem justifies the interchange of the sum and the integral.) But,

if x, y ∈ Zd,
∫

[−π,π]d
ei(y−x)·θ dθ =

{

(2π)d, y = x

0, y 6= x.

Corollary 2.2.3 Suppose X1,X2, . . . are independent, identically distributed random variables in

Zd with characteristic function φ. Let Sn = X1 + · · ·+Xn. Then, for all x ∈ Zd,

P{Sn = x} =
1

(2π)d

∫

[−π,π]d
φn(θ) e−ix·θ dθ.

2.3 LCLT — characteristic function approach

In some sense, Corollary 2.2.3 completely solves the problem of determining the distribution of

a random walk at a particular time n. However, the integral is generally hard to evaluate and

estimation of oscillatory integrals is tricky. Fortunately, we can use this corollary as a starting

point for deriving the local central limit theorem. We will consider p ∈ P ′ in this section. Here, as

before, we write pn(x) for the distribution of Sn = X1 + · · ·+Xn where X1, . . . ,Xn are independent

with distribution p. We also write S̃t for a continuous time walk with rates p. We let φ denote the

characteristic function of p,

φ(θ) =
∑

x∈Zd

eiθ·x p(x).
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We have noted that the characteristic function of Sn is φn.

Lemma 2.3.1 The characteristic function of S̃t is

φS̃t
(θ) = exp{t[φ(θ)− 1]}.

Proof Since S̃t has the same distribution as SNt where Nt is an independent Poisson process with

parameter 1, we get

φS̃t
(θ) = E[eiθ·S̃t ] =

∞
∑

j=0

e−t
tj

j!
E[eiθ·Sj ] =

∞
∑

j=0

e−t
tj

j!
φ(θ)j = exp{t[φ(θ)− 1]}.

Corollary 2.2.3 gives the formulas

pn(x) =
1

(2π)d

∫

[−π,π]d
φn(θ) e−iθ·x dθ, (2.12)

p̃t(x) =
1

(2π)d

∫

[−π,π]d
et[φ(θ)−1] e−iθ·x dθ.

Lemma 2.3.2 Suppose p ∈ P ′
d.

(a) For every ǫ > 0,

sup
{

|φ(θ)| : θ ∈ [−π, π]d, |θ| ≥ ǫ
}

< 1.

(b) There is a b > 0 such that for all θ ∈ [−π, π]d,

|φ(θ)| ≤ 1− b|θ|2. (2.13)

In particular, for all θ ∈ [−π, π]d, and r > 0,

|φ(θ)|r ≤
[

1− b|θ|2
]r ≤ exp

{

−br|θ|2
}

. (2.14)

Proof By continuity and compactness, to prove (a) it suffices to prove that |φ(θ)| < 1 for all

θ ∈ [−π, π]d \ {0}. To see this, suppose that |φ(θ)| = 1. Then |φ(θ)n| = 1 for all positive integers

n. Since

φ(θ)n =
∑

z∈Zd

pn(z) e
iz·θ,

and for each fixed z, pn(z) > 0 for all sufficiently large n, we see that eiz·θ = 1 for all z ∈ Zd.
(Here we use the fact that if w1, w2, . . . ∈ C with |w1 + w2 + · · · | = 1 and |w1| + |w2| + · · · = 1,

then there is a ψ such that wj = rje
iψ with rj ≥ 0.) The only θ ∈ [−π, π]d that satisfies this is

θ = 0. Using (a), it suffices to prove (2.13) in a neighborhood of the origin, and this follows from

the second-order Taylor series expansion (2.10).

♣The last lemma does not hold for bipartite p. For example, for simple random walk φ(πi, πi, . . . , πi) = −1.
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In order to illustrate the proof of the local central limit theorem using the characteristic function,

we will consider the one-dimensional case with p(1) = p(−1) = 1/4 and p(0) = 1/2. Note that

this increment distribution is the same as the two-step distribution of (1/2 times) the usual simple

random walk. The characteristic function for p is

φ(θ) =
1

2
+

1

4
eiθ +

1

4
e−iθ =

1

2
+

1

2
cos θ = 1− θ2

4
+O(θ4).

The inversion formula (2.12) tells us that

pn(x) =
1

2π

∫ π

−π
e−ixθ φ(θ)n dθ =

1

2π
√
n

∫ π
√
n

−π√n
e−i(x/

√
n)s φ(s/

√
n)n ds.

The second equality follows from the substitution s = θ
√
n. For |s| ≤ π√n, we can write

φ

(

s√
n

)

= 1− s2

4n
+O

(

s4

n2

)

= 1− (s2/4) +O(s4/n)

n
.

We can find δ > 0 such that if |s| ≤ δ√n,
∣

∣

∣

∣

s2

4
+O

(

s4

n

)∣

∣

∣

∣

≤ n

2
.

Therefore, using (12.3), if |s| ≤ δ√n,

φ

(

s√
n

)n

=

[

1− s2

4n
+O

(

s4

n2

)]n

= e−s
2/4 eg(s,n),

where

|g(s, n)| ≤ c s
4

n
.

If ǫ = min{δ, 1/
√

8c} we also have

|g(s, n)| ≤ s2

8
, |s| ≤ ǫ√n.

For ǫ
√
n < |s| ≤ π

√
n, (2.13) shows that |e−i(x/

√
n)s φ(s/

√
n)n| ≤ e−βn for some β > 0. Hence, up

to an error that is exponentially small in n, pn(x) equals

1

2π
√
n

∫ ǫ
√
n

−ǫ√n
e−i(x/

√
n)s e−s

2/4 eg(s,n) ds.

We now use

|eg(s,n) − 1| ≤
{

c s4/n, |s| ≤ n1/4

es
2/8, n1/4 < |s| ≤ ǫ√n

to bound the error term as follows:
∣

∣

∣

∣

∣

1

2π
√
n

∫ ǫ
√
n

−ǫ√n
e−i(x/

√
n)s e−s

2/4 [eg(s,n) − 1] ds

∣

∣

∣

∣

∣

≤ c√
n

∫ ǫ
√
n

−ǫ√n
e−s

2/4 |eg(s,n) − 1| ds,

∫ n1/4

−n−1/4

e−s
2/4 |eg(s,n) − 1| ds ≤ c

n

∫ ∞

−∞
s4 e−s

2/4 ds ≤ c

n
,
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∫

n1/4≤|s|≤ǫ√n
e−s

2/4 |eg(s,n) − 1| ds ≤
∫

|s|≥n1/4

e−s
2/8 ds = o(n−1).

Hence we have

pn(x) = O

(

1

n3/2

)

+
1

2π
√
n

∫ ǫ
√
n

−ǫ√n
e−i(x/

√
n)s e−s

2/4 ds

= O

(

1

n3/2

)

+
1

2π
√
n

∫ ∞

−∞
e−i(x/

√
n)s e−s

2/4 ds.

The last term equals pn(x), see (2.2), and so we have shown that

pn(x) = pn(x) +O

(

1

n3/2

)

.

We will follow this basic line of proof for theorems in this subsection. Before proceeding, it will be

useful to outline the main steps.

• Expand log φ(θ) in a neighborhood |θ| < ǫ about the origin.

• Use this expansion to approximate [φ(θ/
√
n)]n, which is the characteristic function of Sn/

√
n.

• Use the inversion formula to get an exact expression for the probability and do a change of

variables s = θ
√
n to yield an integral over [−π√n, π√n]d. Use Lemma 2.3.2 to show that the

integral over |θ| ≥ ǫ√n is exponentially small.

• Use the approximation of [φ(θ/
√
n)]n to compute the dominant term and to give an expression

for the error term that needs to be estimated.

• Estimate the error term.

Our first lemma discusses the approximation of the characteristic function of Sn/
√
n by an

exponential. We state the lemma for all p ∈ P ′
d, and then give examples to show how to get sharper

results if one makes stronger assumptions on the moments.

Lemma 2.3.3 Suppose p ∈ P ′
d with covariance matrix Γ and characteristic function φ that we

write as

φ(θ) = 1− θ · Γθ
2

+ h(θ),

where h(θ) = o(|θ|2) as θ → 0. There exist ǫ > 0, c < ∞ such that for all positive integers n and

all |θ| ≤ ǫ√n, we can write
[

φ

(

θ√
n

)]n

= exp

{

−θ · Γθ
2

+ g(θ, n)

}

= e−
θ·Γθ

2 [1 + Fn(θ)] , (2.15)

where Fn(θ) = eg(θ,n) − 1 and

|g(θ, n)| ≤ min

{

θ · Γθ
4

, n

∣

∣

∣

∣

h

(

θ√
n

)∣

∣

∣

∣

+
c|θ|4
n

}

. (2.16)

In particular,

|Fn(θ)| ≤ e
θ·Γθ

4 + 1.
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Proof Choose δ > 0 such that

|φ(θ)− 1| ≤ 1

2
, |θ| ≤ δ.

For |θ| ≤ δ, we can write

log φ(θ) = −θ · Γθ
2

+ h(θ)− (θ · Γθ)2
8

+O(|h(θ)| |θ|2) +O(|θ|6). (2.17)

Define g(θ, n) by

n log φ

(

θ√
n

)

= −θ · Γθ
2

+ g(θ, n),

so that (2.15) holds. Note that

|g(θ, n)| ≤ n
∣

∣

∣

∣

h

(

θ√
n

)∣

∣

∣

∣

+O

( |θ|4
n

)

.

Since nh(θ/
√
n) = o(|θ|2), we can find 0 < ǫ ≤ δ such that for |θ| ≤ ǫ√n,

|g(θ, n)| ≤ θ · Γθ
4

.

♣ The proofs will require estimates for Fn(θ). The inequality |ez − 1| ≤ O(|z|) is valid if z is restricted to a
bounded set. Hence, the basic strategy is to find c1, r(n) ≤ O(n1/4) such that

n

∣

∣

∣

∣

h

(

θ√
n

)∣

∣

∣

∣

≤ c1, |θ| ≤ r(n)

Since O(|θ|4/n) ≤ O(1) for |θ| ≤ n1/4, (2.16) implies

|Fn(θ)| =
∣

∣

∣eg(θ,n) − 1
∣

∣

∣ ≤ c |g(θ, n)| ≤ c
[

n

∣

∣

∣

∣

h

(

θ√
n

)∣

∣

∣

∣

+
|θ|4
n2

]

, |θ| ≤ r(n),

|Fn(θ)| ≤ e θ·Γθ
4 + 1, r(n) ≤ |θ| ≤ ǫ√n.

Examples

We give some examples with different moment assumptions. In the discussion below, ǫ is as in

Lemma 2.3.3 and θ is restricted to |θ| ≤ ǫ√n.

• If E[|X1|4] <∞, then by (2.11),

h(θ) = q3(θ) +O(|θ|4),
and

log φ(θ) = −θ · Γθ
2

+ f3(θ) +O(|θ|4),

where f3 = q3 is a homogeneous polynomial of degree three. In this case,

g(θ, n) = n f3

(

θ√
n

)

+
O(|θ|4)
n

, (2.18)
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and there exists c <∞ such that

|g(θ, n)| ≤ min

{

θ · Γθ
4

,
c |θ|3√
n

}

.

We use here and below the fact that |θ|3/√n ≥ |θ|4/n for |θ| ≤ ǫ√n.

• If E[X1|6] <∞ and all the third and fifth moments of X1 vanish, then

h(θ) = q4(θ) +O(|θ|6),

log φ(θ) = −θ · Γθ
2

+ f4(θ) +O(|θ|6),

where f4(θ) = q4(θ)− (θ · Γθ)2/8 is a homogeneous polynomial of degree four. In this case,

g(θ, n) = n f4

(

θ√
n

)

+
O(|θ|6)
n2

, (2.19)

and there exists c <∞ such that

|g(θ, n)| ≤ min

{

θ · Γθ
4

,
c |θ|4
n

}

.

• More generally, suppose that k ≥ 3 is a positive integer such that E[|X1|k+1] <∞. Then

h(θ) =

k
∑

j=3

qj(θ) +O(|θ|k+1),

log φ(θ) = −θ · Γθ
2

+

k
∑

j=3

fj(θ) +O(|θ|k+1),

where fj are homogeneous polynomials of degree j that are determined by Γ, q3, . . . , qk. In this

case,

g(θ, n) =
k
∑

j=3

n fj

(

θ√
n

)

+
O(|θ|k+1)

n(k−1)/2
, (2.20)

Moreover, if j is odd and all the odd moments of X of degree less than or equal to j vanish, then

fj ≡ 0. Also,

|g(θ, n)| ≤ min

{

θ · Γθ
4

,
c |θ|2+α
nα/2

}

,

where α = 2 if the third moments vanish and otherwise α = 1.

• Suppose E[eb·X ] <∞ for all b in a real neighborhood of the origin. Then z 7→ φ(z) = eiz·X1 is a

holomorphic function from a neighborhood of the origin in Cn to C. Hence, we can choose ǫ so

that log φ(z) is holomorphic for |z| < ǫ and hence z 7→ g(z, n) and z 7→ Fn(z) are holomorphic

for |z| < ǫ
√
n.

The next lemma computes the dominant term and isolates the integral that needs to be estimated

in order to obtain error bounds.
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Lemma 2.3.4 Suppose p ∈ P ′
d with covariance matrix Γ. Let φ, ǫ, Fn be as in Lemma 2.3.3. There

exist c <∞, ζ > 0 such that for all 0 ≤ r ≤ ǫ√n, if we define vn(x, r) by

pn(x) = pn(x) + vn(x, r) +
1

(2π)d nd/2

∫

|θ|≤r
e
− ix·θ√

n e−
θ·Γθ

2 Fn(θ) dθ,

then

|vn(x, r)| ≤ c n−d/2 e−ζr
2
.

Proof The inversion formula (2.12) gives

pn(x) =
1

(2π)d

∫

[−π,π]d
φ(θ)n e−ix·θ dθ =

1

(2π)d nd/2

∫

[−√
nπ,

√
nπ]d

φ

(

s√
n

)n

e−iz·s ds,

where z = x/
√
n. Lemma 2.3.2 implies that there is a β > 0 such that |φ(θ)| ≤ e−β for |θ| ≥ ǫ.

Therefore,

1

(2π)d nd/2

∫

[−√
nπ,

√
nπ]d

φ

(

s√
n

)n

e−iz·s ds = O(e−βn) +
1

(2π)d nd/2

∫

|θ|≤ǫ√n
φ

(

s√
n

)n

e−iz·s ds.

For |s| ≤ ǫ√n, we write

φ

(

s√
n

)n

= e−
s·Γs

2 + e−
s·Γs

2 Fn(s).

By (2.2) we have

1

(2π)d nd/2

∫

Rd

e−iz·s e−
s·Γs

2 ds = pn(x). (2.21)

Also,
∣

∣

∣

∣

∣

1

(2π)d nd/2

∫

|s|≥ǫ√n
e−iz·s e−

s·Γs
2 ds

∣

∣

∣

∣

∣

≤ 1

(2π)d nd/2

∫

|s|≥ǫ√n
e−

s·Γs
2 ds ≤ O(e−βn),

for perhaps a different β. Therefore,

pn(x) = pn(x) +O(e−βn) +
1

(2π)d nd/2

∫

|θ|≤ǫ√n
e

−ix·θ√
n e−

θ·Γθ
2 Fn(θ) dθ.

This gives the result for r = ǫ
√
n. For other values of r, we use the estimate

|Fn(θ)| ≤ e
θ·Γθ

4 + 1,

to see that
∣

∣

∣

∣

∣

∫

r≤|θ|≤ǫ√n
e

−ix·θ√
n e−

θ·Γθ
2 Fn(θ) dθ

∣

∣

∣

∣

∣

≤ 2

∫

|θ|≥r
e−

θ·Γθ
4 dθ = O(e−ζr

2
).

The next theorem establishes LCLTs for p ∈ P ′ with finite third moment and p ∈ P ′ with finite

fourth moment and vanishing third moments. It gives an error term that is uniform over all x ∈ Zd.
The estimate is good for typical x, but is not very sharp for atypically large x.
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Theorem 2.3.5 Suppose p ∈ P ′ with E[|X1|3] <∞. Then there exists a c <∞ such for all n, x,

|pn(x)− pn(x)| ≤
c

n(d+1)/2
. (2.22)

If E[|X1|4] <∞ and all the third moments of X1 are zero, then there is a c such that for all n, x,

|pn(x)− pn(x)| ≤
c

n(d+2)/2
. (2.23)

Proof We use the notations of Lemmas 2.3.3 and 2.3.4. Letting r = n1/8 in Lemma 2.3.4, we see

that,

pn(x) = pn(x) +O(e−βn
1/4

) +
1

(2π)d nd/2

∫

|θ|≤n1/8

e
− ix·θ√

n e−
θ·Γθ

2 Fn(θ) dθ.

Note that |h(θ)| = O(|θ|2+α) where α = 1 under the weaker assumption and α = 2 under the

stronger assumption. For |θ| ≤ n1/8, |g(θ, n)| ≤ c |θ|2+α/nα/2, and hence

|Fn(θ)| ≤ c
|θ|2+α
nα/2

.

This implies
∣

∣

∣

∣

∣

∫

|θ|≤n1/8

e
− ix·θ√

n e−
θ·Γθ

2 Fn(θ) dθ

∣

∣

∣

∣

∣

≤ c

nα/2

∫

Rd

|θ|2+α e− θ·Γθ
2 dθ ≤ c

nα/2
.

♣ The choice r = n1/8 in the proof above was somewhat arbitrary. The value r was chosen sufficiently large

so that the error term vn(x, r) from Lemma 2.3.4 decays faster than any power of n but sufficiently small so that

|g(θ, n)| is uniformly bounded for |θ| ≤ r. We could just as well have chosen r(n) = nκ for any 0 < κ ≤ 1/8.

♣ The constant c in (2.22) and (2.23) depends on the particular p. However, by careful examination of the

proof, one can get uniform estimates for all p satisfying certain conditions. The error in the Taylor polynomial

approximation of the characteristic function can be bounded in terms of the moments of p. One also needs a

uniform bound such as (2.13) which guarantees that the walk is not too close to being a bipartite walk. Such

uniform bounds on rates of convergence in CLT or LCLT are often called Berry-Esseen bounds. We will need one

such result, see Proposition 2.3.13, but for most of this book, the walk p is fixed and we just allow constants to

depend on p.

The estimate (2.5) is a special case of (2.23). We have shown that (2.5) holds for any symmetric

p ∈ P ′ with E[|X1|4] <∞. One can obtain a difference estimate for pn(x) from (2.5). However, we

will give another proof below that requires only third moments of the increment distribution. This

theorem also gives a uniform bound on the error term.

♣ If α 6= 0 and

f(n) = nα +O(nα−1), (2.24)
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then

f(n+ 1)− f(n) = [(n+ 1)α − nα] + [O((n+ 1)α−1)−O(nα−1)].

This shows that f(n + 1) − f(n) = O(nα−1), but the best that we can write about the error terms is O((n +

1)α−1) − O(nα−1) = O(nα−1), which is as large as the dominant term. Hence an expression such as (2.24) is

not sufficient to give good asymptotics on differences of f . One strategy for proving difference estimates is to go

back to the derivation of (2.24) to see if the difference of the errors can be estimated. This is the approach used

in the next theorem.

Theorem 2.3.6 Suppose p ∈ P ′
d with E[|X1|3] <∞. Let ∇y denote the differences in the x variable,

∇ypn(x) = pn(x+ y)− pn(x), ∇ypn(x) = pn(x+ y)− pn(x),

and ∇j = ∇ej .

• There exists c <∞ such that for all x, n, y,

|∇ypn(x)−∇ypn(x)| ≤
c |y|

n(d+2)/2
.

• If E[|X1|4] < ∞ and all the third moments of X1 vanish, there exists c < ∞ such that for

all x, n, y,

|∇ypn(x)−∇ypn(x)| ≤
c |y|

n(d+3)/2
.

Proof By the triangle inequality, it suffices to prove the result for y = ej , j = 1, . . . , d. Let α = 1

under the weaker assumptions and α = 2 under the stronger assumptions. As in the proof of

Theorem 2.3.5, we see that

∇jpn(x) = ∇jpn(x) +O(e−βn
1/4

) +
1

(2π)d nd/2

∫

|θ|≤n1/8

[

e
− i(x+ej)·θ

√
n − e−

ix·θ√
n

]

e−
θ·Γθ

2 Fn(θ) dθ.

Note that
∣

∣

∣

∣

e
− i(x+ej)·θ

√
n − e−

ix·θ√
n

∣

∣

∣

∣

=

∣

∣

∣

∣

e
− iej ·θ√

n − 1

∣

∣

∣

∣

≤ |θ|√
n
,

and hence
∣

∣

∣

∣

∣

∫

|θ|≤n1/8

[

e
− i(x+ej)·θ

√
n − e−

ix·θ√
n

]

e−
θ·Γθ

2 Fn(θ) dθ

∣

∣

∣

∣

∣

≤ 1√
n

∫

|θ|≤n1/8

|θ| e− θ·Γθ
2 |Fn(θ)| dθ.

The estimate
∫

|θ|≤n1/8

|θ| e− θ·Γθ
2 |Fn(θ)| dθ ≤

c

nα/2
,

where α = 1 under the weaker assumption and α = 2 under the stronger assumption, is done as in

the previous theorem.
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The next theorem improves the LCLT by giving a better error bound for larger x. The basic

strategy is to write Fn(θ) as the sum of a dominant term and an error term. This requires a stronger

moment condition. If E[|X1|j ] < ∞, let fj be the homogeneous polynomial of degree j defined in

(2.20). Let

uj(z) =
1

(2π)d

∫

Rd

e−is·z fj(s) e−
s·Γs

2 ds. (2.25)

Using standard properties of Fourier transforms, we can see that

uj(z) = f∗j (z) e
−(z·Γ−1z)/2 = f∗j (z) e

−J∗(z)2

2 (2.26)

for some jth degree polynomial f∗j that depends only on the distribution of X1.

Theorem 2.3.7 Suppose p ∈ P ′
d.

• If E[|X1|4] <∞, there exists c <∞ such that
∣

∣

∣

∣

pn(x)− pn(x)−
u3(x/

√
n)

n(d+1)/2

∣

∣

∣

∣

≤ c

n(d+2)/2
, (2.27)

where u3 is a defined in (2.25).

• If E[|X1|5] <∞ and the third moments of X1 vanish there exists c <∞ such that
∣

∣

∣

∣

pn(x)− pn(x)−
u4(x/

√
n)

n(d+2)/2

∣

∣

∣

∣

≤ c

n(d+3)/2
, (2.28)

where u4 is a defined in (2.25).

If k ≥ 3 is a positive integer such that E[|X1|k] <∞ and uk is as defined in (2.25), then there is

a c(k) such that

|uk(z)| ≤ c(k) (|z|k + 1) e−
J∗(z)2

2 .

Moreover, if j is a positive integer, there is a c(k, j) such that if Dj is a jth order derivative,

|Djuk(z)| ≤ c(k, j) |(|z|k+j + 1) e−
J∗(z)2

2 . (2.29)

Proof Let α = 1 under the weaker assumptions and α = 2 under the stronger assumptions. As in

Theorem 2.3.5,

nd/2 [pn(x)− pn(x)] = O(e−βn
1/4

) +
1

(2π)d

∫

|θ|≤n1/8

e
− ix·θ√

n e−
θ·Γθ

2 Fn(θ) dθ. (2.30)

Recalling (2.20), we can see that for |θ| ≤ n1/8,

Fn(θ) =
f2+α(θ)

nα/2
+
O(|θ|3+α)

n(α+1)/2
.

Up to an error of O(e−βn
1/4

), the right-hand side of (2.30) equals

1

(2π)d

∫

Rd

e
− ix·θ√

n e−
θ·Γθ

2
f2+α(θ)

n(α/2)
dθ +

1

(2π)d

∫

|θ|≤n1/8

e
− ix·θ√

n e−
θ·Γθ

2

[

Fn(θ)−
f2+α(θ)

nα/2

]

dθ.
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The second integral can be bounded as before
∣

∣

∣

∣

∣

∫

|θ|≤n1/8

e
− ix·θ√

n e−
θ·Γθ

2

[

Fn(θ)−
f2+α(θ)

nα/2

]

dθ

∣

∣

∣

∣

∣

≤ c

n(α+1)/2

∫

Rd

|θ|3+α e− θ·Γθ
2 dθ ≤ c

n(α+1)/2
.

The estimates on uk and Djuk follows immediately from (2.26).

The next theorem is proved in the same way as Theorem 2.3.7 starting with (2.20), and we omit

it. A special case of this theorem is (2.3). The theorem shows that (2.3) holds for all symmetric

p ∈ P ′
d with E[|X1|6] <∞. The results stated for n ≥ |x|2 are just restatements of Theorem 2.3.5.

Theorem 2.3.8 Suppose p ∈ P ′
d and k ≥ 3 is a positive integer such that E[|X1|k+1] < ∞. There

exists c = c(k) such that
∣

∣

∣

∣

∣

∣

pn(x)− pn(x)−
k
∑

j=3

uj(x/
√
n)

n(d+j−2)/2

∣

∣

∣

∣

∣

∣

≤ c

n(d+k−1)/2
, (2.31)

where uj are as defined in (2.25).

In particular, if z = x/
√
n,

|pn(x)− pn(x)| ≤
c

n(d+1)/2

[

|z|k e−
J∗(z)2

2 +
1

n(k−2)/2

]

, n ≤ |x|2,

|pn(x)− pn(x)| ≤
c

n(d+1)/2
, n ≥ |x|2.

If the third moments of X1 vanish (e.g., if p is symmetric) then u3 ≡ 0 and

|pn(x)− pn(x)| ≤
c

n(d+2)/2

[

|z|k e−
J∗(z)2

2 +
1

n(k−3)/2

]

, n ≤ |x|2,

|pn(x)− pn(x)| ≤
c

n(d+2)/2
, n ≥ |x|2.

Remark. Theorem 2.3.8 gives improvements to Theorem 2.3.6. Assuming a sufficient number of

moments on the increment distribution, one can estimate ∇ypn(x) up to an error of O(n−(d+k−1)/2)

by taking ∇y of all the terms on the left-hand side of (2.31). These terms can be estimated using

(2.29). This works for higher order differences as well.

The next theorem is the LCLT assuming only a finite second moment.

Theorem 2.3.9 Suppose p ∈ P ′
d. Then there exists a sequence δn → 0 such that for all n, x,

|pn(x)− pn(x)| ≤
δn

nd/2
. (2.32)

Proof By Lemma 2.3.4, there exist c, ζ such that for all n, x and r > 0,

nd/2 |pn(x)− pn(x)| ≤ c
[

e−ζr
2
+

∫

θ≤r
|Fn(θ)| dθ

]

≤ c
[

e−ζr
2
+ rd sup

θ≤r
|Fn(θ)|

]

.
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We now refer to Lemma 2.3.3. Since h(θ) = o(|θ|2),

lim
n→∞

sup
|θ|≤r
|g(θ, n)| = 0,

and hence

lim
n→∞

sup
|θ|≤r
|Fn(θ)| = 0.

In particular, for all n sufficiently large,

nd/2 |pn(x)− pn(x)| ≤ 2 c e−ζr
2
.

The next theorem improves on this for |x| larger than
√
n. The proof uses an integration by parts.

One advantage of this theorem is that it does not need any extra moment conditions. However, if

we impose extra moment conditions we get a stronger result.

Theorem 2.3.10 Suppose p ∈ P ′
d. Then there exists a sequence δn → 0 such that for all n, x,

|pn(x)− pn(x)| ≤
δn

|x|2 n(d−2)/2
. (2.33)

Moreover,

• If E[|X1|3] <∞, then δn can be chosen O(n−1/2).

• If E[|X1|4] <∞ and the third moments of X1 vanish, then δn can be chosen O(n−1).

Proof If ψ1, ψ2 are C2 functions on Rd with period 2π in each component, then it follows from

Green’s theorem (integration by parts) that
∫

[−π,π]d
[∆ψ1(θ)] ψ2(θ) dθ =

∫

[−π,π]d
ψ1(θ) [∆ψ2(θ)] dθ

(the boundary terms disappear by periodicity). Since ∆[eix·θ] = −|x|2 e−x·θ, the inversion formula

gives

pn(−x) =
1

(2π)d

∫

[−π,π]d
eix·θ ψ(θ) dθ = − 1

|x|2 (2π)d

∫

[−π,π]d
eix·θ ∆ψ(θ) dθ,

where ψ(θ) = φ(θ)n. Therefore,

|x|2
n

pn(−x) = − 1

(2π)d

∫

[−π,π]d
eix·θ φ(θ)n−2 [(n− 1)λ(θ) + φ(θ)∆φ(θ)] dθ,

where

λ(θ) =

d
∑

j=1

[∂jφ(θ)]2 .

The first and second derivatives of φ are uniformly bounded. Hence by (2.14), we can see that
∣

∣φ(θ)n−2 [(n− 1)λ(θ) + φ(θ)∆φ(θ)]
∣

∣ ≤ c [1 + n|θ|2] e−n|θ|2b ≤ c e−βn|θ|2,
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where 0 < β < b. Hence, we can write

|x|2
n

pn(−x)−O(e−βr
2
) = − 1

(2π)d

∫

|θ|≤r/√n
eix·θ φ(θ)n−2 [(n − 1)λ(θ) + φ(θ)∆φ(θ)] dθ.

The usual change of variables shows that the right-hand side equals

− 1

(2π)d nd/2

∫

|θ|≤r
eiz·θ φ

(

θ√
n

)n−2 [

(n− 1)λ

(

θ√
n

)

+ φ

(

θ√
n

)

∆φ

(

θ√
n

)]

dθ,

where z = x/
√
n.

Note that

∆
[

e−
θ·Γθ

2

]

= e−
θ·Γθ

2 [|Γθ|2 − tr(Γ)].

We define F̂n(θ) by

φ

(

θ√
n

)n−2 [

(n− 1)λ

(

θ√
n

)

+ φ

(

θ√
n

)

∆φ

(

θ√
n

)]

= e−
θ·Γθ

2

[

|Γθ|2 − tr(Γ)− F̂n(θ)
]

.

A straightforward calculation using Green’s theorem shows that

pn(−x) =
1

(2π)d nd/2

∫

Rd

ei(x/
√
n)·θ e−

θ·Γθ
2 dθ = − n

|x|2 (2π)2

∫

Rd

ei(x/
√
n)·θ ∆[e−

θ·Γθ
2 ] dθ.

Therefore (with perhaps a different β),

|x|2
n

pn(−x) =
|x|2
n

pn(−x) +O(e−βr
2
)− 1

(2π)d nd/2

∫

|θ|≤r
eiz·θ e−

θ·Γθ
2 F̂n(θ) dθ. (2.34)

The remaining task is to estimate F̂n(θ). Recalling the definition of Fn(θ) from Lemma 2.3.3, we

can see that

φ

(

θ√
n

)n−2 [

(n− 1)λ

(

θ√
n

)

+ φ

(

θ√
n

)

∆φ

(

θ√
n

)]

=

e−
θ·Γθ

2 [1 + Fn(θ)]

[

(n− 1)
λ(θ/
√
n)

φ(θ/
√
n)2

+
∆φ(θ/

√
n)

φ(θ/
√
n)

]

.

We make three possible assumptions:

• p ∈ P ′
d.

• p ∈ P ′
d with E[|X1|3] <∞.

• p ∈ P ′
d with E[|X1|4] <∞ and vanishing third moments.

We set α = 0, 1, 2, respectively, in these three cases. Then we can write

φ(θ) = 1− θ · Γθ
2

+ q2+α(θ) + o(|θ|2+α),

where q2 ≡ 0 and q3, q4 are homogeneous polynomials of degree 3 and 4 respectively. Because φ is

C2+α and we know the values of the derivatives at the origin, we can write

∂jφ(θ) = −∂j
θ · Γθ

2
+ ∂jq2+α(θ) + o(|θ|1+α),
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∂jjφ(θ) = −∂jj
θ · Γθ

2
+ ∂jjq2+α(θ) + o(|θ|α).

Using this, we see that
∑d

j=1 [∂jφ(θ)]2

φ(θ)2
= |Γθ|2 + q̃2+α(θ) + o(|θ|2+α),

∆φ(θ)

φ(θ)
= −tr(Γ) + q̂α(θ) + o(|θ|α),

where q̃2+α is a homogeneous polyonomial of degree 2 + α with q̃2 ≡ 0, and q̂α is a homogeneous

polynomial of degree α with q̂0 = 0. Therefore, for |θ| ≤ n1/8,

(n− 1)
λ(θ/
√
n)

φ(θ/
√
n)2

+
∆φ(θ/

√
n)

φ(θ/
√
n)

= |Γθ|2 − tr(Γ) +
q̃2+α(θ) + q̂α(θ)

nα/2
+ o

( |θ|α + |θ|α+2

nα/2

)

,

which establishes that for α = 1, 2

|F̂n(θ)| = O

(

1 + |θ|2+α
nα/2

)

, |θ| ≤ n1/16,

and for α = 0, for each r <∞,

lim
n→∞

sup
|θ|≤r
|F̂n(θ)| = 0.

The remainder of the argument follows the proofs of Theorem 2.3.5 and 2.3.9. For α = 1, 2 we can

choose r = n7/16 in (2.34) while for α = 0 we choose r independent of n and then let r →∞.

2.3.1 Exponential moments

The estimation of probabilities for atypical values can be done more accurately for random walks

whose increment distribution has an exponential moment. In this section we prove the following.

Theorem 2.3.11 Suppose p ∈ P ′
d such that for some b > 0,

E
[

eb|X1|
]

<∞. (2.35)

Then there exists ρ > 0 such that for all n ≥ 0 and all x ∈ Zd with |x| < ρn,

pn(x) = pn(x) exp

{

O

(

1√
n

+
|x|3
n2

)}

.

Moreover, if all the third moments of X1 vanish,

pn(x) = pn(x) exp

{

O

(

1

n
+
|x|4
n3

)}

.

♣ Note that the conclusion of the theorem can be written

|pn(x)− pn(x)| ≤ c pn(x)

[

1

nα/2
+
|x|2+α

n1+α

]

, |x| ≤ n 1+α
2+α ,
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|pn(x)− pn(x)| ≤ pn(x) exp

{

O

( |x|2+α

n1+α

)}

, |x| ≥ n 1+α
2+α

where α = 2 if the third moments vanish and α = 1 otherwise. In particular, if xn is a sequence of points in Zd,
then as n→∞,

pn(xn) ∼ pn(xn) if |xn| = o(nβ),

pn(xn) ≍ pn(xn) if |xn| = O(nβ),

where β = 2/3 if α = 1 and β = 3/4 if α = 2.

Theorem 2.3.11 will follow from a stronger result (Theorem 2.3.12). Before stating it we introduce

some additional notation and make several preliminary observations. Let p ∈ P ′
d have characteristic

function φ and covariance matrix Γ, and assume that p satisfies (2.35). If the third moments of p

vanish, we let α = 2; otherwise, α = 1. Let M denote the moment generating function,

M(b) = E[eb·X ] = φ(−ib),

which by (2.35) is well defined in a neighborhood of the origin in Cd. Moreover, we can find

C <∞, ǫ > 0 such that

E
[

|X|4e|b·X|
]

≤ C, |b| < ǫ. (2.36)

In particular, there is a uniform bound in this neighborhood on all the derivatives of M of order at

most four. (A (finite) number of times in this section we will say that something holds for all b in a

neighborhood of the origin. At the end, one should take the intersection of all such neighborhoods.)

Let L(b) = logM(b), L(iθ) = log φ(θ). Then in a neighborhood of the origin we have

M(b) = 1 +
b · Γb

2
+O

(

|b|α+2
)

, ∇M(b) = Γb+O
(

|b|α+1
)

,

L(b) =
b · Γb

2
+O(|b|α+2), ∇L(b) =

∇M(b)

M(b)
= Γb+O(|b|α+1). (2.37)

For |b| < ǫ, let pb ∈ P∗
d be the probability measure

pb(x) =
eb·x p(x)
M(b)

, (2.38)

and let Pb,Eb denote probabilities and expectations associated to a random walk with increment

distribution pb. Note that

Pb{Sn = x} = eb·xM(b)−n P{Sn = x}. (2.39)

The mean of pb is equal to

mb =
E[X eb·X ]

E[eb·X ]
= ∇L(b).

A standard “large deviations” technique for understanding P{Sn = x} is to study Pb{Sn = x}
where b is chosen so that mb = x/n. We will apply this technique in the current context. Since

Γ is an invertible matrix, (2.37) implies that b 7→ ∇L(b) maps {|b| < ǫ} one-to-one and onto a
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neighborhood of the origin, where ǫ > 0 is sufficiently small. In particular, there is a ρ > 0 such

that for all w ∈ Rd with |w| < ρ, there is a unique |bw| < ǫ with ∇L(bw) = w.

♣ One could think of the “tilting” procedure of (2.38) as “weighting by a martingale”. Indeed, it is easy to
see that for |b| < ǫ, the process

Nn = M(b)−n exp {bSn}
is a martingale with respect to the filtration {Fn} of the random walk. The measure Pb is obtained by weighting
by Nn. More precisely, if E is an Fn-measurable event, then

Pb(E) = E [Nn 1E ] .

The martingale property implies the consistency of this definition. Under the measure Pb, Sn has the distribution

of a random walk with increment distribution pb and mean mb. For fixed n, x we choose mb = x/n so that x is

a typical value for Sn under Pb. This construction is a random walk analogue of the Girsanov transformation for

Brownian motion.

Let φb denote the characteristic function of pb which we can write as

φb(θ) = Eb[e
iθ·X ] =

M(iθ + b)

M(b)
. (2.40)

Then there is a neighborhood of the origin such that for all b, θ in the neighborhood, we can expand

log φb as

log φb(θ) = imb · θ −
θ · Γbθ

2
+ f3,b(θ) + h4,b(θ). (2.41)

Here Γb is the covariance matrix for the increment distribution pb, and f3,b(θ) is the homogeneous

polynomial of degree three

f3,b(θ) = − i
6

[

Eb[(θ ·X)3] + 2 (Eb[θ ·X])3
]

.

Due to (2.36), the coefficients for the third order Taylor polynomial of log φb are all differential in

b with bounded derivatives in the same neighborhood of the origin. In particular we conclude that

|f3,b(θ)| ≤ c |b|α−1 |θ|3, |b|, |θ| < ǫ.

To see this if α = 1 use the boundedness of the first and third moments. If α = 2, note that

f3,0(θ) = 0, θ ∈ Rd, and use the fact that the first and third moments have bounded derivatives as

functions of b. Similarly,

Γb =
E[XXT eb·X ]

M(b)
= Γ +O(|b|α),

The error term h4,b is bounded by

h4,b(θ) ≤ c |θ|4, |b|, |θ| < ǫ.

Note that due to (2.37) (and invertibility of Γ) we have both |bw| = O(|w|) and |w| = O(|bw|).
Combining this with the above observations, we can conclude

mb = Γb+O(|w|1+α),
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bw = Γ−1w +O(|w|1+α), (2.42)

det Γbw = det Γ +O(|w|α) = det Γ +O(|bw|α), (2.43)

L(bw) =
bw · Γbw

2
+O(|bw|2+α) =

w · Γ−1w

2
+O(|w|2+α). (2.44)

By examining the proof of (2.13) one can find a (perhaps different) δ > 0, such that for all |b| ≤ ǫ
and all θ ∈ [−π, π]d,

|e−imb·θ φb(θ)| ≤ 1− δ |θ|2.

(For small θ use the expansion of φ near 0, otherwise consider maxθ,b |e−imb·θ φb(θ)| where the

maximum is taken over all such θ ∈ {z ∈ [−π, π]d : |z| ≥ ǫ} and all |b| ≤ ǫ.)

Theorem 2.3.12 Suppose p satisfies the assumptions of Theorem 2.3.11, and let L, bw be defined

as above. Then there exists c < ∞ and ρ > 0 such that the following holds. Suppose x ∈ Zd with

|x| ≤ ρn and b = bx/n. Then

∣

∣

∣(2π det Γb)
d/2 nd/2 Pb{Sn = x} − 1

∣

∣

∣ ≤ c (|x|α−1 +
√
n)

n(α+1)/2
. (2.45)

In particular,

pn(x) = P{Sn = x} = pn(x) exp

{

O

(

1

nα/2
+
|x|2+α
n1+α

)}

. (2.46)

Proof [of (2.46) given (2.45)] We can write (2.45) as

Pb{Sn = x} =
1

(2π det Γb)d/2 nd/2

[

1 +O

( |x|α−1

n(α+1)/2
+

1

nα/2

)]

.

By (2.39),

pn(x) = P{Sn = x} = M(b)n e−b·x Pb{Sn = x} = exp {nL(b)− b · x} Pb{Sn = x}.

From (2.43), we see that

(det Γb)
−d/2 = (det Γ)−d/2

[

1 +O

( |x|α
nα

)]

,

and due to (2.44), we have
∣

∣

∣

∣

nL(b)− x · Γ−1x

2n

∣

∣

∣

∣

≤ c |x|
2+α

n1+α
.

Applying (2.42), we see that

b · x =

[

Γ−1
(x

n

)

+O

( |x|α+1

nα+1

)]

· x =
x · Γ−1x

n
+O

( |x|α+2

nα+1

)

.

Therefore,

exp {nL(b)− b · x} = exp

{

−x · Γ
−1x

2n

}

exp

{

O

( |x|2+α
n1+α

)}

.



46 Local Central Limit Theorem

Combining these and recalling the definition of pn(x) we get,

pn(x) = pn(x) exp

{

O

( |x|2+α
n1+α

)}

.

Therefore, it suffices to prove (2.45). The argument uses an LCLT for probability distributions on

Zd with non-zero mean. Suppose K < ∞ and X is a random variable in Zd with mean m ∈ Rd,

covariance matrix Γ, and E[|X|4] ≤ K. Let ψ be the characteristic function of X. Then there exist

ǫ, C, depending only on K, such that for |θ| < ǫ,
∣

∣

∣

∣

logψ(θ)−
[

im · θ +
θ · Γθ

2
+ f3(θ)

]∣

∣

∣

∣

≤ C |θ|4. (2.47)

where the term f3(θ) is a homogeneous polynomial of degree 3. Let us write K3 for the smallest

number such that |f3(θ)| ≤ K3|θ|3 for all θ. Note that there exist uniform bounds for m,Γ and K3

in terms of K. Moreover, if α = 2 and f3 corresponds to pb, then |K3| ≤ c |b|. The next proposition

is proved in the same was as Theorem 2.3.5 taking some extra care in obtaining uniform bounds.

The relation (2.45) then follows from this proposition and the bound K3 ≤ c (|x|/n)α−1.

Proposition 2.3.13 For every δ > 0,K < ∞, there is a c such that the following holds. Let p

be a probability distribution on Zd with E[|X|4] ≤ K. Let m,Γ, C, ǫ, ψ,K3 be as in the previous

paragraph. Moreover, assume that

|e−im·θ ψ(θ)| ≤ 1− δ |θ|2, θ ∈ [−π, π]d.

Suppose X1,X2, . . . are independent random variables with distribution p and Sn = X1 + · · ·+Xn.

Then if nm ∈ Zd,
∣

∣

∣
(2πn det Γ)d/2 P{Sn = nm} − 1

∣

∣

∣
≤ c[K3

√
n+ 1]

n
.

Remark. The error term indicates existence of two different regimes: K3 ≤ n−1/2 and K3 ≥ n−1/2.

Proof We fix δ,K and allow all constants in this proof to depend only on δ and K. Proposition

2.2.2 implies that

P{Sn = nm} =
1

(2π)d

∫

[−π,π]d
[e−im·θ ψ(θ)]n dθ.

The uniform upper bound on E[|X|4] implies uniform upper bounds on the lower moments. In

particular, det Γ is uniformly bounded and hence it suffices to find n0 such that the result holds for

n ≥ n0. Also observe that (2.47) holds with a uniform C from which we conclude
∣

∣

∣

∣

n logψ

(

θ√
n

)

− i√n (m · θ)− θ · Γθ
2
− n f3

(

θ√
n

)∣

∣

∣

∣

≤ C |θ|
4

n
.

In addition we have |nf3(θ/
√
n)| ≤ K3 |θ|3/

√
n. The proof proceeds as the proof of Theorem 2.3.5,

the details are left to the reader.
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2.4 Some corollaries of the LCLT

Proposition 2.4.1 If p ∈ P ′ with bounded support, there is a c such that
∑

z∈Zd

|pn(z)− pn(z + y)| ≤ c |y|n−1/2.

Proof By the triangle inequality, it suffices to prove the result for y = e = ej. Let δ = 1/2d. By

Theorem 2.3.6,

pn(z + e)− pn(z) = ∇jpn(z) +O

(

1

n(d+2)/2

)

.

Also Corollary 12.2.7 shows that
∑

|z|≥n(1/2)+δ

|pn(z)− pn(z + e)| ≤
∑

|z|≥n(1/2)+δ

[pn(z) + pn(z + e)] = o(n−1/2).

But,

∑

|z|≤n(1/2)+δ

|pn(z)− pn(z + e)| ≤
∑

z∈Zd

|pn(z)− pn(z + e)|+
∑

|z|≤n(1/2)+δ

O

(

1

n(d+2)/2

)

≤ O(n−1/2) +
∑

z∈Zd

|∇jpn(z)|.

A straightforward estimate which we omit gives
∑

z∈Zd

|∇jpn(z)| = O(n−1/2).

The last proposition holds with much weaker assumptions on the random walk. Recall that P∗

is the set of increment distributions p with the property that for each x ∈ Zd, there is an Nx such

that pn(x) > 0 for all n ≥ Nx.

Proposition 2.4.2 If p ∈ P∗, there is a c such that
∑

z∈Zd

|pn(z)− pn(z + y)| ≤ c |y|n−1/2.

Proof In Exercise 1.3 it was shown that we can write

p = ǫ q + (1− ǫ)q′,

where q ∈ P ′ with bounded support and q′ ∈ P∗. By considering the process of first choosing q or

q′ and then doing the jump, we can see that

pn(x) =

n
∑

j=0

(

n

j

)

ǫj (1− ǫ)n−j
∑

z∈Zd

qj(x− z) q′n−j(z). (2.48)
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Therefore,
∑

x∈Zd

|pn(x)− pn(x+ y)| ≤

n
∑

j=0

(

n

j

)

ǫj (1− ǫ)n−j
∑

x∈Zd

q′n−j(x)
∑

z∈Zd

|qj(x− z)− qj(x+ y − z)|.

We split the first sum into the sum over j < (ǫ/2)n and j ≥ (ǫ/2)n. Standard exponential estimates

for the binomial (see Lemma 12.2.8) give

∑

j<(ǫ/2)n

(

n

j

)

ǫj (1− ǫ)n−j
∑

x∈Zd

q′n−j(x)
∑

z∈Zd

|qj(x− z)− qj(x+ y − z)|

≤ 2
∑

j<(ǫ/2)n

(

n

j

)

ǫj (1− ǫ)n−j = O(e−αn),

for some α = α(ǫ) > 0. By Proposition 2.4.1,

∑

j≥(ǫ/2)n

(

n

j

)

ǫj (1− ǫ)n−j
∑

x∈Zd

q′n−j(x)
∑

z∈Zd

|qj(x− z)− qj(x+ y − z)|

≤ c n−1/2 |y|
∑

j≥(ǫ/2)n

(

n

j

)

ǫj (1− ǫ)n−j
∑

x∈Zd

q′n−j(x) ≤ c n−1/2 |y|.

The last proposition has the following useful lemma as a corollary. Since this is essentially a

result about Markov chains in general, we leave the proof to the appendix, see Theorem 12.4.5.

Lemma 2.4.3 Suppose p ∈ P∗
d . There is a c <∞ such that if x, y ∈ Zd, we can define Sn, S

∗
n on

the same probability space such that: Sn has the distribution of a random walk with increment p

with S0 = x; S∗
n has the distribution of a random walk with increment p with S0 = y; and such that

for all n,

P{Sm = S∗
m for all m ≥ n} ≥ 1− c |x− y|√

n
.

♣ While the proof of this last lemma is somewhat messy to write out in detail, there really is not a lot of
content to it once we have Proposition 2.4.2. Suppose that p, q are two probability distributions on Zd with

1

2

∑

z∈Zd

|p(z)− q(z)| = ǫ.

Then there is an easy way to define random variables X,Y on the same probability space such that X has
distribution p, Y has distribution q and P{X 6= Y } = ǫ. Indeed, if we let f(z) = min{p(z), q(z)} we can let the
probability space be Zd × Zd and define µ by

µ(z, z) = f(z)
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and for x 6= y,

µ(x, y) = ǫ−1 [p(x)− f(x)] [q(y)− f(y)].

If we let X(x, y) = x, Y (x, y) = y, it is easy to check that the marginal of X is p, the marginal of Y is q and

P{X = Y } = 1− ǫ. The more general fact is not much more complicated than this.

Proposition 2.4.4 Suppose p ∈ P∗
d . There is a c <∞ such that for all n, x,

pn(x) ≤
c

nd/2
. (2.49)

Proof If p ∈ P ′
d with bounded support this follows immediately from (2.22). For general p ∈ P∗

d ,

write p = ǫ q + (1 − ǫ) q′ with q ∈ P ′
d, q

′ ∈ P∗
d as in the proof of Proposition 2.22. Then pn(x)

is as in (2.48). The sum over j < (ǫ/2)n is O(e−αn) and for j ≥ (ǫ/2)n, we have the bound

qj(x− z) ≤ c n−d/2.

The central limit theorem implies that it takes O(n2) steps to go distance n. This proposition

gives some bounds on large deviations for the number of steps.

Proposition 2.4.5 Suppose S is a random walk with increment distribution p ∈ Pd and let

τn = min{k : |Sk| ≥ n}, ξn = min{k : J ∗(Sk) ≥ n}.

There exist t > 0 and c <∞ such that for all n and all r > 0,

P{τn ≤ rn2}+ P{ξn ≤ rn2} ≤ c e−t/r , (2.50)

P{τn ≥ rn2}+ P{ξn ≥ rn2} ≤ c e−rt. (2.51)

Proof There exists a c̃ such that ξc̃n ≤ τn ≤ ξn/c̃ so it suffices to prove the estimates for τn. It also

suffices to prove the result for n sufficiently large. The central limit theorem implies that there is

an integer k such that for all n sufficiently large,

P{|Skn2| ≥ 2n} ≥ 1

2
.

By the strong Markov property, this implies for all l

P{τn > kn2 + l | τn > l} ≤ 1

2
,

and hence

P{τn > jkn2} ≤ (1/2)j = e−j log 2 = e−jk(log 2/k).

This gives (2.51). The estimate (2.50) on τn can be written as

P
{

max
1≤j≤rn2

|Sj| ≥ n
}

= P
{

max
1≤j≤rn2

|Sj | ≥ (1/
√
r)
√
rn2

}

≤ c e−t/r ,

which follows from (2.7).
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♣The upper bound (2.51) for τn does not need any assumptions on the distribution of the increments other

than they be nontrivial, see Exercise 2.7.

Theorem 2.3.10 implies that for all p ∈ P ′
d, pn(x) ≤ c n−d/2 (

√
n/|x|)2. The next proposition

extends this to real r > 2 under the assumption that E[|X1|r] <∞.

Proposition 2.4.6 Suppose p ∈ P∗
d . There is a c such that for all n, x,

pn(x) ≤
c

nd/2
max

0≤j≤n
P {|Sj| ≥ |x|/2} .

In particular, if r > 2, p ∈ P ′
d and E[|X1|r] <∞, then there exists c <∞ such that for all n, x,

pn(x) ≤
c

nd/2

(√
n

|x|

)r

. (2.52)

Proof Let m = n/2 if n is even and m = (n+ 1)/2 if n is odd. Then,

{Sn = x} = {Sn = x, |Sm| ≥ |x|/2} ∪ {Sn = x, |Sn − Sm| ≥ |x|/2} .
Hence it suffices to estimate the probabilities of the events on the right-hand side. Using (2.49) we

get

P {Sn = x, |Sm| ≥ |x|/2} = P {|Sm| ≥ |x|/2} P {Sn = x | |Sm| ≥ |x|/2}

≤ P {|Sm| ≥ |x|/2}
[

sup
y
pn−m(y, x)

]

≤ c n−d/2 P {|Sm| ≥ |x|/2} .

The other probability can be estimated similarly since

P {Sn = x, |Sn − Sm| ≥ |x|/2} = P {Sn = x, |Sn−m| ≥ |x|/2} .

We claim that if p ∈ P ′
d, r ≥ 2, and E[|X1|r] < ∞, then there is a c such that E[|Sn|r] ≤ c nr/2.

Once we have this, the Chebyshev inequality gives for m ≤ n,

P{|Sm| ≥ |x|} ≤
c nr/2

|x|r .

The claim is easier when r is an even integer (for then we can estimate the expectation by expanding

(X1 + · · ·+Xn)
r), but we give a proof for all r ≥ 2. Without loss of generality, assume d = 1. For

a fixed n define

T1 = T̃1 = min{j : |Sj| ≥ c1
√
n},

and for l > 1,

T̃l = min
{

j > T̃l−1 :
∣

∣Sj − STl−1

∣

∣ ≥ c1
√
n
}

, Tl = T̃l − T̃l−1,

where c1 is chosen sufficiently large so that

P{T1 > n} ≥ 1

2
.
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The existence of such a c1 follows from (2.6) applied with k = 1.

Let Y1 = |ST1 | and for l > 1, Yl =
∣

∣

∣
ST̃l
− ST̃l−1

∣

∣

∣
. Note that (T1, Y1), (T2, Y2), (T3, Y3), . . . are

independent, identically distributed random variables taking values in {1, 2, . . .} ×R. Let ξ be the

smallest l ≥ 1 such that Tl > n. Then one can readily check from the triangle inequality that

|Sn| ≤ Y1 + Y2 + · · ·+ Yξ−1 + c1
√
n

= c1
√
n+

∞
∑

l=1

Ŷl,

where Ŷl = Yl 1{Tl ≤ n} 1{ξ > l − 1}. Note that

P{Y1 ≥ c1
√
n+ t;T1 ≤ n} ≤ P{|Xj | ≥ t for some 1 ≤ j ≤ n}

≤ nP{|X1| ≥ t}.
Letting Z = |X1|, we get

E[Ŷ r1 ] = E[Y r
1 ;Tl ≤ n] = c

∫ ∞

0
sr−1 P{Y1 ≥ s;T1 ≤ n} ds

≤ c

[

nr/2 +

∫ ∞

(c1+1)
√
n
sr−1 nP{Z ≥ s− c1

√
n} ds

]

= c

[

nr/2 +

∫ ∞

√
n
(s +

√
n)r−1 nP{Z ≥ s} ds

]

≤ c

[

nr/2 + 2r−1

∫ ∞

√
n
sr−1 nP{Z ≥ s} ds

]

≤ c
[

nr/2 + 2r−1 nE[Zr]
]

≤ c nr/2.

For l > 1,

E[Ŷ r
l ] ≤ P{ξ > l − 1}E[Y r

l 1{Tl ≥ n} | ξ > l − 1] =

(

1

2

)l−1

E[Ŷ r
1 ].

Therefore,

E
[

(Ŷ1 + Ŷ2 + · · · )r
]

= lim
l→∞

E
[

(Ŷ1 + · · · + Ŷl)
r
]

≤ lim
l→∞

[

E[Ŷ r
1 ]1/r + · · ·+ E[Ŷ r

l ]1/r
]r

= E[Ŷ r
1 ]

[ ∞
∑

l=1

(

1

2

)(l−1)/r
]r

= cE[Ŷ r
1 ].

2.5 LCLT — combinatorial approach

In this section, we give another proof of an LCLT with estimates for one-dimensional simple random

walk, both discrete and continuous time, using an elementary combinatorial approach. Our results

are no stronger than that derived earlier, and this section is not needed for the remainder of the
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book, but it is interesting to see how much can be derived by simple counting methods. While we

focus on simple random walk, extensions to p ∈ Pd are straightforward using (1.2). Although the

arguments are relatively elementary, they do require a lot of calculation and estimation. Here is a

basic outline:

• Establish the result for discrete time random walk by exact counting of paths. Along the way

we will prove Stirling’s formula.

• Prove an LCLT for Poisson random variables and use it to derive the result for one-dimensional

continuous-time walks. (A result for d-dimensional continuous-time simple random walks follows

immediately.)

We could continue this approach and prove an LCLT for multinomial random variables and use

it to derive the result for discrete-time d-dimensional simple random walk, but we have chosen to

omit this.

2.5.1 Stirling’s formula and 1-d walks

Suppose Sn is a simple one-dimensional random walk starting at the origin. Determining the

distribution of Sn reduces to an easy counting problem. In order for X1 + · · · +X2n to equal 2k,

exactly n+ k of the Xj must equal +1. Since all 2−2n sequences of ±1 are equally likely,

p2n(2k) = P{S2n = 2k} = 2−2n

(

2n

n+ k

)

= 2−2n (2n)!

(n+ k)! (n − k)! . (2.53)

We will use Stirling’s formula, which we now derive, to estimate the factorial. In the proof, we will

use some standard estimates about the logarithm, see Section 12.1.2.

Theorem 2.5.1 (Stirling’s formula) As n→∞,

n! ∼
√

2π nn+(1/2) e−n.

In fact,

n!√
2π nn+(1/2) e−n

= 1 +
1

12n
+O

(

1

n2

)

.

Proof Let bn = nn+(1/2)e−n/n!. Then, (12.5) and Taylor’s theorem imply

bn+1

bn
=

1

e

(

1 +
1

n

)n (

1 +
1

n

)1/2

=

[

1− 1

2n
+

11

24n2
+O

(

1

n3

)] [

1 +
1

2n
− 1

8n2
+O

(

1

n3

)]

= 1 +
1

12n2
+O

(

1

n3

)

.

Therefore,

lim
m→∞

bm
bn

=

∞
∏

l=n

[

1 +
1

12l2
+O

(

1

l3

)]

= 1 +
1

12n
+O

(

1

n2

)

.
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The second equality is obtained by

log

∞
∏

l=n

[

1 +
1

12l2
+O

(

1

l3

)]

=

∞
∑

l=n

log

[

1 +
1

12l2
+O

(

1

l3

)]

=

∞
∑

l=n

1

12l2
+

∞
∑

l=n

O

(

1

l3

)

=
1

12n
+O

(

1

n2

)

.

This establishes that the limit

C :=
[

lim
m→∞

bm

]−1

exists and

bn =
1

C

[

1− 1

12n
+O

(

1

n2

)]

,

n! = C nn+(1/2) e−n
[

1 +
1

12n
+O

(

1

n2

)]

.

There are a number of ways to determine the constant C. For example, if Sn denotes a one-

dimensional simple random walk, then

P{|S2n| ≤
√

2n log n} =
∑

|2k|≤
√

2n logn

4−n
(

2n

n+ k

)

=
∑

|2k|≤
√

2n logn

4−n
(2n)!

(n + k)!(n − k)! .

Using (12.3), we see that as n→∞, if |2k| ≤
√

2n log n,

4−n
(2n)!

(n+ k)!(n − k)! ∼
√

2

C
√
n

(

1 +
k

n

)−(n+k) (

1− k

n

)−(n−k)

=

√
2

C
√
n

(

1− k2/n

n

)−n (
1 +

k2/n

k

)−k (
1− k2/n

k

)k

∼
√

2

C
√
n
e−k

2/n.

Therefore,

lim
n→∞

P{|S2n| ≤
√

2n log n} = lim
n→∞

∑

|k|≤
√
n/2 logn

√
2

C
√
n
e−k

2/n =

√
2

C

∫ ∞

−∞
e−x

2
dx =

√
2π

C
.

However, Chebyshev’s inequality shows that

P{|S2n| ≥
√

2n log n} ≤ Var[S2n]

2n log2 n
=

1

log2 n
−→ 0.

Therefore, C =
√

2π.

♣ By adapting this proof, it is easy to see that one can find r1 = 1/12, r2, r3, . . . such that for each positive
integer k,

n! =
√

2π nn+(1/2) e−n

[

1 +
r1
n

+
r2
n2

+ · · ·+ rk
nk

+O

(

1

nk+1

)]

. (2.54)



54 Local Central Limit Theorem

We will now prove Theorem 2.1.1 and some difference estimates in the special case of simple

random walk in one dimension by using (2.53) and Stirling’s formula. As a warmup, we start with

the probability of being at the origin.

Proposition 2.5.2 For simple random walk in Z, if n is a positive integer, then

P{S2n = 0} =
1√
πn

[

1− 1

8n
+O

(

1

n2

)]

.

Proof The probability is exactly

2−2n

(

2n

n

)

=
(2n)!

4n (n!)2
.

By plugging into Stirling’s formula, we see that the right hand side equals

1√
πn

1 + (24n)−1 +O(n−2)

[1 + (12n)−1 +O(n−2)]2
=

1√
πn

[

1− 1

8n
+O

(

1

n2

)]

.

In the last proof, we just plugged into Stirling’s formula and evaluated. We will now do the same

thing to prove a version of the LCLT for one-dimensional simple random walk.

Proposition 2.5.3 For simple random walk in Z, if n is a positive integer and k is an integer with

|k| ≤ n,

p2n(2k) = P{S2n = 2k} =
1√
πn

e−k
2/n exp

{

O

(

1

n
+
k4

n3

)}

.

In particular, if |k| ≤ n3/4, then

P{S2n = 2k} =
1√
πn

e−k
2/n

[

1 +O

(

1

n
+
k4

n3

)]

.

♣ Note that for one-dimensional simple random walk,

2 p2n(2k) = 2
1

√

(2π) (2n)
exp

{

− (2k)2

2 (2n)

}

=
1√
πn

e−k2/n.

♣ While the theorem is stated for all |k| ≤ n, it is not a very strong statement when k is of order n. For
example, for n/2 ≤ |k| ≤ n, we can rewrite the conclusion as

p2n(2k) =
1√
πn

e−k2/n eO(n) = eO(n),

which only tells us that there exists α such that

e−αn ≤ p2n(2k) ≤ eαn.
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In fact, 2p2n(2k) is not a very good approximation of p2n(2k) for large n. As an extreme example, note that

p2n(2n) = 4−n, 2 p2n(2n) =
1√
πn

e−n.

Proof If n/2 ≤ |k| ≤ n, the result is immediate using only the estimate 2−2n ≤ P{S2n = 2k} ≤ 1.

Hence, we may assume that |k| ≤ n/2. As noted before,

P{S2n = 2k} = 2−2n

(

2n

n+ k

)

=
(2n)!

22n(n+ k)!(n − k)! .

If we restrict to |k| ≤ n/2, we can use Stirling’s formula (Lemma 2.5.1) to see that

P{S2n = 2k} =

[

1 +O

(

1

n

)]

1√
πn

(

1− k2

n2

)−1/2 (

1− k2

n2

)−n (
1− 2k

n+ k

)k

.

The last two terms approach exponential functions. We need to be careful with the error terms.

Using (12.3) we get,
(

1− k2

n2

)n

= e−k
2/n exp

{

O

(

k4

n3

)}

.

(

1− 2k

n+ k

)k

= e−2k2/(n+k) exp

{

− 2k3

(n+ k)2
+O

(

k4

n3

)}

= e−2k2/(n+k) exp

{

−2k3

n2
+O

(

k4

n3

)}

,

e−2k2/(n+k) = e−2k2/n exp

{

2k3

n2
+O

(

k4

n3

)}

.

Also, using k2/n2 ≤ max{(1/n), (k4/n3)}, we can see that

(

1− k2

n2

)−1/2

= exp

{

O

(

1

n
+
k4

n3

)}

.

Combining all of this gives the theorem.

♣ We could also prove “difference estimates” by using the equalities

p2n(2k + 2) =
n− k

n+ k + 1
p2n(2k),

p2(n+1)(2k) = p2n(2k) 4−1 (2n+ 1)(2n+ 2)

(n+ k + 1)(n− k + 1)
.
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Corollary 2.5.4 If Sn is simple random walk, then for all positive integers n and all |k| < n,

P{S2n+1 = 2k + 1} =
1√
πn

exp

{

−(k + 1
2 )2

n

}

exp

{

O

(

1

n
+
k4

n3

)}

. (2.55)

Proof Note that

P{S2n+1 = 2k + 1} =
1

2
P{S2n = 2k}+

1

2
P{S2n = 2(k + 1)}.

Hence,

P{S2n+1 = 2k + 1} =
1

2
√
πn

[e−k
2/n + e−(k+1)2/n] exp

{

O

(

1

n
+
k4

n3

)}

.

But,

exp

{

−(k + 1
2)2

n

}

= e−k
2/n

[

1− k

n
+O

(

k2

n2

)]

,

exp

{

−(k + 1)2

n

}

= e−k
2/n

[

1− 2k

n
+O

(

k2

n2

)]

,

which implies

1

2

[

e−k
2/n + e−(k+1)2/n

]

= exp

{

−(k + 1
2)2

n

}

[

1 +O

(

k2

n2

)]

.

Using k2/n2 ≤ max{(1/n), (k4/n3)}, we get (2.55).

♣ One might think that we should replace n in (2.55) with n+ (1/2). However,

1

n+ (1/2)
=

1

n

[

1 +O

(

1

n

)]

.

Hence, the same statement with n+ (1/2) replacing n is also true.

2.5.2 LCLT for Poisson and continuous-time walks

The next proposition establishes the strong LCLT for Poisson random variables. This will be used

for comparing discrete-time and continuous-time random walks with the same p. If Nt is a Poisson

random variable with parameter t, then E[Nt] = t,Var[Nt] = t. The central limit theorem implies

that as t → ∞, the distribution of (Nt − t)/
√
t approaches that of a standard normal. Hence, we

might conjecture that

P{Nt = m} = P
{

m− t√
t
≤ Nt − t√

t
<
m+ 1− t√

t

}

≈
∫ (m+1−t)/

√
t

(m−t)/
√
t

1√
2π

e−
x2

2 dx ≈ 1√
2πt

e−
(m−t)2

2t .

In the next proposition, we use a straightforward combinatorial argument to justify this approxi-

mation.
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Proposition 2.5.5 Suppose Nt is a Poisson random variable with parameter t, and m is an integer

with |m− t| ≤ t/2. Then

P{Nt = m} =
1√
2πt

e−
(m−t)2

2t exp

{

O

(

1√
t

+
|m− t|3

t2

)}

.

Proof For notational ease, we will first consider the case where t = n is an integer, and we let

m = n+ k. Let

q(n, k) = P{Nn = n+ k} = e−n
nn+k

(n+ k)!
,

and note the recursion formula

q(n, k) =
n

n+ k
q(n, k − 1).

Stirling’s formula (Theorem 2.5.1) gives

q(n, 0) =
e−n nn

n!
=

1√
2πn

[

1 +O

(

1

n

)]

. (2.56)

By the recursion formula, if k ≤ n/2,

q(n, k) = q(n, 0)

[(

1 +
1

n

) (

1 +
2

n

)

· · ·
(

1 +
k

n

)]−1

,

and,

log

k
∏

j=1

(

1 +
j

n

)

=

k
∑

j=1

log

(

1 +
j

n

)

=

k
∑

j=1

[

j

n
+O

(

j2

n2

)]

=
k2

2n
+

k

2n
+O

(

k3

n2

)

=
k2

2n
+O

(

1√
n

+
k3

n2

)

.

The last equality uses the inequality

k

n
≤ max

{

1√
n
,
k3

n2

}

,

which will also be used in other estimates in this proof. Using (2.56), we get

log q(n, k) = − log
√

2πn− k2

2n
+O

(

1√
n

+
k3

n2

)

,

and the result for k ≥ 0 follows by exponentiating.

Similarly,

q(n,−k) = q(n, 0)

(

1− 1

n

)(

1− 2

n

)

· · ·
(

1− k − 1

n

)
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and

log q(n,−k) = − log
√

2πn+ log
k−1
∏

j=1

(

1− j

n

)

= − log
√

2πn− k2

2n
+O

(

1√
n

+
k3

n2

)

.

The proposition for integer n follows by exponentiating. For general t, let n = ⌊t⌋ and note that

P{Nt = n+ k} = P{Nn = n+ k} e−(t−n)

(

1 +
t− n
n

)n+k

= P{Nn = n+ k}
(

1 +
t− n
n

)k [

1 +O

(

1

n

)]

= P{Nn = n+ k}
[

1 +O

( |k|+ 1

n

)]

= (2πn)−1/2 e−k
2/(2n) exp

{

O

(

1√
n

+
k3

n2

)}

= (2πt)−1/2 e−(k+n−t)2/(2t) exp

{

O

(

1√
t

+
|n+ k − t|3

t2

)}

.

The last step uses the estimates

1√
t

=
1√
n

[

1 +O

(

1

t

)]

, e−
k2

2t = e−
k2

2n exp

{

O

(

k2

t2

)}

.

We will use this to prove a version of the local central limit theorem for one-dimensional,

continuous-time simple random walk.

Theorem 2.5.6 If S̃t is continuous-time one-dimensional simple random walk, then if |x| ≤ t/2,

p̃t(x) =
1√
2πt

e−
x2

2t exp

{

O

(

1√
t

+
|x|3
t2

)}

.

Proof We will assume that x = 2k is even; the odd case is done similarly. We know that

p̃t(2k) =
∞
∑

m=0

P{Nt = 2m} p2m(2k).

Standard exponential estimates, see (12.12), show that for every ǫ > 0, there exist c, β such that

P{|Nt − t| ≥ ǫt} ≤ c e−βt. Hence,

p̃t(2k) =

∞
∑

m=0

P{Nt = 2m} p2m(2k)

= O(e−βt) +
∑

P{Nt = 2m} p2m(2k), (2.57)
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where here and for the remainder of this proof, we write just
∑

to denote the sum over all integers

m with |t− 2m| ≤ ǫt. We will show that there is an ǫ such that

∑

P{Nt = 2m} p2m(2k) =
1√
2πt

e−
x2

2t exp

{

O

(

1√
t

+
|x|3
t2

)}

.

A little thought shows that this and (2.57) imply the theorem.

By Proposition 2.5.3 we know that

p2m(2k) = P{S2m = 2k} =
1√
πm

e−
k2

m exp

{

O

(

1

m
+
k4

m3

)}

,

and by Proposition 2.5.5 we know that

P{Nt = 2m} =
1√
2πt

e−
(2m−t)2

2t exp

{

O

(

1√
t

+
|2m− t|3

t2

)}

.

Also, we have

1

2m
=

1

t

[

1 +O

( |2m− t|
t

)]

,
1√
2m

=
1√
t

[

1 +O

( |2m− t|
t

)]

,

which implies

e−
k2

m = e−
2k2

t exp

{

O

(

k2 |2m− t|
t2

)}

.

Combining all of this, we can see that the sum in (2.57) can be written as

1√
2πt

e−
x2

2t exp

{

O

(

1√
t

+
|x|3
t2

)}

∑ 2√
2πt

e−
(2m−t)2

2t exp

{

O

( |2m− t|3
t2

)}

.

We now choose ǫ so that |O(|2m− t|3/t2)| ≤ (2m− t)2/(4t) for all |2m− t| ≤ ǫt. We will now show

that
∑ 2√

2πt
e−

(2m−t)2

2t exp

{

O

( |2m− t|3
t2

)}

= 1 +O

(

1√
t

)

,

which will complete the argument. Since

e−
(2m−t)2

2t exp

{

O

( |2m− t|3
t2

)}

≤ e−
(2m−t)2

4t ,

is easy to see that the sum over |2m−t| > t2/3 decays faster than any power of t. For |2m−t| ≤ t2/3
we write

exp

{

O

( |2m− t|3
t2

)}

= 1 +O

( |2m− t|3
t2

)

.

The estimate
∑

|2m−t|≤t2/3

2√
2πt

e−
(2m−t)2

2t =
∑

|m|≤t2/3/2

2√
2πt

e−2(m/
√
t)2

= O

(

1√
t

)

+ 2

∫ ∞

−∞

1√
2π
e−2y2 dy = 1 +O

(

1√
t

)
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is a standard approximation of an integral by a sum. Similarly,

∑

|2m−t|≤t2/3

O

( |2m− t|3
t2

)

2√
2πt

e−
(2m−t)2

2t ≤ c√
t

∫ ∞

−∞

|y|3√
2π
e−2y2 dy = O

(

1√
t

)

.

Exercises

Exercise 2.1 Suppose p ∈ P ′
d, ǫ ∈ (0, 1) and E[|X1|2+ǫ] <∞. Show that the characteristic function

has the expansion

φ(θ) = 1− θ · Γθ
2

+ o(|θ|2+ǫ), θ → 0.

Show that the δn in (2.32) can be chosen so that nǫ/2 δn → 0.

Exercise 2.2 Show that if p ∈ P∗
d , there exists a c such that for all x ∈ Zd and all positive integers

n,

|pn(x)− pn(0)| ≤ c
|x|

n(d+1)/2
.

(Hint: first show the estimate for p ∈ P ′
d with bounded support and then use (2.48). Alternatively,

one can use Lemma 2.4.3 at time n/2, the Markov property, and (2.49). )

Exercise 2.3 Show that Lemma 2.3.2 holds for p ∈ P∗.

Exercise 2.4 Suppose p ∈ P ′
d with E[|X|3] < ∞. Show that there is a c < ∞ such that for all

|y| = 1,

|pn(0)− pn(y)| ≤
c

n(d+2)/2
.

Exercise 2.5 Suppose p ∈ P∗
d . Let A ⊂ Zd and

h(x) = Px{Sn ∈ A i.o.}.

Show that if h(x) > 0 for some x ∈ Zd, then h(x) = 1 for all x ∈ Zd.

Exercise 2.6 Suppose Sn is a random walk with increment distribution p ∈ Pd. Show that there

exists a b > 0 such that

sup
n>1

E
[

exp

{

b|Sn|2
n

}]

<∞.

Exercise 2.7 Suppose X1,X2, . . . are independent, identically distributed random variables in Zd

with P{X1 = 0} < 1 and let Sn = X1 + · · ·+Xn.

• Show that there exists an r such that for all n

P{|Srn2| ≥ n} ≥ 1

2
.
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• Show that there exist c, t such that for all b > 0,

P
{

max
1≤j≤n2

|Sj | ≤ bn
}

≤ c e−t/b.

Exercise 2.8 Find r2, r3 in (2.54).

Exercise 2.9 Let Sn denote one-dimensional simple random walk. In this exercise we will prove

without using Stirling’s formula that there exists a constant C such that

p2n(0) =
C√
n

[

1− 1

8n
+O

(

1

n2

)]

.

a. Show that if n ≥ 1,

p2(n+1) =

(

1 +
1

2n

) (

1 +
1

n

)−1

p2n.

b. Let bn =
√
n p2n(0). Show that b1 = 1/2 and for n ≥ 1,

bn+1

bn
= 1 +

1

8n2
+O

(

1

n3

)

.

c. Use this to show that b∞ = lim bn exists and is positive. Moreover,

bn = b∞

[

1− 1

8n
+O

(

1

n2

)]

.

Exercise 2.10 Show that if p ∈ P ′
d with E[|X1|3] <∞, then

∇2
jpn(x) = ∇2

jpn(x) +O(n−(d+3)/2).

Exercise 2.11 Suppose q : Zd → R has finite support, and k is a positive integer such that for all

l ∈ {1, . . . , k − 1} and all j1, . . . , jl ∈ {1, . . . , d},
∑

x=(x1,...,xd)∈Zd

xj1 xj2 . . . xjl q(x) = 0.

Then we call the operator

Λf(x) :=
∑

y

f(x+ y) q(y)

a difference operator of order (at least) k. The order of the operator is the largest k for which this

is true. Suppose Λ is a difference operator of order k ≥ 1.

• Suppose g is a C∞ function on Rd. Define gǫ on Zd by gǫ(x) = g(ǫx). Show that

|Λgǫ(0)| = O(|ǫ|k), ǫ→ 0.

• Show that if p ∈ P ′
d with E[|X1|3] <∞, then

Λpn(x) = Λpn(x) +O(n−(d+1+k)/2).
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• Show that if p ∈ P ′
d is symmetric with E[|X1|4] <∞, then

Λpn(x) = Λpn(x) +O(n−(d+2+k)/2).

Exercise 2.12 Suppose p ∈ P ′ ∪P ′
2. Show that there is a c such that the following is true. Let Sn

be a p-walk and let

τn = inf{j : |Sj| ≥ n}.
If y ∈ Z2, let

Vn(y) =
τn−1
∑

j=0

1{Sj = y}

denote the number of visits to y before time τn. Then, if 0 < |y| < n,

E [Vk(y)] ≤ c
1 + log n− log |y|

n
.

Hint: Show that there exist c1, β such that for each positive integer j,
∑

jn2≤j<(j+1)n2

1{Sj = y; j < τn} ≤ c1 e−βj n−1.



3

Approximation by Brownian motion

3.1 Introduction

Suppose Sn = X1 + · · · + Xn is a one-dimensional simple random walk. We make this into a

(random) continuous function by linear interpolation,

St = Sn + (t− n) [Sn+1 − Sn], n ≤ t ≤ n+ 1.

For fixed integer n, the LCLT describes the distribution of Sn. A corollary of LCLT is the usual

central limit theorem that states that the distribution of n−1/2 Sn converges to that of a standard

normal random variable. A simple extension of this is the following: suppose 0 < t1 < t2 < . . . <

tk = 1. Then as n→∞ the distribution of

n−1/2 (St1n, St2n, . . . , Stkn)

converges to that of

(Y1, Y1 + Y2, . . . , Y1 + Y2 + · · · Yk),
where Y1, . . . , Yk are independent mean zero normal random variables with variances t1, t2− t1, . . . ,
tk − tk−1, respectively.

The functional central limit theorem (also called the invariance principle or Donsker’s theorem)

for random walk extends this result to the random function

W
(n)
t := n−1/2 Stn. (3.1)

The functional central limit theorem states roughly that as n→∞, the distribution of this random

function converges to the distribution of a random function t 7→ Bt. From what we know about the

simple random walk, here are some properties that would be expected of the random function Bt:

• If s < t, the distribution of Bt −Bs is N(0, t− s).
• If 0 ≤ t0 < t1 < . . . < tk, then Bt1 −Bt0 , . . . , Btk −Btk−1

are independent random variables.

These two properties follow almost immediately from the central limit theorem. The third property

is not as obvious.

• The function t 7→ Bt is continuous.

Although this is not obvious, we can guess this from the heuristic argument:

E[(Bt+∆t −Bt)2] ≈ ∆t,

63
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which indicates that |Bt+∆t −Bt| should be of order
√

∆t. A process satisfying these assumptions

will be called a Brownian motion (we will define it more precisely in the next section).

There are a number of ways to make rigorous the idea that W (n) approaches a Brownian motion

in the limit. For example, if we restrict to 0 ≤ t ≤ 1, then W (n) and B are random variables taking

values in the metric space C[0, 1] with the supremum norm. There is a well understood theory of

convergence in distribution of random variables taking values in metric spaces.

We will take a different approach using a method that is often called strong approximation of

random walk by Brownian motion. We start by defining a Brownian motion B on a probability

space and then define the random walk Sn as a function of the Brownian motion, i.e., for each

realization of random function Bt we associate a particular random walk path. We will do this in

a way so that the random walk Sn has the distribution of simple random walk. We will then do

some estimates to show that there exist positive numbers c, a such that if W
(n)
t is as defined in

(3.1), then for all r ≤ n1/4,

P{‖B −W (n)‖ ≥ r n−1/4
√

log n } ≤ c e−ra, (3.2)

where ‖ · ‖ denotes the supremum norm on C[0, 1]. The convergence in distribution follows from

the strong estimate (3.2).

♣ There is a general approach here that is worth emphasizing. Suppose we have a discrete process and we

want to show that it converges after some scaling to a continuous process. A good approach for proving such a

result is to first study the conjectured limit process and then to show that the scaled discrete process is a small

perturbation of the limit process.

We start by establishing (3.2) for one-dimensional simple random walk using Skorokhod embed-

ding. We then extend this to continuous-time walks and all increment distributions p ∈ P. The

extension will not be difficult; the hard work is done in the one-dimensional case.

We will not handle the general case of p ∈ P ′ in this book. One can give strong approximations

in this case to show that the random walk approaches Brownian motion. However, the rate of

convergence depends on the moment assumptions. In particular, the estimate (3.2) will not hold

assuming only mean zero and finite second moment.

3.2 Construction of Brownian motion

A standard (one-dimensional) Brownian motion with respect to a filtration Ft is a collection of

random variables Bt, t ≥ 0 satisfying the following:

(a) B0 = 0;

(b) if s < t, then Bt − Bs is an Ft-measurable random variable, independent of Fs, with a

N(0, t− s) distribution;

(c) with probability one, t 7→ Bt is a continuous function.

If the filtration is not given explicitly, then it is assumed to be the natural filtration, Ft = σ{Bs :

0 ≤ s ≤ t}. In this section, we will construct a Brownian motion and derive an important estimate

on the oscillations of the Brownian motion.
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We will show how to construct a Brownian motion. There are technical difficulties involved in

defining a collection of random variables {Bt} indexed over an uncountable set. However, if we

know a priori that the distribution should be supported on continuous functions, then we know

that the random function t 7→ Bt should be determined by its value on a countable, dense subset of

times. This observation leads us to a method of constructing Brownian motion: define the process

on a countable, dense set of times and then extend the process to all times by continuity.

Suppose (Ω,F ,P) is any probability space that is large enough to contain a countable collection

of independent N(0, 1) random variables which for ease we will index by

Nn,k, n = 0, 1, . . . ; k = 0, 1, . . .

We will use these random variables to define a Brownian motion on (Ω,F ,P). Let

Dn =

{

k

2n
: k = 0, 1, . . .

}

, D =

∞
⋃

n=0

Dn

denote the nonnegative dyadic rationals. Our strategy will be as follows:

• define Bt for t in D satisfying conditions (a) and (b);

• derive an estimate on the oscillation of Bt, t ∈ D, that implies that with probability one the

paths are uniformly continuous on compact intervals;

• define Bt for other values of t by continuity.

The first step is straightforward using a basic property of normal random variables. Suppose

X,Y are independent normal random variables, each mean 0 and variance 1/2. Then Z = X + Y

is N(0, 1). Moreover, the conditional distribution of X given the value of Z is normal with mean

Z/2 and variance 1/2. This can be checked directly using the density of the normals. Alternatively,

one can check that if Z,N are independent N(0, 1) random variables then

X :=
Z

2
+
N

2
, Y :=

Z

2
− N

2
, (3.3)

are independent N(0, 1/2) random variables. To verify this, one only notes that (X,Y ) has a joint

normal distribution with E[X] = E[Y ] = 0,E[X2] = E[Y 2] = 1/2,E[XY ] = 0. (See Corollary

12.3.1.) This tells us that in order to define X,Y we can start with independent random variables

N,Z and then use (3.3).
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Figure 3.1: The dyadic construction

We start by defining Bt for t ∈ D0 = N by B0 = 0 and

Bj = N0,1 + · · ·+N0,j .

We then continue recursively using (3.3). Suppose Bt has been defined for all t ∈ Dn. Then we

define Bt for t ∈ Dn+1 \Dn by

B 2k+1
2n+1

= B k
2n

+
1

2

[

B k+1
2n
−B k

2n

]

+ 2−(n+2)/2 N2k+1,n+1.

By induction, one can check that for each n the collection of random variables Zk,n := Bk/2n −
B(k−1)/2n are independent, each with a N(0, 2−n) distribution. Since this is true for each n, we

can see that (a) and (b) hold (with the natural filtration) provided that we restrict to t ∈ D. The

scaling property for normal random variables shows that for each integer n, the random variables

2n/2Bt/2n , t ∈ D,

have the same joint distribution as the random variables

Bt, t ∈ D.

We define the oscillation of Bt (restricted to t ∈ D) by

osc(B; δ, T ) = sup{|Bt −Bs| : s, t ∈ D; 0 ≤ s, t ≤ T ; |s− t| ≤ δ}.

For fixed δ, T , this is an FT -measurable random variable. We write osc(B; δ) for osc(B; δ, 1). Let

Mn = max
0≤k<2n

sup
{

|Bt+k2−n −Bk2−n | : t ∈ D; 0 ≤ t ≤ 2−n
}

.

The random variable Mn is similar to osc(B; 2−n) but is easier to analyze. Note that if r ≤ 2−n,

osc(B; r) ≤ osc(B; 2−n) ≤ 3Mn. (3.4)
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To see this, suppose δ ≤ 2−n, 0 < s < t ≤ s + δ ≤ 1, and |Bs − Bt| ≥ ǫ. Then there exists a k

such that either k2−n ≤ s < t ≤ (k + 1)2−n or (k − 1)2−n ≤ s ≤ k2−n < t ≤ (k + 1)2−n. In either

case, the triangle inequality tells us that Mn ≥ ǫ/3. We will prove a proposition that bounds the

probability of large values of osc(B; δ, T ). We start with a lemma which gives a similar bound for

Mn.

Lemma 3.2.1 For every integer n and every δ > 0,

P{Mn > δ 2−n/2} ≤ 4

√

2

π

2n

δ
e−δ

2/2.

Proof Note that

P{Mn > δ 2−n/2} ≤ 2n P

{

sup
0≤t≤2−n

|Bt| > δ 2−n/2
}

= 2n P
{

sup
0≤t≤1

|Bt| > δ

}

.

Here the supremums are taken over t ∈ D. Also note that

P { sup{|Bt| : 0 ≤ t ≤ 1, t ∈ D} > δ } = lim
n→∞

P{ max{|Bk2−n | : k = 1, . . . , 2n} > δ }
≤ 2 lim

n→∞
P{ max{Bk2−n : k = 1, . . . , 2n} > δ }.

The reflection principle (see Proposition 1.6.2 and the remark following) shows that

P{ max{Bk2−n : k = 1, . . . , 2n} > δ } ≤ 2 P{B1 > δ}

= 2

∫ ∞

δ

1√
2π

e−x
2/2 dx

≤ 2

∫ ∞

δ

1√
2π

e−xδ/2 dx = 2

√

2

π
δ−1e−δ

2/2.

Proposition 3.2.2 There exists a c > 0 such that for every 0 < δ ≤ 1, r ≥ 1, and positive integer

T ,

P{osc(B; δ, T ) > c r
√

δ log(1/δ)} ≤ c T δr2 .

Proof It suffices to prove the result for T = 1 since for general T we can estimate separately the

oscillations over the 2T − 1 intervals [0, 1], [1/2, 3/2], [1, 2], . . . , [T − 1, T ]. Also, it suffices to prove

the result for δ ≤ 1/4. Suppose that 2−n−1 ≤ δ ≤ 2−n. Using (3.4), we see that

P{osc(B; δ) > c r
√

δ log(1/δ)} ≤ P
{

Mn >
cr

3
√

2

√

2−n log(1/δ)

}

.

By Lemma 3.2.1, if c is chosen sufficiently large, the probability on the right-hand side is bounded

by a constant times

exp

{

−1

4

(

c2r2

18

)

log(1/δ)

}

,

which for c large enough is bounded by a constant times δr
2
.
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Corollary 3.2.3 With probability one, for every integer T < ∞, the function t 7→ Bt, t ∈ D is

uniformly continuous on [0, T ].

Proof Uniform continuity on [0, T ] is equivalent to saying that osc(B; 2−n, T ) −→ 0 as n→∞. The

previous proposition implies that there is a c1 such that

P{osc(B; 2−n, T ) > c1 2−n/2
√
n} ≤ c1 T 2−n.

In particular,
∞
∑

n=1

P{osc(B; 2−n, T ) > c1 2−n/2
√
n} <∞,

which implies by Borel-Cantelli that with probability one osc(B; 2−n, T ) ≤ c1 2−n/2
√
n for all n

sufficiently large.

Given the corollary, we can define Bt for t 6∈ D by continuity, i.e.,

Bt = lim
tn→t

Btn ,

where tn ∈ D with tn → t. It is not difficult to show that this satisfies the definition of Brownian

motion (we omit the details). Moreover, since Bt has continuous paths, we can write

osc(B; δ, T ) = sup{|Bt −Bs| : 0 ≤ s, t ≤ T ; |s− t| ≤ δ}.

We restate the estimate and include a fact about scaling of Brownian motion. Note that if Bt is a

standard Brownian motion and a > 0, then Yt := a−1/2Bat is also a standard Brownian motion.

Theorem 3.2.4 (Modulus of continuity of Brownian motion) There is a c < ∞ such that

if Bt is a standard Brownian motion, 0 < δ ≤ 1, r ≥ c, T ≥ 1,

P{osc(B; δ, T ) > r
√

δ log(1/δ)} ≤ c T δ(r/c)2 .

Moreover, if T > 0, then osc(B; δ, T ) has the same distribution as
√
T osc(B, δ/T ). In particular,

if T ≥ 1,

P{osc(B; 1, T ) > c r
√

log T} = P{osc(B; 1/T ) > r
√

(1/T ) log T} ≤ c T−(r/c)2 . (3.5)

3.3 Skorokhod embedding

We will now define a procedure that takes a Brownian motion path Bt and produces a random walk

Sn. The idea is straightforward. Start the Brownian motion and wait until it reaches +1 or −1.

If it hits +1 first we let S1 = 1; otherwise, we set S1 = −1. Now we wait until the new increment

of the Brownian motion reaches +1 or −1 and we use this value for the increment of the random

walk.

To be more precise, let Bt be a standard one-dimensional Brownian motion, and let

τ = inf{t ≥ 0 : |Bt| = 1}.

Symmetry tells us that P{Bτ = 1} = P{Bτ = −1} = 1/2.
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Lemma 3.3.1 E[τ ] = 1 and there exists a b <∞ such that E[ebτ ] <∞.

Proof Note that for integer n

P{τ > n} ≤ P{τ > n− 1, |Bn −Bn−1| ≤ 2} = P{τ > n− 1}P{|Bn −Bn−1| ≤ 2},

which implies for integer n,

P{τ > n} ≤ P{|Bn −Bn−1| ≤ 2}n = e−ρn,

with ρ > 0. This implies that E[ebτ ] <∞ for b < ρ. If s < t, then E[B2
t − t | Fs] = B2

s − s (Exercise

3.1). This shows that B2
t − t is a continuous martingale. Also,

E[|B2
t − t|; τ > t] ≤ (t+ 1) P{τ > t} −→ 0.

Therefore, we can use the optional sampling theorem (Theorem 12.2.9) to conclude that E[B2
τ−τ ] =

0. Since E[B2
τ ] = 1, this implies that E[τ ] = 1.

More generally, let τ0 = 0 and

τn = inf{t ≥ τn−1 : |Bt −Bτn−1 | = 1}.

Then Sn := Bτn is a simple one-dimensional random walk†. Let Tn = τn − τn−1. The random

variables T1, T2, . . . are independent, identically distributed, with mean one satisfying E[ebTj ] <∞
for some b > 0. As before, we define St for noninteger t by linear interpolation. Let

Θ(B,S;n) = max{|Bt − St| : 0 ≤ t ≤ n}.

In other words, Θ(B,S;n) is the distance between the continuous functions B and S in C[0, n]

using the usual supremum norm. If j ≤ t < j + 1 ≤ n, then

|Bt − St| ≤ |Sj − St|+ |Bj −Bt|+ |Bj − Sj| ≤ 1 + osc(B; 1, n) + |Bj −Bτj |.

Hence for integer n,

Θ(B,S;n) ≤ 1 + osc(B; 1, n) + max{|Bj −Bτj | : j = 1, . . . , n}. (3.6)

We can estimate the probabilities for the second term with (3.5). We will concentrate on the last

term. Before doing the harder estimates, let us consider how large an error we should expect. Since

T1, T2, . . . are i.i.d. random variables with mean 1 and finite variance, the central limit theorem says

roughly that

|τn − n| =

∣

∣

∣

∣

∣

∣

n
∑

j=1

[Tj − 1]

∣

∣

∣

∣

∣

∣

≈ √n.

Hence we would expect that

|Bn −Bτn | ≈
√

|τn − n| ≈ n1/4.

From this reasoning, we can see that we expect Θ(B,S;n) to be at least of order n1/4. The next

theorem shows that it is unlikely that the actual value is much greater than n1/4.

† We actually need the strong Markov property for Brownian motion to justify this and the next assertion. This is not difficult
to prove, but we will not do it in this book.
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Theorem 3.3.2 There exist 0 < c1, a <∞ such that for all r ≤ n1/4 and all integers n ≥ 3

P{Θ(B,S;n) > r n1/4
√

log n} ≤ c1 e−ar.

Proof It suffices to prove the theorem for r ≥ 9c2∗ where c∗ is the constant c from Theorem 3.2.4 (if

we choose c1 ≥ e9ac
2
∗ , the result holds trivially for r ≤ 9c2∗). Suppose 9c2∗ ≤ r ≤ n1/4. If |Bn −Bτn |

is large, then either |n − τn| is large or the oscillation of B is large. Using (3.6), we see that the

event {Θ(B,S;n) ≥ r n1/4
√

log n} is contained in the union of the two events

{ osc(B; r
√
n, 2n) ≥ (r/3)n1/4

√

log n },
{

max
1≤j≤n

|τj − j| ≥ r
√
n

}

.

Indeed, if osc(B; r
√
n, 2n) ≤ (r/3)n1/4

√
log n and |τj − j| ≤ r

√
n for j = 1, . . . , n, then the three

terms on the right-hand side of (3.6) are each bounded by (r/3)n1/4
√

log n.

Note that Theorem 3.2.4 gives for 1 ≤ r ≤ n1/4,

P{ osc(B; r
√
n, 2n) > (r/3)n1/4

√

log n }
≤ 3 P{ osc(B; r

√
n, n) > (r/3)n1/4

√

log n }
= 3 P{ osc(B; r n−1/2) > (r/3)n−1/4

√

log n}

≤ 3 P
{

osc(B; r n−1/2) > (
√
r/3)

√

r n−1/2 log(n1/2/r)

}

.

If
√
r/3 ≥ c∗ and r ≤ n1/4, we can use Theorem 3.2.4 to conclude that there exist c, a such that

P
{

osc(B; r n−1/2) > (
√
r/3)

√

r n−1/2 log(n1/2/r)

}

≤ c e−ar logn.

For the second event, consider the martingale

Mj = τj − j.

Using (12.12) on Mj and −Mj, we see that there exist c, a such that

P
{

max
1≤j≤n

|τj − j| ≥ r
√
n

}

≤ c e−ar2 . (3.7)

♣ The proof actually gives the stronger upper bound of c [e−ar2

+e−ar log n] but we will not need this improve-

ment.

Extending the Skorokhod approximation to continuous time simple random walk S̃t is not difficult

although in this case the path t 7→ S̃t is not continuous. Let Nt be a Poisson process with parameter

1 defined on the same probability space and independent of the Brownian motion B. Then

S̃t := SNt

has the distribution of the continuous-time simple random walk. Since Nt − t is a martingale, and
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the Poisson distribution has exponential moments, another application of (12.12) shows that for

r ≤ t1/4,

P
{

max
0≤s≤t

|Ns − s| ≥ r
√
t

}

≤ c e−ar2 .

Let

Θ(B, S̃;n) = sup{|Bt − S̃t| : 0 ≤ t ≤ n}.

Then the following is proved similarly.

Theorem 3.3.3 There exist 0 < c, a <∞ such that for all 1 ≤ r ≤ n1/4 and all positive integers n

P{Θ(B, S̃;n) ≥ r n1/4
√

log n} ≤ c e−ar.

3.4 Higher dimensions

It is not difficult to extend Theorems 3.3.2 and 3.3.3 to p ∈ Pd for d > 1. A d-dimensional Brownian

motion with covariance matrix Γ with respect to a filtration Ft is a collection of random variables

Bt, t ≥ 0 satisfying the following:

(a) B0 = 0;

(b) if s < t, then Bt − Bs is an Ft-measurable random Rd-valued variable, independent of Fs,
whose distribution is joint normal with mean zero and covariance matrix (t− s) Γ.

(c) with probability one, t 7→ Bt is a continuous function.

Lemma 3.4.1 Suppose B(1), . . . , B(l) are independent one-dimensional standard Brownian motions

and v1, . . . , vl ∈ Rd. Then

Bt := B
(1)
t v1 + · · ·+B

(l)
t vl

is a Brownian motion in Rd with covariance matrix Γ = AAT where A = [v1 v2 · · · vl].

Proof Straightforward and left to the reader.

In particular, a standard d-dimensional Brownian motion is of the form

Bt = (B
(1)
t , . . . , B

(d)
t )

where B(1), . . . , B(d) are independent one-dimensional Brownian motions. Its covariance matrix is

the identity.

The next theorem shows that one can define d-dimensional Brownian motions and d-dimensional

random walks on the same probability space so that their paths are close to each other. Although

the proof will use Skorokhod embedding, it is not true that the d-dimensional random walk is

embedded into the d-dimensional Brownian motion. In fact, it is impossible to have an embedded

walk since for d > 1 the probability that a d-dimensional Brownian motion Bt visits the countable

set Zd after time 0 is zero.
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Theorem 3.4.2 Let p ∈ Pd with covariance matrix Γ. There exist c, a and a probability space

(Ω,F ,P) on which are defined a Brownian motion B with covariance matrix Γ; a discrete-time

random walk S with increment distribution p; and a continuous-time random walk S̃ with increment

distribution p such that for all positive integers n and all 1 ≤ r ≤ n1/4,

P{Θ(B,S;n) ≥ r n1/4
√

log n} ≤ c e−ar,

P{Θ(B, S̃;n) ≥ r n1/4
√

log n} ≤ c e−ar.

Proof Suppose v1, . . . , vl are the points such p(vj) = p(−vj) = qj/2 and p(z) = 0 for all other

z ∈ Zd \ {0}. Let Ln = (L1
n, . . . , L

l
n) be a multinomial process with parameters q1, . . . , ql, and let

B1, . . . , Bl be independent one-dimensional Brownian motions. Let S1, . . . , Sl be the random walks

derived from B1, . . . , Bl by Skorokhod embedding. As was noted in (1.2),

Sn := S1
L1

n
v1 + . . .+ SlLl

n
vl,

has the distribution of a random walk with increment distribution p. Also,

Bt := B1
t v1 + · · · +Bl

t vl,

is a Brownian motion with covariance matrix Γ. The proof now proceeds as in the previous cases.

One fact that is used is that the Ljn have a binomial distribution and hence we can get an exponential

estimate

P
{

max
1≤j≤n

|Lij − qi j| ≥ a
√
n

}

≤ c e−a.

3.5 An alternative formulation

Here we give a slightly different, but equivalent, form of the strong approximation from which we

get (3.2). We will illustrate this in the case of one-dimensional simple random walk. Suppose Bt
is a standard Brownian motion defined on a probability space (Ω,F ,P). For positive integer n, let

B
(n)
t denote the Brownian motion

B
(n)
t = n−1/2Bnt.

Let S(n) denote the simple random walk derived from B(n) using the Skorokhod embedding. Then

we know that for all positive integers T ,

P
{

max
0≤t≤Tn

|S(n)
t −B(n)

t | ≥ c r (Tn)1/4
√

log(Tn)

}

≤ c e−ar.

If we let

W
(n)
t = n−1/2 S

(n)
tn ,

then this becomes

P
{

max
0≤t≤T

|W (n)
t −Bt| ≥ c r T 1/4 n−1/4

√

log(Tn)

}

≤ c e−ar.
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In particular, if r = c1 log n where c1 = c1(T ) is chosen sufficiently large,

P
{

max
0≤t≤T

|W (n)
t −Bt| ≥ c1 n−1/4 log3/2 n

}

≤ c1 n−2.

By the Borel-Cantelli lemma, with probability one

max
0≤t≤T

|W (n)
t −Bt| ≤ c1 n−1/4 log3/2 n

for all n sufficiently large. In particular, with probability one W (n) converges to B in the metric

space C[0, T ].

By using a multinomial process (in the discrete-time case) or a Poisson process (in the continuous-

time) case, we can prove the following.

Theorem 3.5.1 Suppose p ∈ Pd with covariance matrix Γ. There exist c <∞, a > 0 and a prob-

ability space (Ω,F ,P) on which are defined a d-dimensional Brownian motion Bt with covariance

matrix Γ; an infinite sequence of discrete-time p-walks, S(1), S(2), . . .; and an infinite sequence of

continuous time p-walks S̃(1), S̃(2), . . . such that the following holds for every r > 0, T ≥ 1. Let

W
(n)
t = n−1/2 S

(n)
nt , W̃

(n)
t = n−1/2 S̃

(n)
nt .

Then,

P
{

max
0≤t≤T

|W (n)
t −Bt| ≥ c r T 1/4 n−1/4

√

log(Tn)

}

≤ c e−ar.

P
{

max
0≤t≤T

|W̃ (n)
t −Bt| ≥ c r T 1/4 n−1/4

√

log(Tn)

}

≤ c e−ar.

In particular, with probability one W (n) → B and W̃ (n) → B in the metric space Cd[0, T ].

Exercises

Exercise 3.1 Show that if Bt is a standard Brownian motion with respect to the filtration Ft and

s < t, then E[B2
t − t | Fs] = B2

s − s.

Exercise 3.2 Let X be an integer-valued random variable with P{X = 0} = 0 and E[X] = 0.

(a) Show that there exist numbers rj ∈ (0,∞],

r1 ≤ r2 ≤ · · · , r−1 ≤ r−2 ≤ · · · ,
such that if Bt is a standard Brownian motion and

T = inf{t : Bt ∈ Z \ {0}, t ≤ rBt},
then BT has the same distribution as X.

(b) Show that if X has bounded support, then there exists a b > 0 with E[ebT ] <∞.

(c) Show that E[T ] = E[X2].

(Hint: you may wish to consider first the cases where X is supported on {1,−1}, {1, 2,−1}, and

{1, 2,−1,−2}, respectively.)
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Exercise 3.3 Show that there exist c < ∞, α > 0 such that the following is true. Suppose

Bt = (B1
t , B

2
t ) is a standard two-dimensional Brownian motion and let TR = inf{t : |Bt| ≥ R}. Let

UR denote the unbounded component of the open set R2 \B[0, TR]. Then,

Px{0 ∈ UR} ≤ c(|x|/R)α.

(Hint: Show there is a ρ < 1 such that for all R and all |x| < R,

Px{0 ∈ U2R | 0 ∈ UR} ≤ ρ. )

Exercise 3.4 Show that there exist c < ∞, α > 0 such that the following is true. Suppose Sn is

simple random walk in Z2 starting at x 6= 0, and let ξR = min{n : |Sn| ≥ R}. Then the probability

that there is a nearest neighbor path starting at the origin and ending at {|z| ≥ R} that does

intersect {Sj : 0 ≤ j ≤ ξR} is no more than c(|x|/R)α. (Hint: follow the hint in Exercise 3.3, using

the invariance principle to show the existence of a ρ.)
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Green’s Function

4.1 Recurrence and transience

A random walk Sn with increment distribution p ∈ Pd∪P∗
d is called recurrent if P{Sn = 0 i.o.} = 1.

If the walk is not recurrent it is called transient. We will also say that p is recurrent or transient.

It is easy to see using the Markov property that p is recurrent if and only if for each x ∈ Zd,

Px{Sn = 0 for some n ≥ 1} = 1,

and p is transient if and only if the escape probability, q, is positive, where q is defined by

q = P{Sn 6= 0 for all n ≥ 1}.

Theorem 4.1.1 If p ∈ P ′
d with d = 1, 2, then p is recurrent. If p ∈ P∗

d with d ≥ 3, then p is

transient. For all p,

q =

[ ∞
∑

n=0

pn(0)

]−1

, (4.1)

where the left-hand side equals zero if the sum is divergent.

Proof Let Y =
∑∞

n=0 1{Sn = 0} denote the number of visits to the origin and note that

E[Y ] =

∞
∑

n=0

P{Sn = 0} =

∞
∑

n=0

pn(0).

If p ∈ P ′
d with d = 1, 2, the LCLT (see Theorem 2.1.1 and Theorem 2.3.9) implies that pn(0) ∼

c n−d/2 and the sum is infinite. If p ∈ P∗
d with d ≥ 3, then (2.49) shows that pn(0) ≤ c n−d/2 and

hence E[Y ] < ∞. We can compute E(Y ) in terms of q. Indeed, the Markov property shows that,

P{Y = j} = (1− q)j−1 q. Therefore, if q > 0,

E[Y ] =
∞
∑

j=0

j P{Y = j} =
∞
∑

j=0

j (1− q)j−1 q =
1

q
.

75
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4.2 Green’s generating function

If p ∈ P ∪ P∗ and x, y ∈ Zd, we define the Green’s generating function to be the power series in ξ:

G(x, y; ξ) =

∞
∑

n=0

ξn Px{Sn = y} =

∞
∑

n=0

ξn pn(y − x).

Note that the sum is absolutely convergent for |ξ| < 1. We write just G(y; ξ) for G(0, y, ξ). If

p ∈ P, then G(x; ξ) = G(−x; ξ).
The generating function is defined for complex ξ, but there is a particular interpretation of the

sum for positive ξ ≤ 1. Suppose T is a random variable independent of the random walk S with a

geometric distribution,

P{T = j} = ξj−1 (1− ξ), j = 1, 2, . . . ,

i.e., P{T > j} = ξj (if ξ = 1, then T ≡ ∞). We think of T as a “killing time” for the walk and we

will refer to such T as a geometric random variable with killing rate 1 − ξ. At each time j, if the

walker has not already been killed, the process is killed with probability 1 − ξ, where the killing

is independent of the walk. If the random walk starts at the origin, then the expected number of

visits to x before being killed is given by

E





∑

j<T

1{Sj = x}



 = E





∞
∑

j=0

1{Sj = x;T > j}





=
∞
∑

j=0

P{Sj = x;T > j} =
∞
∑

j=0

pj(x) ξ
j = G(x; ξ).

Theorem 4.1.1 states that a random walk is transient if and only if G(0; 1) < ∞, in which case

the escape probability is G(0; 1)−1. For a transient random walk, we define the Green’s function

to be

G(x, y) = G(x, y; 1) =

∞
∑

n=0

pn(y − x).

We write G(x) = G(0, x); if p ∈ P, then G(x) = G(−x). The strong Markov property implies that

G(0, x) = P{Sn = x for some n ≥ 0} G(0, 0). (4.2)

Similarly, we define

G̃(x, y; ξ) =

∫ ∞

0
ξt pt(x, y) dt.

For ξ ∈ (0, 1) this is the expected amount of time spent at site y by a continuous-time random

walk with increment distribution p before an independent “killing time” that has an exponential

distribution with rate − log(1− ξ). We will now show that if we set ξ = 1, we get the same Green’s

function as that induced by the discrete walk.

Proposition 4.2.1 If p ∈ P∗
d is transient, then

∫ ∞

0
p̃t(x) dt = G(x).
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Proof Let Sn denote a discrete-time walk with distribution p, Nt an independent Poisson process

with parameter 1, and let S̃t denote the continuous-time walk S̃t = SNt . Let

Yx =
∞
∑

n=0

1{Sn = x}, Ỹx =

∫ ∞

0
1{S̃t = x} dt,

denote the amount of time spent at x by S and S̃, respectively. Then G(x) = E[Yx]. If we let

Tn = inf{t : Nt = n}, then we can write

Ỹx =
∞
∑

n=0

1{Sn = x} (Tn+1 − Tn).

Independence of S and N implies

E[1{Sn = x} (Tn+1 − Tn)] = P{Sn = x}E[Tn+1 − Tn] = P{Sn = x}.

Hence E[Ỹx] = E[Yx].

Remark. Suppose p is the increment distribution of a random walk in Zd. For ǫ > 0, let pǫ denote

the increment of the “lazy walker” given by

pǫ(x) =

{

(1− ǫ) p(x), x 6= 0

ǫ+ (1− ǫ) p(0), x = 0

If p is irreducible and periodic on Zd, then for each 0 < ǫ < 1, pǫ is irreducible and aperiodic. Let

L, φ denote the generator and characteristic function for p, respectively. Then the generator and

characteristic function for pǫ are

Lǫ = (1− ǫ)L, φǫ(θ) = ǫ+ (1− ǫ)φ(θ). (4.3)

If p has mean zero and covariance matrix Γ, then pǫ has mean zero and covariance matrix

Γǫ = (1− ǫ) Γ, det Γǫ = (1− ǫ)d det Γ. (4.4)

If p is transient, and G,Gǫ denote the Green’s function for p, pǫ, respectively, then similarly to the

last proposition we can see that

Gǫ(x) =
1

1− ǫ G(x). (4.5)

For some proofs it is convenient to assume that the walk is aperiodic; results for periodic walks can

then be derived using these relations.

If n ≥ 1, let fn(x, y) denote the probability that a random walk starting at x first visits y at

time n (not counting time n = 0), i.e.,

fn(x, y) = Px{Sn = y;S1 6= y, . . . , Sn−1 6= y} = Px{τy = n},

where

τy = min{j ≥ 1 : Sj = y}, τy = min{j ≥ 0 : Sj = y}.
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Let fn(x) = fn(0, x) and note that

Px{τy <∞} =

∞
∑

n=1

fn(x, y) =

∞
∑

n=1

fn(y − x) ≤ 1.

Define the first visit generating function by

F (x, y; ξ) = F (y − x; ξ) =
∞
∑

n=1

ξnfn(y − x).

If ξ ∈ (0, 1), then

F (x, y; ξ) = Px{τy < Tξ},

where Tξ denotes an independent geometric random variable satisfying P{Tξ > n} = ξn.

Proposition 4.2.2 If n ≥ 1,

pn(y) =

n
∑

j=1

fj(y) pn−j(0).

If ξ ∈ C,

G(y; ξ) = δ(y) + F (y; ξ)G(0; ξ), (4.6)

where δ denotes the delta function. In particular, if |F (0, ξ)| < 1,

G(0; ξ) =
1

1− F (0; ξ)
. (4.7)

Proof The first equality follows from

P{Sn = y} =
n
∑

j=1

P{τy = j;Sn − Sj = 0} =
n
∑

j=1

P{τy = j} pn−j(0).

The second equality uses

∞
∑

n=1

pn(x) ξ
n =

[ ∞
∑

n=1

fn(x) ξ
n

] [ ∞
∑

m=0

pm(0) ξm

]

,

which follows from the first equality. For ξ ∈ (0, 1], there is a probabilistic interpretation of (4.6).

If y 6= 0, the expected number of visits to y (before time Tξ) is the product of the probability of

reaching y and the expected number of visits to y given that y is reached before time Tξ. If y = 0,

we have to add an extra 1 to account for p0(y).

♣ If ξ ∈ (0, 1), the identity (4.7) can be considered as a generalization of (4.1). Note that

F (0; ξ) =

∞
∑

j=1

P{τ0 = j;Tξ > j} = P{τ0 < Tξ}
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represents the probability that a random walk killed at rate 1− ξ returns to the origin before being killed. Hence,
the probability that the walker does not return to the origin before being killed is

1− F (0; ξ) = G(0; ξ)−1. (4.8)

The right-hand side is the reciprocal of the expected number of visits before killing. If p is transient, we can plug

ξ = 1 into this expression and get (4.1).

Proposition 4.2.3 Suppose p ∈ Pd ∪ P∗
d with characteristic function φ. Then if x ∈ Zd, |ξ| < 1,

G(x; ξ) =
1

(2π)d

∫

[−π,π]d

1

1− ξφ(θ)
e−ix·θ dθ.

If d ≥ 3, this holds for ξ = 1, i.e.,

G(x) =
1

(2π)d

∫

[−π,π]d

1

1− φ(θ)
e−ix·θ dθ.

Proof All of the integrals in this proof will be over [−π, π]d. The formal calculation, using Corollary

2.2.3, is

G(x; ξ) =

∞
∑

n=0

ξn pn(x) =

∞
∑

n=0

ξn
1

(2π)d

∫

φ(θ)n e−ix·θ dθ

=
1

(2π)d

∫

[ ∞
∑

n=0

(ξ φ(θ))n

]

e−ix·θ dθ

=
1

(2π)d

∫

1

1− ξ φ(θ)
e−ix·θ dθ.

The interchange of the sum and the integral in the second equality is justified by the dominated

convergence theorem as we now describe. For each N ,
∣

∣

∣

∣

∣

N
∑

n=0

ξnφ(θ)ne−ix·θ
∣

∣

∣

∣

∣

≤ 1

1− |ξ| |φ(θ)| .

If |ξ| < 1, then the right-hand side is bounded by 1/[1−|ξ|]. If p ∈ P∗
d and ξ = 1, then (2.13) shows

that the right-hand side is bounded by c |θ|−2 for some c. If d ≥ 3, |θ|−2 is integrable on [−π, π]d.

If p ∈ Pd is bipartite, we can use (4.3) and (4.5).

Some results are easier to prove for geometrically killed random walks than for walks restricted

to a fixed number of steps. This is because stopping time arguments work more nicely for such

walks. Suppose that Sn is a random walk, τ is a stopping time for the random walk, and T is

an independent geometric random variable. Then on the event {T > τ} the distribution of T − τ
given Sn, n = 0, . . . , τ is the same as that of T . This “loss of memory” property for geometric and

exponential random variables can be very useful. The next proposition gives an example of a result

proved first for geometrically killed walks. The result for fixed length random walks can be deduced

from the geometrically killed walk result by using Tauberian theorems. Tauberian theorems are one

of the major tools for deriving facts about a sequence from its generating functions. We will only

use some simple Tauberian theorems; see Section 12.5.
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Proposition 4.2.4 Suppose p ∈ Pd ∪ P ′
d, d = 1, 2. Let

q(n) = P{Sj 6= 0 : j = 1, . . . , n}.

Then as n→∞,

q(n) ∼
{

r π−1 n−1/2, d = 1

r (log n)−1, d = 2.

where r = (2π)d/2
√

det Γ.

Proof We will assume p ∈ P ′
d; it is not difficult to extend this to bipartite p ∈ Pd. We will establish

the corresponding facts about the generating functions for q(n): as ξ → 1−,

∞
∑

n=0

ξn q(n) ∼ r

Γ(1/2)

1√
1− ξ , d = 1, (4.9)

∞
∑

n=0

ξnq(n) ∼ r

1− ξ

[

log

(

1

1− ξ

)]−1

, d = 2. (4.10)

Here Γ denotes the Gamma function.† Since the sequence q(n) is monotone in n, Propositions

12.5.2 and 12.5.3 imply the proposition (recall that Γ(1/2) =
√
π).

Let T be a geometric random variable with killing rate 1− ξ. Then (4.8) tells us that

P{Sj 6= 0 : j = 1, . . . , T − 1} = G(0; ξ)−1.

Also,

P{Sj 6= 0 : j = 1, . . . , T − 1} =

∞
∑

n=0

P{T = n+ 1} q(n) = (1− ξ)
∞
∑

n=0

ξn q(n).

Using (2.32) and Lemma 12.5.1, we can see that as ξ → 1−,

G(0; ξ) =

∞
∑

n=0

ξn pn(0) =

∞
∑

n=0

ξn
[

1

r nd/2
+ o

(

1

nd/2

)]

∼ 1

r
F

(

1

1− ξ

)

,

where

F (s) =

{

Γ(1/2)
√
s, d = 1

log s, d = 2.

This gives (4.9) and (4.10).

Corollary 4.2.5 Suppose Sn is a random walk with increment distribution p ∈ P ′
d and

τ = τ0 = min{j ≥ 1 : Sj = 0}.

Then E[τ ] =∞.

† We use the bold face Γ to denote the Gamma function to distinguish it from the covariance matrix Γ.
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Proof If d ≥ 3, then transience implies that P{τ = ∞} > 0. For d = 1, 2, the result follows from

the previous proposition which tells us

P{τ > n} ≥
{

c n−1/2, d = 1,

c (log n)−1, d = 2.

♣ One of the basic ingredients of Proposition 4.2.4 is the fact that the random walk always starts afresh when

it returns to the origin. This idea can be extended to returns of a random walk to a set if the set if sufficiently

symmetric that it looks the same at all points. For an example, see Exercise 4.2.

4.3 Green’s function, transient case

In this section, we will study the Green’s function for p ∈ Pd, d ≥ 3. The Green’s function

G(x, y) = G(y, x) = G(y − x) is given by

G(x) =

∞
∑

n=0

pn(x) = E

[ ∞
∑

n=0

1{Sn = x}
]

= Ex
[ ∞
∑

n=0

1{Sn = 0}
]

.

Note that

G(x) = 1{x = 0}+
∑

y

p(x, y) Ey
[ ∞
∑

n=0

1{Sn = 0}
]

= δ(x) +
∑

y

p(x, y)G(y),

In other words,

LG(x) = −δ(x) =

{

−1, x = 0,

0, x 6= 0.

Recall from (4.2) that

G(x) = P{τx <∞}G(0).

♣ In the calculations above as well as throughout this section, we use the symmetry of the Green’s function,

G(x, y) = G(y, x). For nonsymmetric random walks, one must be careful to distinguish between G(x, y) and

G(y, x).

The next theorem gives the asymptotics of the Green’s function as |x| → ∞. Recall that J ∗(x)2 =

dJ (x)2 = x · Γ−1x. Since Γ is nonsingular, J ∗(x) ≍ J (x) ≍ |x|.

Theorem 4.3.1 Suppose p ∈ Pd with d ≥ 3. As |x| → ∞,

G(x) =
C∗
d

J ∗(x)d−2
+O

(

1

|x|d
)

=
Cd

J (x)d−2
+O

(

1

|x|d
)

,

where

C∗
d = d(d/2)−1 Cd =

Γ(d−2
2 )

2πd/2
√

det Γ
=

Γ(d2)

(d− 2)πd/2
√

det Γ
.
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Here Γ denotes the covariance matrix and Γ denotes the Gamma function. In particular, for

simple random walk,

G(x) =
dΓ(d2 )

(d− 2)πd/2
1

|x|d−2
+O

(

1

|x|d
)

.

♣ For simple random walk we can write

Cd =
2d

(d− 2)ωd
=

2

(d− 2)Vd
,

where ωd denotes the surface area of unit (d− 1)-dimensional sphere and Vd is the volume of the unit ball in Rd.
See Exercise 6.18 for a derivation of this relation. More generally,

Cd =
2

(d− 2)V (Γ)

where V (Γ) denotes the volume of the ellipsoid {x ∈ Rd : J (x) ≤ 1}.

The last statement of Theorem 4.3.1 follows from the first statement using Γ = d−1 I,J (x) = |x|
for simple random walk. It suffices to prove the first statement for aperiodic p; the proof for

bipartite p follows using (4.4) and (4.5). The proof of the theorem will consist of two estimates:

G(x) =

∞
∑

n=0

pn(x) = O

(

1

|x|d
)

+

∞
∑

n=1

pn(x), (4.11)

and
∞
∑

n=1

pn(x) =
C∗
d

J ∗(x)d−2
+ o

(

1

|x|d
)

.

The second estimate uses the next lemma.

Lemma 4.3.2 Let b > 1. Then as r →∞,

∞
∑

n=1

n−b e−r/n =
Γ(b− 1)

rb−1
+O

(

1

rb+1

)

Proof The sum is a Riemann sum approximation of the integral

Ir :=

∫ ∞

0
t−b e−r/t dt =

1

rb−1

∫ ∞

0
yb−2 e−y dy =

Γ(b− 1)

rb−1
. (4.12)

If f : (0,∞)→ R is a C2 function and n is a positive integer, then Lemma 12.1.1 gives
∣

∣

∣

∣

∣

f(n)−
∫ n+(1/2)

n−(1/2)
f(s) ds

∣

∣

∣

∣

∣

≤ 1

24
sup{|f ′′(t)| : |t− n| ≤ 1/2}.

Choosing f(t) = t−b e−r/t, we get
∣

∣

∣

∣

∣

n−b e−r/n −
∫ n+(1/2)

n−(1/2)
t−b e−r/t dt

∣

∣

∣

∣

∣

≤ c 1

nb+2

[

1 +
r2

n2

]

e−r/n, n ≥ √r.



4.3 Green’s function, transient case 83

(The restriction n ≥ √r is used to guarantee that e−r/(n+(1/2)) ≤ c e−r/n.) Therefore,

∑

n≥√
r

∣

∣

∣

∣

∣

n−b e−r/n −
∫ n+(1/2)

n−(1/2)
t−b e−r/t dt

∣

∣

∣

∣

∣

≤ c
∑

n≥√
r

1

nb+2

[

1 +
r2

n2

]

e−r/n

≤ c

∫ ∞

0
t−(b+2)

(

1 +
r2

t2

)

e−r/t dt

≤ c r−(b+1)

The last step uses (4.12). It is easy to check that the sum over n <
√
r and the integral over t <

√
r

decay faster than any power of r.

Proof of Theorem 4.3.1. Using Lemma 4.3.2 with b = d/2, r = J ∗(x)2/2, we have

∞
∑

n=1

pn(x) =

∞
∑

n=1

1

(2πn)d/2
√

det Γ
e−J ∗(x)2/(2n) =

Γ(d−2
2 )

2πd/2
√

det Γ

1

J ∗(x)(d−2)
+O

(

1

|x|d+2

)

.

Hence we only need to prove (4.11). A simple estimate shows that
∑

n<|x|
pn(x)

as a function of x decays faster than any power of x. Similarly, using Proposition 2.1.2,
∑

n<|x|
pn(x) = o(|x|−d). (4.13)

Using (2.5), we see that
∑

n>|x|2
|pn(x)− pn(x)| ≤ c

∑

n>|x|2
n−(d+2)/2 = O(|x|−d).

Let k = d+ 3. For |x| ≤ n ≤ |x|2, (2.3) implies that there is an r such that

|pn(x)− pn(x)| ≤ c
[

( |x|√
n

)k

e−r|x|
2/n 1

n(d+2)/2
+

1

n(d+k−1)/2

]

. (4.14)

Note that
∑

n≥|x|
n−(d+k−1)/2 = O(|x|−(d+k−3)/2) = O(|x|−d),

and
∑

n≥|x|

( |x|√
n

)k

e−r |x|
2/n 1

n(d+2)/2
≤ c

∫ ∞

0

( |x|√
t

)k e−r|x|
2/t

(
√
t)d+2

dt ≤ c |x|−d.

Remark. The error term in this theorem is very small. In order to prove that it is this small we need

the sharp estimate (4.14) which uses the fact that the third moments of the increment distribution

are zero. If p ∈ P ′
d with bounded increments but with nonzero third moments, there exists a

similar asymptotic expansion for the Green’s function except that the error term is O(|x|−(d−1)),

see Theorem 4.3.5. We have used bounded increments (or at least the existence of sufficiently large
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moments) in an important way in (4.13). Theorem 4.3.5 proves asymptotics under weaker moment

assumptions; however, mean zero, finite variance is not sufficient to conclude that the Green’s

function is asymptotic to cJ ∗(x)2−d for d ≥ 4. See Exercise 4.5.

♣ Often one does not use the full force of these asymptotics. An important thing to remember is that

G(x) ≍ |x|2−d. There are a number of ways to remember the exponent 2 − d. For example, the central limit

theorem implies that the random walk should visit on the order of R2 points in the ball of radius R. Since

there are Rd points in this ball, the probability that a particular point is visited is of order R2−d. In the case of

standard d-dimensional Brownian motion, the Green’s function is proportional to |x|2−d. This is the unique (up

to multiplicative constant) harmonic, radially symmetric function on Rd \ {0} that goes to zero as |x| → ∞ (see

Exercise 4.4).

Corollary 4.3.3 If p ∈ Pd, then

∇jG(x) = ∇j
Cd

J ∗(x)d−2
+O(|x|−d).

In particular, ∇jG(x) = O(|x|−d+1). Also,

∇2
jG(x) = O(|x|−d).

Remark. We could also prove this corollary with improved error terms by using the difference

estimates for the LCLT such as Theorem 2.3.6, but we will not need the sharper results in this

book. If p ∈ P ′
d with bounded increments but nonzero third moments, we could also prove difference

estimates for the Green’s function using Theorem 2.3.6. The starting point is to write

∇yG(x) =
∞
∑

n=0

∇ypn(x) +
∞
∑

n=0

[∇ypn(x)−∇ypn(x)].

4.3.1 Asymptotics under weaker assumptions

In this section we establish the asymptotics for G for certain p ∈ P ′
d, d ≥ 3. We will follow the

basic outline of the proof of Theorem 4.3.1. Let G(x) = C∗
d/J ∗(x)d−2 denote the dominant term

in the asymptotics. From that proof we see that

G(x) = G(x) + o(|x|−d) +

∞
∑

n=0

[pn(x)− pn(x)].

In the discussion below, we let α ∈ {0, 1, 2}. If E[|X1|4] <∞ and the third moments vanish, we

set α = 2. If this is not the case, but E[|X1|3] < ∞, we set α = 1. Otherwise, we set α = 0. By

Theorems 2.3.5 and 2.3.9 we can see that there exists a sequence δn → 0 such that

∑

n≥|x|2
|pn(x)− pn(x)| ≤ c

∑

n≥|x|2

δn + α

|x|(d+α)/2
=

{

o(|x|2−d), α = 0

O(|x|2−d−α), α = 1, 2.

This is the order of magnitude that we will try to show for the error term, so this estimate suffices
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for this sum. The sum that is more difficult to handle and which in some cases requires additional

moment conditions is
∑

n<|x|2
[pn(x)− pn(x)].

Theorem 4.3.4 Suppose p ∈ P ′
3. Then

G(x) = G(x) + o

(

1

|x|

)

.

If E[|X1|3] <∞ we can write

G(x) = G(x) +O

(

log |x|
|x|2

)

.

If E[|X1|4] <∞ and the third moments vanish, then

G(x) = G(x) +O

(

1

|x|2
)

.

Proof By Theorem 2.3.10, there exists δn → 0 such that

∑

n<|x|2
|pn(x)− pn(x)| ≤ c

∑

n<|x|2

δn + α

|x|2 n(1+α)/2
.

The next theorem shows that if we assume enough moments of the distribution, then we get the

asymptotics as in Theorem 4.3.1. Note that as d→∞, the number of moments assumed grows.

Theorem 4.3.5 Suppose p ∈ P ′
d, d ≥ 3.

• If E|X1|d+1] <∞, then

G(x) = G(x) +O(|x|1−d).
• If E|X1|d+3] <∞ and the third moments vanish,

G(x) = G(x) +O(|x|−d).

Proof Let α = 1 under the weaker assumption and α = 2 under the stronger assumption, set

k = d+ 2α− 1 so that E[|X1|k] <∞. As mentioned above, it suffices to show that
∑

n<|x|2
[pn(x)− pn(x)] = O(|x|2−d−α).

Let ǫ = 2(1 + α)/(1 + 2α). As before,
∑

n<|x|ǫ
pn(x)

decays faster than any power of |x|. Using (2.52), we have
∑

n<|x|ǫ
pn(x) ≤

c

|x|k
∑

n<|x|ǫ
n

k−d
2 = O(|x|2−d−α).
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(The value of ǫ was chosen as the largest value for which this holds.) For the range |x|ǫ ≤ n < |x|2,
we use the estimate from Theorem 2.3.8:

|pn(x)− pn(x)| ≤
c

n(d+α)/2

[

|x/√n|k−1 e−r|x|
2/n + n−(k−2−α)/2

]

.

As before,

∑

n≥|x|ǫ

|x/√n|k−1

n(d+α)/2
e−r|x|

2/n ≤ c
∫ ∞

0

|x|k−1

(
√
t)k+d+α−1

e−r|x|
2/t dt = O(|x|2−d−α).

Also,
∑

n≥|x|ǫ

1

n
d
2
+ k

2
−1

= O(|x|−ǫ(d+α− 5
2
)) ≤ O(|x|2−d−α),

provided that
(

d+ α− 5

2

)

2(1 + α)

1 + 2α
≥ d− 2 + α,

which can be readily checked for α = 1, 2 if d ≥ 3.

4.4 Potential kernel

4.4.1 Two dimensions

If p ∈ P∗
2 , the potential kernel is the function

a(x) =
∞
∑

n=0

[pn(0) − pn(x)] = lim
N→∞

[

N
∑

n=0

pn(0)−
N
∑

n=0

pn(x)

]

. (4.15)

Exercise 2.2 shows that |pn(0)−pn(x)| ≤ c |x|n−3/2, so the first sum converges absolutely. However,

since pn(0) ≍ n−1, it is not true that

a(x) =

[ ∞
∑

n=0

pn(0)

]

−
[ ∞
∑

n=0

pn(x)

]

. (4.16)

If p ∈ P2 is bipartite, the potential kernel for x ∈ (Z2)e is defined in the same way. If x ∈ (Z2)o we

can define a(x) by the second expression in (4.15). Many authors use the term Green’s function

for a or −a. Note that

a(0) = 0.

♣ If p ∈ P∗
d is transient, then (4.16) is valid, and a(x) = G(0)−G(x), where G is the Green’s function for p.

Since |pn(0)− pn(x)| ≤ c |x|n−3/2 for all p ∈ P∗
2 , the same argument shows that a exists for such p.

Proposition 4.4.1 If p ∈ P ′
2, then 2 a(x) is the expected number of visits to x by a random walk

starting at x before its first visit to the origin.
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Proof We delay this until the next section; see (4.31).

Remark. Using Proposition 4.4.1, we can see that if pǫ is defined as in (4.3), and aǫ denotes the

potential kernel for pǫ then

aǫ(x) =
1

1− ǫ a(x). (4.17)

Proposition 4.4.2 If p ∈ P2,

La(x) = δ0(x) =

{

1, x = 0

0, x 6= 0.

Proof Recall that

L[pn(0) − pn(x)] = −Lpn(x) = pn(x)− pn+1(x).

For fixed x, the sequence pn(x)− pn+1(x) is absolutely convergent. Hence we can write

La(x) =
∞
∑

n=0

L[pn(0)− pn(x)] = lim
N→∞

N
∑

n=0

L[pn(0)− pn(x)]

= lim
N→∞

N
∑

n=0

[pn(x)− pn+1(x)]

= lim
N→∞

[p0(x)− pN+1(x)]

= p0(x) = δ0(x).

Proposition 4.4.3 If p ∈ P∗
2 ∪ P2, then

a(x) =
1

(2π)2

∫

[−π,π]2

1− e−ix·θ
1− φ(θ)

dθ.

Proof By the remark above, it suffices to consider p ∈ P∗
2 . The formal calculation is

a(x) =

∞
∑

n=0

[pn(0) − pn(x)] =

∞
∑

n=0

1

(2π)2

∫

φ(θ)n [1− e−ix·θ] dθ

=
1

(2π)2

∫

[ ∞
∑

n=0

φ(θ)n

]

[1− e−ix·θ] dθ

=
1

(2π)2

∫

1− e−ix·θ
1− φ(θ)

dθ.

All of the integrals are over [−π, π]2. To justify the interchange of the sum and the integral we use

(2.13) to obtain the estimate
∣

∣

∣

∣

∣

N
∑

n=0

φ(θ)n [1− e−ix·θ]
∣

∣

∣

∣

∣

≤ |1− e
−ix·θ|

1− |φ(θ)| ≤
c |xθ|
|θ|2 ≤

c |x|
|θ| .
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Since |θ|−1 is an integrable function in [−π, π]2, the dominated convergence theorem may be applied.

Theorem 4.4.4 If p ∈ P2, there exists a constant C = C(p) such that as |x| → ∞,

a(x) =
1

π
√

det Γ
log[J ∗(x)] + C +O(|x|−2).

For simple random walk,

a(x) =
2

π
log |x|+ 2γ + log 8

π
+O(|x|−2),

where γ is Euler’s constant.

Proof We will assume that p is aperiodic; the bipartite case is done similarly. We write

a(x) =
∑

n≤J ∗(x)2

pn(0) −
∑

n≤J ∗(x)2

pn(x) +
∑

n>J ∗(x)2

[pn(0) − pn(x)].

We know from (2.23) that

pn(0) =
1

2π
√

det Γ

1

n
+O

(

1

n2

)

.

We therefore get

∑

n≤J ∗(x)2

pn(0) = 1 +O(|x|−2) +
∑

1≤n≤J ∗(x)2

1

2π
√

det Γ

1

n
+

∞
∑

n=1

[

pn(0)−
1

2π
√

det Γ

1

n

]

,

where the last sum is absolutely convergent. Also,

∑

1≤n≤J ∗(x)2

1

n
= 2 log[J ∗(x)] + γ +O(|x|−2),

where γ is Euler’s constant (see Lemma 12.1.3). Hence,

∑

n≤J ∗(x)2

pn(0) =
1

π
√

det Γ
log[J ∗(x)] + c′ +O(|x|−2)

for some constant c′.
Proposition 2.1.2 shows that

∑

n≤|x|
pn(x)

decays faster than any power of |x|. Theorem 2.3.8 implies that there exists c, r such that for

n ≤ J ∗(x)2,
∣

∣

∣

∣

pn(x)−
1

2π n
√

det Γ
e−J ∗(x)2/2n

∣

∣

∣

∣

≤ c
[

|x/√n|5 e−r|x|2/n
n2

+
1

n3

]

. (4.18)
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Therefore,

∑

|x|≤n≤J ∗(x)2

∣

∣

∣

∣

pn(x)−
1

2π n
√

det Γ
e−J ∗(x)2/2n

∣

∣

∣

∣

≤ O(|x|−2) + c
∑

|x|<n≤J ∗(x)2

[

|x/√n|5 e−r|x|2/n
n2

+
1

n3

]

≤ c |x|−2.

The last estimate is done as in the final step of the proof of Theorem 4.3.1. Similarly to the proof

of Lemma 4.3.2 we can see that

∑

|x|≤n≤J ∗(x)2

1

n
e−J ∗(x)2/2n =

∫ J ∗(x)2

0

1

t
e−J ∗(x)2/2t dt+O(|x|−2)

=

∫ ∞

1

1

y
e−y/2 dy +O(|x|−2).

The integral contributes a constant. At this point we have shown that

∑

n≤J ∗(x)2

[pn(0) − pn(x)] =
1

π
√

det Γ
log[J ∗(x)] +C ′ +O(|x|−2)

for some constant C ′. For n > J ∗(x)2, we use Theorem 2.3.8 and Lemma 4.3.2 again to conclude

that
∑

n>J ∗(x)2

[pn(0)− pn(x)] = c

∫ 1

0

1

y

[

1− e−y/2
]

dy +O(|x|−2).

For simple random walk in two dimensions, it follows that

a(x) =
2

π
log |x|+ k +O(|x|−2),

for some constant k. To determine k, we use

φ(θ1, θ2) = 1− 1

2
[cos θ1 + cos θ2].

Plugging this into Proposition 4.4.3 and doing the integral (details omitted, see Exercise 4.9), we

get an exact expression for xn = (n, n) for integer n > 0

a(xn) =
4

π

[

1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1

]

.

However, we also know that

a(xn) =
2

π
log n+

2

π
log
√

2 + k +O(n−2).

Therefore,

k = lim
n→∞



− 1

π
log 2− 2

π
log n+

4

π

n
∑

j=1

1

2j − 1



 .
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Using Lemma 12.1.3 we can see that as n→∞,

n
∑

j=1

1

2j − 1
=

2n
∑

j=1

1

j
−

n
∑

j=1

1

2j
=

1

2
log n+ log 2 +

1

2
γ + o(1).

Therefore,

k =
3

π
log 2 +

2

π
γ.

♣ Roughly speaking, a(x) is the difference between the expected number of visits to 0 and the expected
number of visits to x by some large time N . Let us consider N >> |x|2. By time |x|2, the random walker has
visited the origin about

∑

n<|x|2
pn(0) ∼

∑

n<|x|2

c

n
∼ 2 c log |x|,

times where c = (2π
√

det Γ)−1. It has visited x about O(1) times. From time |x|2 onward, pn(x) and pn(0) are
roughly the same and the sum of the difference from then on is O(1). This shows why we expect

a(x) = 2c log |x| +O(1).

Note that log |x| = logJ ∗(x) +O(1).

♣ Although we have included the exact value γ2 for simple random walk, we will never need to use this value.

Corollary 4.4.5 If p ∈ P2,

∇ja(x) = ∇j
[

1

π
√

det Γ
log[J ∗(x)]

]

+O(|x|−2).

In particular, ∇ja(x) = O(|x|−1). Also,

∇2
ja(x) = O(|x|−2).

Remark. One can give better estimates for the differences of the potential kernel by starting with

Theorem 2.3.6 and then following the proof of Theorem 4.3.1. We give an example of this technique

in Theorem 8.1.2.

4.4.2 Asymptotics under weaker assumptions

We can prove asymptotics for the potential kernel under weaker assumptions. Let

a(x) = [π
√

det Γ]−1 log[J ∗(x)]

denote the leading term in the asymptotics.
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Theorem 4.4.6 Suppose p ∈ P ′
2. Then

a(x) = a(x) + o(log |x|).
If E[|X1|3] <∞, then there exists C <∞ such that

a(x) = a(x) + C +O(|x|−1).

If E[|X1|6] <∞ and the third moments vanish, then

a(x) = a(x) + C +O(|x|−2).

Proof Let α = 0, 1, 2 under the three possible assumptions, respectively. We start with α = 1, 2

for which we can write
∞
∑

n=0

[pn(0) − pn(x)] =
∞
∑

n=0

[pn(0) − pn(x)] +
∞
∑

n=0

[pn(0) − pn(0)] +
∞
∑

n=0

[pn(x)− pn(x)] (4.19)

The estimate
∞
∑

n=0

[pn(0)− pn(x)] = a(x) + C̃ +O(|x|−2)

is done as in Theorem 4.4.4. Since |pn(0)− pn(0)| ≤ c n−3/2, the second sum on the right-hand side

of (4.19) converges, and we set

C = C̃ +
∞
∑

n=0

[pn(0)− pn(0)].

We write
∣

∣

∣

∣

∣

∞
∑

n=0

[pn(x)− pn(x)]
∣

∣

∣

∣

∣

≤
∑

n<|x|2
|pn(x)− pn(x)| +

∑

n≥|x|2
|pn(x)− pn(x)|.

By Theorem 2.3.5 and and Theorem 2.3.9,
∑

n≥|x|2
|pn(x)− pn(x)| ≤ c

∑

n≥|x|2
n−(2+α)/2 = O(|x|−α).

For α = 1, Theorem 2.3.10 gives
∑

n<|x|2
|pn(x)− pn(x)| ≤

∑

n<|x|2

c

|x|2 n1/2
= O(|x|−1).

If E[|X1|4] < ∞ and the third moments vanish, a similar arugments shows that the sum on the

left-hand side is bounded by O(|x|−2 log |x|) which is a little bigger than we want. However, if

we also assume that E[|X1|6] < ∞, then we get an estimate as in (4.18), and we can show as in

Theorem 4.4.4 that this sum is O(|x|−2).

If we only assume that p ∈ P ′
2, then we cannot write (4.19) because the second sum on the

right-hand side might diverge. Instead, we write

∞
∑

n=0

[pn(0)− pn(x)] =
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∑

n≥|x|2
[pn(0)− pn(x)] +

∑

n<|x|2
[pn(0)− pn(x)] +

∑

n<|x|2
[pn(0)− pn(0)] +

∑

n<|x|2
[pn(x)− pn(x)].

As before,
∑

n<|x|2
[pn(0) − pn(x)] = a(x) +O(1).

Also, Exercise 2.2, Theorem 2.3.10, and (2.32), respectively, imply

∑

n≥|x|2
|pn(0)− pn(x)| ≤

∑

n≥|x|2

c |x|
n3/2

= O(1),

∑

n<|x|2
|pn(x)− pn(x)| ≤

∑

n<|x|2

c

|x|2 = O(1),

∑

n<|x|2
|pn(0)− pn(0)| ≤

∑

n<|x|2
o

(

1

n

)

= o(log |x|).

4.4.3 One dimension

If p ∈ P ′
1, the potential kernel is defined in the same way

a(x) = lim
N→∞

[

N
∑

n=0

pn(0)−
N
∑

n=0

pn(x)

]

.

In this case, the convergence is a little more subtle. We will restrict ourselves to walks satisfying

E[|X|3] <∞ for which the proof of the next proposition shows that the sum converges absolutely.

Proposition 4.4.7 Suppose p ∈ P ′
1 with E[|X|3] <∞. Then there is a c such that for all x,
∣

∣a(x)σ2 − |x|
∣

∣ ≤ c log |x|.

If E[|X|4] <∞ and E[X3] = 0, then there is a C such that

a(x) =
|x|
σ2

+ C +O(|x|−1).

Proof Assume x > 0. Let α = 1 under the weaker assumption and α = 2 under the stronger

assumption. Theorem 2.3.6 gives

pn(0) − pn(x) = pn(0)− pn(x) + xO(n−(2+α)/2),

which shows that
∣

∣

∣

∣

∣

∣

∑

n≥x2

[pn(0)− pn(x)]− [pn(0)− pn(x)]

∣

∣

∣

∣

∣

∣

≤ c x
∑

n≥x2

n−(2+α)/2 ≤ cx1−α.
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If α = 1, Theorem 2.3.5 gives
∑

n<x2

[pn(0)− pn(0)] ≤ c
∑

n<x2

n−1 = O(log x).

If α = 2, Theorem 2.3.5 gives |pn(0)− pn(0)| = O(n−3/2) and hence

∑

n<x2

[pn(0) − pn(0)] = C ′ +O(|x|−1), C ′ :=
∞
∑

n=0

[pn(0)− pn(0)],

In both cases, Theorem 2.3.10 gives
∑

n<x2

[pn(x)− pn(x)] ≤
c

x2

∑

n<x2

n(1−α)/2 ≤ c x1−α.

Therefore,

a(x) = e(x) +

∞
∑

n=0

[pn(0)− pn(x)] = e(x) +

∞
∑

n=1

1√
2πσ2n

[

1− e−
x2

2σ2n

]

,

where e(x) = O(log x) if α = 1 and e(x) = C ′ + O(x−1) if α = 2. Standard estimates (see Section

12.1.1), which we omit, show that there is a C ′′ such that as x→∞,

∞
∑

n=1

1√
2πσ2n

= C ′′ +
∫ ∞

0

1√
2πσ2t

[

1− e−
x2

2σ2t

]

dt + o(x−1),

and
∫ ∞

0

1√
2πσ2t

[

1− e−
x2

2σ2t

]

dt =
2x

σ2
√

2π

∫ ∞

0

1

u2

(

1− e−u2/2
)

du =
x

σ2
.

Since C = C ′ + C ′′ is independent of x, the result also holds for x < 0.

Theorem 4.4.8 If p ∈ P1, and x > 0,

a(x) =
x

σ2
+ Ex

[

a(ST )− ST
σ2

]

, (4.20)

where T = min{n : Sn ≤ 0}. There exists β > 0 such that for x > 0,

a(x) =
x

σ2
+ C +O(e−βx), x→∞, (4.21)

where

C = lim
y→∞

Ey
[

a(ST )− ST
σ2

]

.

In particular, for simple random walk, a(x) = |x|.

Proof Assume y > x, let Ty = min{n : Sn ≤ 0 or Sn ≥ y}, and consider the bounded martingale

Sn∧Ty . Then the optional sampling theorem implies that

x = Ex[S0] = Ex[STy ] = Ex[ST ;T ≤ Ty] + Ex[STy ;T > Ty].
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If we let y →∞, we see that

lim
y→∞

Ex[STy ;T > Ty] = x− Ex[ST ].

Also, since E[STy | Ty < T ] = y +O(1), we can see that

lim
y→∞

y Px{Ty < T} = x− Ex[ST ].

We now consider the bounded martingale Mn = a(Sn∧Ty). Then the optional sampling theorem

implies that

a(x) = Ex[M0] = Ex[MTy ] = Ex[a(ST );T ≤ Ty] + Ex[a(STy);T > Ty].

As y →∞, Ex[a(ST );T < Ty]→ Ex[a(ST )]. Also, as y →∞,

Ex[a(STy);T > Ty] ∼ Px{Ty < T}
[ y

σ2
+O(1)

]

∼ x− Ex[ST ]

σ2
.

This gives (4.20).

We will sketch the proof of (4.21); we leave it as an exercise (Exercise 4.12) to fill in the details.

We will show that there exists a β such that if 0 < x < y <∞, then

∞
∑

j=0

|Px{ST = −j} − Py{ST = −j}| = O(e−βx). (4.22)

Even though we have written this as an infinite sum, the terms are nonzero only for j less than the

range of the walk. Let ρz = min{n ≥ 0 : Sn ≤ z}. Irreducibility and aperiodicity of the random walk

can be used to see that there is an ǫ > 0 such that for all z > 0, Pz+1{Sρz = z} = P1{ρ0 = 0} > ǫ.

Let

f(r) = f−j(r) = sup
x,y≥r

|Px{ST = −j} − Py{ST = −j}|.

Then if R denotes the range of the walk, we can see that

f(r + 1) ≤ (1− ǫ) f(r −R).

Iteration of this inequality gives f(kR) ≤ (1− ǫ)k−1f(R) and this gives (4.22).

Remark. There is another (perhaps more efficient) proof of this result, see Exercise 4.13. One

may note that the proof does not use the symmetry of the walk to establish

a(x) =
x

σ2
+ C +O(e−αx), x→∞.

Hence, this result holds for all mean zero walks with bounded increments. Applying the proof to

negative x yields

a(−x) =
|x|
σ2

+ C− +O(e−α|x|).

If the third moment of the increment distribution is nonzero, it is possible that C 6= C−, see Exercise

4.14.
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♣ The potential kernel in one dimension is not as useful as the potential kernel or Green’s function in higher

dimensions. For d ≥ 2, we use the fact that the potential kernel or Green’s function is harmonic on Zd \ {0}
and that we have very good estimates for the asymptotics. For d = 1, similar arguments can be done with the

function f(x) = x which is obviously harmonic.

4.5 Fundamental solutions

If p ∈ P, the Green’s function G for d ≥ 3 or the potential kernel a for d = 2 is often called the

fundamental solution of the generator L since

LG(x) = −δ(x), La(x) = δ(x). (4.23)

More generally, we write

LxG(x, y) = LxG(y, x) = −δ(y − x), Lxa(x, y) = Lxa(y, x) = δ(y − x),
where Lx denotes L applied to the x variable.

Remark. Symmetry of walks in P is necessary to derive (4.23). If p ∈ P∗ is transient, the

Green’s function G does not satisfy (4.23). Instead it satisfies LRG(x) = −δ0(x) where LR denotes

the generator of the “backwards random walk” with increment distribution pR(x) = p(−x). The

function f(x) = G(−x) satisfies Lf(x) = −δ0(x) and is therefore the fundamental solution of the

generator. Similarly, if p ∈ P∗
2 , the fundamental solution of the generator is f(x) = a(−x).

Proposition 4.5.1 Suppose p ∈ Pd with d ≥ 2, and f : Zd → R is a function satisfying f(0) = 0,

f(x) = o(|x|) as x→∞, and Lf(x) = 0 for x 6= 0. Then, there exists b ∈ R such that

f(x) = b [G(x) −G(0)], d ≥ 3,

f(x) = b a(x), d = 2.

Proof See Propositions 6.4.6 and 6.4.8.

Remark. The assumption f(x) = o(|x|) is clearly needed since the function f(x1, . . . , xd) = x1 is

harmonic.

Suppose d ≥ 3. If f : Zd → R is a function with finite support we define

Gf(x) =
∑

y∈Zd

G(x, y) f(y) =
∑

y∈Zd

G(y − x) f(y). (4.24)

Note that if f is supported on A, then LGf(x) = 0 for x 6∈ A. Also if x ∈ A,

LGf(x) = Lx
∑

y∈Zd

G(x, y) f(y) =
∑

y∈Zd

LxG(x, y) f(y) = −f(x). (4.25)

In other words −G = L−1. For this reason the Green’s function is often called the inverse of the

(negative of the) Laplacian. Similarly, if d = 2, and f has finite support, we define

af(x) =
∑

y∈Zd

a(x, y) f(y) =
∑

y∈Zd

a(y − x) f(y). (4.26)
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In this case we get

Laf(x) = f(x),

i.e., a = L−1.

4.6 Green’s function for a set

If A ⊂ Zd and S is a random walk with increment distribution p, let

τA = min{j ≥ 1 : Sj 6∈ A}, τA = min{j ≥ 0 : Sj 6∈ A}. (4.27)

If A = Zd \ {x}, we write just τx, τx, which is consistent with the definition of τx given earlier in

this chapter. Note that τA, τA agree if S0 ∈ A, but are different if S0 6∈ A. If p is transient or A is

a proper subset of Zd we define

GA(x, y) = Ex
[

τA−1
∑

n=0

1{Sn = y}
]

=
∞
∑

n=0

Px{Sn = y;n < τA}.

Lemma 4.6.1 Suppose p ∈ Pd and A is a proper subset of Zd.

• GA(x, y) = 0 unless x, y ∈ A.

• GA(x, y) = GA(y, x) for all x, y.

• For x ∈ A, LxGA(x, y) = −δ(y − x). In particular if f(y) = GA(x, y), then f vanishes on

Zd \ A and satisfies Lf(y) = −δ(y − x) on A.

• For each y ∈ A,

GA(y, y) =
1

Py{τA < τy}
<∞.

• If x, y ∈ A, then

GA(x, y) = Px{τ y < τA}GA(y, y).

• GA(x, y) = GA−x(0, y − x) where A− x = {z − x : z ∈ A}.

Proof Easy and left to the reader. The second assertion may be surprising at first, but symmetry

of the random walk implies that for x, y ∈ A,

Px{Sn = y;n < τA} = Py{Sn = x;n < τA}.

Indeed if zo = x, z1, z2, . . . , zn−1, zn = y ∈ A, then

Px{S1 = z1, S2 = z2, . . . , Sn = y} = Py{S1 = zn−1, S2 = zn−2, . . . , Sn = x}.

The next proposition gives an important relation between the Green’s function for a set and the

Green’s function or the potential kernel.
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Proposition 4.6.2 Suppose p ∈ Pd, A ⊂ Zd, x, y ∈ Zd.
(a) If d ≥ 3,

GA(x, y) = G(x, y) − Ex[G(SτA
, y); τA <∞] = G(x, y)−

∑

z

Px{SτA
= z}G(z, y).

(b) If d = 1, 2 and A is finite,

GA(x, y) = Ex[a(SτA
, y)]− a(x, y) =

[

∑

z

Px{SτA
= z} a(z, y)

]

− a(x, y). (4.28)

Proof The result is trivial if x 6∈ A. We will assume x ∈ A in which case τA = τA.

If d ≥ 3, let Yy =
∑∞

n=0 1{Sn = y} denote the total number of visits to the point y. Then

Yy =

τA−1
∑

n=0

1{Sn = y}+

∞
∑

n=τA

1{Sn = y}.

If we assume S0 = x and take expectations of both sides, we get

G(x, y) = GA(x, y) + Ex[G(SτA , y)].

The d = 1, 2 case could be done using a similar approach, but it is easier to use a different

argument. If S0 = x and g is any function, then it is easy to check that

Mn = g(Sn)−
n−1
∑

j=0

Lg(Sj)

is a martingale. We apply this to g(z) = a(z, y) for which Lg(z) = δ(z − y). Then,

a(x, y) = Ex[M0] = Ex[Mn∧τA ] = Ex[a(Sn∧τA , y)]− Ex





(n∧τA)−1
∑

j=0

1{Sj = y}



 .

Since A is finite, the dominated convergence theorem implies that

lim
n→∞

Ex[a(Sn∧τA , y)] = Ex[a(SτA , y)]. (4.29)

The monotone convergence theorem implies

lim
n→∞

Ex





(n∧τA)−1
∑

j=0

1{Sj = y}



 = Ex





τA−1
∑

j=0

1{Sj = y}



 = GA(x, y).

The finiteness assumption on A was used in (4.29). The next proposition generalizes this to all

proper subsets A of Zd, d = 1, 2. Recall that Bn = {x ∈ Zd : |x| < n}. Define a function FA by

FA(x) = lim
n→∞

log n

π
√

det Γ
Px{τBn < τA}, d = 2,

FA(x) = lim
n→∞

n

σ2
Px{τBn < τA}, d = 1.
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The existence of these limits is established in the next proposition. Note that FA ≡ 0 on Zd \ A
since Px{τA = 0} = 1 for x ∈ Zd \ A.

Proposition 4.6.3 Suppose p ∈ Pd, d = 1, 2 and A is a proper subset of Zd. Then if x, y ∈ Z2,

GA(x, y) = Ex[a(SτA
, y)]− a(x, y) + FA(x).

Proof The result is trivial if x 6∈ A so we will suppose that x ∈ A. Choose n > |x|, |y| and let

An = A ∩ {|z| < n}. Using (4.28), we have

GAn(x, y) = Ex[a(SτAn
, y)]− a(x, y).

Note also that

Ex[a(SτAn
, y)] = Ex[a(SτA , y); τA ≤ τBn ] + Ex[a(SτBn

, y); τA > τBn ].

The monotone convergence theorem implies that as n→∞,

GAn(x, y) −→ GA(x, y), Ex[a(SτA , y); τA ≤ τBn ] −→ Ex[a(SτA , y)].

Sincce GA(x, y) <∞, this implies

lim
n→∞

Ex[a(SτBn
, y); τA > τBn ] = GA(x, y) + a(x, y)− Ex[a(SτA , y)].

However, n ≤ |SτBn
| ≤ n + R where R denotes the range of the increment distribution. Hence

Theorems 4.4.4 and 4.4.8 show that as n→∞,

Ex[a(SτBn
, y); τA > τBn ] ∼ Px{τA > τBn}

log n

π
√

det Γ
, d = 2,

Ex[a(SτBn
, y); τA > τBn ] ∼ Px{τA > τBn}

n

σ2
, d = 1.

Remark. We proved that for d = 1, 2,

FA(x) = GA(x, y) + a(x, y)− Ex[a(SτA
, y)]. (4.30)

This holds for all y. If we choose y ∈ Zd \A, then GA(x, y) = 0, and hence we can write

FA(x) = a(x, y) − Ex[a(SτA
, y)].

Using this expression it is easy to see that

LFA(x) = 0, x ∈ A.

Also, if Zd \ A is finite,

FA(x) = a(x) +OA(1), x→∞.

In the particular case A = Zd \ {0}, y = 0, this gives

FZd\{0}(x) = a(x).
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Applying (4.30) with y = x, we get

GZd\{0}(x, x) = FZd\{0}(x) + a(0, x) = 2 a(x). (4.31)

The next simple proposition relates Green’s functions to “escape probabilities” from sets. The

proof uses a last-exit decomposition. Note that the last time a random walk visits a set is a random

time that is not a stopping time. If A ⊂ A′, the event {τZd\A < τA′} is the event that the random

walk visits A before leaving A′.

Proposition 4.6.4 (Last-Exit Decomposition) Suppose p ∈ Pd and A ⊂ Zd. Then,

• If A′ is a proper subset of Zd with A ⊂ A′,

Px{τZd\A < τA′} =
∑

z∈A
GA′(x, z) Pz{τZd\A > τA′}.

• If ξ ∈ (0, 1) and Tξ is an independent geometric random variable with killing rate 1− ξ, then

Px{τZd\A < Tξ} =
∑

z∈A
G(x, z; ξ) Pz{τZd\A ≥ Tξ}.

• If d ≥ 3 and A is finite,

Px{Sj ∈ A for some j ≥ 0} = Px{τ
Zd\A <∞}

=
∑

z∈A
G(x, z) Pz{τZd\A =∞}.

Proof We will prove the first assertion; the other two are left as Exercise 4.11. We assume x ∈ A′

(for otherwise the result is trivial). On the event {τZd\A < τA′}, let σ denote the largest k < τA′

such that Sk ∈ A. Then,

Px{τZd\A < τA′} =

∞
∑

k=0

∑

z∈A
Px{σ = k;Sσ = z}

=
∑

z∈A

∞
∑

k=0

Px{Sk = z; k < τA′ ;Sj 6∈ A, j = k + 1, . . . , τA′}.

The Markov property implies that

Px{Sj 6∈ A, j = k + 1, . . . , τA′ | Sk = z; k < τA′} = Pz{τA′ < τZd\A}.

Therefore,

Px{τZd\A < τA′} =
∑

z∈A

∞
∑

k=0

Px{Sk = z; k < τA′}Pz{τA′ < τZd\A}

=
∑

z∈A
GA′(x, z) Pz{τA′ < τZd\A}.
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The next proposition uses a last-exit decomposition to describe the distribution of a random

walk conditioned to not return to its starting point before a killing time. The killing time is either

geometric or the first exit time from a set.

Proposition 4.6.5 Suppose Sn is a p-walk with p ∈ Pd; 0 ∈ A ⊂ Zd; and ξ ∈ (0, 1). Let Tξ be a

geometric random variable independent of the random walk with killing rate 1− ξ. Let

ρ = max{j ≥ 0 : j ≤ τA, Sj = 0}, ρ∗ = max{j ≥ 0 : j < Tξ, Sj = 0}.
• The distribution of {Sj : ρ ≤ j ≤ τA} is the same as the conditional distribution of {Sj : 0 ≤
j ≤ τA} given ρ = 0.

• The distribution of {Sj : ρ∗ ≤ j < Tξ} is the same as the conditional distribution of {Sj :

0 ≤ j < Tξ} given ρ∗ = 0.

Proof The usual Markov property implies that for any positive integer j, any x1, x2, . . . , xk−1 ∈
A \ {0} and any xk ∈ Zd \ A,

P{ρ = j, τA = j + k, Sj+1 = x1, . . . , Sj+k = xk}
= P{Sj = 0, τA > j, Sj+1 = x1, . . . , Sj+k = xk}
= P{Sj = 0, τA > j} P{S1 = x1, . . . , Sk = xk}.

The first assertion is obtained by summation over j, and the other equality is done similarly.

Exercises

Exercise 4.1 Suppose p ∈ Pd and Sn is a p-walk. Suppose A ⊂ Zd and that Px{τA =∞} > 0 for

some x ∈ A. Show that for every ǫ > 0, there is a y with Py{τA =∞} > 1− ǫ.

Exercise 4.2 Suppose p ∈ Pd ∪ P ′
d, d ≥ 2 and let x ∈ Zd \ {0}. Let

T = min{n > 0 : Sn = jx for some j ∈ Z}.
Show there exists c = c(x) such that as n→∞,

P{T > n} ∼







c n−1/2, d = 2

c (log n)−1, d = 3

c, d ≥ 4.

Exercise 4.3 Suppose d = 1. Show that the only function satisfying the conditions of Proposition

4.5.1 is the zero function.

Exercise 4.4 Find all radially symmetric functions f in Rd \ {0} satisfying ∆f(x) = 0 for all

x ∈ Rd \ {0}.

Exercise 4.5 For each positive integer k find positive integer d and p ∈ P ′
d such that E[|X1|k] <∞

and

lim sup
|x|→∞

|x|d−2G(x) =∞.
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(Hint: Consider a sequence of points z1, z2, . . . going to infinity and define P{X1 = zj} = qj. Note

that G(zj) ≥ qj. Make a good choice of z1, z2, . . . and q1, q2, . . .)

Exercise 4.6 Suppose X1,X2, . . . are independent, identically distributed random variables in Z
with mean zero. Let Sn = X1 + · · ·+Xn denote the corresponding random walk and let

Gn(x) =
n
∑

j=0

P{Sj = x}

be the expected number of visits to x in the first n steps of the walk.

(i) Show that Gn(x) ≤ Gn(0) for all n.

(ii) Use the law of large numbers to conclude that for all ǫ > 0 there is an Nǫ such that for

n ≥ Nǫ,
∑

|x|≤ǫn
Gn(x) ≥

n

2
.

(iii) Show that

G(0) = lim
n→∞

Gn(0) =∞

and conclude that the random walk is recurrent.

Exercise 4.7 Suppose A ⊂ Zd and x, y ∈ A. Show that

GA(x, y) = lim
n→∞

GAn(x, y),

where An = {z ∈ A : |z| < n}.

Exercise 4.8 Let Sn denote simple random walk in Z2 starting at the origin and let ρ = min{j ≥
1 : Sj = 0 or e1}. Show that P{Sρ = 0} = 1/2.

Exercise 4.9 Consider the random walk in Z2 that moves at each step to one of (1, 1), (1,−1),

(−1, 1), (−1,−1) each with probability 1/4. Although this walk is not irreducible, many of the

ideas of this chapter apply to this walk.

(i) Show that φ(θ1, θ2) = 1− (cos θ1)(cos θ2).

(ii) Let a be the potential kernel for this random walk and â the potential kernel for simple

random walk. Show that for every integer n, a((n, 0)) = â((n, n)). (see Exercise 1.7).

(iii) Use Proposition 4.4.3 (which is valid for this walk) to show that for all integers n > 0,

a((n, 0)) − a((n − 1, 0)) =
4

π(2n − 1)
,

a((n, 0)) =
4

π

[

1 +
1

3
+

1

5
+ · · · + 1

2n − 1

]

.

Exercise 4.10 Suppose p ∈ P1 and let A = {1, 2, . . .}. Show that

FA(x) =
x− Ex[ST ]

σ2
,
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where T = min{j ≥ 0 : Sj ≤ 0} and FA is as in (4.30).

Exercise 4.11 Finish the details in Proposition 4.6.4.

Exercise 4.12 Finish the details in Theorem 4.4.8.

Exercise 4.13 Let Sj be a random walk in Z with increment distribution p satisfying

r1 = min{j : p(j) > 0} <∞, r2 = max{j : p(j) > 0} <∞,
and let r = r2 − r1.

(i) Show that if α ∈ R and k is a nonnegative integer, then f(x) = αx xk satisfies Lf(x) = 0

for all x ∈ R in and only if (s− α)k−1 divides the polynomial

q(s) = E
[

sX1
]

.

(ii) Show that the set of functions on {−r + 1,−r + 2, . . .} satisfying Lf(x) = 0 for x ≥ 1 is a

vector space of dimension r.

(iii) Suppose that f is a function on {−r + 1,−r + 2, . . .} satisfying Lf(x) = 0 and f(x) ∼ x as

x→∞. Show that there exists c ∈ R, c1, α > 0 such that

|f(x)− x− c| ≤ c1 e−αx.

Exercise 4.14 Find the potential kernel a(x) for the one-dimensional walk with

p(−1) = p(−2) =
1

5
, p(1) =

3

5
.
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One-dimensional walks

5.1 Gambler’s ruin estimate

We will prove one of the basic estimates for one-dimensional random walks with zero mean and

finite variance, often called the gambler’s ruin estimate. We will not restrict to integer-valued

random walks. For this section we assume that X1,X2, . . . are independent, identically distributed

(one-dimensional) random variables with E[X1] = 0,E[X2
1 ] = σ2 > 0. We let Sn = S0+X1+· · ·+Xn

be the corresponding random walk. If r > 0, we let

ηr = min{n ≥ 0 : Sn ≤ 0 or Sn ≥ r},

η = η∞ = min{n ≥ 0 : Sn ≤ 0}.

We first consider simple random walk for which the gambler’s ruin estimates are identities.

Proposition 5.1.1 If Sn is one-dimensional simple random walk and j < k are positive integers,

then

Pj{Sηk
= k} =

j

k
.

Proof Since Mn := Sn∧ηk
is a bounded martingale, the optional sampling theorem implies that

j = Ej[M0] = Ej[Mηk
] = k Pj{Sηk

= k}.

Proposition 5.1.2 If Sn is one-dimensional simple random walk, then for positive integer n,

P1{η > 2n} = P1{S2n > 0} − P1{S2n < 0} = P{S2n = 0} =
1√
π n

+O

(

1

n3/2

)

.

Proof Symmetry and the Markov property tell us that each k < 2n and each positive integer x,

P1{η = k, S2n = x} = P1{η = k} p2n−k(x) = P1{η = k, S2n = −x}.

Therefore,

P1{η ≤ 2n, S2n = x} = P1{η ≤ 2n, S2n = −x}.

103
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Symmetry also implies that for all x, P1{S2n = x + 2} = P1{S2n = −x}. Since P1{η > 2n, S2n =

−x} = 0, for x ≥ 0, we have

P1{η > 2n} =
∑

x>0

P{η > 2n;S2n = x}

=
∑

x>0

[p2n(1, x)− p2n(1,−x)]

= p2n(1, 1) +
∑

x>0

[p2n(1, x+ 2)− p2n(1,−x)]

= p2n(0, 0) = 4−n
(

2n

n

)

=
1√
π n

+O

(

1

n3/2

)

.

The proof of the gambler’s ruin estimate for more general walks follows the same idea as that

in the proof of Proposition 5.1.1. However, there is a complication arising from the fact that we

do not know the exact value of Sηk
. Our first lemma shows that the application of the optional

sampling theorem is valid. For this we do not need to assume that the variance is finite.

Lemma 5.1.3 If X1,X2, . . . are i.i.d. random variables in R with E(Xj) = 0 and P{Xj > 0} > 0,

then for every 0 < r <∞ and every x ∈ R,

Ex[Sηr ] = x. (5.1)

Proof We assume 0 < x < r for otherwise the result is trivial. We start by showing that Ex[|Sηr |] <
∞. Since P{Xj > 0} > 0, there exists an integer m and a δ > 0 such that

P{X1 + · · ·+Xm > r} ≥ δ.

Therefore for all x and all positive integers j,

Px{ηr > jm} ≤ (1− δ)m.

In particular, Ex[ηr] <∞. By the Markov property,

Px{|Sηr | ≥ r + y; ηr = k} ≤ Px{ηr > k − 1; |Xk| ≥ y} = Px{ηr > k − 1}P{|Xk| ≥ y}.

Summing over k gives

Px{|Sηr | ≥ r + y} ≤ Ex[ηr] P{|Xk| ≥ y}.

Hence

Ex [|Sηr |] =

∫ ∞

0
Px{|Sηr | ≥ y} dy ≤ Ex[ηr]

[

r +

∫ ∞

0
P{|Xk| ≥ y}dy

]

= Ex[ηr] ( r + E [|Xj |] ) <∞.

Since Ex[|Sηr |] < ∞, the martingale Mn := Sn∧ηr is dominated by the integrable random variable

r+|Sηr |. Hence it is a uniformly integrable martingale, and (5.1) follows from the optional sampling

theorem (Theorem 12.2.3).
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We now prove the estimates under the assumption of bounded range. We will take some care in

showing how the constants in the estimate depend on the range.

Proposition 5.1.4 For every ǫ > 0 and K < ∞, there exist 0 < c1 < c2 < ∞ such that if

P{|X1| > K} = 0 and P{X1 ≥ ǫ} ≥ ǫ, then for all 0 < x < r,

c1
x+ 1

r
≤ Px{Sηr ≥ r} ≤ c2

x+ 1

r
.

Proof We fix ǫ,K and allow constants in this proof to depend on ǫ,K. Let m be the smallest integer

greater than K/ǫ. The assumption P{X1 ≥ ǫ} ≥ ǫ implies that for all x > 0,

Px{SηK
≥ K} ≥ P{X1 ≥ ǫ, . . . ,Xm ≥ ǫ} ≥ ǫm.

Also note that if 0 ≤ x ≤ y ≤ K then translation invariance and monotonicity give Px(Sηr ≥ r) ≤
Py(Sηr ≥ r). Therefore, for 0 < x ≤ K,

ǫm PK{Sηr ≥ r} ≤ Px{Sηr ≥ r} ≤ PK{Sηr ≥ r}, (5.2)

and hence it suffices to show for K ≤ x ≤ r that

x

r +K
≤ Px{Sηr ≥ r} ≤

x+K

r
.

By the previous lemma, Ex[Sηr ] = x. If Sηr ≥ r, then r ≤ Sηr ≤ r + K. If Sηr ≤ 0, then

−K ≤ Sηr ≤ 0. Therefore,

x = Ex[Sηr ] ≤ Ex[Sηr ;Sηr ≥ r] ≤ Px{Sηr ≥ r} (r +K),

and

x = Ex[Sηr ] ≥ Ex[Sηr ;Sηr ≥ r]−K ≥ r Px{Sηr ≥ r} −K.

Proposition 5.1.5 For every ǫ > 0 and K < ∞, there exist 0 < c1 < c2 < ∞ such that if

P{|X1| > K} = 0 and P{X1 ≥ ǫ} ≥ ǫ, then for all x > 0, r > 1,

c1
x+ 1

r
≤ Px{η ≥ r2} ≤ c2

x+ 1

r
.

Proof For the lower bound, we note that the maximal inequality for martingales (Theorem 12.2.5)

implies

P

{

sup
1≤j≤n2

|X1 + · · ·+Xj | ≥ 2Kn

}

≤ E[S2
n2]

4K2n2
≤ 1

4
.

This tells us that if the random walk starts at z ≥ 3Kr, then the probability that it does not

reach the origin in r2 steps is at least 3/4. Using this, the strong Markov property, and the last

proposition, we get

Px{η ≥ r2} ≥ 3

4
Px{Sη3Kr

≥ 3Kr} ≥ c1 (x+ 1)

r
.
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For the upper bound, we refer to Lemma 5.1.8 below. In this case, it is just as easy to give the

argument for general mean zero, finite variance walks.

If p ∈ Pd, d ≥ 2, then p induces an infinite family of one-dimensional non-lattice random walks

Sn · θ where |θ| = 1. In Chapter 6, we will need gambler’s ruin estimates for these walks that are

uniform over all θ. In particular, it will be important that the constant is uniform over all θ.

Proposition 5.1.6 Suppose Sn is a random walk with increment distribution p ∈ Pd, d ≥ 2. There

exist c1, c2 such that if θ ∈ Rd with |θ| = 1 and Sn = Sn · θ, then the conclusions of Propositions

5.1.4 and 5.1.5 hold with c1, c2.

Proof Clearly there is a uniform bound on the range. The other condition is satisfied by noting

the simple geometric fact that there is an ǫ > 0, independent of θ such that P{S1 · θ ≥ ǫ} ≥ ǫ, see

Exercise 1.8.

5.1.1 General case

We prove the gambler’s ruin estimate assuming only mean zero and finite variance. While we will

not attempt to get the best values for the constants, we do show that the constants can be chosen

uniformly over a wide class of distributions. In this section we fix K <∞, δ, b > 0 and 0 < ρ < 1,

and we let A(K, δ, b, ρ) be the collection of distributions on X1 with E[X1] = 0,

E[X2
1 ] = σ2 ≤ K2,

P{X1 ≥ 1} ≥ δ,

inf
n

P{S1, . . . , Sn2 > −n} ≥ b,

ρ ≤ inf
n>0

P{Sn2 ≤ −n}.

It is easy to check that for any mean zero, finite nonzero variance random walk Sn we can find a

t > 0 and some K, δ, b, ρ such that the estimates above hold for tSn.

Theorem 5.1.7 (Gambler’s ruin) For every K, δ, b, ρ, there exist 0 < c1 < c2 < ∞ such that if

X1,X2, . . . are i.i.d. random variables whose distributions are in A(K, δ, b, ρ), then for all 0 < x < r,

c1
x+ 1

r
≤ Px{η > r2} ≤ c2

x+ 1

r
,

c1
x+ 1

r
≤ Px{Sηr ≥ r} ≤ c2

x+ 1

r
.

Our argument consists of several steps. We start with the upper bound. Let

η∗r = min{n > 0 : Sn ≤ 0 or Sn ≥ r}, η∗ = η∗∞ = min{n > 0 : Sn ≤ 0}.

Note that η∗r differs from ηr in that the minimum is taken over n > 0 rather than n ≥ 0. As before

we write P for P0.
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Lemma 5.1.8

P{η∗ > n} ≤ 4K

δ
√
n
, P{η∗n < η∗} ≤ 4K

bδn
.

Proof Let qn = P{η∗ > n} = P{S1, . . . , Sn > 0}. Then

P{S1, . . . , Sn ≥ 1} ≥ δqn−1 ≥ δqn.

Let Jk,n be the event

Jk,n = {Sk+1, . . . , Sn ≥ Sk + 1}.

We will also use Jk,n to denote the indicator function of this event. Let mn = min{Sj : 0 ≤ j ≤ n},
Mn = max{Sj : 0 ≤ j ≤ n}. For each real x ∈ [mn,Mn], there is at most one integer k such that

Sk ≤ x and Sj > x, k < j ≤ n. On the event Jk,n, the random set corresponding to the jump from

Sk to Sk+1,

{x : Sk ≤ x and Sj > x, k < j ≤ n},

contains an interval of length at least one. In other words, there are
∑

k Jk,n nonoverlapping

intervals contained in [mn,Mn] each of length at least one. Therefore,

n−1
∑

k=0

Jk,n ≤Mn −mn.

But, P(Jk,n) ≥ δqn−k ≥ δqn. Therefore,

nδqn ≤ E[Mn −mn] ≤ 2 E[max{|Sj| : j ≤ n} ].

Martingale maximal inequalities (Theorem 12.2.5) give

P { max{|Sj | : j ≤ n} ≥ t } ≤
E[S2

n]

t2
≤ K2 n

t2
.

Therefore,

nδqn
2
≤ E[max{|Sj | : j ≤ n}] =

∫ ∞

0
P {max{|Sj | : j ≤ n} ≥ t} dt

≤ K
√
n+

∫ ∞

K
√
n
K2 n t−2 dt = 2K

√
n.

This gives the first inequality. The strong Markov property implies

P{η∗ > n2 | η∗n < η∗} ≥ P{Sj − Sη∗n > −n, 1 ≤ j ≤ n2 | η∗n < η∗} ≥ b.

Hence,

bP{η∗n < η∗} ≤ P{η∗ > n2}, (5.3)

which gives the second inequality.

Lemma 5.1.9 (Overshoot lemma I) For all x > 0,

Px{|Sη| ≥ m} ≤
1

ρ
E[X2

1 ; |X1| ≥ m]. (5.4)
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Moreover if α > 0 and E[|X1|2+α] <∞, then

Ex [|Sη|α] ≤ α

ρ
E[|X1|2+α].

♣ Since Ex[η] =∞, we cannot use the proof from Lemma 5.1.3.

Proof Fix ǫ > 0. For nonnegative integers k, let

Yk =

η
∑

n=0

1{kǫ < Sn ≤ (k + 1)ǫ}

be the number of times the random walk visits (kǫ, (k + 1)ǫ] before hitting (−∞, 0], and let

g(x, k) = Ex[Yk] =
∞
∑

n=0

Px{kǫ < Sn ≤ (k + 1)ǫ; η > n}.

Note that if m,x > 0,

Px{|Sη| ≥ m} =
∞
∑

n=0

Px{|Sη | ≥ m; η = n+ 1}

=

∞
∑

n=0

∞
∑

k=0

Px{|Sη| ≥ m; η = n+ 1; kǫ < Sn ≤ (k + 1)ǫ}

≤
∞
∑

k=0

∞
∑

n=0

Px{η > n; kǫ < Sn ≤ (k + 1)ǫ; |Sn+1 − Sn| ≥ m+ kǫ}

=

∞
∑

k=0

g(x, k) P{|X1| ≥ m+ kǫ}

=

∞
∑

k=0

g(x, k)

∞
∑

l=k

P{m+ lǫ ≤ |X1| < m+ (l + 1)ǫ}

=
∞
∑

l=0

P{m+ lǫ ≤ |X1| < m+ (l + 1)ǫ}
l
∑

k=0

g(x, k).

Recall that P{Sn2 ≤ −n} ≥ ρ for each n. We claim that for all x, y,

∑

0≤k<y/ǫ
g(x, k) ≤ y2

ρ
. (5.5)

To see this, let

Hy = max
x>0

∑

0≤k<⌊y/ǫ⌋
g(x, k).
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Note that the maximum is the same if we restrict to 0 < x ≤ y. Then for any x ≤ y,

∑

0≤k<⌊y/ǫ⌋
g(x, k) ≤ y2 + Px{η ≥ y2}E





∑

n≥y2
1{Sn ≤ y;n < η}

∣

∣

∣

∣

∣

∣

η ≥ y2



 ≤ y2 + (1− ρ)Hy. (5.6)

By taking the supremum over x we get Hy ≤ y2 + (1− ρ)Hy which gives (5.5). We therefore have

Px{|Sη | ≥ m} ≤
1

ρ

∞
∑

l=0

P{m+ lǫ ≤ |X1| < m+ (l + 1)ǫ}(lǫ + ǫ)2

≤ 1

ρ
(E[(X1 − ǫ)2;X1 ≤ −m] + E[(X1 + ǫ)2;X1 ≥ m]).

Letting ǫ→ 0, we obtain (5.4).

To get the second estimate, let F denote the distribution function of |X1|. Then

Ex[|Sη|α] = α

∫ ∞

0
tα−1 Px{|Sη | ≥ t} dt

≤ α

ρ

∫ ∞

0
tα−1 E[X2

1 ; |X1| ≥ t] dt

≤ α

ρ

∫ ∞

0
E
[

|X1|1+α; |X1| ≥ t
]

dt

=
α

ρ

∫ ∞

0

∫ ∞

t
x1+α dF (x) dt

=
α

ρ

∫ ∞

0

[∫ x

0
dt

]

x1+α dF (x) =
α

ρ
E[|X1|2+α].

♣ The estimate (5.6) illustrates a useful way to prove upper bounds for Green’s functions of a set. If starting
at any point y in a set V ⊂ U , there is a probability q of leaving U within N steps, then the expected amount
of time spent in V before leaving U starting at any x ∈ U is bounded above by

N + (1− q)N + (1− q)2N + · · · = N

q
.

♣ The lemma states that the overshoot random variable has two fewer moments than the increment distribution.

When the starting point is close to the origin, one might expect that the overshoot would be smaller since there

are fewer chances for the last step before entering (−∞, 0] to be much larger than a typical step. The next lemma

confirms this intuition and shows that one gains one moment if one starts near the origin.

Lemma 5.1.10 (Overshoot lemma II) Let

c′ =
32K

bδ
.
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Then for all 0 < x ≤ 1,

Px{|Sη| ≥ m} ≤
c′

ρ
E[|X1|; |X1| ≥ m].

Moreover if α > 0 and E[|X1|1+α] <∞, then

Ex[|Sη|α] ≤ α c′

ρ
E[|X1|1+α].

Proof The proof proceeds exactly as in Lemma 5.1.9 up to (5.5) which we replace with a stronger

estimate that is valid for 0 < x ≤ 1:

∑

0≤kǫ<y
g(x, k) ≤ c′ y

ρ
. (5.7)

To derive this estimate we note that
∑

2j−1≤kǫ<2j

g(x, k)

equals the product of the probability of reaching a value above 2j−1 before hitting (−∞, 0] and the

expected number of visits in this range given that event. Due to Lemma 5.1.8, the first probability

is no more than 4K/(bδ2j−1) and the conditional expectation, as estimated in (5.5), is less than

22j/ρ. Therefore,

∑

0≤kǫ<2j

g(x, k) ≤ 1

ρ

j
∑

l=1

(

4K

bδ2l−1

)

22l ≤ 1

ρ

(

16K

bδ

)

2j .

For general y we write 2j−1 < y ≤ 2j and obtain (5.7).

Given this, the same argument gives

Px{|Sη| ≥ m} ≤
c′

ρ
E[|X1|; |X1| ≥ m],

and

E[|Sη|α] = α

∫ ∞

0
tα−1 P{|Sη| ≥ t} dt

≤ α c′

ρ

∫ ∞

0
tα−1 E[|X1|; |X1| ≥ t] dt

≤ α c′

ρ

∫ ∞

0
E[Xα

1 ; |X1| ≥ t] dt =
α c′

ρ
E[|X1|1+α].

♣ The inequalities (5.5) and (5.7) imply that there exists a c <∞ such that for all y, Ey [η∗n] < cn2, and

Ex[η∗n] ≤ cn, 0 < x ≤ 1. (5.8)
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Lemma 5.1.11

P{η∗n < η∗} ≥ c∗

n
,

where

c∗ =
ρ δ

2 (ρ+ 2c′K2)
,

and c′ is as in Lemma 5.1.10. Also,

P{η∗ ≥ n} ≥ bP{η∗√n < η∗} ≥ b c∗√
n
.

Proof The last assertion follows immediately from the first one and the strong Markov property as

in (5.3). Since P{η∗n < η∗} ≥ δ P1{η∗n < η∗}, to establish the first assertion it suffices to prove that

P1{η∗n < η∗} ≥ c∗

δ n
.

Using (5.8), we have

P1{|Sη∗n | ≥ s+ n} ≤
∞
∑

l=0

P1{η∗n = l + 1; |Sη∗n | ≥ s+ n}

≤
∞
∑

l=0

P1{η∗n > l; |Xl+1| ≥ s}

≤ P{|X1| ≥ s}E1[η∗n]

≤ c′ n
ρ

P{|X1| ≥ s}.

In particular, if t > 0,

E1
[

|Sη∗n |; |Sη∗n | ≥ (1 + t)n
]

=

∫ ∞

tn
P1{|Sη∗n | ≥ s+ n} ds

≤ c′ n
ρ

∫ ∞

tn
P{|X1| ≥ s} ds

=
c′ n
ρ

E[|X1|; |X1| ≥ tn]

≤ c′

ρ t
E
[

|X1|2
]

≤ c′K2

ρ t
. (5.9)

Consider the martingale Mk = Sk∧η∗n . Due to the optional stopping theorem we have

1 = E1[M0] = E1[M∞] ≤ E1[Sη∗n ;Sη∗n ≥ n].

If we let t0 = 2c′K2/ρ in (5.9), we obtain

E1[|Sη∗n |; |Sη∗n | ≥ (1 + t0)n] ≤ 1

2
,

so it must be

E1[Sη∗n ;n ≤ Sη∗n ≤ (1 + t0)n] ≥ 1

2
,
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which implies

P1{η∗n < η∗} ≥ P1{n ≤ Sη∗n ≤ (1 + t0)n} ≥
1

2(1 + t0)n
.

Proof [of Theorem 5.1.7] Lemmas 5.1.8 and 5.1.11 prove the result for 0 < x ≤ 1. The result is

easy if x ≥ r/2 so we will assume 1 ≤ x ≤ r/2. As already noted, the function x 7→ Px{Sηr ≥ r} is

nondecreasing in x. Therefore,

P{Sη∗r ≥ r} = P{Sη∗x ≥ x} P{Sη∗r ≥ r | Sη∗x ≥ x} ≥ P{Sη∗x ≥ x} Px{Sηr ≥ r}.
Hence by Lemmas 5.1.8 and 5.1.11,

Px{Sηr ≥ r} ≤
P{Sη∗r ≥ r}
P{Sη∗x ≥ x}

≤ 4K

c∗bδ
x

r
.

For an inequality in the opposite direction, we first show that there is a c2 such that Ex[ηr] ≤ c2 xr.
Recall from (5.8) that Ey[ηr] ≤ cr for 0 < y ≤ 1. The strong Markov property and monotonicity

can be used (Exercise 5.1) to see that

Ex[ηr] ≤ E1[ηr] + Ex−1[ηr]. (5.10)

Hence we obtain the claimed bound for general x by induction. As in the previous lemma one can

now see that

Ex
[

|Sη∗r |; |Sη∗r | ≥ (1 + t) r
]

≤ c2K
2 x

t
,

and hence if t0 = 2c2K
2,

Ex
[

Sη∗r ;Sη∗r ≥ (1 + t0) r
]

≤ x

2
,

Ex
[

|Sη∗r |; r ≤ Sη∗r ≤ (1 + t0) r
]

≥ x

2
,

so that

Px
{

r ≤ Sη∗r ≤ (1 + t0) r
}

≥ x

2(1 + t0)r
.

As we have already shown (see the beginning of the proof of Lemma 5.1.11), this implies

Px{η∗ ≥ r2} ≥ b x

2(1 + t0)r
.

5.2 One-dimensional killed walks

A symmetric defective increment distribution (on Z) is a set of nonnegative numbers {pk : k ∈ Z}
with

∑

pk < 1 and p−k = pk for all k. Given a symmetric defective increment distribution, we have

the corresponding symmetric random walk with killing, that we again denote by S. More precisely,

S is a Markov chain with state space Z ∪ {∞}, where ∞ is an absorbing state, and

P{Sj+1 = k + l | Sj = k} = pl, P{Sj+1 =∞ | Sj = k} = p∞,
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where p∞ = 1−∑ pk. We let

T = min{j : Sj =∞}

denote the killing time for the random walk. Note that P{T = j} = p∞ (1− p∞)j−1, j ∈ {1, 2, . . .}.
Examples.

• Suppose p(j) is the increment distribution of a symmetric one-dimensional random walk and

s ∈ [0, 1). Then pj = s p(j) is a defective increment distribution corresponding to the random

walk with killing rate 1 − s. Conversely, if pj is a symmetric defective increment distribution,

and p(j) = pj/(1 − p∞), then p(j) is an increment distribution of a symmetric one-dimensional

random walk (not necessarily aperiodic or irreducible). If we kill this walk at rate 1 − p∞, we

get back pj.

• Suppose Sj is a symmetric random walk in Zd, d ≥ 2 which we write Sj = (Yj , Zj) where Yj is a

random walk in Z and Zj is a random walk in Zd−1. Suppose the random walk is killed at rate

1− s and let T̂ denote the killing time. Let

τ = min{j ≥ 1 : Zj = 0}, (5.11)

pk = P{Yτ = k; τ < T̂}.

Note that

pk =

∞
∑

j=1

P{τ = j;Yj = k; j < T̂}

=

∞
∑

j=1

sj P{τ = j;Yj = k} = E[sT̂ ;YT̂ = k; T̂ <∞].

If Z is a transient random walk, then P{τ <∞} < 1 and we can let s = 1.

• Suppose Sj = (Yj , Zj) and τ are as in the previous example and suppose A ⊂ Zd−1 \ {0}. Let

σA = min{j : Zj ∈ A},

pk = P{Yτ = k; τ < σA}.

If P{Zj ∈ A for some j} > 0, then {pk} is a defective increment distribution.

Given a symmetric defective increment distribution {pk} with corresponding walk Sj and killing

time T , define the events

V+ = {Sj > 0 : j = 1, . . . , T − 1}, V + = {Sj ≥ 0 : j = 1, . . . , T − 1},

V− = {Sj < 0 : j = 1, . . . , T − 1}, V − = {Sj ≤ 0 : j = 1, . . . , T − 1}.

Symmetry implies that P(V+) = P(V−),P(V +) = P(V −). Note that V+ ⊂ V +, V− ⊂ V − and

P(V+ ∩ V −) = P(V + ∩ V−) = P{T = 1} = p∞. (5.12)

Define a new defective increment distribution pk,−, which is supported on k = 0,−1,−2, . . ., by
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setting pk,− equal to the probability that the first visit to {· · · ,−2,−1, 0} after time 0 occurs at

position k and this occurs before the killing time T , i.e.,

pk,− =
∞
∑

j=1

P{Sj = k ; j < T ; Sl > 0, l = 1, . . . , j − 1}.

Define pk,+ similarly so that pk,+ = p−k,−. The strong Markov property implies

P(V +) = P(V+) + p0,− P(V +),

and hence

P(V+) = (1− p0,−) P(V +) = (1− p0,+) P(V +). (5.13)

In the next proposition we prove a nonintuitive fact.

Proposition 5.2.1 The events V + and V− are independent. In particular,

P(V−) = P(V+) = (1− p0,+) P(V +) =
√

p∞ (1− p0,+). (5.14)

Proof Independence is equivalent to the statement P(V− ∩ V +) = P(V−) P(V +). We will prove the

equivalent statement P(V− ∩ V c
+) = P(V−) P(V

c
+). Note that V− ∩ V c

+ is the event that T > 1 but

no point in {0, 1, 2 . . .} is visited during the times {1, . . . , T − 1}. In particular, at least one point

in {. . . ,−2,−1} is visited before time T .

Let

ρ = max{k ∈ Z : Sj = k for some j = 1, . . . , T − 1},

ξk = max{j ≥ 0 : Sj = k; j < T}.

In words, ρ is the rightmost point visited after time zero, and ξk is the last time that k is visited

before the walk is killed. Then,

P(V− ∩ V c
+) =

∞
∑

k=1

P{ρ = −k} =

∞
∑

k=1

∞
∑

j=1

P{ρ = −k; ξ−k = j}.

Note that the event {ρ = −k; ξ−k = j} is the same as the event

{Sj = −k ; j < T ; Sl ≤ −k, l = 1, . . . , j − 1 ; Sl < −k, l = j + 1, . . . , T − 1}.

Since,

P{Sl < −k, l = j + 1, . . . , T − 1 | Sj = −k ; j < T ; Sl ≤ −k, l = 1, . . . , j − 1} = P(V−),

we have

P{ρ = −k; ξ−k = j} = P{Sj = −k ; j < T ; Sl ≤ −k, l = 1, . . . , j − 1}P(V−).

Due to the symmetry of the random walk, the probability of the path [x0 = 0, x1, . . . , xj ] is the

same as the probability of the reversed path [xj − xj, xj−1 − xj, . . . , x0 − xj]. Note that if xj = −k
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and xl ≤ −k, l = 1, . . . , j − 1, then x0 − xj = k and
∑l

i=1(xj−i − xj−i+1) = xj−l − xj ≤ 0, for

l = 1, . . . , j − 1. Therefore we have

P{Sj = −k ; j < T ; Sl ≤ −k, l = 1, . . . , j − 1} = P{η = j; j < T ;Sj = k},

where

η = min{j ≥ 1 : Sj > 0}.

Since
∞
∑

k=1

∞
∑

j=1

P{η = j; j < T ;Sj = k} = P{η < T} = P(V
c
−) = P(V

c
+),

we obtain the stated independence. The equality (5.14) now follows from

p∞ = P(V− ∩ V +) = P(V−) P(V +) =
P(V−) P(V+)

1− p0,−
=

P(V+)2

1− p0,+
.

5.3 Hitting a half-line

We will give an application of Proposition 5.2.1 to walks in Zd. Suppose d ≥ 2 and Sn is a random

walk with increment distribution p ∈ Pd. We write Sn = (Yn, Zn) where Yn is a one-dimensional

walk and Zn is a (d − 1)-dimensional walk. Let Γ denote the covariance matrix for Sn and let Γ∗

denote the covariance matrix for Zn. Let T = min{j > 0 : Zj = 0} be the first time that the

random walk returns to the line {(j, x) ∈ Z× Zd−1 : x = 0}. Let T+, T+ denote the corresponding

quantities for the (nonpositive and negative) half-line

T+ = min
{

n > 0 : Sn ∈ {(j, x) ∈ Z× Zd−1 : j ≤ 0, x = 0}
}

,

T+ = min
{

n > 0 : Sn ∈ {(j, x) ∈ Z× Zd−1 : j < 0, x = 0}
}

,

and finally let

p0,+ = P{YT+ = 0}.

Proposition 5.3.1 If p ∈ Pd, d = 2, 3, there is a C such that as n→∞,

(1− p0,+) P{T+ > n} ∼ P{T+ > n} ∼
{

C n−1/4, d = 2,

C (log n)−1/2, d = 3.

Proof We will prove the second asymptotic relation; a similar argument shows that the first and

third terms are asympotic. Let σ = σξ denote a geometric random variable, independent of the

random walk, with killing rate 1− ξ, i.e., P{σ > k} = ξk. Let qn = P{T+ > n}, q(ξ) = P{T+ > σ}.
Then,

q(ξ) = P{T+ > σ} =
∞
∑

n=1

P{σ = n;T+ > n} =
∞
∑

n=1

(1− ξ) ξn−1 qn.
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By Propositions 12.5.2 and 12.5.3, it suffices to show that q(ξ) ∼ c (1 − ξ)1/4 if d = 2 and q(ξ) ∼
c [− log(1− ξ)]−1/2 if d = 3.

This is the same situation as the second example of the last subsection (although (τ, T ) there

corresponds to (T, σ) here). Hence, Proposition 5.2.1 tells us that

q(ξ) =
√

p∞(ξ) (1− p0,+(ξ)),

where p∞(ξ) = P{T > σ} and p0,+(ξ) = P{T+ ≤ σ;YT+ = 0}. Clearly, as ξ → 1−, 1 − p0,+(ξ) →
1− p0,+ > 0. By applying (4.9) and (4.10) to the random walk Zn, we can see that

P{T > σ} ∼ c (1− ξ)1/2, d = 2,

P{T > σ} ∼ c
[

log

(

1

1− ξ

)]−1

, d = 3.

♣ From the proof one can see that the constant C can be determined in terms of Γ∗ and p0,+. We do not

need the exact value and the proof is a little easier to follow if we do not try to keep track of this constant. It is

generally hard to compute p0,+; for simple random walk, see Proposition 9.9.8.

♣ The above proof uses the surprising fact that the events “avoid the positive x1-axis” and “avoid the negative

x1- axis” are independent up to a multiplicative constant. This idea does not extend to other sets, for example

the event “avoid the positive x1-axis” and “avoid the positive x2-axis” are not independent up to a multiplicative

constant in two dimensions. However, they are in three dimensions (which is a nontrivial fact).

In Section 6.8 we will need some estimates for two-dimensional random walks avoiding a half-

line. The argument given below uses the Harnack inequality (Theorem 6.3.9), which will be proved

independently of this estimate. In the remainder of this section, let d = 2 and let Sn = (Yn, Zn) be

the random walk. Let

ζr = min {n > 0 : Yn ≥ r} ,

ρr = min {n > 0 : Sn 6∈ (−r, r)× (−r, r)} ,

ρ∗r = min {n > 0 : Sn 6∈ Z× (−r, r)} .

If |S0| < r, the event {ζr = ρr} occurs if and only if the first visit of the random walk to the

complement of (−r, r)× (−r, r) is at a point (j, k) with j ≥ r.

Proposition 5.3.2 If p ∈ P2, then

P{T+ > ρr} ≍ r−1/2. (5.15)

Moreover, for all z 6= 0,

Pz{ρr < T+} ≤ c |z|1/2 r−1/2 (5.16)
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In addition, there is a c <∞ such that if 1 ≤ k ≤ r and Ak = {je1 : j = −k,−k + 1, . . .} , then

P{TAk
> ρr} ≤ c k−1/2 r−1/2. (5.17)

Proof It suffices to show that there exist c1, c2 with

P{T+ > ρr} ≤ c2 r−1/2, P{T+ > ρ∗r} ≥ c1 r−1/2.

The gambler’s ruin estimate applied to the second component implies that P{T > ρ∗r} ≍ r−1 and

an application of Proposition 5.2.1 gives P{T+ > ρ∗r} ≍ r−1/2.

Using the invariance principle, it is not difficult to show that there is a c such that for r sufficiently

large, P{ζr = ρr} ≥ c. By translation invariance and monotonicity, one can see that for j ≥ 1,

P−je1{ζr = ρr} ≤ P{ζr = ρr}.

Hence the strong Markov property implies that P{ζr = ρr | T+ < ρr} ≤ P{ζr = ρr}, therefore it

has to be that P{ζr = ρr | T+ > ρr} ≥ c and

P{ρr < T+} ≤ cP{ζr = ρr < T+}. (5.18)

Another application of the invariance principle shows that

P{T+ > r2 | ζr = ρr < T+} ≥ c,

since this conditional probability is bounded below by the probability that a random walk goes no

farther than distance r/2 in r2 steps. Hence,

P{ρr < T+} ≤ cP{ρr < T+, T+ > r2} ≤ cP{T+ > r2} ≤ c r−1/2.

This gives (5.15).

For the remaining results we will assume |z| is an integer greater than the range R of the

walk, but one can easily adapt the argument to arbitrary z. Let hr(x) = Px{ρr < T+} and let

M = M(r, |z|) be the maximum value of hr(x) over x ∈ (−|z| − R, |z| + R) × (−|z| − R, |z| + R).

By translation invariance, this is maximized at a point with maximal first component and by the

Harnack inequality (Theorem 6.3.9),

c1M ≤ hr(x) ≤ c2M, x ∈ (|z| −R, |z| +R)× (−|z| −R, |z|+R).

Together with strong Markov property this implies

P{ρr < T+} ≤ cM P{ρ|z| < T+},

and due to (5.18)

P{ρr < T+} ≥ cM P{ρ|z| = ζ|z| < T+} ≥ cM P{ρ|z| < T+}.

Since P{ρr < T+} ≍ r−1/2, we conclude that M ≍ |z|1/2 r−1/2, implying (5.16). To prove (5.17),

we write

P{TAk
> ρr} = P{TAk

> ρk}P{TAk
> ρr | TAk

> ρk} ≤ cP{TAk
> ρk} (k/r)1/2.

So if suffices to show that P{TAk
> ρk} ≤ ck−1 This is very close to the gambler’s ruin estimate,

but it is not exactly the form we have proved so far, so we will sketch a proof.
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Let

q(k) = P{TAk
> ρk}.

Note that for all integers |j| < k,

Pje1{TAk
> ρk} ≥ q(2k).

A last-exit decomposition focusing on the last visit to Ak before time ρk shows that

1 =
∑

|j|<k
G̃k(0, je1) Pje1{TAk

> ρk} ≥ q(2k)
∑

|j|<k
G̃k(0, je1) .

where G̃k denotes the Green’s function for the set Z2∩ [(−k, k)×(−k, k)]. Hence it suffices to prove

that
∑

|j|<k
G̃j(0, je1) ≥ c k.

We leave this to the reader (alternatively, see next chapter for such estimates).

Exercises

Exercise 5.1 Prove inequality (5.10).

Exercise 5.2 Suppose p ∈ P2 and x ∈ Z2 \ {0}. Let

T = min {n ≥ 1 : Sn = jx for some j ∈ Z} .

T+ = min {n ≥ 1 : Sn = jx for some j = 0, 1, 2, . . .} .
(i) Show that there exists c such that

P{T > n} ∼ c n−1.

(ii) Show that there exists c1 such that

P{T+ > n} ∼ c1 n−1/2.

Establish the analog of Proposition 5.3.2 in this setting.
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Potential Theory

6.1 Introduction

There is a close relationship between random walks with increment distribution p and functions

that are harmonic with respect to the generator L = Lp.
We start by setting some notation. We fix p ∈ P. If A $ Zd, we let

∂A = {x ∈ Zd \ A : p(y, x) > 0 for some y ∈ A}
denote the (outer) boundary of A and we let A = A ∪ ∂A be the discrete closure of A. Note

that the above definition of ∂A,A depends on the choice of p. We omit this dependence from the

notation, and hope that this will not confuse the reader. In the case of simple random walk,

∂A = {x ∈ Zd \ A : |y − x| = 1 for some y ∈ A}.
Since p has finite range, if A is finite, then ∂A,A are finite. The inner boundary of A ⊂ Zd is

defined by

∂iA = ∂(Zd \ A) = {x ∈ A : p(x, y) > 0 for some y 6∈ A}.

Figure 6.1: Suppose A is the set of lattice points “inside” the dashed curve. Then the points in

A \ ∂iA, ∂iA and ∂A are marked by •, ◦ and ×, respectively

119
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A function f : A→ R is harmonic (with respect to p) or p-harmonic in A if

Lf(y) :=
∑

x

p(x) [f(y + x)− f(y)] = 0

for every y ∈ A. Note that we cannot define Lf(y) for all y ∈ A, unless f is defined on A.

We say that A is connected (with respect to p) if for every x, y ∈ A, there is a finite sequence

x = z0, z1, . . . , zk = y of points in A with p(zj+1 − zj) > 0, j = 0, . . . , k − 1.

♣ This chapter contains a number of results about functions on subsets of Zd. These results have analogues

in the continuous setting. The set A corresponds to an open set D ⊂ Rd, the outer boundary ∂A corresponds to

the usual topological boundary ∂D, and A corresponds to the closure D = D ∪ ∂D. The term domain is often

used for open, connected subsets of Rd. Finiteness assumptions on A correspond to boundedness assumptions

on D.

Proposition 6.1.1 Suppose Sn is a random walk with increment distribution p ∈ Pd starting at

x ∈ Zd. Suppose f : Zd → R. Then

Mn := f(Sn)−
n−1
∑

j=0

Lf(Sj)

is a martingale. In particular, if f is harmonic on A ⊂ Zd, then Yn := f(Sn∧τA
) is a martingale,

where τA is as defined in (4.27).

Proof Immediate from the definition.

Proposition 6.1.2 Suppose p ∈ Pd and f : Zd → R is bounded and harmonic on Zd. Then f is

constant.

Proof We may assume p is aperiodic; if not consider p̂ = (1/2) p + (1/2)δ0 and note that f is

p-harmonic if and only if it is p̂-harmonic. Let x, y ∈ Zd. By Lemma 2.4.3 we can define random

walks S, Ŝ on the same probability space so that S is a random walk starting at x; Ŝ is a random

walk starting at y; and

P{Sn 6= Ŝn} ≤ c |x− y|n−1/2.

In particular,

|E[f(Sn)]− E[f(Ŝn)]| ≤ 2 c |x − y|n−1/2 ‖f‖∞ −→ 0.

Proposition 6.1.1 implies that f(x) = E[f(Sn)], f(y) = E[f(Ŝn)].

♣ The fact that all bounded harmonic functions are constant is closely related to the fact that a random walk

eventually forgets its starting point. Lemma 2.4.3 gives a precise formulation of this loss of memory property.

The last proposition is not true for simple random walk on a regular tree.
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6.2 Dirichlet problem

The standard Dirichlet problem for harmonic functions is to find a harmonic function on a region

with specified values on the boundary.

Theorem 6.2.1 (Dirichlet problem I) Suppose p ∈ Pd, and A ⊂ Zd satisfies Px{τA <∞} = 1

for all x ∈ A. Suppose F : ∂A→ R is a bounded function. Then there is a unique bounded function

f : A→ R satisfying

Lf(x) = 0, x ∈ A, (6.1)

f(x) = F (x), x ∈ ∂A. (6.2)

It is given by

f(x) = Ex[F (SτA
)]. (6.3)

Proof A simple application of the Markov property shows that f defined by (6.3) satisfies (6.1) and

(6.2). Now suppose f is a bounded function satisfying (6.1) and (6.2). Then Mn := f(Sn∧τA
) is a

bounded martingale. Hence, the optional sampling theorem (Theorem 12.2.3) implies that

f(x) = Ex[M0] = Ex[MτA
] = Ex[F (SτA

)].

Remark.

• If A is finite, then ∂A is also finite and all functions on A are bounded. Hence for each F on

∂A, there is a unique function satisfying (6.1) and (6.2). In this case we could prove existence

and uniqueness using linear algebra since (6.1) and (6.2) give #(A) linear equations in #(A)

unknowns. However, algebraic methods do not yield the nice probabilistic form (6.3).

• If A is infinite, there may well be more than one solution to the Dirichlet problem if we allow

unbounded solutions. For example, if d = 1, p is simple random walk, A = {1, 2, 3, . . .}, and

F (0) = 0, then there is an infinite number of solutions of the form fb(x) = bx. If b 6= 0, fb is

unbounded.

• Under the conditions of the theorem, it follows that any function f on A that is harmonic on A

satisfies the maximum principle:

sup
x∈A
|f(x)| = sup

x∈∂A
|f(x)|.

• If d = 1, 2 and A is a proper subset of Zd, then we know by recurrence that Px{τA <∞} = 1 for

all x ∈ A.

• If d ≥ 3 and Zd \ A is finite, then there are points x ∈ A with Px{τA =∞} > 0. The function

f(x) = Px{τA =∞}

is a bounded function satisfying (6.1) and (6.2) with F ≡ 0 on ∂A. Hence, the condition

Px{τA <∞} = 1 is needed to guarantee uniqueness. However, as Proposition 6.2.2 below shows,

all solutions with F ≡ 0 on ∂A are multiples of f .
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Remark. This theorem has a well-known continuous analogue. Suppose f : {|z| ∈ Rd : |z| ≤
1} → R is a continuous function with ∆f(x) = 0 for |x| < 1. Then

f(x) = Ex[f(BT )],

where B is a standard d-dimensional Brownian motion and T is the first time t that |Bt| = 1. If

|x| < 1, the distribution of BT given B0 = x has a density with respect to surface measure on

{|z| = 1}. This density h(x, z) = c (1− |x|2)/|x− z|d is called the Poisson kernel and we can write

f(x) = c

∫

|z|=1
f(z)

1− |x|2
|x− z|d ds(z), (6.4)

where s denotes surface measure. To verify that this is correct, one can check directly that f as

defined above is harmonic in the ball and satisfies the boundary condition on the sphere. Two facts

follow almost immediately from this integral formula:

• Derivative estimates. For every k, there is a c = c(k) < ∞ such that if f is harmonic in the

unit ball and D denotes a kth order derivative, then |Df(0)| ≤ ck ‖f‖∞.

• Harnack inequality. For every r < 1, there is a c = cr < ∞ such that if f is a positive

harmonic function on the unit ball, then f(x) ≤ c f(y) for |x|, |y| ≤ r.
An important aspect of these estimates is the fact that the constants do not depend on f . We will

prove the analogous results for random walk in Section 6.3.

Proposition 6.2.2 (Dirichlet problem II) Suppose p ∈ Pd and A $ Zd. Suppose F : ∂A → R
is a bounded function. Then the only bounded functions f : A → R satisfying (6.1) and (6.2) are

of the form

f(x) = Ex[F (SτA
); τA <∞] + bPx{τA =∞}, (6.5)

for some b ∈ R.

Proof We may assume that p is aperiodic. We also assume that Px{τA =∞} > 0 for some x ∈ A; if

not, Theorem 6.2.1 applies. Assume that f is a bounded function satisfying (6.1) and (6.2). Since

Mn := f(Sn∧τA
) is a martingale, we know that

f(x) = Ex[M0] = Ex[Mn] = Ex[f(Sn∧τA
)]

= Ex[f(Sn)]− Ex[f(Sn); τA < n] + Ex[F (SτA
); τA < n].

Using Lemma 2.4.3, we can see that for all x, y,

lim
n→∞

|Ex[f(Sn)]− Ey[f(Sn)]| = 0.

Therefore,

|f(x)− f(y)| ≤ 2 ‖f‖∞ [Px{τA <∞}+ Py{τA <∞}].

Let Uǫ = {z ∈ Zd : Pz{τA =∞} ≥ 1− ǫ}. Since Px{τA =∞} > 0 for some x, one can see (Exercise

4.1) that Uǫ is non-empty for each ǫ ∈ (0, 1). Then,

|f(x)− f(y)| ≤ 4 ǫ ‖f‖∞, x, y ∈ Uǫ.
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Hence, there is a b such that

|f(x)− b| ≤ 4 ǫ ‖f‖∞, x ∈ Uǫ.
Let ρǫ be the minimum of τA and the smallest n such that Sn ∈ Uǫ. Then for every x ∈ Zd, the

optional sampling theorem implies

f(x) = Ex[f(Sρǫ)] = Ex[F (SτA
); τA ≤ ρǫ] + Ex[f(Sρǫ); τA > ρǫ].

(Here we use the fact that Px{τA ∧ ρǫ < ∞} = 1 which can be verified easily.) By the dominated

convergence theorem,

lim
ǫ→0

Ex[F (SτA
); τA ≤ ρǫ] = Ex[F (SτA

); τA <∞].

Also,

|Ex[f(Sρǫ); τA > ρǫ]− bPx{τA > ρǫ}| ≤ 4ǫ‖f‖∞ Px{τA > ρǫ},
and since ρǫ →∞ as ǫ→ 0,

lim
ǫ→0

Ex[f(Sρǫ); τA > ρǫ] = bPx{τA =∞}.

This gives (6.5).

Remark. We can think of (6.5) as a generalization of (6.3) where we have added a boundary

point at infinity. The constant b in the last proposition is the boundary value at infinity and can

be written as F (∞). The fact that there is a single boundary value at infinity is closely related to

Proposition 6.1.2.

Definition. If p ∈ Pd and A ⊂ Zd, then the Poisson kernel is the function H : A × ∂A → [0, 1]

defined by

HA(x, y) = Px{τA <∞;SτA
= y}.

As a slight abuse of notation we will also write

HA(x,∞) = Px{τA =∞}.

Note that
∑

y∈∂A
HA(x, y) = Px{τA <∞}.

For fixed y ∈ ∂A, f(x) = HA(x, y) is a function on A that is harmonic on A and equals δ(· − y) on

∂A. If p is recurrent, there is a unique such function. If p is transient, f is the unique such function

that tends to 0 as x tends to infinity. We can write (6.3) as

f(x) = Ex[F (SτA
)] =

∑

y∈∂A
HA(x, y)F (y), (6.6)

and (6.5) as

f(x) = Ex[F (SτA
); τA <∞] + bPx{τA =∞} =

∑

y∈∂A∪{∞}
HA(x, y)F (y),
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where F (∞) = b. The expression (6.6) is a random walk analogue of (6.4).

Proposition 6.2.3 Suppose p ∈ Pd and A $ Zd. Let g : A→ R be a function with finite support.

Then, the function

f(x) =
∑

y∈A
GA(x, y) g(y) = Ex





τA−1
∑

j=0

g(Sj)



 ,

is the unique bounded function on A that vanishes on ∂A and satisfies

Lf(x) = −g(x), x ∈ A. (6.7)

Proof Since g has finite support,

|f(x)| ≤
∑

y∈A
GA(x, y) |g(y)| <∞,

and hence f is bounded. We have already noted in Lemma 4.6.1 that f satisfies (6.7). Now suppose

f is a bounded function vanishing on ∂A satisfying (6.7). Then, Proposition 6.1.1 implies that

Mn := f(Sn∧τA
) +

n∧τA−1
∑

j=0

g(Sj),

is a martingale. Note that |Mn| ≤ ‖f‖∞ + Y where

Y =

τA−1
∑

j=0

|g(Sj)|,

and that

Ex[Y ] =
∑

y

GA(x, y) |g(y)| <∞.

Hence Mn is dominated by an integrable random variable and we can use the optional sampling

theorem (Theorem 12.2.3) to conclude that

f(x) = Ex[M0] = Ex[MτA ] = Ex





τA−1
∑

j=0

g(Sj)



 .

Remark. Suppose A ⊂ Zd is finite with #(A) = m. Then GA = [GA(x, y)]x,y∈A is an m × m
symmetric matrix with nonnegative entries. Let LA = [LA(x, y)]x,y∈A be the m × m symmetric

matrix defined by

LA(x, y) = p(x, y), x 6= y; LA(x, x) = p(x, x)− 1.

If g : A→ R and x ∈ A, then LAg(x) is the same as Lg(x) where g is extended to A by setting g ≡ 0

on ∂A. The last proposition can be rephrased as LA[GAg] = −g, or in other words, GA = −(LA)−1.
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Corollary 6.2.4 Suppose p ∈ Pd and A ⊂ Zd is finite. Let g : A→ R, F : ∂A→ R be given. Then,

the function

f(x) = Ex[F (SτA
)] + Ex





τA−1
∑

j=0

g(Sj)



 =
∑

z∈∂A
HA(x, z)F (z) +

∑

y∈A
GA(x, y) g(y), (6.8)

is the unique function on A that satisfies

Lf(x) = −g(x), x ∈ A.

f(x) = F (x), x ∈ ∂A.

In particular, for any f : A→ R, x ∈ A,

f(x) = Ex[f(SτA
)]− Ex





τA−1
∑

j=0

Lf(Sj)



 . (6.9)

Proof Use the fact that h(x) := f(x)−Ex[F (SτA
)] satisfies the assumptions in the previous propo-

sition.

Corollary 6.2.5 Suppose p ∈ Pd and A ⊂ Zd is finite. Then

f(x) = Ex[τA] =
∑

y∈A
GA(x, y)

is the unique bounded function f : A→ R that vanishes on ∂A and satisfies

Lf(x) = −1, x ∈ A.

Proof This is Proposition 6.2.3 with g ≡ 1A.

Proposition 6.2.6 Let ρn = τBn = inf{j ≥ 0 : |Sj | ≥ n}. Then if p ∈ Pd with range R and |x| < n,

[n2 − |x|2] ≤ (trΓ) Ex[ρn] ≤ [(n+R)2 − |x|2].

Proof In Exercise 1.4 it was shown that Mj =: |Sj∧ρn |2 − (trΓ)(j ∧ ρn) is a martingale. Also,

Ex[ρn] <∞ for each x, so Mj is dominated by the integrable random variable (n+R)2 + (trΓ) ρn.

Hence,

|x|2 = Ex[M0] = Ex[Mρn ] = Ex[|Sρn |2]− (trΓ) Ex[ρn].

Moreover, n ≤ |Sρn | < (n+R).

6.3 Difference estimates and Harnack inequality

In the next two sections we will prove useful results about random walk and harmonic functions.

The main tools in the proofs are the optional sampling theorem and the estimates for the Green’s

function and the potential kernel. The basic idea in many of the proofs is to define a martingale
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in terms of the Green’s function or potential kernel and then to stop it at a region at which that

function is approximately constant. We recall that

Bn = {z ∈ Zd : |z| < n}, Cn = {z ∈ Zd : J (z) < n}.
Also, there is a δ > 0 such that

Cδn ⊂ Bn ⊂ Cn/δ.
We set

ξn = τCn = min{j ≥ 1 : Sj 6∈ Cn}, ξ∗n = τBn = min{j ≥ 1 : Sj 6∈ Bn}.
As the next proposition points out, the Green’s function and potential kernel are almost constant

on ∂Cn. We recall that Theorems 4.3.1 and 4.4.4 imply that as x→∞,

G(x) =
Cd

J (x)d−2
+O

(

1

|x|d
)

, d ≥ 3, (6.10)

a(x) = C2 logJ (x) + γ2 +O

(

1

|x|2
)

. (6.11)

Here C2 = [π
√

det Γ]−1 and γ2 = C + C2 log
√

2 where C is as in Theorem 4.4.4.

Proposition 6.3.1 If p ∈ Pd, d ≥ 3 then for x ∈ ∂Cn ∪ ∂iCn,

G(x) =
Cd
nd−2

+O(n1−d), d ≥ 2,

a(x) = C2 log n+ γ2 +O(n−1), d = 2,

where Cd, C2, γ2 are as (6.10) and (6.11).

Proof This follows immediately from (6.10) and (6.11) and the estimate

J (x) = n+O(1), x ∈ ∂Cn ∪ ∂iCn.
Note that the error term O(n1−d) comes from the estimates

[n+O(1)]2−d = n2−d +O(n1−d), log[n+O(1)] = log n+O(n−1).

♣ Many of the arguments in this section use Cn rather than Bn because we can then use Proposition 6.3.1.

We recall that for simple random walk Bn = Cn.

♣ Proposition 6.3.1 requires the walk to have bounded increments. If the walk does not have bounded

increments, then many of the arguments in this chapter still hold. However, one needs to worry about “overshoot”

estimates, i.e., giving upper bounds for the probability that the first visit of a random walk to the complement of

Cn is far from Cn. These kinds of estimate can be done in a spirit similar to Lemmas 5.1.9 and 5.1.10, but they

complicate the arguments. For this reason, we restrict our attention to walks with bounded increments.
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♣ Proposition 6.3.1 gives the estimates for the Green’s function or potential kernel on ∂Cn. In order to prove

these estimates, it suffices for the error terms in (6.10) and (6.11) to be O(|x|1−d) rather than O(|x|−d). For

this reason, many of the ideas of this section extend to random walks with bounded increments that are not

necessarily symmetric (see Theorems 4.3.5 and 4.4.6). However, in this case we would need to deal with the

Green’s functions for the reversed walk as well as the Green’s functions for the forward walk, and this complicates

the notation in the arguments. For this reason, we restrict our attention to symmetric walks.

Proposition 6.3.2 If p ∈ Pd,

GCn(0, 0) = G(0, 0) − Cd
nd−2

+O(n1−d), d ≥ 3,

GCn(0, 0) = C2 log n+ γ2 +O(n−1), d = 2. (6.12)

where Cd, γ2 are as defined in Proposition 6.3.1.

Proof Applying Proposition 4.6.2 at x = y = 0 gives

GCn(0, 0) = G(0, 0) − E[G(SτCn
, 0)], d ≥ 3,

GCn(0, 0) = E[a(SτCn
, 0)], d = 2.

We now apply Proposition 6.3.1.

♣ It follows from Proposition 6.3.2 that

GBn
(0, 0) = G(0, 0) +O(n2−d), d ≥ 3,

aBn
(0, 0) = C2 logn+O(1), d = 2.

It can be shown that GBn
(0, 0) = G(0, 0)− Ĉd n

2−d +o(n1−d), aBn
(0, 0) = C2 logn+ γ̂2 +O(n−1) where Ĉd, γ̂2

are different from Cd, γ2 but we will not need this in the sequel, hence omit the argument.

We will now prove difference estimates and a Harnack inequality for harmonic functions. There

are different possible approaches to proving these results. One would be to use the result for

Brownian motion and approximate. We will use a different approach where we start with the

known difference estimates for the Green’s function G and the potential kernel a and work from

there. We begin by proving a difference estimate for GA. We then use this to prove a result on

probabilities that is closely related to the gambler’s ruin estimate for one-dimensional walks.

Lemma 6.3.3 If p ∈ Pd, d ≥ 2, then for every ǫ > 0, r <∞, there is a c such that if Bǫn ⊂ A $ Zd,
then for every |x| > ǫn and every |y| ≤ r,

|GA(0, x) −GA(y, x)| ≤ c

nd−1
.

|2GA(0, x)−GA(y, x)−GA(−y, x)| ≤ c

nd
.
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Proof It suffices to prove the result for finite A for we can approximate any A by finite sets (see

Exercise 4.7). Assume that x ∈ A, for otherwise the result is trivial. By symmetry GA(0, x) =

GA(x, 0), GA(y, x) = GA(x, y). By Proposition 4.6.2,

GA(x, 0)−GA(x, y) = G(x, 0) −G(x, y) −
∑

z∈∂A
HA(x, z) [G(z, 0) −G(z, y)], d ≥ 3,

GA(x, y)−GA(x, 0) = a(x, 0) − a(x, y)−
∑

z∈∂A
HA(x, z) [a(z, 0) − a(z, y)], d = 2.

There are similar expressions for the second differences. The difference estimates for the Green’s

function and the potential kernel (Corollaries 4.3.3 and 4.4.5) give, provided that |y| ≤ r and

|z| ≥ (ǫ/2)n,

|G(z)−G(z + y)| ≤ cǫ n1−d, |2G(z) −G(z + y)−G(z − y)| ≤ cǫ n−d

for d ≥ 3 and

|a(z) − a(z + y)| ≤ cǫ n−1, |2a(z) − a(z + y)− a(z − y)| ≤ cǫ n−2

for d = 2.

The next lemma is very closely related to the one-dimensional gambler’s ruin estimate. This

lemma is particularly useful for x on or near the boundary of Cn. For x in Cn \ Cn/2 that are away

from the boundary, there are sharper estimates. See Propositions 6.4.1 and 6.4.2.

Lemma 6.3.4 Suppose p ∈ Pd, d ≥ 2. There exist c1, c2 such that for all n sufficiently large and

all x ∈ Cn \ Cn/2,
Px{SτCn\Cn/2

∈ Cn/2} ≥ c1 n−1, (6.13)

and if x ∈ ∂Cn,
Px{SτCn\Cn/2

∈ Cn/2} ≤ c2 n−1. (6.14)

Proof We will do the proof for d ≥ 3; the proof for d = 2 is almost identical replacing the Green’s

function with the potential kernel. It follows from (6.10) that there exist r, c such that for all n

sufficiently large and all y ∈ Cn−r, z ∈ ∂Cn,

G(y)−G(z) ≥ cn1−d. (6.15)

By choosing n sufficiently large, we can assure that ∂iCn/2 ∩ Cn/4 = ∅.
Suppose that x ∈ Cn−r and let T = τCn\Cn/2

. Applying the optional sampling theorem to the

bounded martingale G(Sj∧T ), we see that

G(x) = Ex[G(ST )] ≤ Ex[G(ST );ST ∈ Cn/2] + max
z∈∂Cn

G(z).

Therefore, (6.15) implies that

Ex[G(ST );ST ∈ Cn/2] ≥ c n1−d.
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For n sufficiently large, ST 6∈ Cn/4 and hence (6.10) gives

Ex[G(ST );ST ∈ Cn/2] ≤ c n2−d Px{τCn\Cn/2
< τCn}.

This establishes (6.13) for x ∈ Cn−r.
To prove (6.13) for other x we note the following fact that holds for any p ∈ Pd: there is an ǫ > 0

such that for all |x| ≥ r, there is a y with p(y) ≥ ǫ and J (x+ y) ≤ J (x)− ǫ. It follows that there

is a δ > 0 such that for all n sufficiently large and all x ∈ Cn, there is probability at least δ that a

random walk starting at x reaches Cn−r before leaving Cn.
Since our random walk has finite range, it suffices to prove (6.14) for x ∈ Cn \ Cn−r, and any

finite r. For such x,

G(x) = Cd n
2−d +O(n1−d).

Also,

Ex[G(ST ) | ST ∈ Cn/2] = Cd 2d−2 n2−d +O(n1−d),

Ex[G(ST ) | ST ∈ ∂Cn] = Cd n
2−d +O(n1−d).

The optional sampling theorem gives

G(x) = Ex[G(ST )] =

Px{ST ∈ Cn/2}Ex[G(ST ) | ST ∈ Cn/2] + Px{ST ∈ ∂Cn}Ex[G(ST ) | ST ∈ ∂Cn].

The left-hand side equals Cd n
2−d +O(n1−d) and the right-hand side equals

Cd n
2−d +O(n1−d) + Cd [2d−2 − 1]n2−d Px{ST ∈ Cn/2}.

Therefore Px{ST ∈ Cn/2} = O(n−1).

Proposition 6.3.5 If p ∈ Pd and x ∈ Cn,

GCn(0, x) = Cd

[

J (x)2−d − n2−d
]

+O(|x|1−d), d ≥ 3,

GCn(0, x) = C2 [log n− logJ (x)] +O(|x|−1), d = 2.

In particular, for every 0 < ǫ < 1/2, there exist c1, c2 such that for all n sufficiently large,

c1 n
2−d ≤ GCn(y, x) ≤ c2 n2−d, y ∈ Cǫn, x ∈ ∂iC2ǫn ∪ ∂C2ǫn.

Proof Symmetry and Lemma 4.6.2 tell us that

GCn(0, x) = GCn(x, 0) = G(x, 0) − Ex[G(SτCn
)], d ≥ 3,

GCn(0, x) = GCn(x, 0) = Ex[a(SτCn
)]− a(x), d = 2. (6.16)

Also, (6.10) and (6.11) give

G(x) = Cd J (x)2−d +O(|x|−d), d ≥ 3,

a(x) = C2 log[J (x)] + γ2 +O(|x|−2), d = 2,
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and Proposition 6.3.1 implies that

Ex[G(SτCn
)] =

Cd
nd−2

+O(n1−d), d ≥ 3,

Ex[a(SτCn
)] = C2 log n+ γ2 +O(n−1), d = 2.

Since |x| ≤ c n, we can write O(|x|−d) +O(n1−d) ≤ O(|x|1−d). To get the final assertion we use the

estimate

GC(1−ǫ)n
(0, x − y) ≤ GCn(y, x) ≤ GC(1+ǫ)n

(0, x− y).

We now focus on HCn , the distribution of the first visit of a random walker to the complement

of Cn. Our first lemma uses the last-exit decomposition.

Lemma 6.3.6 If p ∈ Pd, x ∈ B ⊂ A $ Zd, y ∈ ∂A,

HA(x, y) =
∑

z∈B
GA(x, z) Pz{SτA\B

= y} =
∑

z∈B
GA(z, x) Py{SτA\B

= z}.

In particular,

HA(x, y) =
∑

z∈A
GA(x, z) p(z, y) =

∑

z∈∂iA

GA(x, z) p(z, y).

Proof In the first display the first equality follows immediately from Proposition 4.6.4, and the

second equality uses the symmetry of p. The second display is the particular case B = A.

Lemma 6.3.7 If p ∈ Pd, there exist c1, c2 such that for all n sufficiently large and all x ∈ Cn/4, y ∈
∂Cn,

c1
nd−1

≤ HCn(x, y) ≤ c2
nd−1

.

♣ We think of ∂Cn as a (d − 1)-dimensional subset of Zd that contains on the order of nd−1 points. This

lemma states that the hitting measure is mutually absolutely continuous with respect to the uniform measure on

∂Cn (with a constant independent of n).

Proof By the previous lemma,

HCn(x, y) =
∑

z∈Cn/2

GCn(z, x) Py{SτCn\Cn/2
= z}.

Using Proposition 6.3.5 we see that for z ∈ ∂iCn/2, x ∈ Cn/4, GCn(z, x) ≍ n2−d. Also, Lemma 6.3.4

implies that
∑

z∈Cn/2

Py{SτCn\Cn/2
= z} ≍ n−1.
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Theorem 6.3.8 (Difference estimates) If p ∈ Pd and r < ∞, there exists c such that the

following holds for every n sufficiently large.

(a) If g : Bn → R is harmonic in Bn and |y| ≤ r,
|∇yg(0)| ≤ c ‖g‖∞ n−1, (6.17)

|∇2
yg(0)| ≤ c ‖g‖∞ n−2. (6.18)

(b) If f : Bn → [0,∞) is harmonic in Bn and |y| ≤ r, then

|∇yf(0)| ≤ c f(0)n−1, (6.19)

|∇2
yf(0)| ≤ c f(0)n−2. (6.20)

Proof Choose ǫ > 0 such that C2ǫn ⊂ Bn. Choose n sufficiently large so that Br ⊂ C(ǫ/2)n and

∂iC2ǫn ∩ Cǫn = ∅. Let H(x, z) = HC2ǫn(x, z). Then for |x| ≤ r,

g(x) =
∑

z∈∂C2ǫn

H(x, z) g(z),

and similarly for f . Hence to prove the theorem, it suffices to establish (6.19) and (6.20) for

f(x) = H(x, z) (with c independent of n, z). Let ρ = ρn,ǫ = τC2ǫn\Cǫn
. By Lemma 6.3.6, if

x ∈ C(ǫ/2)n,
f(x) =

∑

w∈∂iCǫn

GC2ǫn(w, x) Pz{Sρ = w}.

Lemma 6.3.7 shows that f(x) ≍ n1−d and in particular that

f(z) ≤ c f(w), z, w ∈ C(ǫ/2)n. (6.21)

is a δ > 0 such that for n sufficiently large, |w| ≥ δn for w ∈ ∂iCǫn. The estimates (6.19) and (6.20)

now follow from Lemma 6.3.3 and Lemma 6.3.4.

Theorem 6.3.9 (Harnack inequality) Suppose p ∈ Pd, U ⊂ Rd is open and connected, and K

is a compact subset of U . Then there exist c = c(K,U, p) <∞ and positive integer N = N(K,U, p)

such that if n ≥ N ,

Un = {x ∈ Zd : n−1 x ∈ U}, Kn = {x ∈ Zd : n−1 x ∈ K},
and f : Un → [0,∞) is harmonic in Un, then

f(x) ≤ c f(y), x, y ∈ Kn.

♣ This is the discrete analogue of the Harnack principle for positive harmonic functions in Rd. Suppose
K ⊂ U ⊂ Rd where K is compact and U is open. Then there exists c(K,U) <∞ such that if f : U → (0,∞)
is harmonic, then

f(x) ≤ c(K,U) f(y), x, y ∈ K.
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Proof Without loss of generality we will assume that U is bounded. In (6.21) we showed that there

exists δ > 0, c0 <∞ such that

f(x) ≤ c0 f(y) if |x− y| ≤ δ dist(x, ∂Un). (6.22)

Let us call two points z,w in U adjacent if |z − w| < (δ/4) max{dist(z, ∂U),dist(w, ∂U)}. Let

ρ denote the graph distance associated to this adjacency, i.e., ρ(z,w) is the minimum k such

that there exists a sequence z = z0, z1, . . . , zk = w of points in U such that zj is adjacent to

zj−1 for j = 1, . . . , k. Fix z ∈ U , and let Vk = {w ∈ U : ρ(z,w) ≤ k}, Vn,k = {x ∈ Zd :

n−1 x ∈ Vk}. For k ≥ 1, Vk is open, and connectedness of U implies that ∪Vk = U . For n

sufficiently large, if x, y ∈ Vn,k, there is a sequence of points x = x0, x1, . . . , xk = y in Vn,k such

that |xj − xj−1| < (δ/2) max{dist(xj , ∂U),dist(xj−1, ∂U)}. Repeated application of (6.22) gives

f(x) ≤ ck0 f(y). Compactness of K implies that K ⊂ Vk for some finite k, and hence Kn ⊂ Vn,k.

6.4 Further estimates

In this section we will collect some more facts about random walks in Pd restricted to the set Cn.
The first three propositions are similar to Lemma 6.3.4.

Proposition 6.4.1 If p ∈ P2, m < n, T = τCn\Cm
, then for x ∈ Cn \ Cm,

Px{ST ∈ ∂Cn} =
logJ (x)− logm+O(m−1)

log n− logm
.

Proof Let q = Px{ST ∈ ∂Cn}. The optional sampling theorem applied to the bounded martingale

Mj = a(Sj∧T ) gives

a(x) = Ex[a(ST )] = (1− q) Ex[a(ST ) | ST ∈ ∂iCm] + q Ex[a(ST ) | ST ∈ ∂Cn].

From (6.11) and Proposition 6.3.1 we know that

a(x) = C2 logJ (x) + γ2 +O(|x|−2),

Ex[a(ST ) | ST ∈ ∂iCm] = C2 logm+ γ2 +O(m−1),

Ex[a(ST ) | ST ∈ ∂Cn] = C2 log n+ γ2 +O(n−1).

Solving for q gives the result.

Proposition 6.4.2 If p ∈ Pd, d ≥ 3, T = τZd\Cm
, then for x ∈ Zd \ Cm,

Px{T <∞} =

(

m

J (x)

)d−2
[

1 +O(m−1)
]

.

Proof Since G(y) is a bounded harmonic function on τZd\Cm
with G(∞) = 0, (6.5) gives

G(x) = Ex[G(ST );T <∞] = Px{T <∞}Ex[G(ST ) | T <∞].
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But (6.10) gives

G(x) = Cd J (x)2−d [1 +O(|x|−2)],

Ex[G(ST ) | T <∞] = Cdm
2−d [1 +O(m−1)].

Proposition 6.4.3 If p ∈ P2, n > 0, and T = τCn\{0}, then for x ∈ Cn,

Px{ST = 0} =

[

1− logJ (x) +O(|x|−1)

log n

] [

1 +O

(

1

log n

)]

.

Proof Recall that Px{ST = 0} = GCn(x, 0)/GCn (0, 0). The estimate then follows immediately from

Propositions 6.3.2 and 6.3.5. The O(|x|−1) term is superfluous except for x very close to ∂Cn.

Suppose m ≤ n/2, x ∈ Cm, z ∈ ∂Cn. By applying Theorem 6.3.8 O(m) times we can see that (for

n sufficiently large)

HCn(x, z) = Px{Sξn = z} = HCn(0, z)
[

1 +O
(m

n

)]

. (6.23)

We will use this in the next two propositions to estimate some conditional probabilities.

Proposition 6.4.4 Suppose p ∈ Pd, d ≥ 3, m < n/4, and Cn \ Cm ⊂ A ⊂ Cn. Suppose x ∈ C2m
with Px{SτA ∈ ∂Cn} > 0 and z ∈ ∂Cn. Then for n sufficiently large,

Px{SτA = z | SτA ∈ ∂Cn} = HCn(0, z)
[

1 +O
(m

n

)]

. (6.24)

Proof It is easy to check (using optional stopping) that it suffices to verify (6.24) for x ∈ ∂C2m.

Note that (6.23) gives

Px{Sξn = z} = HCn(0, z)
[

1 +O
(m

n

)]

,

and since ∂A \ ∂Cn ⊂ Cm,

Px{Sξn = z | SτA 6∈ ∂Cn} = HCn(0, z)
[

1 +O
(m

n

)]

.

This implies

Px{Sξn = z;SτA 6∈ ∂Cn} = P{SτA 6∈ ∂Cn}HCn(0, z)
[

1 +O
(m

n

)]

.

The last estimate, combined with (6.24), yields

Px{Sξn = z;SτA ∈ ∂Cn} = P{SτA ∈ ∂Cn}HCn(0, z) +HCn(0, z)O
(m

n

)

.

Using Proposition 6.4.2, we can see there is a c such that

Px{SτA ∈ ∂Cn} ≥ Px{Sj 6∈ Cm for all j} ≥ c, x ∈ ∂C2m,
which allows use to write the preceding expression as

Px{Sξn = z;SτA ∈ ∂Cn} = P{SτA ∈ ∂Cn}HCn(0, z)
[

1 +O
(m

n

)]

.
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For d = 2 we get a similar result but with a slightly larger error term.

Proposition 6.4.5 Suppose p ∈ P2, m < n/4, and Cn \ Cm ⊂ A ⊂ Cn. Suppose x ∈ C2m with

Px{SτA ∈ ∂Cn} > 0 and z ∈ ∂Cn. Then, for n sufficiently large,

Px{SτA = z | SτA ∈ ∂Cn} = HCn(0, z)

[

1 +O

(

m log(n/m)

n

)]

. (6.25)

Proof The proof is essentially the same, except for the last step, where Proposition 6.4.1 gives us

Px{SτA ∈ ∂Cn} ≥
c

log(n/m)
, x ∈ C2m,

so that

HCn(0, z)O
(m

n

)

can be written as

Px{SτA ∈ ∂Cn}HCn(0, z)O

(

m log(n/m)

n

)

.

The next proposition is a stronger version of Proposition 6.2.2. Here we show that the bounded-

ness assumption of that proposition can be replaced with an assumption of sublinearity.

Proposition 6.4.6 Suppose p ∈ Pd, d ≥ 3 and A ⊂ Zd with Zd \ A finite. Suppose f : Zd → R is

harmonic on A and satisfies f(x) = o(|x|) as x→∞. Then there exists b ∈ R such that for all x,

f(x) = Ex[f(SτA
); τA <∞] + bPx{τA =∞}.

Proof Without loss of generality, we may assume that 0 6∈ A. Also, we may assume that f ≡ 0 on

Zd \ A; otherwise, we can consider

f̂(x) = f(x)− Ex[f(SτA
); τA <∞].

The assumptions imply that there is a sequence of real numbers ǫn decreasing to 0 such that

|f(x)| ≤ ǫn n for all x ∈ Cn and hence

|f(x)− f(y)| ≤ 2 ǫn n, x, y ∈ ∂Cn.

Since Lf ≡ 0 on A, (6.8) gives

0 = f(0) = E[f(Sξn)]−
∑

y∈Zd\A
GCn(0, y)Lf(y), (6.26)

and since Zd \A is finite, this implies that

lim
n→∞

E[f(Sξn)] = b :=
∑

y∈Zd\A
G(0, y)Lf(y).
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If x ∈ A ∩ Cn, the optional sampling theorem implies that

f(x) = Ex[f(SτA∧ξn)] = Ex[f(Sξn); τA > ξn] = Px{τA > ξn}Ex[f(Sξn) | τA > ξn].

For every w ∈ ∂Cn, we can write

Ex[f(Sξn) | τA > ξn]− E[f(Sξn)] =
∑

z∈∂Cn

f(z) [Px{Sξn = z | τA > ξn} −HCn(0, z)]

=
∑

z∈∂Cn

[f(z)− f(w)] [Px{Sξn = z | τA > ξn} −HCn(0, z)].

For n large, apply
∑

w∈∂Cn
and divide by |∂Cn| the above identity, and note that (6.24) now implies

|Ex[f(Sξn) | τA > ξn]− E[f(Sξn)]| ≤ c |x|
n

sup
y,z∈∂Cn

|f(z)− f(y)| ≤ c |x| ǫn. (6.27)

Therefore,

f(x) = lim
n→∞

Px{τA > ξn}Ex[f(Sξn) | τA > ξn]

= Px{τA =∞} lim
n→∞

E[f(Sξn)] = bPx{τA =∞}.

Proposition 6.4.7 Suppose p ∈ P2 and A is a finite subset of Z2 containing the origin. Let

T = TA = τZ2\A = min{j ≥ 0 : Sj ∈ A}. Then for each x ∈ Z2 the limit

gA(x) := lim
n→∞

C2 (log n) Px{ξn < T} (6.28)

exists. Moreover, if y ∈ A,

gA(x) = a(x− y)− Ex[a(ST − y)]. (6.29)

Proof If y ∈ A and x ∈ Cn \ A, the optional sampling theorem applied to the bounded martingale

Mj = a(Sj∧T∧ξn − y) implies

a(x− y) = Ex[a(ST∧ξn − y)] = Px{ξn < T}Ex[a(Sξn − y) | ξn < T ] + Ex[a(ST − y)]
−Px{ξn < T}Ex[a(ST − y) | ξn < T ].

As n→∞,

Ex[a(Sξn − y) | ξn < T ] ∼ C2 log n.

Letting n→∞, we obtain the result.

Remark. As mentioned before, it follows that the right-hand side of (6.29) is the same for all

y ∈ A. Also, since there exists δ such that Cδn ⊂ Bn ⊂ Cn/δ we can replace (6.28) with

gA(x) := lim
n→∞

C2 (log n) Px{ξ∗n < T}.

The astute reader will note that we already proved this proposition in Proposition 4.6.3.

Proposition 6.4.8 Suppose p ∈ P2 and A is a finite subset of Z2. Suppose f : Z2 → R is harmonic

on Z2 \ A; vanishes on A; and satisfies f(x) = o(|x|) as |x| → ∞. Then f = b gA for some b ∈ R.
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Proof Without loss of generality, assume 0 ∈ A and let T = TA be as in the previous proposition.

Using (6.8) and (6.12), we get

E[f(Sξn)] =
∑

y∈A
GCn(0, y)Lf(y) = C2 log n

∑

y∈A
Lf(y) +O(1).

(Here and below the error terms may depend on A.) As in the argument deducing (6.27), we use

(6.25) to see that

|Ex[f(ST∧ξn) | ξn < T ]− E[f(Sξn)]| ≤ c |x| log n
n

sup
y,z∈∂Cn

|f(y)− f(z)| ≤ c |x| ǫn log n,

and combining the last two estimates we get

f(x) = Ex[f(ST∧ξn)] = Px{ξn < T}Ex[f(STA∧ξn) | ξn < T ]

= Px{ξn < T}E[f(Sξn)] + |x| o(1)
= b gA(x) + o(1),

where b =
∑

y∈A Lf(y).

6.5 Capacity, transient case

If A is a finite subset of Zd, we let

TA = τZd\A, TA = τZd\A,

rad(A) = sup{|x| : x ∈ A}.

If p ∈ Pd, d ≥ 3, define

EsA(x) = Px{TA =∞}, gA(x) = Px{TA =∞}.

Note that EsA(x) = 0 if x ∈ A \ ∂iA. Furthermore, due to Proposition 6.4.6, gA is the unique

function on Zd that is zero on A; harmonic on Zd \ A; and satisfies gA(x) ∼ 1 as |x| → ∞. In

particular, if x ∈ A,

LgA(x) =
∑

y

p(y) gA(x+ y) = EsA(x).

Definition. If d ≥ 3, the capacity of a finite set A is given by

cap(A) =
∑

x∈A
EsA(x) =

∑

z∈∂iA

EsA(z) =
∑

x∈A
LgA(x) =

∑

z∈∂iA

LgA(z).

♣ The motivation for the above definition is given by the following property (stated as the next proposition):

as z →∞, the probability that a random walk starting at z ever hits A is comparable to |z|2−d cap(A).
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Proposition 6.5.1 If p ∈ Pd, d ≥ 3 and A ⊂ Zd is finite, then

Px{TA <∞} =
Cd cap(A)

J (x)d−2

[

1 +O

(

rad(A)

|x|

)]

, |x| ≥ 2 rad(A).

Proof There is a δ such that Bn ⊂ Cn/δ for all n. We will first prove the result for x 6∈ C2rad(A)/δ .

By the last-exit decomposition, Proposition 4.6.4,

Px{TA <∞} =
∑

y∈A
G(x, y) EsA(y).

For y ∈ A, J (x− y) = J (x) +O(|y|). Therefore,

G(x, y) = Cd J (x)2−d +O

( |y|
|x|d−1

)

=
Cd

J (x)d−2

[

1 +O

(

rad(A)

|x|

)]

.

This gives the result for x 6∈ C2rad(A)/δ. We can extend this to |x| ≥ 2rad(A) by using the Harnack

inequality (Theorem 6.3.9) on the set

{z : 2 rad(A) ≤ |z|;J (z) ≤ (3/δ) rad(A)}.

Note that for x in this set, rad(A)/|x| is of order 1, so it suffices to show that there is a c such that,

for any two points x, z in this set,

Px{TA <∞} ≤ cPz{TA <∞}.

Proposition 6.5.2 If p ∈ Pd, d ≥ 3,

cap(Cn) = C−1
d nd−2 +O(nd−1).

Proof By Proposition 4.6.4,

1 = P{T Cn <∞} =
∑

y∈∂iCn

G(0, y) EsCn(y),

But for y ∈ ∂iCn, Proposition 6.3.1 gives

G(0, y) = Cd n
2−d [1 +O(n−1)].

Hence,

1 = Cd n
2−d cap(Cn)

[

1 +O(n−1)
]

.

Let

TA,n = TA ∧ ξn = inf{j ≥ 1 : Sj ∈ A or Sj 6∈ Cn}.

If x ∈ A ⊂ Cn,
Px{TA > ξn} =

∑

y∈∂Cn

Px{STA,n
= y} =

∑

y∈∂Cn

Py{STA,n
= x}.
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The last equation uses symmetry of the walk. As a consequence,
∑

x∈A
Px{TA > ξn} =

∑

x∈A

∑

y∈∂Cn

Py{STA,n
= x} =

∑

y∈∂Cn

Py{TA < ξn}. (6.30)

Therefore,

cap(A) =
∑

x∈A
EsA(x) = lim

n→∞

∑

x∈A
Px{TA > ξn} = lim

n→∞

∑

y∈∂Cn

Py{TA < ξn}. (6.31)

♣ The identities (6.30)–(6.31) relate, for a given finite set A, the probability that a random walker started

uniformly in A “escapes” A and the probability that a random walker started uniformly on the boundary of a

large ellipse, (far away from A) ever hits A. Formally, every path from A to infinity can also be considered as a

path from infinity to A by reversal. This correspondence is manifested again in Proposition 6.5.4.

Proposition 6.5.3 If p ∈ Pd, d ≥ 3, and A,B are finite subsets of Zd, then

cap(A ∪B) ≤ cap(A) + cap(B)− cap(A ∩B).

Proof Choose n such that A ∪B ⊂ Cn. Then for y ∈ ∂Cn,

Py{TA∪B < ξn} = Px{TA < ξn or TB < ξn}
= Py{TA < ξn}+ Py{TB < ξn} − Py{TA < ξn, TB < ξn}
≤ Py{TA < ξn}+ Py{TB < ξn} − Py{TA∩B < ξn}.

The proposition then follows from (6.31).

Definition. If p ∈ Pd, d ≥ 3, and A ⊂ Zd is finite, the harmonic measure of A (from infinity) is

defined by

hmA(x) =
EsA(x)

cap(A)
, x ∈ A.

Note that hmA is a probability measure supported on ∂iA. As the next proposition shows, it can

be considered as the hitting measure of A by a random walk “started at infinity conditioned to hit

A”.

Proposition 6.5.4 If p ∈ Pd, d ≥ 3, and A ⊂ Zd is finite, then for x ∈ A,

hmA(x) = lim
|y|→∞

Py{STA
= x | TA <∞}.

In fact, if A ⊂ Cn/2 and y 6∈ Cn, then

Py{STA
= x | TA <∞} = hmA(x)

[

1 +O

(

rad(A)

|y|

)]

. (6.32)
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Proof If A ⊂ Cn and y 6∈ Cn, the last-exit decomposition (Proposition 4.6.4) gives

Py{STA
= x} =

∑

z∈∂Cn

GZd\A(y, z) Pz{STA,n
= x},

where, as before, TA,n = TA ∧ ξn. By symmetry and (6.24),

Pz{STA,n
= x} = Px{STA,n

= z} = Px{ξn < TA}HCn(0, z)

[

1 +O

(

rad(A)

n

)]

= EsA(x)HCn(0, z)

[

1 +O

(

rad(A)

n

)]

.

The last equality uses

EsA(x) = Px{TA =∞} = Px{TA > ξn}
[

1 +O

(

rad(A)d−2

nd−2

)]

,

which follows from Proposition 6.4.2. Therefore,

Py{STA
= x} = EsA(x)

[

1 +O

(

rad(A)

n

)]

∑

z∈∂Cn

GZd\A(y, z)HCn(0, z),

and by summing over x,

Py{TA <∞} = cap(A)

[

1 +O

(

rad(A)

n

)]

∑

z∈∂Cn

G
Zd\A(y, z)HCn(0, z).

We obtain (6.32) by dividing the last two expressions.

Proposition 6.5.5 If p ∈ Pd, d ≥ 3, and A ⊂ Zd is finite, then

cap(A) = sup
∑

x∈A
f(x), (6.33)

where the supremum is over all functions f ≥ 0 supported on A such that

Gf(y) :=
∑

x∈Zd

G(y, x) f(x) =
∑

x∈A
G(y, x) f(x) ≤ 1

for all y ∈ Zd.

Proof Let f̂(x) = EsA(x). Note that Proposition 4.6.4 implies that for y ∈ Zd,

1 ≥ Py{TA <∞} =
∑

x∈A
G(y, x) EsA(x).

Hence Gf̂ ≤ 1 and the supremum in (6.33) is at least as large as cap(A). Note also that Gf̂ is the

unique bounded function on Zd that is harmonic on Zd \ A; equals 1 on A; and approaches 0 at

infinity. Suppose f ≥ 0, f = 0 on Zd \ A, with Gf(y) ≤ 1 for all y ∈ Zd. Then Gf is the unique

bounded function on Zd that is harmonic on Zd \ A; equals Gf ≤ 1 on A; and approaches zero at
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infinity. By the maximum principle, Gf(y) ≤ Gf̂(y) for all y. In particular, G(f̂ − f) is harmonic

on Zd \A; is nonnegative on Zd; and approaches zero at infinity. We need to show that
∑

x∈A
f(x) ≤

∑

x∈A
f̂(x).

If x, y ∈ A, let

KA(x, y) = Px{STA
= y}.

Note that KA(x, y) = KA(y, x) and
∑

y∈A
KA(x, y) = 1− EsA(x).

If h is a bounded function on Zd that is harmonic on Zd \ A and has h(∞) = 0, then h(z) =

E[h(STA
);TA <∞], z ∈ Zd. Using this one can easily check that for x ∈ A,

Lh(x) =





∑

y∈A
KA(x, y)h(y)



 − h(x).

Also, if h ≥ 0,
∑

x∈A

∑

y∈A
KA(x, y)h(y) =

∑

y∈A
h(y)

∑

x∈A
KA(y, x) =

∑

y∈A
h(y) [1 − EsA(y)] ≤

∑

y∈A
h(y),

which implies
∑

x∈Zd

Lh(x) =
∑

x∈A
Lh(x) ≤ 0.

Then, using (4.25),
∑

x∈A
f(x) = −

∑

x∈A
L[Gf ](x) ≤ −

∑

x∈A
L[Gf ](x)−

∑

x∈A
L[G(f̂ − f)](x) =

∑

x∈A
EsA(x).

Our definition of capacity depends on the random walk p. The next proposition shows that

capacities for different p’s in the same dimension are comparable.

Proposition 6.5.6 Suppose p, q ∈ Pd, d ≥ 3 and let capp, capq denote the corresponding capacities.

Then there is a δ = δ(p, q) > 0 such that for all finite A ⊂ Zd,

δ capp(A) ≤ capq(A) ≤ δ−1 capp(A).

Proof It follows from Theorem 4.3.1 that there exists δ such that

δ Gp(x, y) ≤ Gq(x, y) ≤ δ−1Gp(x, y),

for all x, y. The proposition then follows from Proposition 6.5.5.
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Definition. If p ∈ Pd, d ≥ 3, and A ⊂ Zd, then A is transient if

P{Sn ∈ A i.o.} = 0.

Otherwise, the set is called recurrent.

Lemma 6.5.7 If p ∈ Pd, d ≥ 3, then a subset A of Zd is recurrent if and only if for every x ∈ Zd,

Px{Sn ∈ A i.o.} = 1.

Proof The if direction of the statement is trivial. To show the only if direction, let F (y) = Py{Sn ∈
A i.o.}, and note that F is a bounded harmonic function on Zd, so it must be constant by Propo-

sition 6.1.2. Now if F (y) ≥ ǫ > 0, y ∈ Zd, then for each x there is an Nx such that

Px{Sn ∈ A for some n ≤ Nx} ≥ ǫ/2.

By iterating this we can see for all x,

Px{Sn ∈ A for some n <∞} = 1,

and the lemma follows easily.

♣ Alternatively, {Sn ∈ A i.o.} is an exchangeable event with respect to the i.i.d. steps of the random walk,

and therefore Px(Sn ∈ A i.o.) ∈ {0, 1}.

Clearly, all finite sets are transient; in fact, finite unions of transient sets are transient. If A is a

subset such that
∑

x∈A
G(x) <∞, (6.34)

then A is transient. To see this, let Sn be a random walk starting at the origin and let V denote

the number of visits to A,

VA =

∞
∑

j=0

1{Sn ∈ A}.

Then (6.34) implies that E[VA] < ∞ which implies that P{VA < ∞} = 1. In Exercise 6.3, it is

shown that the converse is not true, i.e., there exist transient sets A with E[VA] =∞.

Lemma 6.5.8 Suppose p ∈ Pd, d ≥ 3, and A ⊂ Zd. Then A is transient if and only if

∞
∑

k=1

P{T k <∞} <∞, (6.35)

where T k = TAk
and Ak = A ∩ (C2k \ C2k−1).

Proof Let Ek be the event {T k < ∞}. Since the random walk is transient, A is transient if and

only if P{Ek i.o.} = 0. Hence the Borel-Cantelli Lemma implies that any A satisfying (6.35) is

transient.
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Suppose
∞
∑

k=1

P{T k <∞} =∞.

Then either the sum over even k or the sum over odd k is infinite. We will assume the former;

the argument if the latter holds is almost identical. Let Bk,+ = Ak ∩ {(z1, . . . , zd) : z1 ≥ 0} and

Bk,− = Ak ∩ {(z1, . . . , zd) : z1 ≤ 0}. Since P{T 2k < ∞} ≤ P{TB2k,+
< ∞} + P{TB2k,− < ∞}, we

know that either
∞
∑

k=1

P{TB2k,+
<∞} =∞, (6.36)

or the same equality with B2k,− replacing B2k,+. We will assume (6.36) holds and write σk = TB2k,+
.

An application of the Harnack inequality (we leave the details as Exercise 6.11) shows that there

is a c such that for all j 6= k,

P{σj <∞ | σj ∧ σk = σk <∞} ≤ cP{σj <∞}.

This implies

P{σj <∞, σk <∞} ≤ 2cP{σj <∞}P{σk <∞}.

Using this and a special form of the Borel-Cantelli Lemma (Corollary 12.6.2) we can see that

P{σj <∞ i.o.} > 0,

which implies that A is not transient.

Corollary 6.5.9 (Wiener’s test) Suppose p ∈ Pd, d ≥ 3, and A ⊂ Zd. Then A is transient if

and only if
∞
∑

k=1

2(2−d)k cap(Ak) <∞ (6.37)

where Ak = A ∩ (C2k \ C2k−1). In particular, if A is transient for some p ∈ Pd, then it is transient

for all p ∈ Pd.

Proof Due to Proposition 6.5.1, we have that P{T k <∞} ≍ 2(2−d)k cap(Ak).

Theorem 6.5.10 Suppose d ≥ 3, p ∈ Pd, and Sn is a p-walk. Let A be the set of points visited by

the random walk,

A = S[0,∞) = {Sn : n = 0, 1, . . .}.

If d = 3, 4, then with probability one A is a recurrent set. If d ≥ 5, then with probability one A is

a transient set.

Proof Since a set is transient if and only if all its translates are transient, we see that for each n,

A is recurrent if and only if the set

{Sm − Sn : m = n, n+ 1, . . .}
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is recurrent. Hence the event {A is recurrent} is a tail event, and and the Kolmogorov 0-1 law now

implies that it has probability 0 or 1.

Let Y denote the random variable that equals the expected number of visits to A by an inde-

pendent random walker S̃n starting at the origin. In other words,

Y =
∑

x∈A
G(x) =

∑

x∈Zd

1{x ∈ A}G(x).

Then,

E(Y ) =
∑

x∈Zd

P{x ∈ A}G(x) = G(0)−1
∑

x∈Zd

G(x)2.

Since G(x) ≍ |x|2−d, we have G(x)2 ≍ |x|4−2d. By examining the sum, we see that E(Y ) =∞ for

d = 3, 4 and E(Y ) < ∞ for d ≥ 5. If d ≥ 5, this gives Y < ∞ with probability one which implies

that A is transient with probability one.

We now focus on d = 4 (it is easy to see that if the result holds for d = 4 then it also holds for

d = 3). It suffices to show that P{A is recurrent} > 0. Let S1, S2 be independent random walks

with increment distribution p starting at the origin, and let

σjk = min{n : Sjn 6∈ C2k}.
Let

V j
k = [C2k \ C2k−1 ] ∩ Sj[0, σjk+1) = {x ∈ C2k \ C2k−1 : Sjn = x for some n ≤ σjk+1}.

Let Ek be the event {V 1
k ∩ V 2

k 6= ∅}. We will show that P{Ek i.o.} > 0 which will imply that with

positive probability, {S1
n : n = 0, 1, . . .} is recurrent. Using Corollary 12.6.2, one can see that it

suffices to show that
∞
∑

k=1

P(E3k) =∞, (6.38)

and that there exists a constant c <∞ such that for m < k,

P(E3m ∩ E3k) ≤ cP(E3m) P(E3k). (6.39)

The event E3m depends only on the values of Sjn with σj3m−1 ≤ n ≤ σj3m+1. Hence, the Harnack

inequality implies P(E3k | E3m) ≤ cP(E3k) so (6.39) holds. To prove (6.38), let Jj(k, x) denote the

indicator function of the event that Sjn = x for some n ≤ σjk. Then,

Zk := #(V 1
k ∩ V 2

k ) =
∑

x∈C
2k\C2k−1

J1(k, x)J2(k, x).

There exist c1, c2 such that if x, y ∈ C2k \ C2k−1 , (recall d− 2 = 2)

E[Jj(k, x)] ≥ c1 (2k)−2, E[Jj(k, x)Jj(k, y)] ≤ c2 (2k)−2 [1 + |x− y|]−2.

(The latter inequality is obtained by noting that the probability that a random walker hits both x

and y given that it hits at least one of them is bounded above by the probability that a random

walker starting at the origin visits y − x.) Therefore,

E[Zk] =
∑

x∈C
2k\C2k−1

E[J1(k, x)] E[J2(k, x)] ≥ c
∑

x∈C
2k\C2k−1

(2k)−4 ≥ c,
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E[Z2
k ] =

∑

x,y∈C
23k\C2k−1

E[J1(k, x)J1(k, y)] E[J2(k, x)J2(k, y)]

≤ c
∑

x,y∈C
2k\C2k−1

(2k)−4 1

[1 + |x− y|2]2 ≤ ck,

where for the last inequality note that there are O(24k) points in C2k \ C2k−1, and that for x ∈
C2k \ C2k−1 there are O(ℓ3) points y ∈ C2k \ C2k−1 at distance ℓ from from x. The second moment

estimate, Lemma 12.6.1 now implies that P{Zk > 0} ≥ c/k, hence (6.38) holds.

♣ The central limit theorem implies that the number of points in Bn visited by a random walk is of order n2.

Roughly speaking, we can say that a random walk path is a “two-dimensional” set. Asking whether or not this

is recurrent is asking whether or not two random two-dimensional sets intersect. Using the example of planes in

Rd, one can guess that the critical dimension is four.

6.6 Capacity in two dimensions

The theory of capacity in two dimensions is somewhat similar to that for d ≥ 3, but there are

significant differences due to the fact that the random walk is recurrent. We start by recalling a

few facts from Propositions 6.4.7 and 6.4.8. If p ∈ P2 and 0 ∈ A ⊂ Z2 is finite, let

gA(x) = a(x)− Ex[a(STA
)] = lim

n→∞
C2 (log n) Px{ξn < TA}. (6.40)

The function gA is the unique function on Z2 that vanishes on A; is harmonic on Z2\A; and satisfies

gA(x) ∼ C2 logJ (x) ∼ C2 log |x| as x→∞. If y ∈ A, we can also write

gA(x) = a(x− y)− Ex[a(STA
− y)].

To simplify notation we will mostly assume that 0 ∈ A, and then a(x)−gA(x) is the unique bounded

function on Z2 that is harmonic on Z2 \A and has boundary value a on A. We define the harmonic

measure of A (from infinity) by

hmA(x) = lim
|y|→∞

Py{STA
= x}. (6.41)

Since Py{TA < ∞} = 1, this is the same as Py{STA
= x | TA < ∞} and hence agrees with the

definition of harmonic measure for d ≥ 3. It is not clear a priori that the limit exists, this fact is

established in the next proposition.

Proposition 6.6.1 Suppose p ∈ P2 and 0 ∈ A ⊂ Z2 is finite. Then the limit in (6.41) exists and

equals LgA(x).

Proof Fix A and let rA = rad(A). Let n be sufficiently large so that A ⊂ Cn/4. Using (6.25) on the

set Z2 \ A, we see that if x ∈ ∂iA, y ∈ ∂Cn,

Py{STA∧ξn = x} = Px{STA∧ξn = y} = Px{ξn < TA} HCn(0, y)

[

1 +O

(

rA log n

n

)]

.
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If z ∈ Z2 \ Cn, the last-exit decomposition (Proposition 4.6.4) gives

Pz{STA
= x} =

∑

y∈∂Cn

GZ2\A(z, y) Py{STA∧ξn = x}.

Therefore,

Pz{STA
= x} = Px{ξn < TA}J(n, z)

[

1 +O

(

rA log n

n

)]

, (6.42)

where

J(n, z) =
∑

y∈∂Cn

HCn(0, y)GZ2\A(z, y).

If x ∈ A, the definition of L, the optional sampling theorem, and the asymptotic expansion of

gA respectively imply

LgA(x) = Ex[gA(S1)] = Ex[gA(STA∧ξn)]

= Ex[gA(Sξn); ξn < TA]

= Px{ξn < TA} [C2 log n+OA(1)] . (6.43)

In particular,

LgA(x) = lim
n→∞

C2 (log n) Px{ξn < TA}, x ∈ A. (6.44)

(This is the d = 2 analogue of the relation LgA(x) = EsA(x) for d ≥ 3.)

Note that (as in (6.30))
∑

x∈∂iA

Px{ξn < TA} =
∑

x∈∂iA

∑

y∈∂Cn

Px{Sξn∧TA
= y}

=
∑

y∈∂Cn

∑

x∈∂iA

Py{Sξn∧TA
= x} =

∑

y∈∂Cn

Py{TA < ξn}.

Proposition 6.4.3 shows that if x ∈ A, then the probability that a random walk starting at x reaches

∂Cn before visiting the origin is bounded above by c log rA/ log n. Therefore,

Py{TA < ξn} = Py{T{0} < ξn}
[

1 +O

(

log rA
log n

)]

.

As a consequence,

∑

x∈∂iA

Px{ξn < TA} =
∑

y∈∂Cn

Py{Sξn∧T{0} = 0}
[

1 +O

(

log rA
log n

)]

= P{ξn < T{0}}
[

1 +O

(

log rA
log n

)]

= [C2 log n]−1

[

1 +O

(

log rA
log n

)]

.

Combining this with (6.44) gives
∑

x∈A
LgA(x) =

∑

x∈∂iA

LgA(x) = 1. (6.45)
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Here we see a major difference between the recurrent and transient case. If d ≥ 3, the sum above

equals cap(A) and increases in A, while it is constant in A if d = 2. (In particular, it would not be

a very useful definition for a capacity!)

Using (6.42) together with
∑

x∈A Pz{STA
= x} = 1, we see that

J(n, z)
∑

x∈A
Px{ξn < TA} = 1 +O

(

rA log n

n

)

,

which by (6.43)– (6.45) implies that

J(n, z) = C2 log n

[

1 +O

(

rA log n

n

)]

,

uniformly in z ∈ Z2 \ Cn, and the claim follows by (6.42).

We define the capacity of A by

cap(A) := lim
y→∞

[a(y)− gA(y)] =
∑

x∈A
hmA(x) a(x− z),

where z ∈ A. The last proposition establishes the limit if z = 0 ∈ A, and for other z use (6.29) and

limy→∞ a(x)− a(x− z) = 0. We have the expansion

gA(x) = C2 logJ (x) + γ2 − cap(A) + oA(1), |x| → ∞.

It is easy to check from the definition that the capacity is translation invariant, that is, cap(A+y) =

cap(A), y ∈ Zd. Note that singleton sets have capacity zero.

Proposition 6.6.2 Suppose p ∈ P2.

(a) If 0 ∈ A ⊂ B ⊂ Zd are finite, then gA(x) ≥ gB(x) for all x. In particular, cap(A) ≤ cap(B).

(b) If A,B ⊂ Zd are finite subsets containing the origin, then for all x

gA∪B(x) ≥ gA(x) + gB(x)− gA∩B(x). (6.46)

In particular,

cap(A ∪B) ≤ cap(A) + cap(B)− cap(A ∩B).

Proof The inequality gA(x) ≥ gB(x) follows immediately from (6.40). The inequality (6.46) follows

from (6.40) and the observation (recall also the argument for Proposition 6.5.3)

Px{TA∪B < ξn} = Px{TA < ξn or TB < ξn}
= Px{TA < ξn}+ Px{TB < ξn} − Px{TA < ξn, TB < ξn}
≤ Px{TA < ξn}+ Px{TB < ξn} − Px{TA∩B < ξn},

which implies

Px{TA∪B > ξn} ≥ Px{TA > ξn}+ Px{TB > ξn} − Px{TA∩B > ξn}.
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We next derive an analogue of Proposition 6.5.5. If A is a finite set, let aA denote the #(A)×#(A)

symmetric matrix with entries a(x, y). Let aA also denote the operator

aA f(x) =
∑

y∈A
a(x, y) f(y)

which is defined for all functions f : A→ R and all x ∈ Z2. Note that x 7→ aAf(x) is harmonic on

Z2 \ A.

Proposition 6.6.3 Suppose p ∈ P2 and 0 ∈ A ⊂ Z2 is finite. Then

cap(A) =



sup
∑

y∈A
f(y)





−1

,

where the supremum is over all nonnegative functions f on A satisfying aAf(x) ≤ 1 for all x ∈ A.

If A = {0} is a singleton set, the proposition is trivial since aAf(0) = 0 for all f and hence the

supremum is infinity. A natural first guess for other A (which turns out to be correct) is that the

supremum is obtained by a function f satisfying aAf(x) = 1 for all x ∈ A. If {aA(x, y)}x,y∈A is

invertible, there is a unique such function that can be written as f = a−1
A 1 (where 1 denotes the

vector of all 1s). The main ingredient in the proof of Proposition 6.6.3 is the next lemma that

shows this inverse is well defined assuming A has at least two points.

Lemma 6.6.4 Suppose p ∈ P2 and 0 ∈ A ⊂ Z2 is finite with at least two points. Then a−1
A exists

and

a−1
A (x, y) = Px{STA

= y} − δ(y − x) +
LgA(x) LgA(y)

cap(A)
, x, y ∈ A.

Proof We will first show that for all x ∈ Z2.
∑

z∈A
a(x, z)LgA(z) = cap(A) + gA(x). (6.47)

To prove this, we will need the following fact (see Exercise 6.7):

lim
n→∞

[GCn(0, 0) −GCn(x, y)] = a(x, y). (6.48)

Consider the function

h(x) =
∑

z∈A
a(x, z)LgA(z).

We first claim that h is constant on A. By a last-exit decomposition (Proposition 4.6.4), if x, y ∈ A,

1 = Px{TA < ξn} =
∑

z∈A
GCn(x, z) Pz{ξn < TA} =

∑

z∈A
GCn(y, z) Pz{ξn < TA}.

Hence,

(C2 log n)
∑

z∈A
[GCn(0, 0) −GCn(x, z)]Pz{ξn < TA} =
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(C2 log n)
∑

z∈A
[GCn(0, 0) −GCn(y, z)]Pz{ξn < TA}.

Letting n→∞, and recalling that C2 (log n) Pz{ξn < TA} → LgA(z), we conclude that h(x) = h(y).

Theorem 4.4.4 and (6.45) imply that

lim
x→∞

[a(x)− h(x)] = 0.

Hence, a(x)− h(x) is a bounded function that is harmonic in Z2 \A and takes the value a− hA on

A, where hA denotes the constant value of h on A. Now Theorem 6.2.1 implies that a(x)− h(x) =

a(x)− gA(x)− hA. Therefore,

hA = lim
x→∞

[a(x)− gA(x)] = cap(A).

This establishes (6.47).

An application of the optional sampling theorem gives for z ∈ A
GCn(x, z) = δ(z − x) + Ex[GCn(S1, z)] = δ(z − x) +

∑

y∈A
Px{STA∧ξn = y}GCn(y, z).

Hence,

GCn(0, 0) −GCn(x, z) = −δ(z − x)

+GCn(0, 0) Px{ξn < TA}+
∑

y∈A
Px{SτA∧ξn = y} [GCn (0, 0) −GCn(y, z)].

Letting n→∞ and using (6.12) and (6.48), as well as Proposition 6.6.1, this gives

δ(z − x) = −a(x, z) + LgA(x) +
∑

y∈A
Px{STA

= y} a(y, z).

If x, z ∈ A, we can use (6.47) to write the previous identity as

δ(z − x) =
∑

y∈A

[

Px{STA
= y} − δ(y − x) +

LgA(x)LgA(y)

cap(A)

]

a(y, z),

provided that cap(A) > 0.

Proof [of Proposition 6.6.3] Let f̂(x) = LgA(x)/cap(A). Applying (6.47) to x ∈ A gives
∑

y∈A
a(x, y) f̂ (y) = 1, x ∈ A.

Suppose f satisfies the conditions in the statement of the proposition, and let h = aAf̂−aAf which

is nonnegative in A. Then, using Lemma 6.6.4,

∑

x∈A
[f̂(x)− f(x)] =

∑

x∈A





∑

y∈A
a−1
A (x, y)h(y)



 ≥
∑

x∈A

∑

y∈A
Px{SτA = y}h(y) −

∑

x∈A
h(x)

=
∑

y∈A
h(y)

∑

x∈A
Py{SτA = x} −





∑

y∈A
h(y)



 = 0.
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Proposition 6.6.5 If p ∈ P2,

cap(Cn) = C2 log n+ γ2 +O(n−1),

Proof Recall the asymptotic expansion for gCn . By definition of capacity we have,

gCn(x) = C2 logJ (x) + γ2 − cap(Cn) + o(1), x→∞.

But for x 6∈ Cn,

gCn(x) = a(x)− Ex[a(STCn
)] = C2 logJ (x) + γ2 +O(|x|−2)− [C2 log n+ γ2 +O(n−1)].

Lemma 6.6.6 If p ∈ P2, and A ⊂ B ⊂ Z2 are finite, then

cap(A) = cap(B)−
∑

y∈B
hmB(y) gA(y).

Proof gA − gB is a bounded function that is harmonic on Z2 \ B with boundary value gA on B.

Therefore,

cap(B)− cap(A) = lim
x→∞

[gA(x)− gB(x)]

= lim
x→∞

Ex[gA(STB
)− gB(STB

)] =
∑

y∈B
hmB(y) gA(y).

♣ Proposition 6.6.5 tells us that the capacity of an ellipse of diameter n is C2 logn+O(1). The next lemma

shows that this is also true for any connected set of diameter n. In particular, the capacities of the ball of radius

n and a line of radius n are asymptotic as n→∞. This is not true for capacities in d ≥ 3.

Lemma 6.6.7 If p ∈ P2, there exist c1, c2 such that the following holds. If A is a finite subset of

Z2 with rad(A) < n satisfying

#{x ∈ A : k − 1 ≤ |x| < k} ≥ 1, k = 1, . . . , n,

then

(a) if x ∈ ∂C2n,
Px{TA < ξ4n} ≥ c1,

(b) |cap(A)− C2 log n| ≤ c2,
(c) if x ∈ ∂C2n, m ≥ 4n, and An = A ∩ Cn, then

c1 ≤ Px {TAn > ξm} log(m/n) ≤ c2. (6.49)
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Proof (a) Let δ be such that Bδn ⊂ Cn, and let B denote a subset of A contained in Bδn such that

#{x ∈ B : k − 1 ≤ |x| < k} = 1

for each positive integer k < δn. We will prove the estimate for B which will clearly imply the

estimate for A. Let V = Vn,B denote the number of visits to B before leaving C4n,

V =

ξ4n−1
∑

j=0

1{Sj ∈ B} =

∞
∑

j=0

∑

z∈B
1{Sj = z; j < ξ4n}.

The strong Markov property implies that if x ∈ ∂C2n,

Ex[V ] = Px{TB < ξ4n}Ex[V | TB < ξ4n] ≤ Px{TB < ξ4n} max
z∈B

Ez[V ].

Hence, we need only find a c1 such that Ex[V ] ≥ c1 Ez[V ] for all x ∈ ∂C2n, z ∈ B. Note that

#(B) = δn + O(1). By Exercise 6.13, we can see that GC4n(x, z) ≥ c for x, z ∈ C2n. Therefore

Ex[V ] ≥ c n. If z ∈ B, there are at most 2k points w in B \ {z} satisfying |z − w| ≤ k + 1,

k = 1, . . . , δn. Using Proposition 6.3.5, we see that

GC4n(z,w) ≤ C2 [log n− log |z − w|+O(1)].

Therefore,

Ez[V ] =
∑

w∈B
GC4n(z,w) ≤

δn
∑

k=1

2C2 [log n− log k +O(1)] ≤ c n.

The last inequality uses the estimate

n
∑

k=1

log k = O(log n) +

∫ n

1
log x dx = n log n− n+O(log n).

(b) There exists a δ such that Bn ⊂ Cn/δ for all n and hence

cap(A) ≤ cap(Bn) ≤ cap(Cn/δ) ≤ C2 log n+O(1).

Hence, we only need to give a lower bound on cap(A). By the previous lemma it suffices to find a

uniform upper bound for gA on ∂C4n. For m > 4n, let

rm = rm,n,A = max
y∈C2n

Py{ξm < TA},

r∗m = rm,n,A = max
y∈C4n

Py{ξm < TA}.

Using part (a) and the strong Markov property, we see that there is a ρ < 1 such that rm ≤ ρ r∗m.

Also, if y ∈ C4n
Py{ξm < TA} = Py{ξm < TC2n}+ Py{ξm > TC2n}Py{ξm < TA | ξm > TC2n}

≤ Py{ξm < TC2n}+ ρ r∗m.

Proposition 6.4.1 tells us that there is a c3 such that for y ∈ C4n,

Py{ξm < TC2n} ≤
c3

logm− log n+O(1)
.
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Therefore,

gA(y) = lim
m→∞

C2 (logm) Py{ξm < TA} ≤
C2 c3
1− ρ.

(c) The lower bound for (6.49) follows from Proposition 6.4.1 and the observation

Px{TAn > ξm} ≥ Px{TCn > ξm}.

For the upper bound let

u = un = max
x∈∂C2n

Px{TAn > ξm}.

Consider a random walk starting at y ∈ ∂C2n and consider TCn ∧ ξm. Clearly,

Py{TAn > ξm} = Py{ξm < TCn}+ Py{ξm > TCn ; ξm < TAn}.

By Proposition 6.4.1, for all y ∈ ∂C2n

Py {ξm < TCn} ≤
c

log(m/n)
.

Let σ = σn = min{j ≥ TCn : Sj ∈ ∂C2n}. Then, by the Markov property,

Py{ξm > TCn , ξm ≤ TAn} ≤ uPy{S[0, σ] ∩An = ∅}.

Part (a) shows that there is a ρ < 1 such that Py{S[0, σ] ∩An = ∅} ≤ ρ and hence, we get

Py{TAn > ξm} ≤
c

log(m/n)
+ ρ u.

Since this holds, for all y ∈ ∂C2n, this implies

u ≤ c

log(m/n)
+ ρ u,

which gives us the upper bound.

♣ A major example of a set satisfying the condition of the theorem is a connected (with respect to simple

random walk) subset of Z2 with radius between n− 1 and n. In the case of simple random walk, there is another

proof of part (a) based on the observation that the simple random walk starting anywhere on ∂C2n makes a closed

loop about the origin contained in Cn with a probability uniformly bounded away from 0. One can justify this

rigorously by using an approximation by Brownian motion. If the random walk makes a closed loop, then it must

intersect any connected set. Unfortunately, it is not easy to modify this argument for random walks that take

non-nearest neighbor steps.
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6.7 Neumann problem

We will consider the following “Neumann problem”. Suppose p ∈ Pd and A ⊂ Zd with nonempty

boundary ∂A. If f : A→ R is a function, we define its normal derivative at y ∈ ∂A by

Df(y) =
∑

x∈A
p(y, x) [f(x)− f(y)].

Given D∗ : ∂A→ A, the Neumann problem is to find a function f : A→ R such that

Lf(x) = 0, x ∈ A, (6.50)

Df(y) = D∗(y), y ∈ ∂A. (6.51)

♣ The term normal derivative is motivated by the case of simple random walk and a point y ∈ ∂A such that

there is a unique x ∈ A with |y − x| = 1. Then Df(y) = [f(x) − f(y)]/2d, which is a discrete analogue of the

normal derivative.

A solution to (6.50)–(6.51) will not always exist. The next lemma which is a form of Green’s

theorem shows that if A is finite, a necessary condition for existence is
∑

y∈∂A
D∗(y) = 0. (6.52)

Lemma 6.7.1 Suppose p ∈ Pd, A is a finite subset of Zd and f : A→ R is a function. Then
∑

x∈A
Lf(x) = −

∑

y∈∂A
Df(y).

Proof
∑

x∈A
Lf(x) =

∑

x∈A

∑

y∈A
p(x, y) [f(y)− f(x)]

=
∑

x∈A

∑

y∈A
p(x, y) [f(y)− f(x)] +

∑

x∈A

∑

y∈∂A
p(x, y) [f(y)− f(x)]

However,
∑

x∈A

∑

y∈A
p(x, y) [f(y)− f(x)] = 0,

since p(x, y) [f(y)− f(x)] + p(y, x) [f(x)− f(y)] = 0 for all x, y ∈ A. Therefore,
∑

x∈A
Lf(x) =

∑

y∈∂A

∑

x∈A
p(x, y) [f(y)− f(x)] = −

∑

y∈∂A
Df(y).

Given A, the excursion Poisson kernel is the function

H∂A : ∂A× ∂A −→ [0, 1],
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defined by

H∂A(y, z) = Py {S1 ∈ A,SτA = z} =
∑

x∈A
p(y, x)HA(x, z),

where HA : A× ∂A→ [0, 1] is the Poisson kernel. If z ∈ ∂A and H(x) = HA(x, z), then

DH(y) = H∂A(y, z), y ∈ ∂A \ {z},

DH(z) = H∂A(z, z) − Pz{S1 ∈ A}.

More generally, if f : A→ R is harmonic in A, then f(y) =
∑

z∈∂A f(z)HA(y, z) so that

Df(y) =
∑

z∈∂A
H∂A(y, z) [f(z) − f(y)]. (6.53)

Note that if y ∈ ∂A then
∑

z∈∂A
H∂A(y, z) = Py{S1 ∈ A} ≤ 1.

It is sometimes useful to consider the Markov transition probabilities Ĥ∂A where Ĥ∂A(y, z) =

H∂A(y, z) for y 6= z, and Ĥ∂A(y, y) is chosen so that

∑

z∈∂A
Ĥ∂A(y, z) = 1.

Note that again (compare with (6.53))

Df(y) =
∑

z∈∂A
Ĥ∂A(y, z) [f(z) − f(y)],

which we can write in matrix form

Df = [Ĥ∂A − I] f.

If A is finite, then the #(∂A)×#(∂A) matrix Ĥ∂A−I is sometimes called the Dirichlet-to-Neumann

map because it takes the boundary values f (Dirichlet conditions) of a harmonic function to the

derivatives Df (Neumann conditions). The matrix is not invertible since constant functions f are

mapped to zero derivatives. We also know that the image of the map is contained in the subspace of

functions D∗ satisfying (6.52). The next proposition shows that the rank of the matrix is #(∂A)−1.

It will be useful to define random walk “reflected off ∂A”. There are several natural ways to do

this. We define this to be the Markov chain with state space A and transition probabilities q where

q(x, y) = p(x, y) if x ∈ A or y ∈ A; q(x, y) = 0 if x, y ∈ ∂A are distinct; and q(y, y) is defined for

y ∈ ∂A so that
∑

z∈A q(y, z) = 1. In words, this chain moves like random walk with transition

probability p while in A, and whenever its current position y is in ∂A, the only moves allowed

are those into A ∪ {y}. While the original walk could step out of A ∪ {y} with some probability

p̃(y) = p̃(y,A, p), the modified walk stays at y with probability p(y, y) + p̃(y).

Proposition 6.7.2 Suppose p ∈ Pd, A is a finite, connected subset of Zd, and D∗ : ∂A → R is a
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function satisfying (6.52). Then there is a function f : A → R satisfying (6.50) and (6.51). The

function f is unique up to an additive constant. One such function is given by

f(x) = − lim
n→∞

Ex





n
∑

j=0

D∗(Yj) 1{Yj ∈ ∂A}



 , (6.54)

where Yj is a Markov chain with transition probabilities q as defined in the previous paragraph.

Proof It suffices to show that f as defined in (6.54) is well defined and satisfies (6.50) and (6.51).

Indeed, if this is true then f + c also satisfies it. Since the image of the matrix Ĥ∂A − I contains

the set of functions satisfying (6.52) and this is a subspace of dimension #(∂A) − 1, we get the

uniqueness.

Note that q is an irreducible, symmetric Markov chain and hence has the uniform measure as

the invariant measure π(y) = 1/m where m = #(A). Because the chain also has points with

q(y, y) > 0, it is aperiodic. Also,

Ex





n
∑

j=0

D∗(Yj) 1{Yj ∈ ∂A}



 =

n
∑

j=0

∑

z∈∂A
qj(x, z)D

∗(z) =

n
∑

j=0

∑

z∈∂A

[

qj(x, z)−
1

m

]

D∗(z).

By standard results about Markov chains (see Section 12.4), we know that
∣

∣

∣

∣

qj(x, z) −
1

m

∣

∣

∣

∣

≤ c e−αj ,

for some positive constants c, α. Hence the sum is convergent. It is then straightforward to check

that it satisfies (6.50) and (6.51).

6.8 Beurling estimate

The Beurling estimate is an important tool for estimating hitting (avoiding) probabilities of sets

in two dimensions. The Beurling estimate is a discrete analogue of what is known as the Beurling

projection theorem for Brownian motion in R2.

Recall that a set A ⊂ Zd is connected (for simple random walk) if any two points in A can be

connected by a nearest neighbor path of points in A.

Theorem 6.8.1 (Beurling estimate) If p ∈ P2, there exists a constant c such that if A is an

infinte connected subset of Zd containing the origin and S is simple random walk, then

P{ξn < TA} ≤
c

n1/2
, d = 2. (6.55)

We prove the result for simple random walk, and then we describe the extension to more general

walks.

Definition. Let Ad denote the collection of infinite subsets of Zd with the property that for each

positive integer j,

#{z ∈ A : (j − 1) ≤ |z| < j} = 1.
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One important example of a set in Ad is the half-infinite line

L = {je1 : j = 0, 1, . . .}.

We state two immediate facts about Ad.

• If A′ is an infinite connected subset of Zd containing the origin, then there exists a (not necessarily

connected) A ∈ Ad with A ⊂ A′.
• If z ∈ A ∈ Ad, then for every real r > 0.

#{w ∈ A : |z − w| ≤ r} ≤ #{w ∈ A : |z| − r ≤ |w| ≤ |z|+ r} ≤ 2r + 1. (6.56)

Theorem 6.8.1 for simple random walk is implied by the following stronger result.

Theorem 6.8.2 For simple random walk in Z2 there is a c such that if A ∈ Ad, then

P{ξn < TA} ≤
c

n1/2
. (6.57)

Proof We fix n and let V = Vn = {y1, . . . , yn} where yj denotes the unique point in A with

j ≤ |yj| < j + 1. We let K = Kn = {x1, . . . , xn} where xj = je1. Let Gn = GBn ,B = Bn3 ,

G = GB, ξ = ξn3. Let

v(z) = Pz{ξ < TVn}, q(z) = Pz{ξ < TKn}.

By (6.49), there exist c1, c2 such that for z ∈ ∂B2n,

c1
log n

≤ v(z) ≤ c2
log n

,
c1

log n
≤ q(z) ≤ c2

log n
.

We will establish

v(0) ≤ c

n1/2 log n

and then the Markov property will imply that (6.57) holds. Indeed, note that

v(0) ≥ P(ξ2n < TV2n)P(ξ < ξn|ξ2n < TV2n).

By (5.17) and (6.49), we know that there is a c such that for j = 1, . . . , n,

q(xj) ≤ c n−1/2
[

j−1/2 + (n− j + 1)−1/2
]

[log n]−1; (6.58)

In particular, q(0) ≤ c/(n1/2 log n) and hence it suffices to prove that

v(0) − q(0) ≤ c

n1/2 log n
. (6.59)

If |x|, |y| ≤ n, then

Gn3−2n(0, y − x) ≤ Gn3(x, y) ≤ Gn3+2n(0, y − x),

and hence (4.28) and Theorem 4.4.4 imply

G(x, y) =
2

π
log n3 + γ2 − a(x, y) +O

(

1

n2

)

, |x|, |y| ≤ n. (6.60)
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Using Proposition 4.6.4, we write

v(0)− q(0) = P{ξ < TV } − P{ξ < TK}
= P{ξ > TK} − P{ξ > TV }

=
n
∑

j=1

G(0, xj) q(xj)−
n
∑

j=1

G(0, yj) v(yj)

=

n
∑

j=1

[G(0, xj)−G(0, yj)] q(xj) +

n
∑

j=1

G(0, yj) [q(xj)− v(yj)].

Using (6.58) and (6.60), we get

(log n)

∣

∣

∣

∣

∣

∣

n
∑

j=1

[G(0, xj)−G(0, yj)] q(xj)

∣

∣

∣

∣

∣

∣

≤ O(n−1) + c

n
∑

j=1

|a(xj)− a(yj)| (j−1/2 + (n− j)−1/2)n−1/2.

Since |xj | = j, |yj | = j +O(1), (4.4.4) implies that

|a(xj)− a(yj)| ≤
c

j
,

and hence

(log n)

∣

∣

∣

∣

∣

∣

n
∑

j=1

[G(0, xj)−G(0, yj)] q(xj)

∣

∣

∣

∣

∣

∣

≤ O(n−1) + c
n
∑

j=1

1

j3/2 n1/2
≤ c

n1/2
.

For the last estimate we note that
n
∑

j=1

1

j(n− j)1/2 ≤
n
∑

j=1

1

j3/2
.

In fact, if a, b ∈ Rn are two vectors such that a has non-decreasing components (that is, a1 ≤ a2 ≤
. . . ≤ an) then a · b ≤ a · b∗ where b∗ = (bπ(1), . . . , bπ(n)) and π is any permutation that makes

bπ(1) ≤ bπ(2) ≤ . . . ≤ bπ(n).

Therefore, to establish (6.59), it suffices to show that

n
∑

j=1

G(0, yj) [q(xj)− v(yj)] ≤
c

n1/2 log n
. (6.61)

Note that we are not taking absolute values on the left-hand side. Consider the function

F (z) =

n
∑

j=1

G(z, yj) [q(xj)− v(yj)],

and note that F is harmonic on B \V . Since F ≡ 0 on ∂B, either F ≤ 0 everywhere (in which case

(6.61) is trivial) or it takes its maximum on V . Therefore, it suffices to find a c such that for all

k = 1, . . . , n,
n
∑

j=1

G(yk, yj) [q(xj)− v(yj)] ≤
c

n1/2 log n
.
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By using Proposition 4.6.4 once again, we get

n
∑

j=1

G(yk, yj) v(yj) = Pyk{T V ≤ ξ} = 1 = Pxk{TK ≤ ξ} =

n
∑

j=1

G(xk, xj) q(xj).

Plugging in, we get

n
∑

j=1

G(yk, yj) [q(xj)− v(yj)] =

n
∑

j=1

[G(yk, yj)−G(xk, xj)] q(xj).

We will now bound the right-hand side. Note that |xk − xj | = |k − j| and |yk − yj| ≥ |k − j| − 1.

Hence, using (6.60),

G(yk, yj)−G(xk, xj) ≤
c

|k − j|+ 1

and therefore for each k = 1, . . . , n

n
∑

j=1

[G(yk, yj)−G(xk, xj)] q(xj) ≤ c
n
∑

j=1

1

(|k − j|+ 1) j1/2 log n
≤ c

n1/2 log n
.

One can now generalize this result.

Definition. If p ∈ P2 and k is a positive integer, let A∗ = A∗
2,k,p denote the collection of infinite

subsets of Z2 with the property that for each positive integer j,

#{z ∈ A : (j − 1)k ≤ J (z) < jk} ≥ 1,

and let A denote the collection of subsets with

#{z ∈ A : (j − 1)k ≤ J (z) < jk} = 1.

If A ∈ A∗ then A contains a subset in A.

Theorem 6.8.3 If p ∈ P2 and k is a positive integer, there is a c such that if A ∈ A∗, then

P{ξn < TA} ≤
c

n1/2
.

The proof is done similarly to that of the last theorem. We let K = {x1, . . . , xn} where xj = jle1

and l is chosen sufficiently large so that J (le1) > k, and set V = {y1, . . . , yn} where yj ∈ A with

jJ ∗(le1) ≤ |yj| < (j + 1)J ∗(le1). See Exercise 5.2.

6.9 Eigenvalue of a set

Suppose p ∈ Pd and A ⊂ Zd is finite and connected (with respect to p) with #(A) = m. The (first)

eigenvalue of A is defined to be the number αA = e−λA such that for each x ∈ A, as n→∞,

Px{τA > n} ≍ αnA = e−λAn.

Let PA denote the m×m matrix [p(x, y)]x,y∈A and, as before, let LA = PA− I. Note that (PA)n

is the matrix [pAn (x, y)] where pAn (x, y) = Px{Sn = y;n < τA}. We will say that p ∈ Pd is aperiodic
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restricted to A if there exists an n such that (PA)n has all entries strictly positive; otherwise, we

say that p is bipartite restricted to A. In order for p to be aperiodic restricted to A, p must be

aperiodic. However, it is possible for p to be aperiodic but for p to be bipartite restricted to A

(Exercise 6.16). The next two propositions show that αD is the largest eigenvalue for the matrix

PA, or, equivalently, 1− αA is the smallest eigenvalue for the matrix LA.

Proposition 6.9.1 If p ∈ Pd, A ⊂ Zd is finite and connected, and p restricted to A is aperiodic,

then there exist numbers 0 < β = βA < α = αA < 1 such that if x, y ∈ A,

pAn (x, y) = αn gA(x) gA(y) +OA(βn). (6.62)

Here gA : A→ R is the unique positive function satisfying

PAgA(x) = αA gA(x), x ∈ A,
∑

x∈A
gA(x)2 = 1.

In particular,

Px{τA > n} = g̃A(x)αn +OA(βn),

where

g̃A(x) = gA(x)
∑

y∈A
gA(y),

We write OA to indicate that the implicit constant in the error term depends on A.

Proof This is a general fact about irreducible Markov chains, see Proposition 12.4.3. In the notation

of that proposition v = w = g. Note that

Px{τA > n} =
∑

y∈A
pAn (x, y).

.

Proposition 6.9.2 If p ∈ Pd, A ⊂ Zd is finite and connected, and p is bipartite restricted to A,

then there exist numbers 0 < β = βA < α = αA < 1 such that if x, y ∈ A for all n sufficiently large,

pAn (x, y) + pAn+1(x, y) = 2αn gA(x) gA(y) +OA(βn).

Here gA : A→ R is the unique positive function satisfying
∑

x∈A
gA(x)2 = 1, PAgA(x) = αgA(x), x ∈ A.

Proof This can be proved similarly using Markov chains. We omit the proof.

Proposition 6.9.3 Suppose p ∈ Pd; ǫ ∈ (0, 1), and pǫ = ǫ δ0 + (1 − ǫ) p is the corresponding lazy

walker. Suppose A is a finite, connected subset of Zd and let α,αǫ, g, gǫ be the eigenvalues and

eigenfunctions for A using p, pǫ, respectively. Then 1− αǫ = (1− ǫ) (1 − α) and gǫ = g.
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Proof Let PA, PAǫ be the corresponding matrices. Then PAǫ = (1− ǫ)PA + ǫ I and hence

PAǫ gA = [(1− ǫ)α+ ǫ] gA.

♣ A standard problem is to estimate λA or αA as A gets large and αA → 1, λA → 0. In these cases it usually
suffices to consider the eigenvalue of the lazy walker with ǫ = 1/2. Indeed let λ̃A be the eigenvalue for the lazy
walker. Since,

λA = 1− αA +O((1 − αA)2), αA → 1− .
we get

λ̃A =
1

2
λA +O(λ2

A), λA → 0.

Proposition 6.9.1 gives no bounds for the β. The optimal β is the maximum of the absolute

values of the eigenvalues other than α. In general, it is hard to estimate β, and it is possible for

βto be very close to α. We will show that in the case of the nice set Cn there is an upper bound

for β independent of n. We fix p ∈ Pd with p(x, x) > 0 and let e−λm = αCm , gm = gCm , and

pmn (x, y) = pCm
n (x, y). For x ∈ Cm we let

ρm(x) =
dist(x, ∂Cm) + 1

m
,

and we set ρm ≡ 0 on Zd \ Cm.

Proposition 6.9.4 There exist c1, c2 such that for all m sufficiently large and all x, y ∈ Cm,

c1 ρm(x) ρm(y) ≤ md pmm2(x, y) ≤ c2 ρm(x) ρm(y). (6.63)

Also, there exist c3, c4 such that for every n ≥ m2, and all x, y ∈ Cm,

c3 ρm(y)m−d ≤ Px{Sn = y | τCm > n} ≤ c4 ρm(y)m−d.

♣ This proposition is an example of a parabolic boundary Harnack principle. At any time larger than rad2(Cm),

the position of the random walker, given that it has stayed in Cm up to the current time, is independent of the

initial state up to a multiplicative constant.

Proof For notational ease, we will restrict to the case where m is even. (If m is odd, essentially the

same proof works except m2/4 must be replaced with ⌊m2/4⌋, etc.) We write ρ = ρm. Note that

pmm2(x, y) =
∑

z,w

pmm2/4(x, z) p
m
m2/2(z,w) pmm2/4(w, y). (6.64)

The local central limit theorem implies that there is a c such that for all z,w, pmm2/2(z,w) ≤
pm2/2(z,w) ≤ cm−d. Therefore,

pmm2(x, y) ≤ m−d Px{τCm > m2/4} Py{τCm > m2/4}.
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Gambler’s ruin (see Proposition 5.1.6) implies that Px{τCm > m2/4} ≤ c ρm(x). This gives the

upper bound for (6.63).

For the lower bound, we first note that there is an ǫ > 0 such that

pm⌊ǫm2⌋(z,w) ≥ ǫm−d, |z|, |w| ≤ ǫm.
Indeed, the Markov property implies that

pm⌊ǫm2⌋(z,w) ≥ p⌊ǫm2⌋(z,w) −max{pk(z̃, w) : k ≤ ⌊ǫm2⌋, z̃ ∈ Zd \ Cm}, (6.65)

and the local central limit theorem establishes the estimate. Using this estimate and the invariance

principle, one can see that for every ǫ > 0, there is a c such that for z,w ∈ C(1−ǫ)m,

pm2/2(z,w) ≥ cm−d.

Indeed, in order to estimate pm2/2(z,w), we split the path into three pieces: the first m2/8 steps,

the middle m2/4 steps; and the final m2/8 steps (here we are assuming m2/8 is an integer for

notational ease). We estimate both the probability that the walk starting at z has not left Cm
and is in the ball of radius ǫm at time m2/8 and corresponding probability for the walk in reverse

time starting at w using the invariance principle. There is a positive probability for this, where the

probability depends on ǫ. For the middle piece we use (6.65), and then we “connect” the paths to

obtain the lower bound on the probability.

Using (6.64), we can then see that it suffices to find ǫ > 0 and c > 0 such that
∑

z∈C(1−ǫ)m

pmm2/4(x, z) ≥ c ρ(x). (6.66)

Let T = τCm \ τCm/2
as in Lemma 6.3.4 and let Tm = T ∧ (m2/4). Using that lemma and Theorem

5.1.7, we can see that

Px{STm ∈ Cm} ≤ c1 ρ(x).
Propositions 6.4.1 and 6.4.2 can be used to see that

Px{ST ∈ Cm/2} ≥ c2 ρ(x).
We can write

Px{ST ∈ Cm/2} =
∑

z

Px{STm = z}Px{ST ∈ Cm/2 | STm = z}.

The conditional expectation can be estimated again by Lemma 6.3.4; in particular, we can find an

ǫ such that

Pz{ST ∈ Cm/2} ≤
c2
2c1

, z 6∈ C(1−ǫ)m.

This implies,
∑

z∈C(1−ǫ)m

Px{STm = z} ≥
∑

z∈C(1−ǫ)m

Px{STm = z}Px{ST ∈ Cm/2 | STm = z} ≥ c2
2
ρ(x).

A final appeal to the central limit theorem shows that if ǫ ≤ 1/4,
∑

z∈C(1−ǫ)m

pmm2/4(x, z) ≥ c
∑

z∈C(1−ǫ)m

Px{STm = z}.
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The last assertion follows for n = m2 by noting that

Px{Sm2 = y | τCm > m2} =
pmm2(x, y)

∑

z p
m
m2(x, z)

and
∑

z

pmm2(x, z) ≍ ρm(x)m−d ∑

z

ρm(z) ≍ ρm(x).

For n > m2, we can argue similarly by conditioning on the walk at time n−m2.

Corollary 6.9.5 There exists c1, c2 such that

c1 ≤ m2λm ≤ c2.

Proof See exercise 6.10.

Corollary 6.9.6 There exists c1, c2 such that for all m and all x ∈ Cm/2,

c1 e
−λmn ≤ Px{ξm > n} ≤ c2e−λmn.

Proof Using the previous corollary, it suffices to prove the estimates for n = km2, k ∈ {1, 2, . . .}. Let

βk(x) = βk(x,m) = Px{ξm > km2} and let βk = maxx∈Cm βk(x). Using the previous proposition,

we see there is a c1 such that

βk ≥ βk(x) ≥ c1 βk, x ∈ Cm/2.

Due to the same estimates,

Px{Sξm ∈ Cm/2 | ξm > km2} ≥ c2.

Therefore, there is a c3 such that

c3βj βk ≤ βj+k ≤ βj βk,

which implies (see Corollary 12.7.2)

e−λmm2k ≤ βk ≤ c−1
3 e−λmm2k,

and hence for x ∈ Cm/2,

c1 e
−λmm2k ≤ βk(x) ≤ c−1

3 e−λmm2k.

Exercises

Exercise 6.1 Show that Proposition 6.1.2 holds for p ∈ P∗.

Exercise 6.2
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(i) Show that if p ∈ Pd and x ∈ Cn,

Ex[ξn] =
∑

y∈Cn

GCn(x, y) = n2 − J (x) +O(n).

(Hint: see Exercise 1.5.)

(ii) Show that if p ∈ P ′
d and x ∈ Cn,

Ex[ξn] =
∑

y∈Cn

GCn(x, y) = n2 − J (x) + o(n2).

Exercise 6.3 In this exercise we construct a transient subset A of Z3 with
∑

y∈A
G(0, y) =∞. (6.67)

Here G denotes the Green’s function for simple random walk. Our set will be of the form

A =

∞
⋃

k=1

Ak, Ak = {z ∈ Z3 : |z − 2k e1| ≤ ǫk 2k}.

for some ǫk → 0.

(i) Show that (6.67) holds if and only if
∑∞

k=1 ǫ
3
k 22k =∞.

(ii) Show that A is transient if and only if
∑∞

k=1 ǫk <∞.
(iii) Find a transient A satisfying (6.67).

Exercise 6.4 Show that there is a c < ∞ such that the following holds. Suppose Sn is simple

random walk in Z2 and let V = Vn,N be the event that the path S[0, ξN ] does not disconnect the

origin from ∂Bn. Then if x ∈ B2n,

Px(V ) ≤ c

log(N/n)
.

(Hint: There is a ρ > 0 such that the probability that a walk starting at ∂Bn/2 disconnects the

origin before reaching ∂Bn is at least ρ, see Exercise 3.4.)

Exercise 6.5 Suppose p ∈ Pd, d ≥ 3. Show that there exists a sequence Kn → ∞ such that if

A ⊂ Zd is a finite set with at least n points, then cap(A) ≥ Kn.

Exercise 6.6 Suppose p ∈ Pd and r < 1. Show there exists c = cr < ∞ such that the following

holds.

(i) If |e| = 1, and x ∈ Crn,
∑

y∈Cn

|GCn(x+ e, y)−GCn(x, y)| ≤ c n,

(ii) Suppose f, g, F are as in Corollary 6.2.4 with A = Cn. Then if x ∈ Crn,

|∇jf(x)| ≤ c

n

[

‖F‖∞ + n2 ‖g‖∞
]

.
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Exercise 6.7 Show that if p ∈ P2 and r > 0,

lim
n→∞

[GCn+r (0, 0) −GCn(0, 0)] = 0.

Use this and (6.16) to conclude that for all x, y,

lim
n→∞

[GCn(0, 0) −GCn(x, y)] = a(x, y).

Exercise 6.8 Suppose p ∈ Pd and A ⊂ Zd is finite. Define

QA(f, g) =
∑

x,y∈A
p(x, y) [f(y)− f(x)] [g(y)− g(x)].

and QA(f) = QA(f, f). Let F : ∂A → R be given. Show that the infimum of QA(f) restricted to

functions f : A→ R with f ≡ F on ∂A is obtained by the unique harmonic function with boundary

value F .

Exercise 6.9 Write the two-dimensional integer lattice in complex form, Z2 = Z + iZ and let A

be the upper half plane A = {j + ik ∈ Z2 : k > 0}. Show that for simple random walk

GA(x, y) = a(x, y)− a(x, y), x, y ∈ A,

HA(x, j) =
1

4
[a(x, j − i)− a(x, j + i)] + δ(x− j), x ∈ A, j ∈ Z.

where j + ik = j − ik denotes complex conjugate. Find

lim
k→∞

k HA(ik, j).

Exercise 6.10 Prove Corollary 6.9.5.

Exercise 6.11 Provide the details of the Harnack inequality argument in Lemma 6.5.8 and Theorem

6.5.10.

Exercise 6.12 Suppose p ∈ Pd.
(i) Show that there is a c <∞ such that if x ∈ A ⊂ Cn and z ∈ C2n,

Px{Sξ2n = z | ξ2n < TA} ≤ c n1−d Px{ξn < TA}
Px{ξ2n < TA}

.

(ii) Let A be the line {je1 : j ∈ Z}. Show that there is an ǫ > 0 such that for all n sufficiently

large,

P{dist(Sξn , A) ≥ ǫn | ξn < TA} ≥ ǫ.

(Hint: you can use the gambler’s ruin estimate to estimate Px{ξn/2 < TA}/Px{ξn < TA}.)

Exercise 6.13 Show that for each p ∈ P2 and each r ∈ (0, 1), there is a c such that for all n

sufficiently large,

GCn(x, y) ≥ c, x, y ∈ Crn,
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GBn(x, y) ≥ c, x, y ∈ Brn.

Exercise 6.14 Suppose p ∈ P2 and let A = {x1, x2} be a two-point set.

(i) Prove that hmA(x1) = 1/2.

(ii) Show that there is a c <∞ such that if A ⊂ Cn, then for y ∈ Z2 \ C2n,
∣

∣

∣

∣

Py{STA
= x1} −

1

2

∣

∣

∣

∣

≤ c

log n
.

(Hint: Suppose Py{STA
= xj} ≥ 1/2 and let V be the set of z such that Pz{STA

= xj} ≤ 1/2.

Let σ = min{j : Sj ∈ V }. Then it suffices to prove that Py{TA < σ} ≤ c/ log n.)

(iii) Show that there is a c <∞ such that if A = Z2 \ {x} with x 6= 0, then
∣

∣

∣

∣

GA(0, 0) − 4

π
log |x|

∣

∣

∣

∣

≤ c.

Exercise 6.15 Suppose p ∈ P2. Show that there exist c1, c2 > 0 such that the following holds.

(i) If n is sufficiently large, A is a set as in Lemma 6.6.7, and An = A ∩ {|z| ≥ n/2}, then for

x ∈ ∂Bn/2,
Px{TA < ξ∗n} ≥ c.

(ii) If x ∈ ∂Bn/2,
GZ2\A(x, 0) ≤ c.

(iii) If A′ is a set with Bn/2 ⊂ A′ ⊂ Z2 \ An,
∣

∣

∣

∣

GA′(0, 0) − 2

π
log n

∣

∣

∣

∣

≤ c.

Exercise 6.16 Give an example of an aperiodic p ∈ Pd and a finite connected (with respect to p)

set A for which p is bipartite restricted to A.

Exercise 6.17 Suppose Sn is simple random walk in Zd so that ξn = ξ∗n. If |x| < n, let

u(x, n) = Ex [|Sξn | − n]

and note that 0 ≤ u(x, n) ≤ 1.

(i) Show that

n2 − |x|2 + 2nu(x, n) ≤ Ex[ξn] ≤ n2 − |x|2 + (2n + 1)u(x, n).

(ii) Show that if d = 2,

π

2
GBn(0, x) = log n− log |x|+ u(x, n)

n
+O(|x|−2).

(iii) Show that if d ≥ 3,

C−1
d GBn(0, x) =

1

|x|d−2
− 1

nd−2
+

(d− 2)u(x, n)

nd−1
+O(|x|−d).
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Exercise 6.18 Suppose Sn is simple random walk in Zd with d ≥ 3. For this exercise assume that

we know that

G(x) ∼ Cd
|x|d−2

, |x| → ∞

for some constant Cd but no further information on the asymptotics. The purpose of this exercise

is to find Cd. Let Vd be the volume of the unit ball in Rd and ωd = dVd the surface area of the

boundary of the unit ball.

(i) Show that as n→∞,
∑

x∈Bn

G(0, x) ∼ Cd ωd n
2

2
=
Cd dVd n

2

2
.

(ii) Show that as n→∞,
∑

x∈Bn

[G(0, x) −GBn(0, x)] ∼ Cd Vd n2.

(iii) Show that as n→∞,
∑

x∈Bn

GBn(0, x) ∼ n2.

(iv) Conclude that

Cd Vd

(

d

2
− 1

)

= 1.



7

Dyadic coupling

7.1 Introduction

In this chapter we will study the dyadic or KMT coupling which is a coupling of Brownian motion

and random walk for which the paths are significantly closer to each other than in the Skorokhod

embedding. Recall that if (Sn, Bn) are coupled by the Skorokhod embedding, then typically one

expects |Sn −Bn| to be of order n1/4. In the dyadic coupling, |Sn −Bn| will be of order log n. We

mainly restrict our consideration to one dimension, although we discuss some higher dimensional

versions in Section 7.6.

Suppose p ∈ P ′
1 and

Sn = X1 + · · ·+Xn

is a p-walk. Suppose that there exists b > 0 such that

E[X2
1 ] = σ2, E[eb|X1|] <∞. (7.1)

Then by Theorem 2.3.11, there exist N, c, ǫ such that if we define δ(n, x) by

pn(x) := P{Sn = x} =
1√

2πσ2n
e−

x2

2σ2n exp{δ(n, x)},

then for all n ≥ N and |x| ≤ ǫn,

|δ(n, x)| ≤ c
[

1√
n

+
|x|3
n2

]

. (7.2)

Theorem 7.1.1 Suppose p ∈ P ′
d satisfies (7.1) and (7.2). Then one can define on the same

probability space (Ω,F ,P), a Brownian motion Bt with variance parameter σ2 and a random walk

with increment distribution p such that the following holds. For each α < ∞, there is a cα such

that

P
{

max
1≤j≤n

|Sj −Bj| ≥ cα log n

}

≤ cα n−α. (7.3)

Remark. From the theorem it is easy to conclude the corresponding result for bipartite or

continuous-time walks with p ∈ P1. In particular, the result holds for discrete-time and continuous-

time simple random walk.

166
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♣ We will describe the dyadic coupling formally in Section 7.4, but we will give a basic idea here. Suppose

that n = 2m. One starts by defining S2m as closely to B2m as possible. Using the local central limit theorem, we

can do this in a way so that with very high probability |S2m − B2m | is of order 1. We then define S2m−1 using

the values of B2m , B2m−1 , and again get an error of order 1. We keep subdividing intervals using binary splitting,

and every time we construct the value of S at the middle point of a new interval. If at each subdivision we get

an error of order 1, the total error should be at most of order m, the number of subdivisions needed. (Typically

it might be less because of cancellation.)

♣ The assumption E[eb|X1|] <∞ for some b > 0 is necessary for (7.3) to hold at j = 1. Suppose p ∈ P ′
1 such

that for each n there is a coupling with

P{|S1 −B1| ≥ ĉ logn} ≤ ĉ n−1.

It is not difficult to show that as n→∞, P{|B1| ≥ ĉ logn} = o(n−1), and hence

P{|S1| ≥ 2ĉ logn} ≤ P{|S1 −B1| ≥ ĉ logn}+ P{|B1| ≥ ĉ logn} ≤ 2 ĉ n−1

for n sufficiently large. If we let x = 2ĉ logn, this becomes

P{|X1| ≥ x} ≤ 2ĉ e−x/(2ĉ),

for all x sufficiently large which implies E[eb|X1|] <∞ for b < (2ĉ)−1.

Some preliminary estimates and definitions are given in Sections 7.2 and 7.3, the coupling is

defined in Section 7.4, and we show that it satisfies (7.3) in Section 7.5. The proof is essentially

the same for all values of σ2. For ease of notation we will assume that σ2 = 1. It also suffices to

prove the result for n = 2m and we will assume this in Sections 7.4 and 7.5.

For the remainder of this chapter, we fix b, ǫ, c0, N and assume that p is an increment distribution

satisfying

E[eb|X1|] <∞, (7.4)

and

pn(x) =
1√
2πn

e−
x2

2n exp{δ(n, x)},

where

|δ(n, x)| ≤ c0
[

1√
n

+
|x|3
n2

]

, n ≥ N, |x| ≤ ǫn. (7.5)

7.2 Some estimates

In this section we collect a few lemmas about random walk that will be used in establishing (7.3).

The reader may wish to skip this section at first reading and come back to the estimates as they

are needed.
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Lemma 7.2.1 Suppose Sn is a random walk with increment distribution p satisfying (7.4) and

(7.5). Define δ∗n(n, x, y) by

P{Sn = x | S2n = y} =
1√
πn

exp

{

−(x− (y/2))2

n

}

exp{δ∗(n, x, y)}.

Then if n ≥ N , |x|, |y| ≤ ǫn/2,

|δ∗(n, x, y)| ≤ 9 c0

[

1√
n

+
|x|3
n2

+
|y|3
n2

]

.

♣ Without the conditioning, Sn is approximately normal with mean zero and variance n. Conditioned on the

event S2n = y, Sn is approximately normal with mean y/2 and variance n/2. Note that specifying the value at

time 2n reduces the variance of Sn.

Proof Note that

P{Sn = x | S2n = y} =
P{Sn = x, S2n − Sn = y − x}

P{S2n = y} =
pn(x) pn(y − x)

p2n(y)
.

Since |x|, |y|, |x − y| ≤ ǫn, we can apply (7.5). Note that

|δ∗(n, x, y)| ≤ |δ(n, x)| + |δ(n, y − x)|+ |δ(2n, y)|.

We use the simple estimate |y − x|3 ≤ 8(|x|3 + |y|3).

Lemma 7.2.2 If x1, x2, . . . , xn ∈ R, then

n
∑

j=1

(x1 + · · ·+ xj)
2

2j
≤ 2

√
2 + 1√
2− 1





n
∑

j=1

x2
j

2j



 . (7.6)

Proof Due to homogeneity of (7.6) we may assume that
∑

2−j x2
j = 1. Let yj = 2−j/2 xj ,y =

(y1, . . . , yn). Then

n
∑

i=1

(x1 + · · · + xi)
2

2i
=

n
∑

i=1

∑

1≤j,k≤i

xjxk
2i

=
n
∑

j=1

n
∑

k=1

xjxk

n
∑

i=j∨k
2−i

≤ 2

n
∑

j=1

n
∑

k=1

2−(j∨k) xjxk

= 2

n
∑

j=1

n
∑

k=1

2−|k−j|/2 yjyk

= 2〈Ay,y〉 ≤ 2λ ‖y‖2 = 2λ,
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where A = An is the n × n symmetric matrix with entries a(j, k) = 2−|k−j|/2 and λ = λn denotes

the largest eigenvalue of A. Since λ is bounded by the maximum of the row sums,

λ ≤ 1 + 2

∞
∑

j=1

2−j/2 =

√
2 + 1√
2− 1

.

♣ We will use the fact that the left-hand side of (7.6) is bounded by a constant times the term in brackets on

the right-hand side. The exact constant is not important.

Lemma 7.2.3 Suppose Sn is a random walk with increment distribution satisfying (7.4) and (7.5).

Then for every α there exists a c = c(α) such that

P







∑

log2 n<j≤n

S2
2j

2j
≥ c n







≤ c e−αn. (7.7)

♣ Consider the random variables Uj = S2
2j/2j and note that E[Uj ] = 1. Suppose that U1, U2, . . . were

independent. If it were also true that there exist t, c such that E[etUj ] ≤ c for all j, then (7.7) would be a

standard large deviation estimate similar to Theorem 12.2.5. To handle the lack of independence, we consider the

independent random variables [S2j − S2j−1 ]2/2j and use (7.6). If the increment distribution is bounded then we

also get E[etUj ] ≤ c for some t, see Exercise 2.6. However, if the range is infinite this expectation may be infinite

for all t > 0, see Exercise 7.3. To overcome this difficulty, we use a striaghtforward truncation argument.

Proof We fix α > 0 and allow constants in this proof to depend on α. Using (7.4), we see that there

is a β such that

P{|Sn| ≥ n} ≤ e−βn.
Hence, we can find c1 such that

∑

log2 n<j≤n
[ P{|S2j | ≥ c12j}+ P{|S2j − S2j−1 | ≥ c12j} ] = O(e−αn).

Fix this c1, and let j0 = ⌊log2 n + 1⌋ be the smallest integer greater than log2 n. Let Yj = 0 for

j < j0; Yj0 = S2j0 ; and for j > j0, let Yj = S2j − S2j−1 . Then, except for an event of probability

O(e−αn), |Yj| ≤ c12j for j ≥ j0 and hence

P







n
∑

j=j0

Y 2
j

2j
6=

n
∑

j=j0

Y 2
j

2j
1{|Yj | ≤ c12j}







≤ O(e−αn).

Note that
∑

log2 n<j≤n

S2
2j

2j
=

n
∑

j=j0

S2
2j

2j
=

n
∑

j=1

(Y1 + · · ·+ Yj)
2

2j
≤ c

n
∑

j=j0

Y 2
j

2j
.
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The last step uses (7.6). Therefore it suffices to prove that

P







n
∑

j=1

Y 2
j

2j
1{|Yj | ≤ c12j} ≥ cn







≤ e−αn.

The estimates (7.4) and (7.5) imply that there is a t > 0 such that for each n,

E
[

exp

{

t S2
n

n

}

; |Sn| ≤ c1n
]

≤ e

(see Exercise 7.2). Therefore,

E



exp







t
n
∑

j=1

Y 2
j

2j
1{|Yj | ≤ c12j}









 ≤ en,

which implies

P







n
∑

j=1

Y 2
j

2j
1{|Yj | ≤ c12j} ≥ t−1 (α+ 1)n







≤ e−αn.

7.3 Quantile coupling

In this section we consider the simpler problem of coupling Sn and Bn for a fixed n. The following

is a general definition of quantile coupling. We will only use quantile coupling in a particular case

where F is supported on Z or on (1/2)Z.

Definition. Suppose F is the distribution function of a discrete random variable supported on the

locally finite set

· · · < a−1 < a0 < a1 < · · · ,

and Z is a random variable with a continuous, strictly increasing distribution function G. Let rk
be defined by G(rk) = F (ak), i.e., if F (ak) > F (ak−),

G(rk)−G(rk−1) = F (ak)− F (ak−).

Let f be the step function

f(z) = ak if rk−1 < z ≤ rk,

and let X be the random variable f(Z). We call X the quantile coupling of F with Z, and f the

quantile coupling function of F and G.

Note that the event {X = ak} is the same as the event {rk−1 < Z ≤ rk}. Hence,

P{X = ak} = P{rk−1 < Z ≤ rk} = G(rk)−G(rk−1) = F (ak)− F (ak−),

and X has distribution function F . Also, if

G(ak − t) ≤ F (ak−1) < F (ak) ≤ G(ak + t), (7.8)
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then it is immediate from the above definitions that {X = ak} ⊂ {|X −Z| = |ak −Z| ≤ t}. Hence,

if we wish to prove that |X − Z| ≤ t on the event {X = ak}, it suffices to establish (7.8).

As an intermediate step in the construction of the dyadic coupling, we study the quantile coupling

of the random walk distribution with normal random variable that has the same mean and variance.

Let Φ denote the standard normal distribution function, and let Φβ (where β > 0) denote the

distribution function of a mean zero normal random variable with variance β.

Proposition 7.3.1 For every ǫ, b, c0, N there exist c, δ such that if Sn is a random walk with

increment distribution p satisfying (7.4) and (7.5) the following holds for n ≥ N . Let Fn denote

the distribution function of Sn, and suppose Z has distribution function Φn. Let (X,Z) be the

quantile coupling of Fn with Z. Then,

|X − Z| ≤ c
[

1 +
X2

n

]

, |X| ≤ δn.

Proposition 7.3.2 For every ǫ, b, c0, N there exist c, δ such that the following holds for n ≥ N .

Suppose Sn is a random walk with increment distribution p satisfying (7.4) and (7.5). Suppose

|y| ≤ δn with P{S2n = y} > 0. Let Fn,y denote the conditional distribution function of Sn− (S2n/2)

given S2n = y, and suppose Z has distribution function Φn/2. Let (X,Z) be the quantile coupling

of Fn,y with Z. Then,

|X − Z| ≤ c
[

1 +
X2

n
+
y2

n

]

, |X|, |y| ≤ δn.

Using (7.8), we see that in order to prove the above propositions, it suffices to show the following

estimate for the corresponding distribution functions.

Lemma 7.3.3 For every ǫ, b, c0, N there exist c, δ such that if Sn is a random walk with increment

distribution p satisfying (7.4) and (7.5) the following holds for n ≥ N . Let Fn, Fn,y be as in the

propositions above. Then for y ∈ Z, |x|, |y| ≤ δn,

Φn

(

x− c
[

1 +
x2

n

])

≤ Fn(x− 1) ≤ Fn(x) ≤ Φn

(

x+ c

[

1 +
x2

n

])

, (7.9)

Φn/2

(

x− c
[

1 +
x2

n
+
y2

n

])

≤ Fn,y(x− 1) ≤ Fn,y(x) ≤ Φn/2

(

x+ c

[

1 +
x2

n
+
y2

n

])

,

Proof It suffices to establish the inequalities in the case where x is a non-negative integer. Implicit

constants in this proof are allowed to depend on ǫ, b, c0 and we assume n ≥ N . If F is a distribution

function, we write F = 1− F . Since for t > 0,

(t+ 1)2

2n
=
t2

n
+O

(

1√
n

+
t3

n2

)

,

(consider t ≤ √n and t ≥ √n), we can see that (7.4) and (7.5) imply that we can write

pn(x) =

∫ x+1

x

1√
2πn

e−t
2/(2n) exp

{

O

(

1√
n

+
t3

n2

)}

dt, |x| ≤ ǫn.
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Hence, using (12.12), for some a and all |x| ≤ ǫn,

Fn(x) = P{Sn ≥ ǫn}+ P{x ≤ Sn < ǫn}

= O(e−an) +

∫ ǫn

x

1√
2πn

e−t
2/(2n) exp

{

O

(

1√
n

+
t3

n2

)}

dt.

From this we can conclude that for |x| ≤ ǫn,

Fn(x) = Φn(x) exp

{

O

(

1√
n

+
x3

n2

)}

, (7.10)

and from this we can conclude (7.9). The second inequality is done similarly by using Lemma 7.2.1

to derive

Fn,y(x) = Φn/2(x) exp

{

O

(

1√
n

+
x3

n2
+
y3

n2

)}

,

for |x|, |y| ≤ δn. Details are left as Exercise 7.4.

♣ To derive Propositions 7.3.1 and Proposition 7.3.2 we use only estimates on the distribution functions

Fn, Fn,y and not pointwise estimates (local central limit theorem). However, the pointwise estimate (7.5) is used

in the proof of Lemma 7.2.1 which is used in turn to estimate Fn,y.

7.4 The dyadic coupling

In this section we define the dyadic coupling. Fix n = 2m and assume that we are given a stan-

dard Brownian motion defined on some probability space. We will define the random variables

S1, S2, . . . , S2m as functions of the random variables B1, B2, . . . , B2m so that S1, . . . , S2m has the

distribution of a random walk with increment distribution p.

In Chapter 3, we constructed a Brownian motion from a collection of independent normal random

variables by a dyadic construction. Here we reverse the process, starting with the Brownian motion,

Bt, and obtaining the independent normals. We will only use the random variables B1, B2, . . . , B2m .

Define Γk,j by

Γk,j = Bk2m−j −B(k−1)2m−j , j = 0, 1, . . . ,m; k = 1, 2, 3, . . . , 2j .

For each j, {Γk,j : k = 1, 2, 3, . . . , 2j} are independent normal random variables with mean zero

and variance 2m−j . Let Z1,0 = B2m and define

Z2k+1,j, j = 1, . . . ,m, k = 0, 1, . . . , 2j−1 − 1,

recursively by

Γ2k+1,j =
1

2
Γk+1,j−1 + Z2k+1,j, (7.11)

so that also

Γ2k+2,j =
1

2
Γk+1,j−1 − Z2k+1,j.
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One can check (see Corollary 12.3.1) that the random variables {Z2k+1,j : j = 0, . . . , 2m, k =

0, 1, . . . , 2m−1 − 1} are independent, mean zero, normal random variables with E[Z2
1,0] = 2m and

E[Z2
2k+1,j] = 2m−j−1 for j ≥ 1. We can rewrite (7.11) as

B(2k+1)2m−j =
1

2

[

Bk2m−j+1 +B(k+1)2m−j+1

]

+ Z2k+1,j. (7.12)

Let fm(·) denote the quantile coupling function for the distribution functions of S2m and B2m .

If y ∈ Z, let fj(·, y) denote the quantile coupling function for the conditional distribution of

S2j − 1

2
S2j+1

given S2j+1 = y and a normal random variable with mean zero and variance 2j−1. This is well

defined as long as P{S2j+1 = y} > 0. Note that the range of fj(·, y) is contained in (1/2)Z. This

conditional distribution is symmetric about the origin (see Exercise 7.1), so fj(−z, y) = −fj(z, y).
We can now define the dyadic coupling.

• Let S2m = fm(B2m).

• Suppose the values of Sl2m−j+1 , l = 1, . . . , 2j−1 are known. Let

∆k,i = Sk2m−i − S(k−1)2m−i .

Then we let

S(2k−1)2m−j =
1

2
[S(k−1)2m−j+1 + Sk2m−j+1] + fm−j(Z2k−1,j ,∆k,j−1),

so that

∆2k−1,j =
1

2
∆k,j−1 + fm−j(Z2k−1,j ,∆k,j−1),

∆2k,j =
1

2
∆k,j−1 − fm−j(Z2k−1,j ,∆k,j−1).

It follows immediately from the definition that (S1, S2, . . . , S2m) has the distribution of the ran-

dom walk with increment p. Also Exercise 7.1 shows that ∆2k−1,j and ∆2k,j have the same

conditional distribution given ∆k,j−1.

It is convenient to rephrase this definition in terms of random variables indexed by dyadic inter-

vals. Let Ik,j denote the interval

Ik,j = [(k − 1)2m−j , k2m−j ], j = 0, . . . ,m; k = 1, . . . , 2j .

We write Z(I) for the normal random variable associated to the midpoint of I,

Z(Ik,j) = Z2k−1,j+1

Then the Z(I) are independent mean zero normal random variables indexed by the dyadic intervals

with variance |I|/4 where | · | denotes length. We also write

Γ(Ik,j) = Γk,j, ∆(Ik,j) = ∆k,j.

Then the definition can be given as follows.

• Let Γ(I1,0) = B2m , ∆(I1,0) = fm(B2m).
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• Suppose I is a dyadic interval of length 2m−j+1 that is the union of consecutive dyadic intervals

I1, I2 of length 2m−j . Then

Γ(I1) =
1

2
Γ(I) + Z(I), Γ(I2) =

1

2
Γ(I)− Z(I) (7.13)

∆(I1) =
1

2
∆(I) + fj(Z(I),∆(I)), ∆(I2) =

1

2
∆(I)− fj(Z(I),∆(I)). (7.14)

• Note that if j ≥ 1 and k ∈ {1, . . . , 2j}, then

Bk2m−j =
∑

i≤k
Γ([(i − 1)2m−j , i2m−j ]), Sk2m−j =

∑

i≤k
∆([(i− 1)2m−j , i2m−j ]). (7.15)

We next note a few important properties of the coupling.

• If I = I1 ∪ I2 as above, then Γ(I1),Γ(I2), ∆(I1),∆(I2) are deterministic functions of Γ(I),∆(I),

Z(I). The conditional distributions of (Γ(I1),∆(I1)) and (Γ(I2),∆(I2)) given (Γ(I),∆(I)) are

the same.

• By iterating this we get the following. For each interval Ik,j consider the joint distribution random

variables

(Γ(Il,i),∆(Il,i)), i = 0, . . . , j,

where l = l(i, k, j) is chosen so that Ik,j ⊂ Il,i. Then this distribution is the same for all

k = 1, 2, . . . , 2j . In particular, if

Rk,j =

j
∑

i=0

|Γ(Il,i)−∆(Il,i)|,

then the random variables R1,j , . . . , R2j ,j are identically distributed. (They are not independent.)

• For k = 1,

Γ(I1,j)−∆(I1,j) =
1

2
[Γ(I1,j−1)−∆(I1,j−1)] + [Z1,j − fj(Z1,j, S2m−j+1)]

By iterating this, we get

R1,j ≤ |S2m −B2m |+ 2

j
∑

l=1

|fm−l(Z1,l, S2m−l+1)− Z1,l|. (7.16)

• Define Θ(I1,0) = |B2m − S2m | = |Γ(I1,0) − ∆(I1,0)|. Suppse j ≥ 1 and Ik,j is an interval with

“parent” interval I ′. Define Θ(Ik,j) to be the maximum of |Bt − St| where the maximum is over

three values of t: the left endpoint, midpoint, and right endpoint of I. We claim that

Θ(Ik,j) ≤ Θ(I ′) + |Γ(Ik,j)−∆(Ik,j)|.

Since the endpoints of Ik,j are either endpoints or midpoints of I ′, it suffices to show that

|Bt − St| ≤ max
{

|Bs− − Ss− |, |Bs+ − Ss+ ||
}

+ |Γ(Ik,j)−∆(Ik,j)|,
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where t, s−, s+ denote the midpoint, left endpoint, and right endpoint of Ik,j, respectively. But

using (7.13), (7.14), and (7.15), we see that

Bt − St =
1

2

[

(Bs− − Ss−) + (Bs+ − Ss+)
]

+ |Γ(Ik,j)−∆(Ik,j)|,

and hence the claim follows from the simple inequality |x + y| ≤ 2max{|x|, |y|}. Hence, by

induction, we see that

Θ(Ik,j) ≤ Rk,j. (7.17)

7.5 Proof of Theorem 7.1.1

Recall that n = 2m. It suffices to show that for each α there is a cα such that for each integer j,

P {|Si −Bi| ≥ cα log n} ≤ cα n−α. (7.18)

Indeed if the above holds, then

P
{

max
1≤i≤n

|Si −Bi| ≥ cα log n

}

≤
n
∑

i=1

P {|Si −Bi| ≥ cα log n} ≤ cα n−α+1.

We claim in fact, that it suffices to find a sequence 0 = i0 < i1 < · · · < il = n such that

|ik − ik−1| ≤ cα log n and such that (7.18) holds for these indices. Indeed, if we prove this and

|j − ik| ≤ cα log n, then exponential estimates show that there is a c′α such that

P{|Sj − Sik | ≥ c′α log n}+ P{|Bj −Bik | ≥ c′α log n} ≤ c′α n−α,

and hence the triangle inequality gives (7.18) (with a different constant).

For the remainder of this section we fix α and allow constants to depend on α. By the reasoning

of the previous paragraph and (7.17), it suffices to find a c such that for log2m+ c ≤ j ≤ m, and

k = 1, . . . , 2m−j ,

P {Rk,j ≥ cαm} ≤ cα e−αm,

and as pointed out in the previous section, it suffices to consider the case k = 1, and show

P {R1,j ≥ cαm} ≤ cα e−αm, for j = log2m+ c, . . . ,m. (7.19)

Let δ be the minimum of the two values given in Propositions 7.3.1 and 7.3.2, and recall that

there is a β = β(δ) such that

P{|S2j | ≥ δ2j} ≤ exp{−β2j}

In particular, we can find a c3 such that
∑

log2m+c3≤j≤m
P{|S2j | ≥ δ2j} ≤ O(e−αm).

Proposition 7.3.1 tells us that on the event {|S2m | ≤ δ2m},

|S2m −B2m | ≤ c
[

1 +
S2

2m

2m

]

.
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Similarly, Proposition 7.3.2 tells us that on the event {max{|S2m−l |, |S2m−l+1 |} ≤ δ2m−l}, we have

|Z1,l − fm−l(Z1,l, S2m−l+1)| ≤ c
[

1 +
S2

2m−l+1 + S2
2m−l

2m−l

]

.

Hence, by (7.16), we see that on the same event, simultaneously for all j ∈ [log2m+ c3,m],

|S2m−j −B2m−j | ≤ R1,j + |S2m −B2m | ≤ c



m+
∑

log2m−c3≤i≤m

S2
2i

2i



 .

We now use (7.7) (due to the extra term −c3 in the lower limit of the sum, one may have to apply

(7.7) twice) to conclude (7.19) for j ≥ log2m+ c3.

7.6 Higher dimensions

Without trying to extend the result of the previous section to to the general (bounded exponential

moment) walks in higher dimensions, we indicate two immediate consequences.

Theorem 7.6.1 One can define on the same probability space (Ω,F ,P), a Brownian motion Bt in

R2 with covariance matrix (1/2) I and a simple random walk in Z2. such that the following holds.

For each α <∞, there is a cα such that

P
{

max
1≤j≤n

|Sj −Bj| ≥ cα log n

}

≤ cα n−α.

Proof We use the trick from Exercise 1.7. Let (Sn,1, Bn,1), (Sn,2, Bn,2) be independent dyadic

couplings of one-dimensional simple random walk and Brownian motion. Let

Sn =

(

Sn,1 + Sn,2
2

,
Sn,1 − Sn,2

2

)

,

Bn =

(

Bn,1 +Bn,2
2

,
Bn,1 −Bn,2

2

)

.

Theorem 7.6.2 If p ∈ Pd, one can define on the same probability space (Ω,F ,P), a Brownian

motion Bt in Rd with covariance matrix Γ and a continuous-time random walk S̃t with increment

distribution p such that the following holds. For each α <∞, there is a cα such that

P
{

max
1≤j≤n

|S̃j −Bj| ≥ cα log n

}

≤ cα n−α. (7.20)

Proof Recall from (1.3) that we can write any such S̃t as

S̃t = S̃1
q1t x1 + · · ·+ S̃lqlt xl,
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where q1, . . . , ql > 0; x1, . . . , xl ∈ Zd; and S̃1, . . . , S̃l are independent one-dimensional simple

continuous-time random walks. Choose l independent couplings as in Theorem 7.1.1,

(S1
t , B

1
t ), (S

2
t , B

2
t ), . . . , (S

l
t, B

l
t),

where B1, . . . , Bl are standard Brownian motions. Let

Bt = B1
q1t x1 + · · ·+Bl

qlt
xl.

This satisfies (7.20).

7.7 Coupling the exit distributions

Proposition 7.7.1 Suppose p ∈ Pd. Then one can define on the same probability space a (discrete-

time) random walk Sn with increment distribution p; a continuous-time random walk S̃t with in-

crement distribution p; and a Brownian motion Bt with covariance matrix Γ such that for each

n, r > 0,

P
{

|Sξn −Bξ′n | ≥ r log n
}

= P
{

|S̃ξ̃n −Bξ′n | ≥ r log n
}

≤ c

r
,

where

ξn = min{j : J (Sj) ≥ n}, ξ̃n = min{t : J (S̃t) ≥ n}, ξ′n = min{t : J (Bt) = n}.

♣ We advise caution when using the dyadic coupling to prove results about random walk. If (Sn, Bt) are

coupled as in the dyadic coupling, then Sn and Bt are Markov processes, but the joint process (Sn, Bn) is not

Markov.

Proof It suffices to prove the result for S̃t, Bt, for then we can define Sj to be the discrete-time

“skeleton” walk obtained by sampling S̃t at times of its jumps. We may also assume r ≤ n; indeed,

since |S̃ξ̃n |+ |Bξ′n | ≤ O(n), for all n sufficiently large

P
{

|S̃ξ̃n −Bξ′n | ≥ n log n
}

= 0.

By Theorem 7.6.2 we can define S̃, B on the same probability space such that except for an event

of probability O(n−4),

|S̃t −Bt| ≤ c1 log n, 0 ≤ t ≤ n3.

We claim that P{ξ̃n > n3} decay exponentially in n. Indeed, the central limit theorem shows that

there is a c > 0 such that for n sufficiently large and |x| < n , Px{ξ̃n ≤ n2} ≥ c. Iterating this gives

Px{ξ̃n > n3} ≤ (1− c)n. Similarly, P{ξ′n > n3} decays exponentially. Therefore, except on an event

of probability O(n−4),

|S̃t −Bt| ≤ c1 log n, 0 ≤ t ≤ max{ξ̃n, ξ′n}. (7.21)

Note that the estimate (7.21) is not sufficient to directly yield the claim, since it is possible that

one of the two paths (say S̃) first exits Cn at some point y, then moves far away from y (while
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staying close to ∂Cn) and that only then the other path exits Cn, while all along the two paths stay

close. The rest of the argument shows that such event has small probability. Let

σ̃n(c1) = min{t : dist(S̃t,Zd \ Cn) ≤ c1 log n} and σ′n(c1) = min{t : dist(Bt,Zd \ Cn) ≤ c1 log n},

and define

ρn := σn(c1) ∧ σ′n(c1).

Since ρn ≤ max{ξ̃n, ξ′n}, we conclude as in (7.21) that with an overwhelming (larger than 1−O(n−4))

probability,

|S̃t −Bt| ≤ c1 log n, 0 ≤ t ≤ ρn,

and in particular that

|S̃ρn −Bρn | ≤ c1 log n. (7.22)

On the event in (7.22) we have

max{dist(S̃ρn ,Z
d \ Cn),dist(Bρn ,Z

d \ Cn)} ≤ 2c1 log n,

by triangle inequality, so in particular

max{σ̃n(2c1), σ′n(2c1)} ≤ ρn. (7.23)

Using the gambler’s ruin estimate (see Exercise 7.5) and strong Markov property for each process

separately (recall, they are not jointly Markov)

P{|S̃σ̃n(2c1) − S̃j| ≤ r log n for all j ∈ [σ̃n(2c1), ξ̃n]} ≥ 1− c2
r
, (7.24)

and also

P{|Bσ′n(2c1) −Bt| ≤ r log n for all t ∈ [σ′n(2c1), ξ
′
n]} ≥ 1− c2

r
. (7.25)

Applying the triangle inequality to

S̃ξ̃n −Bξ′n = (S̃ξ̃n − S̃ρn) + (S̃ρn −Bρn) + (Bρn −Bξ′n),

on the intersection of the four events from (7.22)–(7.25), yields S̃ξ̃n −Bξ′n ≤ (2r+ c1) log n, and the

complement has probability bounded by O(1/r).

Definition. A finite subset A of Zd is simply connected if both A and Zd \ A are connected. If

x ∈ Zd, let Sx denote the closed cube in Rd of side length one, centered at x, with sides parallel

to the coordinate axes. If A ⊂ Zd, let DA be the domain defined as the interior of ∪x∈ASx. The

inradius of A is defined by

inrad(A) = min{|y| : y ∈ Zd \ A}.

Proposition 7.7.2 Suppose p ∈ P2. Then one can define on the same probability space a (discrete-

time) random walk Sn with increment distribution p and a Brownian motion Bt with covariance
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matrix Γ such that the following holds. If A is a finite, simply connected set containing the origin

and

ρA = inf{t : Bt 6∈ DA},
then each if r > 0,

P{|SτA −BρA
| ≥ r log[inrad(A)]} ≤ c√

r
.

Proof Similar to the last proposition except that the gambler’s ruin estimate is replaced with the

Beurling estimate.

Exercises

Exercise 7.1 Suppose Sn = X1+· · ·+Xn whereX1,X2, . . . are independent, identically distributed

random variables. Suppose P{S2n = 2y} > 0 for some y ∈ R. Show that the conditional distribution

of

Sn − y
conditioned on {S2n = 2y} is symmetric about the origin.

Exercise 7.2 Suppose Sn is a random walk in Z whose increment distribution satisfies (7.4) and

(7.5) and let C <∞. Show that there exists a t = t(b, ǫ, c0, C) > 0 such that for all n,

E
[

exp

{

t S2
n

n

}

; |Sn| ≤ Cn
]

≤ e.

Exercise 7.3 Suppose S̃t is continuous-time simple random walk in Z.

(i) Show that there is a c <∞ such that for all positive integers n,

P{S̃n = n2} ≥ c−1 exp{−cn2 log n}.
(Hint: consider the event that the walk makes exactly n2 moves by time n, each of them in

the positive direction.)

(ii) Show that if t > 0,

E

[

exp

{

t S̃2
n

n

}]

=∞,

Exercise 7.4 Let Φ be the standard normal distribution function, and let Φ = 1− Φ.

(i) Show that as x→∞,

Φ̄(x) ∼ e−x
2/2

√
2π

∫ ∞

0
e−xt dt =

1

x
√

2π
e−x

2/2.

(ii) Prove (7.10).

(iii) Show that for all 0 ≤ t ≤ x,
Φ(x+ t) ≤ e−tx e−t2/2 Φ(x) ≤ etx e−t2/2 Φ(x) ≤ Φ(x− t).
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(iv) For positive integer n, let Φn(x) = Φ(x/
√
n) denote the distribution function of a mean zero

normal random variable with variance n, and Φn = 1−Φn. Show that for every b > 0, there

exist δ > 0 and 0 < c <∞ such that if 0 ≤ x ≤ δn,

Φn

(

x+ c

[

1 +
x2

n

])

exp

{

2b

[

1√
n

+
x3

n2

]}

≤ Φn(x) exp

{

b

[

1√
n

+
x3

n2

]}

≤ Φn

(

x− c
[

1 +
x2

n

])

.

(v) Prove (7.9).

Exercise 7.5 In this exercise we prove the following version of the gambler’s ruin estimate. Suppose

p ∈ Pd, d ≥ 2. Then there exists c such that the following is true. If θ ∈ Rd with |θ| = 1 and r ≥ 0,

P {Sj · θ ≥ −r, 0 ≤ j ≤ ξ∗n} ≤
c(r + 1)

n
. (7.26)

Here ξ∗n is as defined in Section 6.3.

(i) Let

q(x, n, θ) = Px{Sj · θ > 0, 1 ≤ j ≤ ξ∗n}.
Show that there is a c1 > 0 such that for all n sufficiently large and all θ ∈ Rd with |θ| = 1,

the cardinality of the set of x ∈ Zd with |x| ≤ n/2 and

q(x, n, θ) ≥ c1 q(0, 2n, θ)
is at least c1 n

d−1.

(ii) Use a last-exit decomposition to conclude
∑

x∈Cn

GBn(0, x) q(x, n, θ) ≤ 1,

and use this to conclude the result for r = 0.

(iii) Use Lemma 5.1.6 and the invariance principle to show that there is a c2 > 0 such that for

all |θ| = 1,

q(0, n, θ) ≥ c2
n
.

(iv) Prove (7.26) for all r ≥ 0.
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Addtional topics on Simple Random Walk

In this chapter we only consider simple random walk on Zd. In particular, S will always denote a

simple random walk in Zd. If d ≥ 3, G denotes the corresponding Green’s function, and we simplify

the notation by setting

G(z) = −a(z), d = 1, 2,

where a is the potential kernel. Note that then the equation LG(z) = −δ(z) holds for all d ≥ 1.

8.1 Poisson kernel

Recall that if A ⊂ Zd and τA = min{j ≥ 0 : Sj 6∈ A}, τA = min{j ≥ 1 : Sj 6∈ A}, then the Poisson

kernel is defined for x ∈ A, y ∈ ∂A by

HA(x, y) = Px{SτA = y}.
For simple random walk, we would expect the Poisson kernel to be very close to that of Brownian

motion. If D ⊂ Rd is a domain with sufficiently smooth boundary, we let hD(x, y) denote the

Poisson kernel for Brownian motion. This means that, for each x ∈ D, hD(x, ·) is the density with

respect to surface measure on ∂D of the distribution of the point at which the Brownian motion

visits ∂D for the first time. For sets A that are rectangles with sides perpendicular to the coordinate

axes (with finite or infinite length), explicit expressions can be obtained for the Poisson kernel and

one can show convergence to the Brownian quantities with relatively small error terms. We give

some of these formulas in this section.

8.1.1 Half space

If d ≥ 2, we define the discrete upper half space H = Hd by

H = {(x, y) ∈ Zd−1 × Z : y > 0},
with boundary ∂H = Zd−1 × {0} and “closure” H = H ∪ ∂H. Let T = τH, and let HH denote the

Poisson kernel, which for convenience we will write as a function HH : H× Zd−1 → [0, 1],

HH(z, x) = HH(z, (x, 0)) = Pz{ST = (x, 0)}.
If z = (x, y) ∈ Zd−1 × Z, we write z for its “conjugate”, z = (x,−y). If z ∈ H, then z ∈ −H. If

z ∈ ∂H, then z = z. Recall the Green’s function for a set defined in Section 4.6.

181
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Proposition 8.1.1 For simple random walk in Zd, d ≥ 2, if z,w ∈ H,

GH(z,w) = G(z − w)−G(z − w),

HH(z, 0) =
1

2d
[G(z − ed)−G(z + ed)] . (8.1)

Proof To establish the first relation, note that for w ∈ H, the function f(z) = G(z−w)−G(z−w) =

G(z−w)−G(z−w) is bounded onH, Lf(z) = −δw(z), and f ≡ 0 on ∂H. Hence f(z) = GH(z,w) by

the characterization of Proposition 6.2.3. For the second relation, we use a last-exit decomposition

(focusing on the last visit to ed before leaving H) to see that

HH(z, 0) =
1

2d
GH(z, ed).

The Poisson kernel for Brownian motion in the upper half space

H = Hd = {(x, y) ∈ Rd−1 × (0,∞)}

is given by

hH((x, y), 0) = hH((x+ z, y), z) =
2y

ωd |(x, y)|d
,

where ωd = 2πd/2/Γ(d/2) is the surface area of the (d − 1)-dimensional sphere of radius 1 in Rd.

The next theorem shows that this is also the asymptotic value for the Poisson kernel for the random

walk in H = Hd, and that the error term is small.

Theorem 8.1.2 If d ≥ 2 and z = (x, y) ∈ Zd−1 × {1, 2, . . .}, then

HH(z, 0) =
2y

ωd|z|d
[

1 +O

( |y|
|z|2

)]

+O

(

1

|z|d+1

)

. (8.2)

Proof We use (8.1). If we did not need to worry about the error terms, we would naively estimate

1

2d
[G(z − ed)−G(z + ed)]

by

Cd
2d

[

|z − ed|2−d − |z + ed|2−d
]

, d ≥ 3, (8.3)

C2

4
log
|z − ed|
|z + ed|

, d = 2. (8.4)

Using Taylor series expansion, one can check that the quantities in (8.3) and (8.4) equal

2y

ωd|z|d
+O

( |y|2
|z|d+2

)

.

However, the error term in the expansion of the Green’s function or potential kernel is O(|z|−d), so

we need to do more work to show that the error term in (8.2) is of order O(|y|2/|z|d+2)+O(|z|−(d+1)).
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Assume without loss of generality that |z| > 1. We need to estimate

G(z − ed)−G(z + ed) =

∞
∑

n=1

[pn(z − ed)− pn(z + ed)] =

∞
∑

n=1

[pn(z − ed)− pn(z + ed)]−
∞
∑

n=1

[pn(z − ed)− pn(z − ed)− pn(z + ed) + pn(z + ed)] .

Note that z − ed and z + ed have the same “parity” so the above series converge absolutely even if

d = 2. We will now show that

1

2d

∞
∑

n=1

[pn(z − ed)− pn(z + ed)] =
2y

ωd|z|d
+O

(

y2

|z|d+2

)

. (8.5)

Indeed,

pn(z − ed)− pn(z + ed) =
dd/2

(2π)d/2
1

nd/2
e
− |x|2+(y−1)2

2n/d

(

1− e−
4y

2n/d

)

.

For n ≥ y, we can use a Taylor approximation for 1 − e
− 4y

2n/d . The terms with n < y, do not

contribute much. More specifically, the left-hand side of (8.5) equals

2dd/2+1

(2π)d/2

∞
∑

n=1

y

n1+d/2
e
− |x|2+(y−1)2

2n/d +O

( ∞
∑

n=1

y2

n2+d/2
e
− |x|2+(y−1)2

2n/d

)

+O(y2e−|z|).

Lemma 4.3.2 then gives

∞
∑

n=1

[pn(z − ed)− pn(z + ed)] =
2 dΓ(d/2)

πd/2
y

(|x|2 + (y − 1)2)d/2
+O

(

y2

|z|d+2

)

=
2 dΓ(d/2)

πd/2
y

|z|d +O

(

y2

|z|d+2

)

=
4d

ωd

y

|z|d +O

(

y2

|z|d+2

)

.

The remaining work is to show that

∞
∑

n=1

[pn(z − ed)− pn(z − ed)− pn(z + ed) + pn(z + ed)] = O(|z|−(d+1)).

We mimic the argument used for (4.11), some details are left to the reader.

Again the sum over n < |z| is negligible. Due to the second (stronger) estimate in Theorem 2.3.6,

the sum over n > |z|2 is bounded by

∑

n>|z|2

c

n(d+3)/2
= O

(

1

|z|d+1

)

.

For n ∈ [|z|, |z|2], apply Theorem 2.3.8 with k = d + 5 (for the case of symmetric increment
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distribution) to give

pn(w) = pn(w) +
d+5
∑

j=3

uj(w/
√
n)

n(d+j−2)/2
+O

(

1

n(d+k−1)/2

)

,

where w = z ± ed. As remarked after Theorem 2.3.8, we then can estimate

|pn(z − ed)− pn(z − ed)− pn(z − ed) + pn(z − ed)|
up to an error of O(n(−d+k−1)/2) by

I3,d+5(n, z) :=
d+5
∑

j=3

1

n(d+j−2)/2

∣

∣

∣

∣

uj

(

z + ed√
n

)

− uj
(

z − ed√
n

)∣

∣

∣

∣

.

Finally, due to Taylor expansion and the uniform estimate (2.29), one can obtain a bound on the

sum
∑

n∈[|z|,|z|2] I3,d+5(n, z) by imitating the final estimate in the proof of Theorem 4.3.1. We leave

this to the reader.

In Section 8.1.3 we give an exact expression for the Poisson kernel inH2 in terms of an integral. To

motivate it, consider a random walk in Z2 starting at e2 stopped when it first reaches {xe1 : x ∈ Z}.
Then the distribution of the first coordinate of the stopping position gives a probability distribution

on Z. In Corollary 8.1.7, we show that the characteristic function of this distribution is

φ(θ) = 2− cos θ −
√

(2− cos θ)2 − 1.

Using this and Proposition 2.2.2, we see that the probability that the first visit is to xe1 is

1

2π

∫ π

−π
e−ixθ φ(θ) dθ =

1

2π

∫ π

−π
cos(xθ)φ(θ) dθ.

If instead the walk starts from ye2, then the position of its first visit to the origin can be considered

as the sum of y independent random variables each with characteristic function φ. The sum has

characteristic function φy, and hence

HH(ye2, xe1) =
1

2π

∫ π

−π
cos(xθ)φ(θ)y dθ.

8.1.2 Cube

In this subsection we give an explicit form for the Poisson kernel on a finite cube in Zd. Let

Kn = Kn,d be the cube

Kn = {(x1, . . . , xd) ∈ Zd : 1 ≤ xj ≤ n− 1}.
Note that #(Kn) = (n− 1)d and ∂Kn consists of 2d copies of Kn,d−1. Let Sj denote simple random

walk and τ = τn = min{j ≥ 0 : Sj 6∈ Kn}. Let Hn = HKn denote the Poisson kernel

Hn(x, y) = Px{Sτn = y}.
If d = 1, the gambler’s ruin estimate gives

Hn(x, n) =
x

n
, x = 0, 1, . . . , n,
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so we will restrict our consideration to d ≥ 2. By symmetry, it suffices to determine Hn(x, y) for y

in one of the (d− 1)-dimensional sub-cubes of ∂Kn. We will consider

y ∈ ∂1
n := {(n, ỹ) ∈ Zd : ỹ ∈ Kn,d−1}.

The set of functions on Kn that are harmonic in Kn and equal zero on ∂Kn \ ∂1
n is a vector space

of dimension #(∂1
n), and one of its bases is {Hn(·, y) : y ∈ ∂1

n}. In the next proposition we will use

another basis which is more explicit.

♣ The proposition below uses a discrete analogue of a technique from partial differential equations called

separation of variables. We will then compare this to the Poisson kernel for Brownian motion that can be

computed using the usual separation of variables.

Proposition 8.1.3 If x = (x1, . . . , xd) ∈ Kn,d and y = (y2, . . . , yd) ∈ Kn−1,d, then Hn(x, (n, y))

equals

(

2

n

)d−1
∑

z∈Kn,d−1

sinh(αzx
1π/n)

sinh(αzπ)
sin

(

z2x2π

n

)

· · · sin
(

zdxdπ

n

)

sin

(

z2y2π

n

)

· · · sin
(

zdydπ

n

)

,

where z = (z2, . . . , zd) and αz = αz,n is the unique nonnegative number satisfying

cosh
(αzπ

n

)

+

d
∑

j=2

cos

(

zjπ

n

)

= d. (8.6)

Proof If z = (z2, . . . , zd) ∈ Rd−1, let fz denote the function on Zd,

fz(x
1, . . . , xd) = sinh

(

αzx
1π

n

)

sin

(

z2x2π

n

)

· · · sin
(

zdxdπ

n

)

,

where αz satisfies (8.6). It is straightforward to check that for any z, fz is a discrete harmonic

function on Zd with

fz(x) = 0, x ∈ ∂Kn \ ∂1
n.

We now restrict our consideration to z ∈ Kn,d−1. Let

f̂z =
2(d−1)/2

n(d−1)/2 sinh(αzπ)
fz, z ∈ Kn,d−1,

and let f̂∗z denote the restriction of f̂z to ∂1
n, considered as a function on Kn,d−1,

f̂∗z (x) = f̂z((n, x)) =

(

2

n

)(d−1)/2

sin

(

z2x2π

n

)

· · · sin
(

zdxdπ

n

)

, x = (x2, . . . , xd) ∈ Kn,d−1.

For integers 1 ≤ j, k ≤ n− 1, one can see (via the representation of sin in terms of exponentials)

that
n−1
∑

l=1

sin

(

jlπ

n

)

sin

(

klπ

n

)

=

{

0 j 6= k

n/2 j = k.
(8.7)
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Therefore, {f̂∗z : z ∈ Kn,d−1} forms an orthonormal basis for the set of functions on Kn,d−1, in

symbols,
∑

x∈Kn,d−1

f̂∗z (x) f̂
∗
ẑ (x) =

{

0, z 6= ẑ

1, z = ẑ
.

Hence any function g on Kn,d−1 can be written as

g(x) =
∑

z∈Kn,d−1

C(g, z) f̂∗z (x),

where

C(g, z) =
∑

y∈Kn,d−1

f̂∗z (y) g(y).

In particular, if y ∈ Kn,d−1,

δy(x) =
∑

z∈Kn,d−1

f̂∗z (y) f̂
∗
z (x).

Therefore, for each y = (y2, . . . , yn) the function

x 7→
∑

z∈Kn,d−1

sinh(αzx
1π/n)

sinh(αzπ)
f̂z(y) f̂z((n, x2, . . . , xn)),

is a harmonic function in Kn,d whose value on ∂Kn,d is δ(n,y) and hence it must equal to x 7→
Hn(x, (n, y)).

To simplify the notation, we will consider only the case d = 2 (but most of what we write extends

to d ≥ 3). If d = 2,

HKn((x1, x2), (n, y)) =
2

n

n
∑

k=1

sinh(akx
1π/n)

sinh(akπ)
sin

(

kx2π

n

)

sin

(

kyπ

n

)

, (8.8)

where ak = ak,n is the unique positive solution to

cosh
(akπ

n

)

+ cos

(

kπ

n

)

= 2.

Alternatively, we can write

ak =
n

π
r

(

kπ

n

)

, (8.9)

where r is the even function

r(t) = cosh−1(2− cos t). (8.10)

Using cosh−1(1 + x) =
√

2x+O(x3/2) as x→ 0+, we get

r(t) = |t|+O(|t|3), t ∈ [−1, 1].

Now (8.9)–(8.10) imply

ak = k +O

(

k3

n2

)

. (8.11)



8.1 Poisson kernel 187

Since ak increases with k, (8.11) implies that there is an ǫ > 0 such that

ak ≥ ǫ k, 1 ≤ k ≤ n− 1. (8.12)

We will consider the scaling limit. Let Bt denote a two-dimensional Brownian motion. Let

K = (0, 1)2 and let

T = inf{t : Bt 6∈ K}.

The corresponding Poisson kernel hK can be computed exactly in terms of an infinite series using

the continuous analogue of the procedure above giving

h((x1, x2), (1, y)) = 2

∞
∑

k=0

sinh(kx1π)

sinh(kπ)
sin(kx2π) sin(kyπ) (8.13)

(see Exercise 8.2).

Roughly speaking, we expect

HKn((nx1, nx2), (n, ny)) ≈ 1

n
h((x1, x2), (1, y2)),

and the next proposition gives a precise formulation of this.

Proposition 8.1.4 There exists c <∞ such that if 1 ≤ j1, j2, l ≤ n−1 are integers, xi = ji/n, y =

l/n,
∣

∣nHKn((j1, j2), (n, l)) − h((x1, x2), (1, y))
∣

∣ ≤ c

(1− x1)6 n2
sin(x2π) sin(yπ).

♣ A surprising fact about this proposition is how small the error term is. For fixed x1 < 1, the error is O(n−2)

where one might only expect O(n−1).

Proof Let ρ = x1. Given k ∈ N, note that | sin(kt)| ≤ k sin t for 0 < t < π. (To see this,

t 7→ k sin t ± sin(kt) is increasing on [0, tk] where tk ∈ (0, π/2) solves sin(tk) = 1/k, and sin(·)
continues to increase up to π/2, while sin(k ·) stays bounded by 1. For π/2 < t < π consider π − t
instead, details are left to the reader.) Therefore,

1

sin(x2π) sin(yπ)

∣

∣

∣

∣

∣

∣

∞
∑

k≥n2/3

sinh(kx1π)

sinh(kπ)
sin(kx2π) sin(kyπ)

∣

∣

∣

∣

∣

∣

≤
∞
∑

k≥n2/3

k2 sinh(kρπ)

sinh(kπ)

≤ 1

n2

∞
∑

k≥n2/3

k5 sinh(kρπ)

sinh(kπ)

≤ c

n2

∞
∑

k≥n2/3

k5 e−k(1−ρ)π. (8.14)
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Similarly, using (8.12),

1

sin(x2π) sin(yπ)

∣

∣

∣

∣

∣

∣

∞
∑

k≥n2/3

sinh(akx
1π)

sinh(akπ)
sin(kx2π) sin(kyπ)

∣

∣

∣

∣

∣

∣

≤ 1

n2

∑

k≥n2/3

k5 e−kǫ(1−ρ)π.

For 0 ≤ x ≤ 1 and k < n2/3,

sinh(xakπ) = sinh(xkπ)

[

1 +O

(

k3

n2

)]

.

Therefore,

1

sin(x2π) sin(yπ)

∣

∣

∣

∣

∣

∣

∑

k<n2/3

[

sinh(kx1π)

sinh(kπ)
− sinh(akx

1π)

sinh(akπ)

]

sin(kx2π) sin(kyπ)

∣

∣

∣

∣

∣

∣

≤

c

n2

∑

k≤n2/3

k3 e−k(1−ρ)π ≤ c

n2

∑

k≤n2/3

k5 e−k(1−ρ)π,

where the second to last inequality is obtained as in (8.14). Combining this with (8.8) and (8.13),

we see that

|nHKn((j1, j2), (n, nl))− h((x1, x2), (1, y))|
sin(x2π) sin(yπ)

≤ c

n2

∞
∑

k=1

k5 e−ǫ(1−ρ)k ≤ c

(1− ρ)6 n2
.

♣ The error term in the last proposition is very good except for x1 near 1. For x1 close to 1, one can give

good estimates for the Poisson kernel by using the Poisson kernel for a half plane (if x2 is not near 0 or 1) or by

a quadrant (if x2 is near 0 or 1). These Poisson kernels are discussed in the next subsection.

8.1.3 Strips and quadrants in Z2

In the continuing discussion we think of Z2 as Z + iZ, and we will use complex numbers notation

in this section. Recall r defined in (8.10) and note that

er(t) = 2− cos t+
√

(2− cos t)2 − 1, e−r(t) = 2− cos t−
√

(2− cos t)2 − 1.

For each t ≥ 0, the function

ft(x+ iy) = exr(t) sin(yt), f̂t(x+ iy) = e−xr(t) sin(yt),

is harmonic for simple random walk, and so is the function sinh(xr(t))·sin(yt). The next proposition

is an immediate generalization of Proposition 8.1.3 to rectangles that are not squares. The proof

is the same and we omit it. We then take limits as the side lengths go to infinity to get expressions

for other “rectangular” subsets of Z2.
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Proposition 8.1.5 If m,n are positive integers, let

Am,n = {x+ iy ∈ Z× iZ : 1 ≤ x ≤ m− 1, 1 ≤ y ≤ n− 1}.
Then

HAm,n(x+ iy, iy1) = HAm,n((m− x) + iy,m+ iy1)

=
2

n

n−1
∑

j=1

sinh(r( jπn )(m− x))
sinh(r( jπn )m)

sin

(

jπy

n

)

sin

(

jπy1

n

)

. (8.15)

Corollary 8.1.6 If n is a positive integer, let

A∞,n = {x+ iy ∈ Z× iZ : 1 ≤ x <∞, 1 ≤ y ≤ n− 1}.
Then

HA∞,n(x+ iy, iy1) =
2

n

n−1
∑

j=1

exp

{

−r
(

jπ

n

)

x

}

sin

(

jπy

n

)

sin

(

jπy1

n

)

, (8.16)

and

HA∞,n(x+ iy, x1) =
2

π

∫ π

0

sinh(r(t)(n− y))
sinh(r(t)n)

sin(tx) sin(tx1) dt. (8.17)

Proof Note that

HA∞,n(x+ iy, iy1) = lim
m→∞

HAm,n(x+ iy, iy1),

and

lim
m→∞

sinh(r( jπn )(m− x))
sinh(r( jπn )m)

= exp

{

−r
(

jπ

n

)

x

}

.

This combined with (8.15) gives the first identity. For the second we write

HA∞,n(x+ iy, x1) = lim
m→∞

HAm,n(x+ iy, x1)

= lim
m→∞

HAn,m(y + ix, ix1)

= lim
m→∞

2

m

m−1
∑

j=1

sinh(r( jπm )(n − y))
sinh(r( jπm )n)

sin

(

jπx

m

)

sin

(

jπx1

m

)

=
2

π

∫ π

0

sinh(r(t)(n− y))
sinh(r(t)n)

sin(tx) sin(tx1) dt.

♣ We derived (8.16) as a limit of (8.15). We could also have derived it directly by considering the collection
of harmonic functions

exp

{

−r
(

jπ

n

)

x

}

sin

(

jπy

n

)

, j = 1, . . . , n− 1.
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Corollary 8.1.7 Let

A+ = {x+ iy ∈ Z× iZ : x > 0}.

Then

HA+(x+ iy, 0) =
1

2π

∫ π

−π
e−xr(t) cos(yt) dt.

Remark. If H denotes the discrete upper half plane, then this corollary implies

HH(iy, x) = HH(− x+ iy, 0) =
1

2π

∫ π

−π
e−yr(t) cos(xt) dt.

Proof Note that

HA+(x+ iy, 0) = lim
n→∞

HA∞,2n(x+ i(n+ y), in)

= lim
n→∞

1

n

2n−1
∑

j=1

exp

{

−r
(

jπ

2n

)

x

}

sin

(

jπ

2

)

sin

(

jπ(n+ y)

2n

)

.

Note that sin(jπ/2) = 0 if j is even. For odd j, we have sin2(jπ/2) = 1 and cos(jπ/2) = 0, hence

sin

(

jπ

2

)

sin

(

jπ(n+ y)

2n

)

= cos

(

jπy

2n

)

.

Therefore,

HA+(x+ iy, 0) = lim
n→∞

1

n

n
∑

j=1

exp

{

−r
(

(2j − 1)π

2n

)

x

}

cos

(

(2j − 1)πy

2n

)

=
1

π

∫ π

0
e−xr(t) cos(yt) dt.

Remark. As already mentioned, using the above expression for (HA+(i, x), x ∈ Z), one can read

off the characteristic function of the stopping position of simple random walk started from e2 and

stopped at its first visit to the Z× {0} (see also Exercise 8.1).

Corollary 8.1.8 Let

A∞,∞ = {x+ iy ∈ Z + iZ : x, y > 0}.

Then,

HA∞,∞(x+ iy, x1) =
2

π

∫ π

0
e−r(t)y sin(tx) sin(tx1) dt.
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Proof Using (8.17),

HA∞,∞(x+ iy, x1) = lim
n→∞

HA∞,n(x+ iy, x1)

= lim
n→∞

2

π

∫ π

0

sinh(r(t)(n− y))
sinh(r(t)n)

sin(tx) sin(tx1) dt

=
2

π

∫ π

0
e−r(t)y sin(tx) sin(tx1) dt.

8.2 Eigenvalues for rectangles

In general it is hard to compute the eigenfunctions and eigenvectors for a finite subset A of Zd with

respect to simple random walk. One feasible case is that of a rectangle

A = R(N1, . . . , Nd) := {(x1, . . . , xd) ∈ Zd : 0 < xj < Nj}.

If k = (k1, . . . , kd) ∈ Zd with 1 ≤ kj < Nj, let

fk(x1, . . . , xd) = fk,N1,...,Nd
(x1, . . . , xd) =

d
∏

j=1

sin

(

xj kj π

Nj

)

.

Note that fk ≡ 0 on ∂R(N1, . . . , Nd). A straightforward computation shows that

Lfk(x1, . . . , xd) = α(k) fk.

where

α(k) = α(k;N1, . . . , Nd) =
1

d

d
∑

j=1

[

cos

(

kj π

Nj

)

− 1

]

.

Using (8.7) we can see that the functions

{fk : 1 ≤ kj ≤ Nj − 1} ,

form an orthogonal basis for the set of functions on R(N1, . . . , Nd) that vanish on ∂R(N1, . . . , Nd).

Hence this gives a complete set of eigenvalues and eigenvectors. We conclude that the (first)

eigenvalue α of R(N1, . . . , Nd), defined in Section 6.9, is given by

α =
1

d

d
∑

j=1

cos

(

π

Nj

)

.

In particular, as n→∞, the eigenvalue for Kn = Kn,d = R(n, . . . , n), is given by

αKn = cos
(π

n

)

= 1− π2

2n2
+O

(

1

n4

)

.
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8.3 Approximating continuous harmonic functions

It is natural to expect that discrete harmonic functions in Zd, when appropriately scaled, converge

to (continuous) harmonic functions in Rd. In this section we discuss some versions of this principle.

We let U = Ud = {x ∈ Rd : |x| < 1} denote the unit ball in Rd.

Proposition 8.3.1 There exists c < ∞ such that the following is true for all positive integers

n,m. Suppose f : (n +m)U → R is a harmonic function. Then there is a function f̂ on Bn with

Lf̂(x) = 0, x ∈ Bn and such that

|f(x)− f̂(x)| ≤ c ‖f‖∞
m2

, x ∈ Bn. (8.18)

In fact, one can choose (recall ξn from Section 6.3)

f̂(x) = Ex[f(Sξn)].

Proof Without loss of generality, assume ‖f‖∞ = 1. Since f is defined on (n + 1)Ud, f̂ is well

defined. By definition we know that Lf̂(x) = 0, x ∈ Bn. We need to prove (8.18). By (6.9), if

x ∈ Bn,

f(x) = Ex



f(Sξn)−
ξn−1
∑

j=0

Lf(Sj)



 = f̂(x)− φ(x),

where

φ(x) =
∑

z∈Bn

GBn(x, z)Lf(z).

In Section 6.2, we observed that there is a c such that all 4th order derivatives of f at x are bounded

above by c (n+m− |x|)−4. By expanding in a Taylor series, using the fact that f is harmonic, and

also using the symmetry of the random walk, this implies

|Lf(x)| ≤ c

(n +m− |x|)4 .

Therefore, we have

|φ(x)| ≤ c
n−1
∑

k=0

∑

k≤|z|<k+1

GBn(x, z)

(n +m− k)4 . (8.19)

We claim that there is a c1 such that for all x,
∑

n−l≤|z|≤n−1

GBn(x, z) ≤ c l2.

Indeed, the proof of this is essentially the same as the proof of (5.5). Once we have the last estimate,

summing by parts the right-hand side of (8.19) gives that |φ(x)| ≤ c/m2.

The next proposition can be considered as a converse of the last proposition. If f : Zd → R is

a function, we will also write f for the piecewise constant function on Rd defined as follows. For
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each x = (x1, . . . , xj) ∈ Zd, let �x denote the cube of side length 1 centered at x,

�x =

{

(y1, . . . , yd) ∈ Rd : −1

2
≤ yj − xj < 1

2

}

.

The sets {�x : x ∈ Zd} partition Rd.

Proposition 8.3.2 Suppose fn is a sequence of functions on Zd satisfying Lfn(x) = 0, x ∈ Bn and

supx |fn(x)| ≤ 1. Let gn : Rd → R be defined by gn(y) = fn(ny). Then there exists a subsequence

nj and a function g that is harmonic on U such that gnj −→ g uniformly on every compact K ⊂ U .

Proof Let J be a countable dense subset of U . For each y ∈ J , the sequence gn(y) is bounded and

hence has a subsequential limit. By a standard diagonalization procedure, we can find a function

g on J such that

gnj (y) −→ g(y), y ∈ J.

For notational convenience, for the rest of this proof we will assume that in fact gn(y) −→ g(y),

but the proof works equally well if there is only a subsequence.

Given r < 1, let rU = {y ∈ U : |y| < r}. Using Theorem 6.3.8, we can see that there is a

cr < ∞ such that for all n, |gn(y1) − gn(y2)| ≤ cr [|y1 − y2| + n−1] for y1, y2 ∈ rU . In particular,

|g(y1) − g(y2)| ≤ cr |y1 − y2| for y1, y2 ∈ J ∩ rU . Hence, we can extend g continuously to rU such

that

|g(y1)− g(y2)| ≤ cr |y1 − y2|, y1, y2 ∈ rU , (8.20)

and a standard 3ǫ-argument shows that gn converges to g uniformly on rU .

Since g is continuous, in order to show that g is harmonic, it suffices to show that it has the

spherical mean value property, i.e., if y ∈ U and |y|+ ǫ < 1,
∫

|z−y|=ǫ
g(z) dsǫ(z) = g(y).

Here sǫ denotes surface measure normalized to have measure one. This can be established from the

discrete mean value property for the functions fn, using Proposition 7.7.1 and (8.20). We omit the

details.

8.4 Estimates for the ball

One is often interested in comparing quantities for the simple random walk on the discrete ball

Bn with corresponding quantities for Brownian motion. Since the Brownian motion is rotationally

invariant, balls are very natural domains to consider. However, the lattice effects at the boundary

mean that it is harder to control the rate of convergence of the simple random walk. This section

presents some basic comparison estimates.

We first consider the Green’s functionGBn(x, y). If x = 0, Proposition 6.3.5 gives sharp estimates.

It is trickier to estimate this for other x, y. We will let g denote the Green’s function for Brownian

motion in Rd with covariance matrix d−1I,

g(x, y) = Cd |x− y|2−d, d ≥ 3,
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g(x, y) = −Cd log |x− y|, d = 2,

and define gn(x, y) by

gn(x, y) = g(x, y) − Ex[g(BTn , y)] .

Here B is a d-dimensional Brownian motion with covariance d−1I and Tn = inf{t : |Bt| = n}.
The reader should compare the formula for gn(x, y) to corresponding formulas for GBn(x, y) in

Proposition 4.6.2. The Green’s function for standard Brownian motion is gn(x, y)/d.

Proposition 8.4.1 If d ≥ 2 and x, y ∈ Bn,

GBn(x, y) = gn(x, y) +O

(

1

|x− y|d
)

+O

(

log2 n

(n− |y|)d−1

)

.

♣ This estimate is not optimal, but improvements will not be studied in this book. Note that if follows that
for every ǫ > 0, if |x|, |y| ≤ (1− ǫ)n,

GBn
(x, y) = gn(x, y)

[

1 +O

(

1

|x− y|2
)

+Oǫ

(

log2 n

n

)]

,

where we write Oǫ to indicate that the implicit constants depend on ǫ but are uniform in x, y, n. In particular,

we have uniform convergence on compact subsets of the open unit ball.

Proof We will do the d ≥ 3 case; the d = 2 case is done similarly. By Proposition 4.6.2,

GBn(x, y) = G(x, y) − Ex [G(Sξn , y)] .

Therefore,

|gn(x, y)−GBn(x, y)| ≤ |g(x, y) −G(x, y)| + |Ex[g(BTn , y)]− Ex[G(Sξn , y)]| .
By Theorem 4.3.1,

|g(x, y) −G(x, y)| ≤ c

|x− y|d

G(Sξn , y) =
Cd

|Sξn − y|d−2
+O

(

1

(1 + |Sξn − y|)d
)

,

Note that

Ex[(1 + |Sξn − y|)−d] ≤ |n+ 1− |y||−2 Ex[G(Sξn , y)]

≤ c |n+ 1− |y||−2G(x, y)

≤ c |n+ 1− |y||−2 |x− y|2−d

≤ c
[

|x− y|−d + (n+ 1− |y|)1−d
]

.

We can define a Brownian motion B and a simple random walk S on the same probability space

such that for each r,

P {|BTn − Sξn | ≥ r log n} ≤ c

r
,
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see Proposition 7.7.1. Since |BTn − Sξn | ≤ c n, we see that

E [|BTn − Sξn |] ≤
cn
∑

k=1

P(|BTn − Sξn | ≥ k) ≤ c log2 n.

Also,
∣

∣

∣

∣

Cd
|x− y|d−2

− Cd
|z − y|d−2

∣

∣

∣

∣

≤ c |x− z|
[n− |y|]d−1

.

Let αBn denote the eigenvalue for the ball as in Section 6.9 and define λn by αBn = e−λn . Let

λ = λ(d) be the eigenvalue of the unit ball for a standard d-dimensional Brownian motion Bt, i.e.,

P{|Bs| < 1, 0 ≤ s ≤ t} ∼ c e−λt, t→∞.

Since the random walk suitably normalized converges to Brownian motion, one would conjecture

that dn2λn is approximately λ for large n. The next proposition establishes this but again not with

the optimal error bound.

Proposition 8.4.2

λn =
λ

dn2

[

1 +O

(

1

log n

)]

.

Proof By Theorem 7.1.1, we can find a b > 0 such that a simple random walk Sn and a standard

Brownian motion Bt can be defined on the same probability space so that

P
{

max
0≤j≤n3

|Sj −Bj/d| ≥ b log n

}

≤ b n−1.

By Corollary 6.9.6, there is a c1 such that for all n and all j,

P{|Sj | < n, j ≤ kn2} ≥ c1 e−λnk n2
. (8.21)

For Brownian motion, we know there is a c2 such that

P{|Bt| < 1, 0 ≤ t ≤ k} ≤ c2 e−λk.

By the coupling, we know that for all n sufficiently large

P{|Sj| < n, j ≤ dλ−1n2 log n} ≤ P{|Bt| < n+ b log n, t ≤ λ−1 n2 log n}+ b n−1,

and due to Brownian scaling, we obtain

c1 exp

{

−dn
2λn
λ

log n

}

≤ c2 exp

{

− n2 log n

(n+ b log n)2

}

+ b n−1

≤ c3 exp

{

− log n+O

(

log2 n

n

)}

.

Taking logarithms, we get

dn2λn
λ

≥ 1−O
(

1

log n

)

.
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A similar argument, reversing the roles of the Brownian motion and the random walk, gives

dn2λn
λ

≤ 1 +O

(

1

log n

)

.

Exercises

Exercise 8.1 Suppose Sn is simple random walk in Z2 started at the origin and

T = min {j ≥ 1 : Sj ∈ {xe1 : x ∈ Z}} .
Let X denote the first component of ST . Show that the characteristic function of X is

φ(t) = 1−
√

(2− cos t)2 − 1.

Exercise 8.2 Let V = {(x, y) ∈ R2 : 0 < x, y < 1} and let ∂1V = {(1, y) : 0 ≤ y ≤ 1}. Suppose

g : ∂V → R is a continuous function that vanishes on ∂V \ ∂1V . Show that the unique continuous

function on V that is harmonic in V and agrees with g on ∂V is

f(x, y) = 2

∞
∑

k=1

ck
sinh(kxπ)

sinh(kπ)
sin(kyπ),

where

ck =

∫ 1

0
sin(tkπ) g(1, t) dt.

Use this to derive (8.13).

Exercise 8.3 Let A∞,∞ be as in Corollary 8.1.8. Suppose xn, yn, kn are sequences of positive

integers with

lim
n→∞

xn
n

= x, lim
n→∞

yn
n

= y, lim
n→∞

kn
n

= k,

where x, y, k are positive real numbers. Find

lim
n→∞

nHA∞,∞(xn + iyn, kn).

Exercise 8.4 Let fn be the eigenfunction associated to the d-dimensional simple random walk in

Zd on Bn, i.e.,

Lfn(x) = (1− e−λn) fn(x), x ∈ Bn,
with fn ≡ 0 on Zd \ Bn or equivalently,

fn(x) = (1− e−λn)
∑

y∈Bn

GBn(x, y) f(y).

This defines the function up to a multiplicative constant; fix the constant by asserting fn(0) = 1.

Extend fn to be a function of Rd as in Section 8.3 and let

Fn(x) = fn(nx).
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The goal of this problem is to show that the limit

F (x) = lim
n→∞

Fn(x),

exists and satisfies

F (x) = λ

∫

|y|≤1
g(x, y)F (y) ddy, (8.22)

where g is the Green’s function for Brownian motion with constant chosen as in Section 8.4. In

other words, F is the eigenfunction for Brownian motion. (The eigenfunction is the same whether

we choose covariance matrix I or d−1I.) Useful tools for this exercise are Proposition 6.9.4, Exercise

6.6, Proposition 8.4.1, and Proposition 8.4.2. In particular,

(i) Show that there exist c1, c2 such that

c1[1− |x|] ≤ Fn(x) ≤ c2[1− |x|+ n−1].

(ii) Use a diagonalization argument to find a subsequence nj such that for all x with rational

coordinates the limit

F (x) = lim
j→∞

Fnj (x)

exists.

(iii) Show that for every r < 1, there is a cr such that for |x|, |y| ≤ r,
|Fn(x)− Fn(y)| ≤ cr [|x− y] + n−1].

(iv) Show that F is uniformly continuous on the set of points in the unit ball with rational

coordinates and hence can be defined uniquely on {|z| ≤ 1} by continuity.

(v) Show that if |x|, |y| < cr, then

|F (x)− F (y)| ≤ cr |x− y|.
(vi) Show that F satisfies (8.22).

(vii) You may take it as a given that there is a unique solution to (8.22) with F (0) = 1 and

F (x) = 0 for |x| = 1. Use this to show that Fn converges to F uniformly.
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Loop Measures

9.1 Introduction

Problems in random walks are closely related to problems on loop measures, spanning trees, and

determinants of Laplacians. In this chapter we will gives some of the relations. Our basic viewpoint

will be different from that normally taken in probability. Instead of concentrating on probability

measures, we consider arbitrary (positive) measures on paths and loops.

Considering measures on paths or loops that are not probability measures is standard in statistical

physics. Typically one consider weights on paths of the form e−βE where β is a parameter and

E is the “energy” of a configuration. If the total mass is finite (say, if the there are only a finite

number of configurations) such weights can be made into probability measures by normalizing.

There are times where it is more useful to think of the probability measures and other times where

the unnormalized measure is important. In this chapter we take the configurational view.

9.2 Definitions and notations

Throughout this chapter we will assume that

X = {x0, x1, . . . , xn−1}, or X = {x0, x1, . . .}
is a finite or countably infinite set of points or vertices with a distinguished vertex x0 called the

root.

• A finite sequence of points ω = [ω0, ω1, . . . , ωk] in X is called a path of length k. We write |ω| for
the length of ω.

• A path is called a cycle if ω0 = ωk. If ω0 = x, we call the cycle an x-cycle and call x the root of

the cycle.

We allow the trivial cycles of length zero consisting of a single point.

• If x ∈ X , we write x ∈ ω if x = ωj for some j = 0, . . . , |ω|.
• If A ⊂ X , we write ω ⊂ A if all the vertices of ω are in A.

• A weight q is a nonnegative function q : X × X → [0,∞) that induces a weight on paths

q(ω) =

|ω|
∏

j=1

q(ωj−1, ωj).

198
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By convention q(ω) = 1 if |ω| = 0.

• q is symmetric if q(x, y) = q(y, x) for all x, y

♣ Although we are doing this in generality, one good example to have in mind is X = Zd or X equal to a

finite subset of Zd containing the origin with x0 = 0. The weight q is that obtained from simple random walk,

i.e., q(x, y) = 1/2d if |x− y| = 1 and q ≡ 0 otherwise.

• We say that X is q-connected if for every x, y ∈ X there exists a path

ω = [ω0, ω1, . . . , ωk]

with ω0 = x, ωk = y and q(ω) > 0.

• q is called a (Markov) transition probability if for each x
∑

y

q(x, y) = 1.

In this case q(ω) denotes the probability that the chain starting at ω0 enters states ω1, . . . , ωk in

that order. If X is q-connected, q is called irreducible.

• q is called a subMarkov transition probability if for each x
∑

y

q(x, y) ≤ 1,

and it is called strictly subMarkov if the sum is strictly less than one for at least one x. Again, q

is called irreducible if X is q-connected. A subMarkov transition probability q on X can be made

into a transition probability on X ∪ {∆} by setting q(∆,∆) = 1 and

q(x,∆) = 1−
∑

y

q(x, y).

The first time that this Markov chain reaches ∆ is called the killing time for the subMarkov

chain.

♣ If q is the weight corresponding to simple random walk in Zd, then q is a transition probability if X = Zd

and q is a strictly subMarkov transition probability if X is a proper subset of Zd.

• If q is a transition probability on X , two important ways to get subMarkov transition probabilities

are:

– Take A ⊂ X and consider q(x, y) restricted to A. This corresponds to the Markov chain killed

when it leaves A.

– Let 0 < λ < 1 and consider λq. This corresponds to the Markov chain killed at geometric rate

(1− λ).

• The rooted loop measure m = mq is the measure on cycles defined by m(ω) = 0 if |ω| = 0 and

m(ω) = mq(ω) =
q(ω)

|ω| , |ω| ≥ 1.
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• An unrooted loop or cycle is an equivalence class of cycles under the equivalence

[ω0, ω1, . . . , ωk] ∼ [ωj, ωj+1, . . . , ωk, ω1 . . . , ωj ]. (9.1)

We denote unrooted loops by ω and write ω ∼ ω if ω is a cycle that produces the unrooted loop

ω.

The lengths and weights of all representatives of ω are the same, so it makes sense to write |ω|
and q(ω).

• If ω is an unrooted loop, let

K(ω) = #{ω : ω ∼ ω}
be the number of representatives of the equivalence class. The reader can easily check that K(ω)

divides |ω| but can be smaller. For example, if ω is the unrooted loop corresponding to a rooted

loop ω = [x, y, x, y, x] with distinct vertices x, y, then |ω| = 4 but K(ω) = 2.

• The unrooted loop measure is the measure m = mq obtained from m by “forgetting the root”,

i.e.,

m(ω) =
∑

ω∼ω

q(ω)

|ω| =
K(ω) q(ω)

|ω| .

• A weight q generates a directed graph with vertices X and directed edges = {(x, y) ∈ X × X :

q(x, y) > 0}. Note that this allows “self-loops” of the form (x, x). If q is symmetric, then this is

an undirected graph. In this chapter graph will mean undirected graph.

• If #(X ) = n < ∞, a spanning tree T (of the complete graph) on vertices X is a collection of

n− 1 edges in X such that X with these edges is a connected graph.

• Given q, the weight of a tree T (with respect to root x0) is

q(T ;x0) =
∏

(x,x′)∈T
q(x, x′),

where the product is over all directed edges (x, x′) ∈ T and the direction is chosen so that the

unique self-avoiding path from x to x0 in T goes through x′.
• If q is symmetric, then q(T ;x0) is independent of the choice of the root x0 and we will write q(T )

for (T ;x0). Any tree with positive weight is a subgraph of the graph generated by q.

• If q is a weight and λ > 0, we write qλ for the weight λq. Note that qλ(ω) = λ|ω| q(ω), qλ(T ) =

λn−1 q(T ). If q is a subMarkov transition probability and λ ≤ 1, then qλ is also a subMarkov

transition probability for a chain moving as q with an additional geometric killing.

• Let Lj denote the set of (rooted) cycles of length j and

Lj(A) = {ω ∈ Lj : ω ⊂ A},

Lxj (A) = {ω ∈ Lj(A) : x ∈ ω}, Lxj = Lxj (X ).

L =
∞
⋃

j=0

Lj, L(A) =
∞
⋃

j=0

Lj(A), Lx(A) =
∞
⋃

j=0

Lxj (A), Lx =
∞
⋃

j=0

Lxj .
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We also write Lj ,Lj(A), etc., for the analogous sets of unrooted cycles.

9.2.1 Simple random walk on a graph

An important example is simple random walk on a graph. There are two different definitions that

we will use. Suppose X is the set of the vertices of an (undirected) graph. We write x ∼ y if x is

adjacent to y, i.e., if {x, y} is an edge. Let

deg(x) = #{y : x ∼ y}

be the degree of x. We assume that the graph is connected.

• Simple random walk on the graph is the Markov chain with transition probability

q(x, y) =
1

deg(x)
, x ∼ y.

If X is finite, the invariant probability measure for this Markov chain is proportional to d(x).

• Suppose

d = sup
x∈X

deg(x) <∞.

The lazy (simple random) walk on the graph, is the Markov chain with symmetric transition

probability

q(x, y) =
1

d
, x ∼ y,

q(x, x) =
d− deg(x)

d
.

We can also consider this as simple random walk on the augmented graph that has added d −
deg(x) self-loops at each vertex x. If X is finite, the invariant probability measure for this Markov

chain is uniform.

• A graph is regular (or d-regular) if deg(x) = d for all x. For regular graphs, the lazy walk is the

same as the simple random walk.

• A graph is transitive if “all the vertices look the same”, i.e., if for each x, y ∈ X there is a graph

isomorphism that takes x to y. Any transitive graph is regular.

9.3 Generating functions and loop measures

In this section, we fix a set of vertices X and a weight q on X .

• If x ∈ X , the x-cycle generating function is given by

g(λ;x) =
∑

ω∈L,ω0=x

λ|ω| q(ω) =
∑

ω∈L,ω0=x

qλ(ω).

If q is a subMarkov transition probability and λ ≤ 1, then g(λ;x) denotes the expected number

of visits of the chain to x before being killed for a subMarkov chain with weight qλ started at x.
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• For any cycle ω we define

d(ω) = #{j : 1 ≤ j ≤ |ω|, ωj = ω0},

and we call ω an irreducible cycle if d(ω) = 1.

• The first return to x generating function is defined by

f(λ;x) =
∑

ω∈L,|ω|≥1,ω0=x,d(ω)=1

q(ω)λ|ω|.

If λq is a subMarkov transition probability, then f(λ;x) is the probability that the chain starting

at x returns to x before being killed.

One can check as in (4.6), that

g(λ;x) = 1 + f(λ;x) g(λ, x),

which yields

g(λ;x) =
1

1− f(λ;x)
. (9.2)

• If X is finite, the cycle generating function is

g(λ) =
∑

x∈X
g(λ;x) =

∑

ω∈L
λ|ω| q(ω) =

∑

ω∈L
qλ(ω).

Since each x ∈ X has a unique cycle of length 0 rooted at x,

g(0;x) = 1, g(0) = #(X ).

• If X is finite, the loop measure generating function is

Φ(λ) =
∑

ω∈L
λ|ω|mq(ω) =

∑

ω∈L
λ|ω|mq(ω) =

∑

ω∈L, |ω|≥1

λ|ω|

|ω| q(ω).

Note that if #(X ) = n <∞,

Φ(0) = 0, g(λ) = λΦ′(λ) + n, Φ(λ) =

∫ λ

0

g(s)− n
s

ds.

• If A ⊂ X is finite, we write

F (A;λ) = exp







∑

ω∈L(A),|ω|≥1

q(ω)λ|ω|

|ω|







= exp







∑

ω∈L(A),|ω|≥1

q(ω)K(ω)λ|ω|

|ω|







.

In other words, logF (A;λ) is the loop measure (with weight qλ) of the set of loops in A. In

particular, F (X ;λ) = eΦ(λ).

• If x ∈ A (A not necessarily finite), let logFx(A;λ) denote the loop measure (with weight qλ) of

the set of loops in A that include x, i.e.,

Fx(A;λ) = exp







∑

ω∈Lx(A),|ω|≥1

q(ω)λ|ω|

|ω|







= exp







∑

ω∈Lx
(A),|ω|≥1

q(ω)K(ω)λ|ω|

|ω|







.



9.3 Generating functions and loop measures 203

More generally, if V ⊂ A, logFV (A;λ) denotes the loop measure of loops in A that intersect V ,

FV (A;λ) = exp







∑

ω∈L(A),|ω|≥1,V ∩ω 6=∅

q(ω)λ|ω|

|ω|







= exp







∑

ω∈L(A),|ω|≥1,V ∩ω 6=∅

q(ω)K(ω)λ|ω|

|ω|







.

If η is a path, we write Fη for FV where V denotes the vertices in η. Note that F (A;λ) = FA(A;λ).

• We write F (A) = F (A; 1), Fx(A) = Fx(A; 1).

Proposition 9.3.1 If A = {y1, . . . , yk}, then

F (A;λ) = FA(A;λ) = Fy1(A;λ)Fy2(A1;λ) · · · Fyk
(Ak−1;λ), (9.3)

where Ai = A \ {y1, . . . , yi}. More generally, if V = {y1, . . . , yj} ⊂ A then

FV (A;λ) = Fy1(A;λ)Fy2(A1;λ) · · · Fyj (Aj−1;λ). (9.4)

In particular, the products on the right-hand side of (9.3) and (9.4) are independent of the ordering

of the vertices.

Proof This follows from the definition and the observation that the collection of loops that intersect

V can be partitioned into those that intersect y1, those that do not intersect y1 but intersect y2,

etc.

The next lemma is an important relationship between one generating function and the exponential

of another generating function.

Lemma 9.3.2 Suppose x ∈ A ⊂ X . Let

gA(λ;x) =
∑

ω∈L(A),ω0=x

q(ω)λ|ω|.

Then,

Fx(A;λ) = gA(λ;x).

Remark. If λ = 1 and q is a transition probability, then gA(1;x) (and hence by the lemma

Fx(A) = Fx(A; 1)) is the expected number of visits to x by a random walk starting at x before

its first visit to X \ A. In other words, Fx(A)−1 is the probability that a random walk starting

at x reaches X \ A before its first return to x. Using this interpretation for Fx(A), the fact that

the product on the right-hand side of (9.3) is independent of the ordering is not so obvious. See

Exercise 9.2 for a more direct proof in this case.

Proof Suppose ω ∈ Lx(A). Let dx(ω) be the number of times that a representative ω of ω visits x

(this is the same for all representatives ω). For representatives ω with ω0 = x, d(ω) = dx(ω). It is

easy to verify that the number of representatives ω of ω with ω0 = x is K(ω)dx(ω)/|ω|. From this

we see that

m(ω) =
∑

ω∼ω

q(ω)

|ω| =
K(ω) q(ω)

|ω| =
∑

ω∼ω,ω0=x

q(ω)

d(ω)
.
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Therefore,

∑

ω∈Lx(A)

m(ω)λ|ω| =
∑

ω∈L(A),ω0=x

q(ω)λ|ω|

d(ω)
=

∞
∑

j=1

1

j

∑

ω∈L(A),ω0=x,d(ω)=j

q(ω)λ|ω|.

An x-cycle ω with dx(ω) = j can be considered as a concatenation of j x-cycles ω′ with d(ω′) = 1.

Using this we can see that

∑

ω∈L(A),ω0=x,d(ω)=j

q(ω)λ|ω| =





∑

ω∈L(A),ω0=x,d(ω)=1

q(ω)λ|ω|





j

= fA(λ;x)j .

Therefore,

logFx(A;λ) =
∞
∑

j=1

fA(x;λ)j

j
= − log[1− fA(λ;x)] = log gA(λ;x).

The last equality uses (9.2).

Proposition 9.3.3 Suppose #(X ) = n <∞ and λ > 0 satisfies F (X ;λ) <∞. Then

F (X ;λ) =
1

det[I − λQ]
,

where Q denotes the n× n matrix [q(x, y)]x,y∈X .

Proof Without loss of generality we may assume λ = 1. We prove by induction on n. If n = 1 and

Q = (r), then F (X ; 1) = 1/(1 − r). To do the inductive step, suppose n > 1 and x ∈ X , then

g(1;x) =





∞
∑

j=0

Qj





x,x

=
[

(I −Q)−1
]

x,x
=

det[I −Qx]
det[I −Q]

,

where Qx denotes the matrix Q with the row and column corresponding to x removed. The last

equality follows from the adjoint form of the inverse. Using (9.3) and the inductive hypothesis on

X \ {x}, we get the result.

Remark. The matrix I − λQ is often called the (negative of the) Laplacian. The last proposition

and others below relate the determinant of the Laplacian to loop measures and trees.

• Let λ0,x denote the radius of convergence of g(λ;x).

– If X is q-connected, then λ0,x is independent of x and we write just λ0.

– If X is q-connected and finite, then λ0 is also the radius of convergence for g(λ) and F (X ;λ)

and 1/λ0 is the largest eigenvalue for the matrix Q = (q(x, y)). If q is a transition probability,

λ0 = 1. If q is an irreducible, strictly subMarkov transition probability, then λ0 > 1.

If X is q-connected and finite, then g(λ0) = g(λ0;x) = F (X ;λ0) = ∞. However, one can show

easily that F (X \ {x};λ0) < ∞. The next proposition shows how to compute the last quantity

from the generating functions.
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Proposition 9.3.4 Let λ0 be the radius of convergence of g. Then if x ∈ X ,

logF (X \ {x};λ0) = lim
λ→λ0−

[logF (X ;λ)− log g(λ;x)].

Proof

logF (X \ {x};λ0) = lim
λ→λ0−

logF (X \ {x};λ)

= lim
λ→λ0−

[logF (X ;λ) − logFx(X ;λ)].

If #(X ) < ∞ and a subset E of edges is given, then simple random walk on the graph (X , E) is

the Markov chain corresponding to

q(x, y) = [#{z : (x, z) ∈ E}]−1 , (x, y) ∈ E .

If #(X ) = n <∞ and (X , E) is transitive, then

g(λ;x) = n−1 g(λ),

and hence we can write Proposition 9.3.4 as

logF (X \ {x}, λ0) = log n+ lim
λ→λ0−

[Φ(λ)− log g(λ)].

Proposition 9.3.5 Suppose X is finite and q is an irreducible, transition probability, reversible with

respect to the invariant probability π. Let α1 = 1, α2, . . . , αn denote the eigenvalues of Q = [q(x, y)].

Then for every x ∈ X ,

1

F (X \ {x}) = π(x)
n
∏

j=2

(1− αj)

Proof Since the eigenvalues of I − λQ are 1− λα1, . . . , 1− λαn, we see that

lim
λ→1−

det[I − λQ]

1− λ =
n
∏

j=2

(1− αj).

If λ < 1, then Proposition 9.3.3 states

F (X ;λ) =
1

det[I − λQ]
.

Also, as λ→ 1−,

g(λ;x) ∼ π(x) (1− λ)−1,

where π denotes the invariant probability. (This can be seen by recalling that g(λ;x) is the number

of visits to x by a chain starting at x before a geometric killing time with rate (1−λ). The expected

number of steps before killing is 1/(1 − λ), and since the killing is independent of the chain, the
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expected number of visits to x before begin killed is asymptotic to π(x)/(1− λ).) Therefore, using

Proposition 9.3.4,

logF (X \ {x}) = lim
λ→1−

[logF (X ;λ) − log g(λ;x)]

= − log π(x)−
n
∑

j=2

log(1− αj).

9.4 Loop soup

• If V is a countable set and ν : V → [0,∞) is a measure, then a (Poisson) soup from ν is a

collection of independent Poisson processes

Nx
t , x ∈ V,

where Nx
t has parameter ν(x). A soup realization is the corresponding collection of multi-sets†

At where the number of times that x appears in At is Nx
t . This can be considered as a stochastic

process taking values in multi-sets of elements of V .

• The rooted loop soup Ct is a soup realization from m.

• The unrooted loop soup Ct is a soup realization from m.

From the definitions of m and m we can see that we can obtain an unrooted loop soup Ct from

a rooted loop soup Ct by “forgetting the roots” of the loops in Ct. To obtain Ct from Ct, we need

to add some randomness. More specifically, if ω is a loop in an unrooted loop soup Ct, we choose a

rooted loop ω by choosing uniformly among the K(ω) representatives of ω. It is not hard to show

that with probability one, for each t, there is at most one loop in

Ct \
[

⋃

s<t

Cs
]

.

Hence we can order the loops in Ct (or Ct) according to the “time” at which they were created; we

call this the chronological order.

Proposition 9.4.1 Suppose x ∈ A ⊂ X with Fx(A) < ∞. Let Ct(A;x) denote an unrooted loop

soup Ct restricted to L̄x(A). Then with probability one, C1(A;x) contains a finite number of loops

which we can write in chronological order

ω1, . . . , ωk.

Suppose that independently for each unrooted loop ωj , a rooted loop ωj with ω0 = x is chosen uni-

formly among the K(ω) dx(ω)/|ω| representatives of ω rooted at x, and these loops are concatenated

to form a single loop

η = ω1 ⊕ ω2 ⊕ · · · ⊕ ωk.
† A multi-set is a generalization of a set where elements can appear multiple times in the collection.
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Then for any loop η′ ⊂ A rooted at x,

P{η = η′} =
q(η)

Fx(A)
.

Proof We first note that ω1, . . . , ωk as given above is the realization of the loops in a Poissonian

realization corresponding to the measure

m∗
x(ω) =

q(ω)

dx(ω)
,

up to time 1 listed in chronological order, restricted to loops ω ∈ L(A) with ω0 = x. Using the

argument of Lemma 9.3.2, the probability that no loop appears is

exp







−
∑

ω∈L(A);ω0=x

m∗
x(ω)







= exp







−
∑

ω∈L(A);ω0=x

q(ω)

dx(ω)







=
1

Fx(A)
.

More generally, suppose η′ ∈ L(A) is given with η′0 = x and d(η′) = k. For any choice of positive

j1, . . . , jr integers summing to k, we have a decomposition of η′,

η′ = ω1 ⊕ · · · ⊕ ωr
where ωi is a loop rooted at x with dx(ωi) = ji. The probability that ω1, . . . , ωr (and no other

loops) appear in the realization up to time 1 in this order is

exp
{

−∑ω∈L(A);ω0=xm
∗
x(ω)

}

r!
m∗
x(ω1) · · ·m∗

x(ωr) =
1

r!Fx(A)

q(ω1) · · · q(ωr)
j1 · · · jr

=
q(η′)
Fx(A)

1

r! (j1 · · · jr)
.

The proposition then follows from the following combinatorial fact that we leave as Exercise 9.1:

∑

j1+···+jr=k

1

r! (j1 · · · jr)
= 1.

9.5 Loop erasure

• A path ω = [ω0, . . . , ωn] is self-avoiding if ωj 6= ωk for 0 ≤ j < k ≤ n.

Given a path ω = [ω0, . . . , ωn] there are a number of ways to obtain a self-avoiding subpath of ω

that goes from ω0 to ωn. The next definition gives one way.

• If ω = [ω0, . . . , ωn] is a path, LE(ω) denotes its (chronological) loop-erasure defined as follows.

– Let σ0 = max{j ≤ n : ωj = 0}. Set η0 = ω0 = ωσ0 .

– Suppose σi < n. Let σi+1 = max{j ≤ n : ωj = ωσi+1}. Set ηi+1 = ωσi+1 = ωσi+1.

– If iω = min{i : σi = n} = min{i : ηi = ωn}, then LE(ω) = [η0, . . . , ηi].
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A weight q on paths induces a new weight q̂A on self-avoiding paths by specifying that the weight

of a self-avoiding path η is the sum of the weights of all the paths ω in A for which η = L(ω). The

next proposition describes this weight.

Proposition 9.5.1 Suppose A ⊂ X , i ≥ 1 and η = [η0, . . . , ηi] is a self-avoiding path whose vertices

are in A. Then,

q̂A(η) :=
∑

ω∈L(A);LE(ω)=η

q(ω) = q(η)Fη(A), (9.5)

where, as before,

Fη(A) = exp







∑

ω∈L(A),|ω|≥1,η∩ω 6=∅

q(ω)

|ω|







.

Proof Let A−1 = A,Aj = A \ {η0, . . . , ηj}. Given any ω with LE(ω) = η, we can decompose ω as

ω = ω0 ⊕ [η0, η1]⊕ ω1 ⊕ [η1, η2]⊕ · · · ⊕ [ηi−1, ηi]⊕ ωi,

where ωj denotes the loop

[ωσj−1+1, . . . , ωσj ]

(here σ−1 = −1). The loop ωj can be any loop rooted at ηj contained in Aj−1. The total measure

of such loops is Fηj (Aj−1), see Lemma 9.3.2. The result then follows from (9.4).

In particular, q̂A(η) depends on A. The next proposition discusses the “Radon-Nikodym deriva-

tive” of q̂A1 with respect to q̂A for A1 ⊂ A.

• If V1, V2 ⊂ A, Let

FV1,V2(A) = exp







∑

ω∈L(A),ω∩V1 6=∅,ω∩V2 6=∅

q(ω)

|ω|







.

Proposition 9.5.2 Suppose A1 ⊂ A and η = [η0, . . . , ηi] is a self-avoiding path whose vertices are

in A1. Then

q̂A(η) = q̂A1(η)Fη,A\A1
(A).

Proof This follows immediately from the relation Fη(A) = Fη(A1)Fη,A\A1
(A).

The “inverse” of loop erasing is loop addition. Suppose η = [η0, . . . , ηk] is a self-avoiding path.

We define a random variable Zη taking values in the set of paths ω with LE(ω) = η as follow. Let

Ct be a realization of the unrooted loop soup in A as in Proposition 9.4.1. For each 0 ≤ j ≤ k, let

ω1,j , ω2,j , . . . , ωsj ,j,

denote the loops in C1 that intersect ηj but do not intersect {η0, . . . , ηj−1}. These loops are listed

in the order that they appear in the soup. For each such loop ωi,j, choose a representative ωi,j
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roooted at ηj ; if there is more than one choice for the representative, choose it uniformly. We then

concatenate these loops to give

ω̃j = ω1,j ⊕ · · · ⊕ ωsj,j .

If sj = 0, define ω̃j to be the trivial loop [ηj ]. We then concatenate again to define

ω = Z(η) = ω̃0 ⊕ [η0, η1]⊕ ω̃1 ⊕ [η1, η2]⊕ · · · ⊕ [ηk−1, ηk]⊕ ω̃k.

Proposition 9.4.1 tells us that there is another way to construct a random variable with the distribu-

tion of Zη. Suppose ω̃0, . . . , ω̃k are chosen independently (given η) with ω̃j having the distribution

of a cycle in A \ {η0, . . . , ηj−1} rooted at ηj . In other words if ω′ ∈ L(A \ {η0, . . . , ηj−1}) with

ω′
0 = ηj , then the probability that ω̃j = ω′ is q(ω′)/Fηj (A \ {η0, . . . , ηj−1}).

9.6 Boundary excursions

Boundary excursions in a set A are paths that begin and end on the boundary and otherwise stay

in A. Suppose X , q are given. If A ⊂ X we define

∂A = (∂A)q = {y ∈ X \ A : q(x, y) + q(y, x) > 0 for some x ∈ A}.

• A (boundary) excursion in A is a path ω = [ω0, . . . , ωn] with n ≥ 2 such that ω0, ωn ∈ ∂A and

ω1, . . . , ωn−1 ∈ A.

• The set of boundary excursions with ω0 = x and ω|ω| = y is denoted EA(x, y), and

EA =
⋃

x.y∈∂A
EA(x, y).

• Let ÊA(x, y), ÊA denote the subsets of EA(x, y), EA, respectively, consisting of the self-avoiding

paths. If x = y, the set ÊA(x, y) is empty.

• The measure q restricted to EA is called excursion measure on A.

• The measure q restricted to ÊA is called the self-avoiding excursion measure on A.

• The loop-erased excursion measure on A, is the measure on ÊA given by

q̂(η) = q{ω ∈ EA : LE(ω) = η}.

As in (9.5), we can see that

q̂(η) = q(η)Fη(A). (9.6)

• If x, y ∈ ∂A, q, q̂ can also be considered as measures on EA(x, y) or ÊA(x, y) by restricting to

those paths that begin at x and end at y. If x = y, these measures are trivial for the self-avoiding

and loop-erased excursion measures.

♣ If µ is a measure on a set K and K1 ⊂ K, then the restriction of µ to K1 is the measure ν defined by

ν(V ) = µ(V ∩K1). If µ is a probability measure, this is related to but not the same as the conditional measure

given K1; the conditional measure normalizes to make the measure a probability measure. A family of measures

µA, indexed by subsets A, supported on EA (or EA(x, y)) is said to have the restriction property if whenever

A1 ⊂ A, then µA1
is µA restricted to EA1

(EA1
(x, y)). The excursion measure and the self-avoiding excursion
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measure have the restriction property. However, the loop-erased excursion measure does not have the restriction

property. This can be seen from (9.6) since it is possible that Fη(A1) 6= Fη(A).

The loop-erased excursion measure q̂ is obtained from the excursion measure q by a deterministic

function on paths (loop erasure). Since this function is not one-to-one, we cannot obtain q from

q̂ without adding some extra randomness. However, one can obtain q from q̂ by adding random

loops as described at the end of Section 9.5.

The next definition is a generalization of the boundary Poisson kernel defined in Section 6.7.

• The boundary Poisson kernel is the function H∂A : ∂A× ∂A→ [0,∞) given by

H∂A(x, y) =
∑

ω∈EA(x,y)

q(ω).

Note that if ω ∈ EA(x, y), then LE(ω) ∈ ÊA(x, y). In particular, if x 6= y,

H∂A(x, y) =
∑

η∈ÊA(x,y)

q̂(η).

Suppose k is a positive integer and x1, . . . , xk, y1, . . . , yk are distinct points in ∂A. We write x =

(x1, . . . , xk),y = (y1, . . . , yk). We let

EA(x,y) = EA(x1, y1)× · · · × EA(xk, yk),

and we write [ω] = (ω1, . . . , ωk) for an element of EA(x,y) and

q([ω]) = (q × · · · × q)([ω]) = q(ω1) q(ω2) · · · q(ωk).

We can consider q × · · · × q as a measure on EA(x,y). We define ÊA(x,y) similarly.

• The nonintersecting excursion measure qA(x,y) at (x,y) is the restriction of the measure q×· · ·×q
to the set of [ω] ∈ EA(x,y) that do not intersect, i.e., ωi ∩ ωj = ∅, 1 ≤ i < j ≤ k.

• The nonintersecting self-avoiding excursion measure at (x,y) is the restriction of the measure

q × · · · × q to the set of [ω] ∈ ÊA(x,y) that do not intersect. Equivalently, it is the restriction of

the nonintersecting excursion measure to ÊA(x,y).

There are several ways to define the nonintersecting loop-erased excursion measure. It turns out

that the most obvious way (restricting the loop-erased excursion measure to k-tuples of walks that

do not intersect) is neither the most important nor the most natural. To motivate our definition,

let us consider the nonintersecting excursion measure with k = 2. This is the measure on pairs of

excursions (ω1, ω2). that gives measure q(ω1) q(ω2) to each (ω1, ω2) satisfying ω1∩ω2 = ∅. Another

way of saying this is the following.

• Given ω1, the measure on ω2 is q restricted to those excursions ω ∈ EA(x2, y2) such that ω∩ω1 = ∅.
In other words, the measure is q restricted to EA\ω1

(x2, y2).

More generally, if k ≥ 2 and 1 ≤ j ≤ k − 1, the following holds.

• Given ω1, . . . , ωj , the measure on ωj+1 is q restricted to excursions in EA(xj+1, yj+1) that do not

intersect ω1 ∪ · · · ∪ ωj . In other words, the measure is q restricted to EA\(ω1∪···∪ωj)(xj+1, yj+1).
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The nonintersecting self-avoiding excursion measure satisfies the analogous property. We will use

this as the basis for our definition of the nonintersecting loop-erased measure q̂A(x,y) at (x,y). We

want our definition to satisfy the following.

• Given η1, . . . , ηj , the measure on ηj+1 is the same as q̂A\(η1∪···∪ηj)(xj+1, yj+1).

This leads to the following definition.

• The measure q̂A(x,y) is the measure on ÊA(x,y) obtained by restricting qA(x,y) to the set V of

k-tuples [ω] ∈ EA(x,y) that satisfy

ωj+1 ∩ [η1 ∪ · · · ∪ ηj ] = ∅, j = 1, . . . , k − 1, (9.7)

where ηj = LE(ωj), and then considering it as a measure on the loop erasures. In other words,

q̂A(η1, . . . , ηk) = q{(ω1, . . . , ωk) ∈ V : LE(ωj) = ηj, j = 1, . . . , k, satisfying (9.7)}.

This definition may look unnatural because it seems that it might depend on the order of the pairs

of vertices. However, the next proposition shows that this is not the case.

Proposition 9.6.1 The q̂A(x,y)-measure of a k-tuple (η1, . . . , ηk) is




k
∏

j=1

q̂A(ηj)



 1{ηi ∩ ηj 6= ∅, 1 ≤ i < j ≤ n}Fη1,...,ηk(A)−1,

where

Fη1,...,ηk(A) = exp







∑

ω∈L(A)

q(ω)

|ω| J(ω; η1, . . . , ηk)







,

and J(ω; η1, . . . , ηk) = max{0, s − 1}, where s is the number of paths η1, . . . , ηk intersected by ω.

Proof Proposition 9.5.1 implies

k
∏

j=1

q̂A(ηj) =

k
∏

j=1

q(ηj)

k
∏

j=1

exp







∑

ω∈L(A),|ω|≥1,ω∩ηj 6=∅

q(ω)

|ω|







. (9.8)

However, assuming that ηi ∩ ηj = ∅ for i 6= j,

q̂A(η1, . . . , ηj) =

k
∏

j=1

q(ηj)

k
∏

j=1

exp







∑

ω∈L(A\(η1∪···ηj−1),|ω|≥1,ω∩ηj 6=∅

q(ω)

|ω|







. (9.9)

If a loop ω intersects s of the ηj , where s ≥ 2, then it appears s times in (9.8) but only one time

in (9.9).

• Let Ĥ∂A(x,y) denote the total mass of the measure q̂A(x,y).
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If k = 1, we know that Ĥ∂A(x, y) = H∂A(x, y). The next proposition shows that for k > 1, we

can describe Ĥ∂A(x,y) in terms of the quantities H∂A(xi, yj). The identity is a generalization of

a result of Karlin and McGregor on Markov chains (see Exercise 9.3). If π is a permutation of

{1, . . . , k}, we also write π(y) for (yπ(1), . . . , yπ(k)).

Proposition 9.6.2 (Fomin’s identity)
∑

π

(−1)sgnπ Ĥ∂A(x, π(y)) = det [H∂A(xi, yj)]1≤i,j≤k . (9.10)

Remark. If A is a simply connected subset of Z2 and q comes from simple random walk, then

topological considerations tell us that Ĥ∂A(x, π(y)) is nonzero for at most one permutation π. If

we order the vertices so that this permutation is the identity, Fomin’s identity becomes

Ĥ∂A(x,y) = det [H∂A(xi, yj)]1≤i,j≤k .

Proof We will say that [ω] is nonintersecting if (9.7) holds and otherwise we call it intersecting.

Let

E∗ =
⋃

π

EA(x, π(y)), (9.11)

let E∗NI be the set of nonintersecting [ω] ∈ E∗, and let E∗I = E∗ \ E∗NI be the set of intersecting [ω].

We will define a function φ : E∗ → E∗ with the following properties.

• φ is the identity on E∗NI .
• q([ω]) = q(φ([ω])).

• If [ω] ∈ E∗I ∩EA(x, π(y)), then φ([ω]) ∈ EA(x, π1(y)) where sgnπ1 = −sgnπ. In fact, π1 is the

composition of π and a transposition.

• φ ◦ φ is the identity. In particular, φ is a bijection.

To show that existence of such a φ proves the proposition, first note that

det [H∂A(xi, yj)]1≤i,j≤k =
∑

π

(−1)sgnπ
k
∏

i=1

H∂A(xi, yπ(i)).

Also,

H∂A(xi, yπ(i)) =
∑

ω∈EA(xi,yπ(i))

q(ω).

Therefore, by expanding the product, we have

det [H∂A(xi, yj)]1≤i,j≤k =
∑

[ω]∈E∗

(−1)sgnπ q([ω]) =
∑

[ω]∈E∗

(−1)sgnπ1 q([φ(ω)]).

In the first summation the permutation π is as in (9.11). Hence the sum of all the terms that come

from ω ∈ E∗I is zero, and

det [H∂A(xi, yj)]1≤i,j≤k =
∑

[ω]∈E∗
NI

(−1)sgnπ q([ω]).
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But the right-hand side is the same as the left-hand side of (9.10). We define φ to be the identity

on E∗NI , and we now proceed to define the bijection φ on E∗I .
Let us first consider the k = 2 case. Let [ω] ∈ E∗I ,

ξ = ω1 = [ξ0, . . . , ξm] ∈ EA(x1, y), ω = ω2 = [ω0, . . . , ωn] ∈ EA(x2, y
′),

η = [η0, . . . , ηl] = LE(ξ),

where y = y1, y
′ = y2 or y = y2, y

′ = y1. Since [ω] ∈ E∗I , we know that

η ∩ ω = L(ξ) ∩ ω 6= ∅.

Define

s = min{l : ηl ∈ ω}, t = max{l : ξl = ηs}, u = max{l : ωl = ηs}.

Then we can write ξ = ξ− ⊕ ξ+, ω = ω− ⊕ ω+ where

ξ− = [ξ0, . . . , ξt], ξ+ = [ξt, . . . , ξm],

ω− = [ω0, . . . , ωu], ω+ = [ωu, . . . , ωn].

We define

φ([ω]) = φ((ξ− ⊕ ξ+, ω− ⊕ ω+)) = (ξ− ⊕ ω+, ω− ⊕ ξ+).

Note that ξ− ⊕ ω+ ∈ EA(x1, y
′), ω− ⊕ ξ+ ∈ EA(x2, y), and q(φ([ω])) = q([ω]). A straightforward

check shows that φ ◦ φ is the identity.

x1

x2

y

y′

ξ−

ξ+

ω− ω+

ξt = ηs = wu

Figure 0-a
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Suppose k > 2 and [ω] ∈ E∗I . We will change two paths as in the k = 2 case and leave the others

fixed being careful in our choice of the paths to make sure that φ(φ([ω])) = [ω]. Let ηi = LE(ωi).

We define

r = min{i : ηi ∩ ωj 6= ∅ for some j > i},

s = min{l : ηrl ∈ ωi+1 ∪ · · · ∪ ωk},

b = min{j > r : ηrs ∈ ωj},

t = max{l : ωrl = ηrs}, u = max{l : ωbl = ηrs}.

We make the interchange

(ωr,− ⊕ ωr,+, ωb,− ⊕ ωb,+)←→ (ωr,− ⊕ ωb,+, ωb,− ⊕ ωr,+)

as in the previous paragraph (with (ωr, ωb) = (ξ, ω)) leaving the other paths fixed. This defines φ,

and it is then straightforward to check that φ ◦ φ is the identity.

9.7 Wilson’s algorithm and spanning trees

Kirchhoff was the first to relate the number of spanning trees of a graph to a determinant. Here we

derive a number of these results. We use a more recent technique, Wilson’s algorithm, to establish

the results. This algorithm is an efficient method to produce spanning trees from the uniform

distribution using loop-erased random walk. We describe it in the proof of the next proposition.

The basic reason why this algorithm works is that the product on the right-hand side of (9.3) is

independent of the ordering of the vertices.

Proposition 9.7.1 Suppose #(X ) = n < ∞ and q are transition probabilities for an irreducible

Markov chain on X . Then
∑

T
q(T ;x0) =

1

F (X \ {x0})
. (9.12)

Proof We will describe an algorithm due to David Wilson that chooses a spanning tree at random.

Let X = {x0, . . . , xn−1}.
• Start the Markov chain at x1 and let it run until it reaches x0. Take the loop-erasure of the

set of points visited, [η0 = x1, η1, . . . , ηi = x0]. Add the edges [η0, η1], [η1, η2], . . . , [ηi−1, ηi]

to the tree.

• If the edges form a spanning tree we stop. Otherwise, we let j be the smallest index such

that xj is not a vertex in the tree. Start a random walk at xj and let it run until it reaches

one of the vertices that has already been added. Perform loop-erasure on this path and add

the edges in the loop-erasure to the tree.

• Continue until all vertices have been added to the tree.

We claim that for any tree T , the probability that T is output in this algorithm is

q(T ;x0)F (X \ {x0}). (9.13)
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The result (9.12) follows immediately. To prove (9.13), suppose that a spanning tree T is given.

Then this gives a collection of self-avoiding paths:

η1 = [y1,1 = x1, y1,2, . . . , y1,k1, z1 = x0]

η2 = [y2,1, y2,2, . . . , y2,k2, z2]

...

ηm = [ym,1, ym,2, . . . , ym,km, zm] .

Here η1 is the unique self-avoiding path in the tree from x1 to x0; for j > 1, yj,1 is the vertex of

smallest index (using the ordering x0, x1, . . . , xn−1) that has not been listed so far; and ηj is the

unique self-avoiding path from yj,1 to a vertex zj in η1 ∪ · · · ∪ ηj−1. Then the probability that T is

chosen is exactly the product of the probabilities that

• if a random walk starting at x1 is stopped at x0, the loop-erasure is η1;

• if a random walk starting at y2,1 is stopped at η1, then the loop-erasure is η2

...

• if a random walk starting at ym,1 is stopped at η1 ∪ · · · ∪ ηm−1, then the loop-erasure is ηm.

With this decomposition, we can now use (9.5) and (9.3), we obtain (9.13).

Corollary 9.7.2 If Cn denotes the number of spanning trees of a connected graph with vertices

{x0, x1, . . . , xn−1}, then

logCn =
n−1
∑

j=1

log d(xj)− logF (X \ {x0})

=

n−1
∑

j=1

log d(xj) + lim
λ→1−

[log g(λ;x0)− Φ(λ)].

Here the implicit q is the transition probability for simple random walk on the graph and d(xj)

denotes the degree of xj . If Cn is a transitive graph of degree d,

logCn = (n− 1) log d− log n+ lim
λ→1−

[log g(λ)− Φ(λ)]. (9.14)

Proof For simple random walk on the graph, for all T ,

q(T ;x0) =





n−1
∏

j=1

d(xj)





−1

.

In particular, it is the same for all trees, and (9.12) implies that the number of spanning trees is

[q(T ;x0)F (X \ {x0})]−1 =





n−1
∏

j=1

d(xj)



 F (X \ {x0})−1.
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The second equality follows from Proposition 9.3.4 and the relation Φ(λ) = F (x;λ). If the graph

is transitive, then g(λ) = n g(λ;x0), from which (9.14) follows.

♣ If we take a connected graph and add any number of self-loops at vertices, this does not change the number

of spanning trees. The last corollary holds regardless of how many self-loops are added. Note that adding self-loops

affects both the value of the degree and the value of F (X \ {x0}).

Proposition 9.7.3 Suppose X is a finite, connected graph with n vertices and maximal degree d,

and P is the transition matrix for the lazy random walk on X as in Section 9.2.1. Suppose the

eigenvalues of P are

α1 = 1, α2, . . . , αn.

Then the number of spanning trees of X is

dn−1 n−1
n
∏

j=2

(1− αj).

Proof Since the invariant probability is π ≡ 1/n, Proposition 9.3.5 tells us that for each x ∈ X ,

1

F (X \ {x}) = n−1
n
∏

j=2

(1− αj).

♣ The values 1 − αj are the eigenvalues for the (negative of the) Laplacian I − Q for simple random walk

on the graph. In graph theory, it is more common to define the Laplacian to be ±d(I − Q). When looking at

formulas, it is important to know which definition of the Laplacian is being used.

9.8 Examples

9.8.1 Complete graph

The complete graph on a collection of vertices is the graph with all (distinct) vertices adjacent.

Proposition 9.8.1 The number of spanning trees of the complete graph on X = {x0, . . . , xn−1} is

nn−2.

Proof Consider the Markov chain with transition probabilities q(x, y) = 1/n for all x, y. Let

Aj = {xj , . . . , xn−1}. The probability that the chain starting at xj has its first visit (after time

zero) to {x0, . . . , xj} at xj is 1/(j + 1) since each vertex is equally likely to be the first one visited.

Using the interpretation of Fxj (Aj) as the reciprocal of the probability that the chain starting at

xj visits {x0, . . . , xj−1} before returning to xj we see that

Fxj (Aj) =
j + 1

j
, j = 1, . . . , n − 1
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and hence (9.3) gives

F (X \ {x0}) = n.

With the self-loops, each vertex has degree n and hence for each spanning tree

q(T ;x0) = n−(n−1).

Therefore the number of spanning trees is

[q(T ;x0)F (X \ {x0})]−1 = nn−2.

9.8.2 Hypercube

The hypercube Xn is the graph whose vertices are {0, 1}n with vertices adjacent if they agree in all

but one component.

Proposition 9.8.2 If Cn denotes the number of spanning trees of the hypercube Xn := {0, 1}n,
then

logCn := (2n − n− 1) log 2 +

n
∑

k=1

(

n

k

)

log k.

By (9.14), Proposition 9.8.2 is equivalent to

lim
λ→1−

[log g(λ)− Φ(λ)] = −(2n − 1) log n+ (2n − 1) log 2 +

n
∑

k=1

(

n

k

)

log k.

where g is the cycle generating function for simple random walk on Xn. The next proposition

computes g.

Proposition 9.8.3 Let g be the cycle generating function for simple random walk on the hypercube

Xn. Then

g(λ) =
n
∑

j=0

(

n

j

)

n

n− λ(n− 2j)
= 2n +

n
∑

j=0

(

n

j

)

λ(n− 2j)

n− λ(n− 2j)
.

Proof [of Proposition 9.8.2 given Proposition 9.8.3] Note that

Φ(λ) =

∫ λ

0

g(s)− 2n

s
ds

=

∫ λ

0





n
∑

j=0

(

n

j

)

n− 2j

n− s(n− 2j)



 ds

= (2n − 1) log n− log(1− λ)−
n
∑

j=1

(

n

j

)

log[n− λ(n− 2j)].
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Let us write λ = 1− ǫ so that

log g(λ) = log





n
∑

j=0

(

n

j

)

n

ǫ n+ 2j(1 − ǫ)



 ,

Φ(λ) = (2n − 1) log n− log ǫ−
n
∑

j=1

(

n

j

)

log[ǫn+ (1− ǫ) 2j].

As ǫ→ 0+,

log g(λ) = log(1/ǫ) + log





n
∑

j=0

(

n

j

)

n

n+ 2j 1−ǫ
ǫ



 = − log(ǫ) + o(1),

Φ(λ) = (2n − 1) log n− log ǫ−
n
∑

j=1

(

n

j

)

log(2j) + o(1)

and hence

lim
λ→1−

[log g(λ)− Φ(λ)] = (1− 2n) log n+ (2n − 1) log 2 +

n
∑

j=1

(

n

j

)

log j,

which is what we needed to show.

The remainder of this subsection will be devoted to proving Proposition 9.8.3. Let L(n, 2k)

denote the number of cycles of length 2k in Xn. By definition L(n, 0) = 2n. Let gn denote the

generating function on Xn using weights 1 (instead of 1/n) on the edges on the graph and zero

otherwise,

gn(λ) =
∑

ω

λ−|ω| =

∞
∑

k=0

L(n, 2k)λ2k .

Then if g is as in Proposition 9.8.3, g(λ) = gn(λ/n). Then Proposition 9.8.3 is equivalent to

gn(λ) =

n
∑

j=0

(

n

j

)

1

1− λ(n− 2j)
, (9.15)

which is what we will prove. By convention we set L(0, 0) = 1; L(0, k) = 0 for k > 0, and hence

g0(λ) =

∞
∑

k=0

L(0, 2k)λ2k = 1,

which is consistent with (9.15).

Lemma 9.8.4 If n, k ≥ 0,

L(n+ 1, 2k) = 2
k
∑

j=0

(

2k

2j

)

L(n, 2j).
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Proof This is immediate for n = 0 since L(1, 2k) = 2 for every k ≥ 0. For n ≥ 1, consider any cycle

in Xn+1 of length 2k. Assume that there are 2j steps that change one of the first n components

and 2(k − j) that change the last component. There are
(

2k
2j

)

ways to choose which 2j steps make

changes in the first n components. Given this choice, there are L(n, 2j) ways of moving in the first

n components. The movement in the last component is determined once the initial value of the

(n+ 1)-component is chosen; the 2 represents the fact that this initial value can equal 0 or 1.

Lemma 9.8.5 For all n ≥ 0,

gn+1(λ) =
1

1− λ gn
(

λ

1− λ

)

+
1

1 + λ
gn

(

λ

1 + λ

)

.

Proof

gn+1(λ) =

∞
∑

k=0

L(n+ 1, 2k)λ2k

= 2
∞
∑

k=0

k
∑

j=0

(

2k

2j

)

L(n, 2j)λ2k

= 2

∞
∑

j=0

L(n, 2j)

∞
∑

k=0

(

2j + 2k

2j

)

λ2j+2k

=
2

1− λ

∞
∑

j=0

L(n, 2j)

(

λ

1− λ

)2j ∞
∑

k=0

(

2j + 2k

2j

)

(1− λ)2j+1 λ2k

Using the identity (see Exercise 9.4).

∞
∑

k=0

(

2j + 2k

2j

)

p2j+1 (1− p)2k =
1

2
+

1

2

(

p

2− p

)2j+1

, (9.16)

we see that gn+1(λ) equals

1

1− λ

∞
∑

j=0

L(n, 2j)

(

λ

1− λ

)2j

+
1

1 + λ

∞
∑

j=0

L(n, 2j)

(

λ

1 + λ

)2j

,

which gives the result.

Proof [Proof of Proposition 9.8.3] Setting λ = (n+ β)−1, we see that it suffices to show that

gn

(

1

n+ β

)

=

n
∑

j=0

(

n

j

)

β + n

β + 2j
. (9.17)

This clearly holds for n = 0. Let Hn(λ) = λ gn(λ). Then the previous lemma gives the recursion

relation

Hn+1

(

1

n+ 1 + β

)

= Hn

(

1

n+ β

)

+Hn

(

1

n+ 2 + β

)

.
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Hence by induction we see that

Hn

(

1

n+ β

)

=
n
∑

j=0

(

n

j

)

1

β + 2j
.

9.8.3 Sierpinski graphs

In this subsection we consider the Sierpinski graphs which is a sequence of graphs V0, V1, . . . defined

as follows. V0 is a triangle, i.e., a complete graph on three vertices. For n > 0, Vn will be a graph

with 3 vertices of degree 2 (which we call the corner vertices) and [3n+1 − 3]/2 vertices of degree

4. We define the graph inductively. Suppose we are given three copies of Vn−1, V
(1)
n−1, V

(2)
n−1, V

(3)
n−1,

with corner vertices x
(1)
1 , x

(1)
2 , x

(1)
3 , . . . , x

(3)
1 , x

(3)
2 , x

(3)
3 . Then Vn is obtained from these three copies

by identifying the vertex x
(k)
j with the vertex x

(j)
k . We call the graphs Vn the Sierpinski graphs.

Proposition 9.8.6 Let Cn denote the number of spanning trees of the Sierpinski graph Vn. Then

Cn satisfies the recursive equation

Cn+1 = 2 (5/3)n C3
n. (9.18)

Hence,

Cn = (3/20)1/4 (3/5)n/2 (540)3
n/4. (9.19)

Proof It is clear that C0 = 3, and a simple induction argument shows that the solution to (9.18)

with C0 = 3 is given by (9.19). Hence we need to show the recursive equation Cn+1 = 2 (5/3)n C3
n.

x0 x1

x2

x3

x4x5

For n ≥ 1, we will write Vn = {x0, x1, x2, x3, x4, x5, . . . , xMn} where Mn = [3n + 3]/2, x0, x1, x2

are corner vertices of Vn and x3, x4, x5 are the other vertices that are corner vertices for the three

copies of Vn−1. They are chosen so that x3 lies between x0, x1; x4 between x1, x2; x5 between x2, x0.
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Using Corollary 9.7.2 and Lemma 9.3.2, we can write Cn = Ψn Jn where

Ψn =

Mn
∏

j=1

d(xj), Jn =

Mn
∏

j=1

pj,n.

Here pj,n denotes the probability that simple random walk in Vn started at xj returns to xj before

visiting {x0, . . . , xj−1}. Note that

Ψn = 22 4(3n+1−3)/2,

and hence Ψn+1 = 4Ψ3
n. Hence we need to show that

Jn+1 = (1/2) (5/3)n J3
n. (9.20)

We can write

Jn+1 = p1,n+1 p2,n+1 J
∗
n+1

where J∗
n+1 denotes the product over all the other vertices (the non-corner vertices). From this, we

see that

Jn+1 = p1,n+1 p2,n+1 · · · p5,n+1 (J∗
n)

3 =
p1,n+1 p2,n+1 · · · p5,n+1

p3
1,n p

3
2,n

J3
n.

The computations of pj,n are straightforward computations familiar to those who study random

walks on the Sierpinski gasket and are easy exercises in Markov chains. We give the answers here,

leaving the details to the reader. By induction on n one can show that p2,n+1 = (3/5) p2,n and from

this one can see that

p2,n+1 =

(

3

5

)n+1

, p1,n =
3

4

(

3

5

)n+1

.

Also,

p5,n+1 = p2,n =

(

3

5

)n

, p4,n+1 =
15

16

(

3

5

)n

, p3,n+1 =
5

6

(

3

5

)n

.

This gives (9.20).

9.9 Spanning trees of subsets of Z2

Suppose A ⊂ Z2 is finite, and let e(A) denote the set of edges with at least one vertex in A. We

write e(A) = ∂eA ∪ eo(A) where ∂eA denotes the “boundary edges” with one vertex in ∂A and

eo(A) = e(A) \ ∂eA, the “interior edges”. There will be two types of spanning trees of A, we will

consider.

• Free. A collection of #(A)−1 edges from e0(A) such that the corresponding graph is connected.

• Wired. The set of vertices is A ∪ {∆} where ∆ denotes the boundary. The edges of the graph

are the same as e(A) except that each edge in ∂eA is replaced with an edge connecting the point

in A to ∆. (There can be more than one edge connecting a vertex in A to ∆.) A wired spanning

tree is a collection of edges from e(A) such that the corresponding subgraph of A ∪ {∆} is a

spanning tree. Such a tree has #(A) edges.
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In both cases, we will find the number of trees by considering the Markov chain given by simple

random walk in Z2. The different spanning trees correspond to different “boundary conditions” for

the random walks.

• Free. The lazy walker on A as described in Section 9.2.1, i.e.,

q(x, y) =
1

4
, x, y ∈ A, |x− y| = 1,

and q(x, x) = 1−∑y q(x, y).

• Wired. Simple random walk on A killed when it leaves A, i.e.,

q(x, y) =
1

4
, x, y ∈ A, |x− y| = 1,

and q(x, x) = 0. Equivalently, we can consider this as the Markov chain on A ∪ {∆} where ∆ is

an absorbing point and

q(x,∆) = 1−
∑

y∈A
q(x, y).

♣ In other words, free spanning trees correspond to reflecting or Neumann boundary conditions and wired

spanning trees correspond to Dirichlet boundary conditions.

We let F (A) denote the quantity for the wired case. This is the same as F (A) for simple random

walk in Z2. If x ∈ A, we write F ∗(A\{x}) for the corresponding quantity for the lazy walker. (The

lazy walker is a Markov chain on A and hence F ∗(A) = ∞. In order to get a finite quantity, we

need to remove a point x.) The following are immediate corollaries of results in Section 9.7.

Proposition 9.9.1 If A ⊂ Z2 is connected with #(A) = n <∞, then the number of wired spanning

trees of A is

4n F (A)−1 = 4n
n
∏

j=1

(1− βj),

where β1, . . . , βn denote the eigenvalues of QA = [q(x, y)]x,y∈A.

Proof This is a particular case of Corollary 9.7.2 using the graph A ∪ {∆} and x0 = ∆. See also

Proposition 9.3.3.

Proposition 9.9.2 Suppose α1 = 1, . . . , αn are the eigenvalues of the transition matrix for the lazy

walker on a finite, connected A ⊂ Z2 of cardinality n. Then the number of spanning trees of A is

4n−1n−1
n
∏

j=2

(1− αj).

Proof This is a particular case of Proposition 9.7.3.
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Recall that

logF (A) =
∑

ω∈L(A),|ω|≥1

1

4|ω| |ω| =
∑

x∈A

∞
∑

n=1

1

2n
Px{S2n = 0;Sj ∈ A, j = 1, . . . , 2n}. (9.21)

The first order term in an expansion of logF (A) is

∑

x∈A

∞
∑

n=1

1

2n
Px{S2n = 0},

which ignores the restriction that Sj ∈ A, j = 1, . . . , 2n. The actual value involves a well known

constant Ccat called Catalan’s constant. There are many equivalent definitions of this constant. For

our purposes we can use the following

Ccat =
π

2
log 2− π

4

∞
∑

n=1

1

2n
4−2n

(

2n

n

)2

= .91596 · · · .

Proposition 9.9.3 If S = (S1, S2) is simple random walk in Z2, then

∞
∑

n=1

1

2n
P{S2n = 0} = log 4− 4

π
Ccat,

where Ccat denotes Catalan’s constant. In particular, if A ⊂ Z2 is finite,

logF (A) = [log 4− (4/π)Ccat]#(A)−
∑

x∈A
ψ(x;A), (9.22)

where

ψ(x;A) =

∞
∑

n=1

1

2n
Px{S2n = 0;Sj 6∈ A for some 0 ≤ j ≤ 2n}.

Proof Using Exercise 1.7, we get

∞
∑

n=1

1

2n
P{S2n = 0} =

∞
∑

n=1

1

2n
[P{S1

2n = 0}]2 =

∞
∑

n=1

1

2n
4−2n

(

2n

n

)2

.

Since P{S(2n) = 0} ∼ c n−1, we can see that the sum is finite. The exact value follows from our

(conveniently chosen) definition of Ccat. The last assertion then follows from (9.21).

Lemma 9.9.4 There exists c < ∞ such that if A ⊂ Z2, x ∈ A, and ψ(x;A) is defined as in

Proposition 9.9.3, then

ψ(x;A) ≤ c

dist(x, ∂A)2
.

Proof We only sketch the argument leaving the details as Exercise 9.5. Let r = dist(x, ∂A). Since

it takes about r2 steps to reach ∂A, the loops with fewer than that many steps rooted at x tend

not to leave A. Hence ψ(x;A) is at most of the order of

∑

n≥r2

1

2n
P{S2n = 0} ≍

∑

n≥r2
n−2 ≍ r−2.
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Using this and (9.22) we immediately get the following.

Proposition 9.9.5 Suppose An is a sequence of finite, connected subsets of Z2 satisfying the

following condition (that roughly means “measure of the boundary goes to zero”). For every r > 0,

lim
n→∞

#{x ∈ An : dist(x, ∂An) ≤ r}
#(An)

= 0.

Then,

lim
n→∞

logF (An)

#(An)
= log 4− 4Ccat

π
.

Suppose Am,n is the (m− 1)× (n− 1) discrete rectangle,

Am,n = {x+ iy : 1 ≤ x ≤ m− 1, 1 ≤ y ≤ n− 1}.
Note that

#(Am,n) = (m− 1) (n − 1), #(∂Am,n) = 2 (m− 1) + 2 (n − 1).

Theorem 9.9.6

4(m−1)(n−1)

F (Am,n)
≍ e4Ccatmn/π (

√
2− 1)m+n n−1/2. (9.23)

More precisely, for every b ∈ (0,∞) there is a cb < ∞ such that if b−1 ≤ m/n ≤ b then both sides

of (9.23) are bounded above by cb times the other side. In particular, if Cm,n denotes the number

of wired spanning trees of Am,n,

logCmn =
4Ccat

π
mn+ log(

√
2− 1) (m+ n)− 1

2
log n+O(1)

=
4Ccat

π
#(Am,n) +

[

2Ccat

π
+

1

2
log(
√

2− 1)

]

#(∂Am,n)−
1

2
log n+O(1).

♣ Although our proof will use the exact values of the eigenvalues, it is useful to consider the result in terms

of (9.22). The dominant term is already given by (9.22). The correction comes from loops rooted in Am,n that

leave A. The biggest contribution to these comes from points near the boundary. It is not surprising then that

the second term is proportional to the number of points on the boundary. The next correction to this comes from

the corners of the rectangle. This turns out to contribute a logarithmic term and after that all other correction

terms are O(1). We arbitrarily write logn rather than logm; note that logm = logn+O(1).

Proof The expansion for logCm,n follows immediately from Proposition 9.9.1 and (9.23), so we only

need to establish (9.23). The eigenvalues of I −QA can be given explicitly (see Section 8.2),

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)]

, j = 1, . . . ,m− 1; k = 1, . . . , n− 1,
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with corresponding eigenfunctions

f(x, y) = sin

(

jπx

m

)

sin

(

kπy

n

)

,

where the eigenfunctions have been chosen so that f ≡ 0 on ∂Am,n. Therefore,

− logF (Am,n) = log det[I −QA] =

m−1
∑

j=1

n−1
∑

k=1

log

(

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)])

.

Let

g(x, y) = log

[

1− cos(x) + cos(y)

2

]

.

Then (mn)−1 log det[I −QA] is a Riemann sum approximation of

1

π2

∫ π

0

∫ π

0
g(x, y) dx dy.

To be more precise, Let V (j, k) = Vm,n(j, k) denote the rectangle of side lengths π/m and π/n

centered at (jπ/m) + i(kπ/n). Then we will consider

J(j, k) :=
1

mn
g

(

jπ

m
,
kπ

n

)

=
1

mn

(

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)])

as an approximation to

1

π2

∫

V (j,k)
g(x, y) dx dy.

Note that

V =
m−1
⋃

j=1

n−1
⋃

k=1

V (j, k) =

{

x+ iy :
π

2m
≤ x ≤ π

(

1− 1

2m

)

,
π

2n
≤ y ≤ π

(

1− 1

2n

)}

.

One can show (using ideas as in Section 12.1.1, details omitted),

log det[I −QA] = mn

∫

V
g(x, y) dx dy +O(1).

Therefore,

log det[I −QA] = mn

[

∫

[0,π]2
g(x, y) dx dy −

∫

[0,π]2\V
g(x, y) dx dy

]

+O(1).

The result will follow if we show that

mn

∫

[0,π]2\V
g(x, y) dx dy = (m+ n) log 4− (m+ n) log(1−

√
2) +

1

2
log n+O(1).

We now estimate the integral over [0, π]2 \ V which we write as the sum of integrals over four

thin strips minus the integrals over the “corners” that are doubly counted. One can check (using

an integral table, e.g.) that

1

π

∫ π

0
log

[

1− cosx+ cos y

2

]

dy = −2 log 2 + log[2− cos x+
√

2(1 − cosx) + (1− cos x)2].
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Then,

1

π2

∫ ǫ

0

∫ π

0
log

[

1− cos x+ cos y

2

]

dy dx = −2ǫ

π
log 2 +

ǫ2

2π
+O(ǫ3).

If we choose ǫ = π/(2m) or ǫ = π/2n, this gives

mn

π2

∫ π/(2m)

0

∫ π

0
log

[

1− cos x+ cos y

2

]

dy dx = m log 2 +O(1).

mn

π2

∫ π

0

∫ π/(2n)

0
log

[

1− cos x+ cos y

2

]

dy dx = −n log 2 +O(1).

Similarly,

1

π2

∫ π

π−ǫ

∫ π

0
log

[

1− cos x+ cos y

2

]

dy dx = −2ǫ

π
log 2 +

ǫ

π
log[3 + 2

√
2] +O(ǫ3)

= −2ǫ

π
log 2− 2ǫ

π
log[
√

2− 1] +O(ǫ3),

which gives

mn

π2

∫ π

π− π
2m

∫ π

0
log

[

1− cos x+ cos y

2

]

dy dx = − n log 2− n log[
√

2− 1] +O(n−1),

mn

π2

∫ π

0

∫ π

π− π
2n

log

[

1− cos x+ cos y

2

]

dy dx = −m log 2−m log[
√

2− 1] +O(n−1).

The only nontrivial “corner” term comes from

∫ ǫ

0

∫ δ

0
log

[

1− cosx+ cos y

2

]

dxdy = 2 ǫ δ log(ǫ) +O(ǫ δ).

Therefore,

mn

π2

∫ π
2m

0

∫ π
2n

0
log

[

1− cosx+ cos y

2

]

dxdy = −1

2
log n+O(1).

All of the other corners give O(1) terms.

Combining it all, we get

m−1
∑

j=1

n−1
∑

k=1

log

(

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)])

equals

Imn+ (m+ n) log 4 + (m+ n) log[1−
√

2]− 1

2
log n+O(1).,

where

I =
1

π2

∫ π

0

∫ π

0
log

[

1− cos x+ cos y

2

]

dydx.
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Proposition 9.9.5 tells us that

I =
4Ccat

π
− log 4.

Theorem 9.9.6 allows us to derive some constants for simple random walk that are hard to show

directly. Write (9.23) as

logF (Am,n) = B1mn+B2 (m+ n) +
1

2
log n+O(1), (9.24)

where

B1 = log 4− 4Ccat

π
, B2 = log(

√
2 + 1)− log 4.

The constant B1 was obtained by considering the rooted loop measure and B2 was obtained from

the exact value of the eigenvalues. Recall from (9.3) that if we enumerate Am,n,

Am,n = {x1, x2, . . . , xK}, K = (m− 1) (n − 1),

then

logF (Am,n) =
K
∑

j=1

logFxj (Am,n \ {x1, . . . , xj−1}),

and Fx(V ) is the expected number of visits to x for a simple random walk starting at x before

leaving V . We will define the lexicographic order of Z + iZ by x+ iy ≺ x1 + iy1 if x < x1 or x = x1

and y < y1.

Proposition 9.9.7 If

V = {x+ iy : y > 0} ∪ {0, 1, 2, . . . , },

then

F0(V ) = 4 e−4Ccat/π.

Proof Choose the lexicographic order for An,n. Then one can show that

Fxj (An,n \ {x1, . . . , xj−1}) = F0(V ) [1 + error] ,

where the error term is small for points away from the boundary. Hence

logF (An,n) = #(An,n) logF0(V ) [1 + o(1)].

which implies logF0(V ) = B1 as in (9.24).

Proposition 9.9.8 Let V ⊂ Z× iZ be the subset

V = (Z× iZ) \ {· · · ,−2,−1},
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Then, F0(V ) = 4 (
√

2 − 1). In other words, the probability that the first return to {· · · ,−2,−1, 0}
by a simple random walk starting at the origin is at the origin equals

1− 1

F0(V )
=

3−
√

2

4
.

Proof Consider

A = An = {x+ iy : x = 1, . . . , n − 1;−(n− 1) ≤ y ≤ n− 1}.

Then A is a translation of A2n,n and hence (9.24) gives

logF (A) = 2B1 n
2 + 3B2 n+

1

2
log n+O(1).

Order A so that the first n− 1 vertices of A are 1, 2, . . . , n− 1 in order. Then, we can see that

logF (A) =





n−1
∑

j=1

logFj(A \ {1, . . . , j − 1})



 + 2 logF (An,n).

Using (9.24) again, we see that

2 logF (An,n) = 2B1 n
2 + 4B2 n+ log n+O(1),

and hence
n−1
∑

j=1

logFj(A \ {1, . . . , j − 1}) = −B2 n−
1

2
log n+O(1).

Now we use the fact that

logFj(A \ {1, . . . , j − 1}) = logF0(V ) [1 + error] ,

where the error term is small for points away from the boundary to conclude that F0(V ) = e−B2 .

Let Ãm,n be the m× n rectangle

Ãm,n = {x+ iy : 0 ≤ x ≤ m− 1, 0 ≤ y ≤ n− 1}.

Note that

#(Ãm,n) = mn, #(∂Ãm,n) = 2(m+ n).

Let C̃m,n denote the number of (free) spanning trees of Ãm,n.

Theorem 9.9.9

C̃m,n ≍ e4Ccatmn/π (
√

2− 1)m+n n−1/2.

More precisely, for every b ∈ (0,∞) there is a cb < ∞ such that if b−1 ≤ m/n ≤ b then both sides

of (9.23) are bounded above by cb times the other side.
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Proof We claim that the eigenvalues for the lazy walker Markov chain on Ãm,n are:

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)]

, j = 0, . . . ,m− 1; k = 0, . . . , n− 1,

with corresponding eigenfunctions

f(x, y) = cos

(

jπ(x + 1
2)

m

)

cos

(

kπ(y + 1
2)

n

)

.

Indeed, these are eigenvalues and eigenfunctions for the usual discrete Laplacian, but the eigen-

functions have been chosen to have boundary conditions

f(0, y) = f(−1, y), f(m− 1, y) = f(m, y), f(x, 0) = f(x,−1), f(x, n− 1) = f(x, n).

For these reason we can see that they are also eigenvalues and eigenvalues for the lazy walker.

Using Proposition 9.9.2, we have

C̃mn =
4mn−1

mn

∏

(j,k)6=(0,0)

(

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)])

.

Recall that if F (An,m) is as in Theorem 9.9.6, then

1

F (Ãm,n)
=

∏

1≤j≤m−1,1≤k≤n−1

(

1− 1

2

[

cos

(

jπ

m

)

+ cos

(

kπ

n

)])

.

Therefore,

C̃mn =
4(m−1)(n−1)

F (Am,n)

4m+n−1

mn





n−1
∏

j=1

[

1

2
− 1

2
cos

(

jπ

n

)]









m−1
∏

j=1

[

1

2
− 1

2
cos

(

jπ

m

)]



 .

Using (9.23), we see that it suffices to prove that

4n

n

n−1
∏

j=1

[

1

2
− 1

2
cos

(

jπ

n

)]

≍ 1,

or equivalently,

n−1
∑

j=1

log

[

1− cos

(

jπ

n

)]

= −n log 2 + log n+O(1). (9.25)

To establish (9.25), note that

1

n

n−1
∑

j=1

log

[

1− cos

(

jπ

n

)]

is a Riemann sum approximation of

1

π

∫ π

0
f(x) dx
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where f(x) = log[1− cos x]. Note that

f ′(x) =
sinx

1− cos x
, f ′′(x) = − 1

1− cosx
.

In particular |f ′′(x)| ≤ c x−2. Using this we can see that

1

n

[

1− cos

(

jπ

n

)]

=
1

n
O(j−2) +

1

π

∫ jπ
n

+ π
2n

jπ
n
− π

2n

f(x) dx.

Therefore,

1

n

n−1
∑

j=1

log

[

1− cos

(

jπ

n

)]

= O(n−1) +
1

π

∫ π− π
2n

π
2n

f(x) dx

= O(n−1) +
1

π

∫ π

0
f(x) dx− 1

π

∫ π
2n

0
f(x) dx

= O(n−1)− log 2 +
1

n
log n.

9.10 Gaussian free field

We introduce the Gaussian free field. In this section we assume that q is a symmetric transi-

tion probability on the space X . Some of the definitions below are straightforward extensions of

definitions for random walk on Zd.

• We say e = {x, y} is an edge if q(e) := q(x, y) > 0.

• If A ⊂ X , let e(A) denote the set of edges with at least one vertex in A. We write e(A) =

∂eA ∪ eo(A) where ∂eA are the edges with one vertex in ∂A and eo(A) are the edges with both

vertices in A.

• We let

∂A = {y ∈ X \ A : q(x, y) > 0 for some x ∈ A},

A = A ∪ ∂A.

• If f : A→ R and x ∈ A, then

∆f(x) =
∑

y

q(x, y) [f(y) − f(x)].

We say that f is harmonic at x if ∆f(x) = 0, and f is harmonic on A if ∆f(x) = 0 for all x ∈ A.

• If e ∈ e(A), we set ∇ef = f(y) − f(x) where e = {x, y}. This defines ∇ef up to a sign. Note

that

∇ef ∇eg

is well defined.

Throughout this section we assume that A ⊂ X with #(A) <∞.
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• If f, g : A→ R are functions, then we define the energy or Dirichlet form E to be the quadratic

form

EA(f, g) =
∑

e∈e(A)

q(e)∇ef ∇eg

We let EA(f) = EA(f, f).

Lemma 9.10.1 (Green’s formula) Suppose f, h : A→ R. Then,

EA(f, h) = −
∑

x∈A
f(x)∆h(x) +

∑

x∈∂A

∑

y∈A
f(x) [h(x) − h(y)] q(x, y). (9.26)

• If h is harmonic in A,

EA(f, h) =
∑

x∈∂A

∑

y∈A
f(x) [h(x) − h(y)] q(x, y). (9.27)

• If f ≡ 0 on ∂A,

EA(f, h) = −
∑

x∈A
f(x)∆h(x). (9.28)

• If h is harmonic in A and f ≡ 0 on ∂A, then EA(f, h) = 0 and hence

EA(f + h) = EA(f) + EA(h). (9.29)

Proof

EA(f, h)

=
∑

e∈e(A)

q(e)∇ef ∇eh

=
1

2

∑

x,y∈A
q(x, y) [f(y)− f(x)] [h(y) − h(x)] +

∑

x∈A

∑

y∈∂A
q(x, y) [f(y)− f(x)] [h(y) − h(x)]

= −
∑

x∈A

∑

y∈A
q(x, y) f(x) [h(y) − h(x)]−

∑

x∈A

∑

y∈∂A
q(x, y) f(x) [h(y) − h(x)]

+
∑

x∈A

∑

y∈∂A
q(x, y) f(y) [h(y) − h(x)]

= −
∑

x∈A
f(x)∆h(x) +

∑

y∈∂A

∑

x∈A
q(x, y) f(y) [h(y) − h(x)].

This gives (9.26) and the final three assertions follow immediately.

Suppose x ∈ ∂A and let hx denote the function that is harmonic on A with boundary value δx
on ∂A. Then it follows from (9.27) that

EA(hx) =
∑

y∈A
[1− hx(y)] q(x, y).

We extend hx to X by setting hx ≡ 0 on X \A.
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Lemma 9.10.2 Let Yj be a Markov chain on X with transition probability q. Let

Tx = min{j ≥ 1 : Yj = x}, τA = min{j ≥ 1 : Yj 6∈ A}.

If A ⊂ X , x ∈ ∂A,A′ = A ∪ {x},

EA′(hx) = Px{Tx ≥ τA′} =
1

Fx(A′)
. (9.30)

Proof If y ∈ A, then hx(y) = Py{Tx = τA}. Note that

Px{Tx < τA′} = q(x, x) +
∑

y∈A
q(x, y) Py{Tx = τA} = q(x, x) +

∑

y∈A
q(x, y)hx(y).

Therefore,

Px{Tx ≥ τA′} = 1− Px{Tx < τA′}
=

∑

z 6∈A′
q(x, z) +

∑

y∈A
q(x, y) [1 − hx(y)]

= −∆hx(x)

= −
∑

y∈A′
hx(y)∆hx(y) = EA′(hx).

The last equality uses (9.28). The second equality in (9.30) follows from Lemma 9.3.2.

• If v : X \A→ R, f : A→ R, we write EA(f ; v) for EA(fv) where fv ≡ f on A and fv ≡ v on ∂A.

If v is omitted, then v ≡ 0 is assumed.

• The Gaussian free field on A with boundary condition v is the measure on functions f : A→ R
whose density with respect to Lebesgue measure on RA is

(2π)−#(A)/2 e−EA(f ;v)/2.

• If v ≡ 0, we call this the field with Dirichlet boundary conditions.

• If A ⊂ X is finite and v : X \A→ R, define the partition function

C(A; v) =

∫

(2π)−#(A)/2 e−EA(f ;v)/2 df,

where df indicates that this is an integral with respect to Lebesgue measure on RA. If v ≡ 0, we

write just C(A). By convention, we set C(∅; v) = 1.

We will give two proofs of the next fact.

Proposition 9.10.3 For any A ⊂ X with #(A) <∞,

C(A) =
√

F (A) = exp







1

2

∑

ω∈L(A)

m(ω)







. (9.31)
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Proof We prove this inductively on the cardinality of A. If A = ∅, the result is immediate. From

(9.3), we can see that it suffices to show that if A ⊂ X is finite, x 6∈ A, and A′ = A ∪ {x},

C(A′) = C(A)
√

Fx(A′).

Suppose f : A′ → R and extend f to X by setting f ≡ 0 on X \ A′. We can write

f = g + t h

where g vanishes on X \ A; t = f(x); and h is the function that is harmonic on A with h(x) = 1

and h ≡ 0 on X \ A′. The edges in e(A′) are the edges in e(A) plus those edges of the form {x, z}
with z ∈ X \A. Using this, we can see that

EA′(f) = EA(f) +
∑

y 6∈A′
q(x, y) t2. (9.32)

Also, by (9.29),

EA(f) = EA(g) + EA(th) = EA(g) + t2 EA(h),

which combined with (9.32) gives

exp

{

−1

2
EA′(f)

}

= exp

{

−1

2
EA(g)

}

exp

{

− t
2

2
EA′(h)

}

.

Integrating over A first, we get

C(A′) = C(A)

∫ ∞

−∞

1√
2π

e−t
2EA′ (h)/2 dt

= C(A)

∫ ∞

−∞

1√
2π

e−t
2/[2Fx(A′)] dt

= C(A)
√

Fx(A′).

The second equality uses (9.30).

Let Q = QA as above and denote the entries of Qn by qn(x, y). The Green’s function on A is the

matrix G = (I −Q)−1; in other words, the expected number of visits to y by the chain starting at

x equals

∞
∑

n=0

qn(x, y)

which is the (x, y) entry of (I − Q)−1. Since Q is strictly subMarkov, (I − Q) is symmetric,

strictly positive definite, and (I −Q)−1 is well defined. The next proposition uses the joint normal

distribution as discussed in Section 12.3.

Proposition 9.10.4 Suppose the random variables {Zx : x ∈ A} have a (mean zero) joint normal

distribution with covariance matrix G = (I −Q)−1. Then the distribution of the random function

f(x) = Zx is the same as the Gaussian free field on A with Dirichlet boundary conditions.
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Proof Plugging Γ = G = (I −Q)−1 into (12.14) , we see that the joint density of {Zx} is given by

(2π)−#(A) [det(I −Q)]1/2 exp

{

−f · (I −Q)f

2

}

.

But (9.28) implies that f · (I −Q)f = EA(f). Since this is a probability density this shows that

C(A) =

√

1

det(I −Q)
,

and hence (9.31) follows from Proposition 9.3.3.

♣ The scaling limit of the Gaussian free field for random walk in Zd is the Gaussian free field in Rd. There

are technical subtleties required in the definition. For example if d = 2 and U is a bounded open set, we would

like to define the Gaussian free field {Zz : z ∈ U} with Dirichlet boundary conditions to be the collection of

random variables such that each finite collection (Zz1
, . . . , Zzk

) has a joint normal distribution with covariance

matrix [GU (zi, zj)]. Here GU denotes the Green’s function for Brownian motion in the domain. However, the

Green’s function GU (z, w) blows up as w approaches z, so this gives an infinite variance for the random variable

Zz. These problems can be overcome, but the collection {Zz} is not a collection of random variables in the usual

sense.

♣ The proof of Proposition 9.10.3 is not really needed given the quick proof in Proposition 9.10.4. However,

we choose to include it since it uses more directly the loop measure interpretation of F (A) rather than the

interpretation as a determinant. Many computations with the loop measure have interpretations in the scaling

limit.

Exercises

Exercise 9.1 Show that for all positive integers k

∑

j1+···+jr=k

1

r! (j1 · · · jr)
= 1.

Here are two possible approaches.

• Show that the number of permutations of k elements with exactly r cycles is

∑

j1+···+jr=k

k!

r! j1j2 · · · jr
.

• Consider the equation

1

1− t = exp{− log(1− t)},

expand both sides in power series in t, and compare coefficients.
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Exercise 9.2 Suppose Xn is an irreducible Markov chain on a countable state space X and A =

{x1, . . . , xk} is a proper subset of X . Let A0 = A,Aj = A \ {x1, . . . , xj}. If z ∈ V ⊂ X , let gV (z)

denote the expected number of visits to z by the chain starting at z before leaving V .

(i) Show that

gA(x1) gA\{x1}(x2) = gA\{x2}(x1) gA(x2). (9.33)

(ii) By iterating (9.33) show that the quantity

k
∏

j=1

gAj−1(xj)

is independent of the ordering of x1, . . . , xk.

Exercise 9.3 [Karlin-McGregor] Suppose X1
n, . . . ,X

k
n are independent realizations from a Markov

chain with transition probability q on a finite state space X . Assume x1, . . . , xk, y1, . . . , yj ∈ X .

Consider the event

V = Vn(y1, . . . , yk) =
{

Xi
m 6= Xj

m, m = 0, . . . , n; Xj
n = yj, 1 ≤ j ≤ n

}

.

Show that

P{V | X1
0 = x1, . . . ,X

1
n = xn} = det [qn(xi, yj)]1≤i,j≤k ,

where

qn(xi, yj) = P
{

X1
n = yj | X1

0 = xi
}

.

Exercise 9.4 Suppose Bernoulli trials are performed with probability p of success. Let Yn denote

the number of failures before the nth success, and let r(n) be the probability that Yn is even. By

definition, r(0) = 1. Give a recursive equation for r(n) and use it to find r(n). Use this to verify

(9.16).

Exercise 9.5 Give the details of Lemma 9.9.4.

Exercise 9.6 Suppose q is the weight arising from simple random walk in Zd. Suppose A1, A2

are disjoint subsets of Zd and x ∈ Zd. Let p(x,A1, A2) denote the probability that a random walk

starting at x enters A2 and subsequently returns to x all without entering A1. Let g(x,A1) denote

the expected number of visits to x before entering A1 for a random walk starting at x. Show that

the unrooted loop measure of the set of loops in Zd \ A1 that intersect both x and A2 is bounded

above by p(x,A1, A2) g(x,A1). Hint: for each unroooted loop that intersects both x and A2 choose

a (not necessarily unique) representative that is rooted at x and enters A2 before its first return to

x.

Exercise 9.7 We continue the notation of Exercise 9.6 with d ≥ 3. Choose an enumeration of

Zd = {x0, x1, . . .} such that j < k implies |xj | ≤ |xk|.
(i) Show there exists c <∞ such that if r > 0, u ≥ 2, and |xj | ≤ r,

p(xj, Aj−1,Zd \Bur) ≤ c1 |xj |−2 (ur)2−d.
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(Hint: Consider a path that starts at xj , leaves Bur and then returns to xj without visiting

Aj−1. Split such a curve into three pieces: the “beginning” up to the first visit to Zd \ Bur;
the “end” which (with time reversed) is a walk from xj to the first (last) visit to Zd \B3|xj |/2;
and the “middle” which ties these walks together.)

(ii) Show that there exists c1 < ∞, such that if r > 0 and u ≥ 2, then the (unrooted) loop

measure of the set of loops that intersect both Br and Zd \Bur is bounded above by c1 u
2−d.
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Intersection Probabilities for Random Walks

‘

10.1 Long range estimate

In this section we prove a fundamental inequality concerning the probability of intersection of the

paths of two random walks. If Sn is a random walk, we write

S[n1, n2] = {Sn : n1 ≤ n ≤ n2}.

Proposition 10.1.1 If p ∈ Pd, there exist c1, c2 such that for all n ≥ 2,

c1 φ(n) ≤ P{S[0, n] ∩ S[2n, 3n] 6= ∅}
≤ P{S[0, n] ∩ S[2n,∞) 6= ∅} ≤ c2 φ(n),

where

φ(n) =







1, d < 4,

(log n)−1, d = 4,

n(4−d)/2, d > 4.

♣ As n→∞, we get a result about Brownian motions. If B is a standard Brownian motion in Rd, then

P{B[0, 1] ∩B[2, 3] 6= ∅}
{

> 0, d ≤ 3
= 0, d = 4.

.

Four is the critical dimension in which Brownian paths just barely avoid each other.

Proof The upper bound is trivial for d ≤ 3, and the lower bound for d ≤ 2 follows from the lower

bound for d = 3. Hence we can assume that d ≥ 3. We will assume the walk is aperiodic (only a

trivial modification is needed for the bipartite case). The basic strategy is to consider the number

of intersections of the paths,

Jn =
n
∑

j=0

3n
∑

k=2n

1{Sj = Sk}, Kn =
n
∑

j=0

∞
∑

k=2n

1{Sj = Sk}.

237
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Note that

P{S[0, n] ∩ S[2n, 3n] 6= ∅} = P{Jn ≥ 1},

P{S[0, n] ∩ S[2n,∞) 6= ∅} = P{Kn ≥ 1}.

We will derive the following inequalities for d ≥ 3,

c1 n
(4−d)/2 ≤ E(Jn) ≤ E(Kn) ≤ c2 n(4−d)/2, (10.1)

E(J2
n) ≤







c n, d = 3,

c log n, d = 4,

c n(4−d)/2, d ≥ 5.

(10.2)

Once these are established, the lower bound follows by the second moment lemma (Lemma 12.6.1),

P{Jn > 0} ≥ E(Jn)
2

4 E(J2
n)
.

Let us write p(n) for P{Sn = 0}. Then,

E(Jn) =

n
∑

j=0

3n
∑

k=2n

p(k − j),

and similarly for E(Kn). Since p(k − j) ≍ (k − j)−d/2, we get

E(Jn) ≍
n
∑

j=0

3n
∑

k=2n

1

(k − j)d/2 ≍
n
∑

j=0

3n
∑

k=2n

1

(k − n)d/2
≍

n
∑

j=0

n1−(d/2) ≍ n2−(d/2),

and similarly for E(Kn). This gives (10.1). To bound the second moments, note that

E(J2
n) =

∑

0≤j,i≤n

∑

2n≤k,m≤3n

P{Sj = Sk, Si = Sm}

≤ 2
∑

0≤j≤i≤n

∑

2n≤k≤m≤3n

[P{Sj = Sk, Si = Sm}+ P{Sj = Sm, Si = Sk}].

If 0 ≤ i, j ≤ n and 2n ≤ k ≤ m ≤ 3n, then

P{Sj = Sk, Si = Sm} ≤
[

max
l≥n,x∈Zd

P{Sl = x}
] [

max
x∈Zd

P{Sm−k = x}
]

≤ c

nd/2 (m− k + 1)d/2
.

The last inequality uses the local central limit theorem. Therefore,

E(J2
n) ≤ c n2

∑

2n≤k≤m≤3n

1

nd/2 (m− k + 1)d/2
≤ c n2−(d/2)

∑

0≤k≤m≤n

1

(m− k + 1)d/2
.

This yields (10.2).

The upper bound is trivial for d = 3 and for d ≥ 5 it follows from (10.1) and the inequality

P{Kn ≥ 1} ≤ E[Kn]. Assume d = 4. We will consider E[Kn | Kn ≥ 1]. On the event {Kn ≥ 1},
let k be the smallest integer ≥ 2n such that Sk ∈ S[0, n]. Let j be the smallest index such that
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Sk = Sj. Then by the Markov property, given [S0, . . . , Sk] and Sk = Sj , the expected value of K2n

is
n
∑

i=0

∞
∑

l=k

P{Sl = Si | Sk = Sj} =

n
∑

i=0

G(Si − Sj).

Define a random variable, depending on S0, . . . , Sn,

Yn = min
j=0,...,n

n
∑

i=0

G(Si − Sj).

For any r > 0, we have that

E[Kn | Kn ≥ 1, Yn ≥ r log n] ≥ r log n.

Note that for each r,

P{Yn < r log n} ≤ (n + 1) P







∑

i≤n/2
G(Si) < r log n







.

Using Lemma 10.1.2 below, we can find an r such that P{Yn < r log n} = o(1/ log n) But,

c ≥ E[Kn] ≥ P{Kn ≥ 1;Yn ≥ r log n}E[Kn | Kn ≥ 1, Yn ≥ r log n]

≥ P{Kn ≥ 1;Yn ≥ r log n}[r log n].

Therefore,

P{Kn ≥ 1} ≤ P{Yn < r log n}+ P{Kn ≥ 1;Yn ≥ r log n} ≤ c

log n
.

This finishes the proof except for the one lemma that we will now prove.

Lemma 10.1.2 Let p ∈ P4.

(a) For every α > 0, there exist c, r such that for all n sufficiently large,

P







ξn−1
∑

j=0

G(Sj) ≤ r log n







≤ c n−α.

(b) For every α > 0, there exist c, r such that for all n sufficiently large,

P







n
∑

j=0

G(Sj) ≤ r log n







≤ c n−α.

Proof It suffices to prove (a) when n = 2l for some integer l, and we write ξk = ξ2k . Since

G(x) ≥ c/(|x| + 1)2, we have

ξl−1
∑

j=0

G(Sj) ≥
l
∑

k=1

ξk−1
∑

j=ξk−1

G(Sj) ≥ c
l
∑

k=1

2−2k [ξk − ξk−1].
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The reflection principle (Proposition 1.6.2) and the central limit theorem show that for every ǫ > 0,

there is a δ > 0 such that if n is sufficiently large, and x ∈ Cn/2, then Px{ξn ≤ δ n2} ≤ ǫ. Let Ik
denote the indicator function of the event {ξk − ξk−1 ≤ δ 22k}. Then we know that

P(Ik = 1 | S0, . . . , Sξk−1) ≤ ǫ.

Therefore, Jl :=
∑l

k=1 Ik is stochastically bounded by a binomial random variable with parameters

l and ǫ. By exponential estimates for binomial random variables (see Lemma 12.2.8), we can find

an α such that

P{Jl ≥ l/2} ≤ c 2−αl.

But on the event {Jl < l/2} we know that

G(Sj) ≥ c(l/2) δ ≥ r log n,

where the r depends on α.

For part (b) we need only note that P{n < ξn1/4} decays faster than any power of n and

P







n
∑

j=0

G(Sj) ≤
r

4
log n







≤ P







ξ
n1/4
∑

j=0

G(Sj) ≤ r log n1/4







+ P{n < ξn1/4}.

♣ The proof of the upper bound for d = 4 in Proposition 10.1.1 can be compared to the proof of an easier
estimate

P{0 ∈ S[n,∞)} ≤ c n1− d
2 , d ≥ 3.

To prove this, one uses the local central limit theorem to show that the expected number of visits to the origin

is O(n1− d
2 ). On the event that 0 ∈ S[n,∞), we consider the smallest j ≥ n such that Sj = 0. Then

using the strong Markov property, one shows that the expected number of visits given at least one visit is

G(0, 0) <∞. In Proposition 10.1.1 we consider the event that S[0, n]∩S[2n,∞) 6= ∅ and try to take the “first”

(j, k) ∈ [0, n] × [2n,∞) such that Sj = Sk. This is not well defined since if (i, l) is another pair it might be

the case that i < j and l > k. To be specific, we choose the smallest k and then the smallest j with Sj = Sk.

We then say that the expected number of intersections after this time is the expected number of intersections of

S[k,∞) with S[0, n]. Since Sk = Sj this is like the number of intersections of two random walks starting at the

origin. In d = 4, this is of order logn. However, because Sk, Sj have been chosen specifically, we cannot use a

simple strong Markov property argument to assert this. This is why the extra lemma is needed.

10.2 Short range estimate

We are interested in the probability that the paths of two random walks starting at the origin do not

intersect up to some finite time. We discuss only the interesting dimensions d ≤ 4. Let S, S1, S2, . . .

be independent random walks starting at the origin with distribution p ∈ Pd. If 0 < λ < 1, let

Tλ, T
1
λ , T

2
λ , . . . denote independent geometric random variables with killing rate 1− λ and we write

λn = 1− 1
n . We would like to estimate

P{S(0, n] ∩ S1[0, n] = ∅},
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or

P
{

S(0, Tλn ] ∩ S1[0, T 2
λn

] = ∅
}

.

The next proposition uses the long range estimate to bound a different probability,

P
{

S(0, Tλn ] ∩ (S1[0, T 1
λn

] ∪ S2[0, T 2
λn

]) = ∅
}

.

Let

Q(λ) =
∑

y∈Zd

P0,y{S[0, Tλ] ∩ S1[0, T 1
λ ] 6= ∅}

= (1− λ)2
∑

y∈Zd

∞
∑

j=0

∞
∑

k=0

λj+k P0,y{S[0, j] ∩ S1[0, k] 6= ∅}.

Here we write Px,y to denote probabilities assuming S0 = x, S1
0 = y. Using Proposition 10.1.1, one

can show that as n→∞ (we omit the details),

Q(λn) ≍
{

nd/2, d < 4

n2 [log n]−1, d = 4.

Proposition 10.2.1 Suppose S, S1, S2 are independent random walks starting at the origin with

increment p ∈ Pd. Let Vλ be the event that 0 6∈ S1(0, T 1
λ ]. Then,

P
[

Vλ ∩ {S(0, Tλ] ∩ (S1(0, T 1
λ ] ∪ S2(0, T 2

λ ]) = ∅}
]

= (1− λ)2Q(λ). (10.3)

Proof Suppose ω = [ω0 = 0, . . . , ωn], η = [η0, . . . , ηm] are paths in Zd with

p(ω) :=

n
∏

j=1

p(ωj−1, ωj) > 0 p(η) :==

m
∏

j=1

p(ηj−1, ηj) > 0.

Then we can write

Q(λ) = (1− λ)2
∞
∑

n=0

∞
∑

m=0

∑

ω,η

λn+m p(ω) p(η),

where the last sum is over all paths ω, η with |ω| = n, |η| = m,ω0 = 0 and ω ∩ η 6= ∅. For each such

pair (ω, η) we define a 4-tuple of paths starting at the origin (ω−, ω+, η−, η+) as follows. Let

s = min{j : ωj ∈ η}, t = min{k : ηk = ωs}.

ω− = [ωs − ωs, ωs−1 − ωs, . . . , ω0 − ωs], ω+ = [ωs − ωs, ωs+1 − ωs, . . . , ωn − ωs],

η− = [ηt − ηt, ηt−1 − ηt, . . . , η0 − ηt], η+ = [ηt − ηt, ηt+1 − ηt, . . . , ηm − ηt].

Note that p(ω) = p(ω−) p(ω+), p(η) = p(η−) p(η+). Also,

0 6∈ [η−1 , . . . , η
−
t ], [ω−

1 , . . . , ω
−
s ] ∩ [η− ∪ η+] = ∅. (10.4)
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Conversely, for each 4-tuple (ω−, ω+, η−, η+) of paths starting at the origin satisfying (10.4), we

can find a corresponding (ω, η) with ω0 = 0 by inverting this procedure. Therefore,

Q(λ) = (1− λ)2
∑

0≤n−,n+,m−,m+

∑

ω,ω+,η−,η+

λn−+n++m−+m+ p(ω−)p(ω+)p(η−)p(η+),

where the last sum is over all (ω−, ω+, η−, η+) with |ω−| = n−, |ω+| = n+, |η−| = m−, |η+| = m+

satisfying (10.4). Note that there is no restriction on the path ω+. Hence we can sum over n+ and

ω+ to get

Q(λ) = (1− λ)
∑

0≤n,m−,m+

∑

ω,η−,η+

λn+m−+m+ p(ω)p(η−)p(η+),

But it is easy to check that the left-hand side of (10.3) equals

(1− λ)3
∑

0≤n,m−,m+

∑

ω,η−,η+

λn+m−+m+ p(ω)p(η−)p(η+).

Corollary 10.2.2 For d = 2, 3, 4,

P{S(0, n] ∩ (S1(0, n] ∪ S2[0, n]) = ∅} ≍ P{S(0, Tλn ] ∩ (S1(0, T 1
λn

] ∪ S2[0, T 2
λn

]) = ∅}
≍ (1− λn)2Q(λn)

≍
{

n
d−4
2 , d = 2, 3

(log n)−1, d = 4

Proof [Sketch] We have already noted the last relation. The previous proposition almost proves

the second relation. It gives a lower bound. Since P{Tλn = 0} = 1/n, the upper bound will follow

if we show that

P[Vλn | S(0, Tλn ] ∩ (S1(0, T 1
λn

] ∪ S2[0, T 2
λn

]) = ∅, Tλn > 0] ≥ c > 0. (10.5)

We leave this as an exercise (Exercise 10.1).

One direction of the first relation can be proved by considering the event {Tλn , T
1
λn
, T 2

λn
≤ n}

which is independent of the random walks and whose probability is bounded below by a c > 0

uniformly in n. This shows

P{S(0, Tλn ] ∩ (S1(0, T 1
λn

] ∪ S2[0, T 2
λn

]) = ∅} ≥ cP{S(0, n] ∩ (S1(0, n] ∪ S2[0, n]) = ∅}.

For the other direction, it suffices to show that

P{S(0, Tλn ] ∩ (S1(0, T 1
λn

] ∪ S2[0, T 2
λn

]) = ∅;Tλn , T
1
λn
, T 2

λn
≥ n} ≥ c (1 − λn)2Q(λn).

This can be established by going through the construction in proof of Proposition 10.2.1. We leave

this to the interested reader.
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10.3 One-sided exponent

Let

q(n) = P{S(0, n] ∩ S1(0, n] = ∅}.

This is not an easy quantity to estimate. If we let

Yn = P
{

S(0, n] ∩ S1(0, n] = ∅ | S(0, n]
}

,

then we can write

q(n) = E[Yn].

Note that if S, S1, S2 are independent, then

E[Y 2
n ] = P

{

S(0, n] ∩ (S1(0, n] ∪ S2(0, n]) = ∅
}

.

Hence, we see that

E[Y 2
n ] ≍

{

(log n)−1, d = 4

n
d−4
2 , d < 4

(10.6)

Since 0 ≤ Yn ≤ 1, we know that

E[Y 2
n ] ≤ E[Yn] ≤

√

E[Y 2
n ]. (10.7)

If it were true that (E[Yn])
2 ≍ E[Y 2

n ] we would know how E[Yn] behaves. Unfortunately, this is not

true for small d.

As an example, consider simple random walk on Z. In order for S(0, n] to avoid S1[0, n], ei-

ther S(0, n] ⊂ {1, 2, . . .} and S1[0, n] ⊂ {0,−1,−2, . . .} or S(0, n) ⊂ {−1,−2, . . .} and S1[0, n] ⊂
{0, 1, 2, . . .}. The gambler’s ruin estimate shows that the probability of each of these events is

comparable to n−1/2 and hence

E[Yn] ≍ n−1, E[Y 2
n ] ≍ n−3/2.

Another way of saying this is

P{S(0, n] ∩ S2(0, n] = ∅} ≍ n−1, P{S(0, n] ∩ S2(0, n] = ∅ | S(0, n] ∩ S1(0, n] = ∅} ≍ n−1/2.

For d = 4, it is true that (E[Yn])
2 ≍ E[Y 2

n ]. For d < 4, the relation (E[Yn])
2 ≍ E[Y 2

n ] does

not hold. The intersection exponent ζ = ζd is defined by saying E[Yn] ≍ n−ζ . One can show the

existence of the exponent by first showing the existence of a similar exponent for Brownian motion

(this is fairly easy) and then showing that the random walk has the same exponent (this takes

more work, see [11]). This argument does not establish the value of ζ. For d = 2, it is known

that ζ = 5/8. The techniques [12] of the proof use conformal invariance of Brownian motion and

a process called the Schramm-Loewner evolution (SLE). For d = 3, the exact value is not known

(and perhaps will never be known). Corollary 10.2.2 and (10.7) imply that 1/4 ≤ ζ ≤ 1/2, and it

has been proved that both inequalities are actually strict. Numerical simulations suggest a value

of about .29.

♣ The relation E[Y 2
n ] ≈ E[Yn]2 or equivalently

P{S(0, n] ∩ S2(0, n] = ∅} ≍ P{S(0, n] ∩ S2(0, n] = ∅ | S(0, n] ∩ S1(0, n] = ∅}
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is sometimes called mean-field behavior. Many systems in statistical physics have mean-field behavior above a

critical dimension and also exhibit such behavior at the critical dimension with a logarithmic correction. Below the

critical dimension they do not have mean-field behavior. The study of the exponents E[Y r
n ] ≍ n−ζ(r) sometimes

goes under the name of multifractal analysis. The function ζ2(r) is known for all r ≥ 0, see [12].

Exercise 10.1 Prove (10.5).
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Loop-erased random walk

Loop-erased walks were introduced in Chapter 9 as a measure on self-avoiding paths obtained

by starting with a (not necessarily probability) measure on intersecting paths and erasing loops

chronologically. In this chapter we will study the corresponding process obtained when one starts

with a probability measure on paths; we call this the loop-erased random walk (LERW) or the

Laplacian random walk. We will consider only LERW derived from simple random walk in Zd, but

many of the ideas can be extended to loop-erased random walks obtained from Markov chains.

♣ The terms loop-erased walk and loop-erased random walk tend to be used synonymously in the literature.

We will make a distinction in this book, reserving LERW for a stochastic process associated to a probability

measure on paths.

Throughout this section Sn will denote a simple random walk in Zd. We write S1
n, S

2
n, . . . for

independent realizations of the walk. We let τA, τA be defined as in (4.27) and we use τ jA, τ
j
A to be

the corresponding quantities for Sj. We let

pAn (x, y) = pAn (y, x) = Px{Sn = y : τA > n}.

If x 6∈ A, then pAn (x, y) = 0 for all n, y.

11.1 h-processes

We will see that the loop-erased random walk looks like a random walk conditioned to avoid its

past. As the LERW grows, the “past” of the walk also grows; this is an example of what is called

a “moving boundary”. In this section we consider the process obtained by conditioning random

walk to avoid a fixed set. This is a special case of an h-process.

Suppose A ⊂ Zd and h : Zd → [0,∞) is a strictly positive and harmonic function on A that

vanishes on Zd \A. Let

(∂A)+ = (∂A)+,h = {y ∈ ∂A : h(y) > 0} = {y ∈ Zd \ A : h(y) > 0}.

The (Doob) h-process (with reflecting boundary) is the Markov chain on A with transition prob-

ability q̃ = q̃A,h defined as follows.

245
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• If x ∈ A and |x− y| = 1,

q̃(x, y) =
h(y)

∑

|z−x|=1 h(z)
=

h(y)

2dh(x)
. (11.1)

• If x ∈ ∂A and |x− y| = 1,

q̃(x, y) =
h(y)

∑

|z−x|=1 h(z)
.

The second equality in (11.1) follows by the fact that Lh(x) = 0. The definition of q̃(x, y) for

x ∈ ∂A is the same as that for x ∈ A, but we write it separately to emphasize that the second

equality in (11.1) does not necessarily hold for x ∈ ∂A. The h-process stopped at (∂A)+ is the chain

with transition probability q = qA,h which equals q̃ except for

• q(x, x) = 1, x ∈ (∂A)+.

Note that if x ∈ ∂A \ (∂A)+, then q(y, x) = q̃(y, x) = 0 for all y ∈ A. In other words, the chain

can start in x ∈ ∂A \ (∂A)+, but it cannot visit there at positive times. Let q̃n = q̃A,hn , qn = qA,hn

denote the usual n-step transition probabilities for the Markov chains.

Proposition 11.1.1 If x, y ∈ A,

qA,hn (x, y) = pAn (x, y)
h(y)

h(x)
.

In particular, qA,hn (x, x) = pAn (x, x).

Proof Let

ω = [ω0 = x, ω1, . . . , ωn = y]

be a nearest neighbor path with ωj ∈ A for all j. Then the probability that first n points of the

h-process starting at x are ω1, . . . , ωn in order is

n
∏

j=1

h(ωj)

2dh(ωj−1)
= (2d)−n

h(y)

h(x)
.

By summing over all paths ω, we get the proposition.

♣ If we consider qA,h and pA as measures on finite paths ω = [ω0, . . . , ωn] in A, then we can rephrase the
proposition as

dqA,h

dpA
(ω) =

h(ωn)

h(ω0)
.

Formulations like this in terms of Radon-Nikodym derivatives of measures can be extended to measures on

continuous paths such as Brownian motion.

♣ The h-process can be considered as the random walk “weighted by the function h”. One can define this
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for any positive function on A, even if h is not harmonic, using the first equality in (11.1). However, Proposition

11.1.1 will not hold if h is not harmonic.

Examples

• If A ⊂ Zd and V ⊂ ∂A, let

hV,A(x) = Px{SτA ∈ V } =
∑

y∈V
HA(x, y).

Assume hV,A(x) > 0 for all x ∈ A. By definition, hV,A ≡ 1 on V and hV,A ≡ 0 on Zd \ (A ∪ V ).

The hV,A-process corresponds to simple random walk conditioned to leave A at V . We usually

consider the version stopped at V = (∂A)+.

– Suppose x ∈ ∂A \ V and

H∂A(x, V ) := Px{S1 ∈ A;SτA ∈ V } =
∑

y∈A
H∂A(x, y) > 0.

If |x− y| > 1 for all y ∈ V , then the excursion measure as defined in Section 9.6 corresponding

to paths from x to V in A normalized to be a probability measure is the hV,A-process. If there

is a y ∈ V with |x − y| = 1, the hV,A-process allows an immediate transition to y while the

normalized excursion measure does not.

• Let A = H = {x + iy ∈ Z × iZ : y > 0} and h(z) = Im(z). Then h is a harmonic function on

H that vanishes on ∂A. This h-process corresponds to simple random walk conditioned never to

leave H and is sometimes called an H-excursion. With probability one this process never leaves

H. Also, if q = qH,h and x+ iy ∈ H,

q(x+ iy, (x ± 1) + iy) =
1

4
,

q(x+ iy, x+ i(y + 1)) =
y + 1

4y
, q(x+ iy,+i(y − 1)) =

y − 1

4y
.

• Suppose A is a proper subset of Zd and V = ∂A. Then the hV,A-process is simple random walk

conditioned to leave A. If d = 1, 2 or Zd \ A is a recurrent subset of Zd, then hV,A ≡ 1 and the

hV,A-process is the same as simple random walk.

• Suppose A is a connected subset of Zd, d ≥ 3 such that

h∞,A(x) := Px{τA =∞} > 0.

Then the h∞,A-process is simple random walk conditioned to stay in A.

• Let A be a connected subset of Z2 such that Z2 \ A is finite and nonempty, and let

h(x) = a(x)− Ex [a(SτA)] ,

be the unique function that is harmonic on A; vanishes on ∂A; and satisfies h(x) ∼ (2/π) log |x|
as x→∞, see (6.40). Then the h-process is simple random walk conditioned to stay in A. Note

that this “conditioning” is on an event of probability zero. Using (6.40), we can see that this is

the limit as n→∞ of the hVn,An processes where

An = A ∩ {|z| < n}, Vn = ∂An ∩ {|z| ≥ n}.
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Note that for large n, Vn = ∂Bn.

11.2 Loop-erased random walk

Suppose A ⊂ Zd, V ⊂ ∂A, and x ∈ A with that hV,A(x) > 0. The loop-erased random walk (LERW)

from x to V in A is the probability measure on paths obtained by taking the hV,A-process stopped

at V and erasing loops. We can define the walk equivalently as follows.

• Take a simple random walk Sn started at x and stopped when it reaches ∂A. Condition on

the event (of positive probability) {SτA ∈ V }. The conditional probability gives a probability

measure on (finite) paths

ω = [S0 = x, S1, . . . , Sn = SτA ] .

• Erase loops from each ω which produces a self-avoiding path

η = L(ω) = [Ŝ0 = x, Ŝ1, . . . , Ŝm = SτA ],

with Ŝ1, . . . , Ŝm−1 ∈ A. We now have a probability measure on self-avoiding paths from x to V ,

and this is the LERW.

Similarly, if x ∈ ∂A \ V with Px{SτA ∈ V } > 0, we define LERW from x to V in A by erasing

loops from the hV,A-process started at x stopped at V . If x ∈ V , we define LERW from x to V to

be the trivial path of length zero.

We write the LERW as

Ŝ0, Ŝ1, . . . , Ŝρ.

Here ρ is the length of the loop-erasure of the h-process.

The LERW gives a probability measure on paths which we give explicitly in the next proposition.

We will use the results and notations from Chapter 9 where the weight q from that chapter is the

weight associated to simple random walk, q(x, y) = 1/2d if |x− y| = 1.

Proposition 11.2.1 Suppose V ⊂ ∂A, x ∈ A \ V and Ŝ0, Ŝ1, . . . , Ŝρ is LERW from x to V in A.

Suppose η = [η0, . . . , ηn] is a self-avoiding path with η0 = x ∈ A, ηn ∈ V , and ηj ∈ A for 0 < j < n.

Then

P{ρ = n; [Ŝ0, . . . , Ŝn] = η} =
1

(2d)n Px{SτA ∈ V }
Fη(A).

Proof This is proved in the same way as Proposition 9.5.1. The extra term Px{SτA ∈ V } comes

from the normalization to be a probability measure.

If ω = [ω0, ω1, . . . , ωm] and ωR denotes the reversed path [ωm, ωm−1, . . . , ω0], it is not necessarily

true that L(ωR) = [L(ω)]R (the reader might want to find an example). However, the last proposi-

tion shows that for any self-avoiding path η with appropriate endpoints, the probability that LERW

produces η depends only on the set {η1, . . . , ηn−1}. For this reason we have the following corollary

which shows that the distribution of LERW is reversible.

Corollary 11.2.2 (Reversibility of LERW) Suppose x, y ∈ ∂A and Ŝ0, Ŝ1, . . . , Ŝρ is LERW

from x to y in A. Then the distribution of Ŝρ, Ŝρ−1, . . . , Ŝ0 is that of LERW from y to x.
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Proposition 11.2.3 If x ∈ A with hV,A(x) > 0, then the distribution of LERW from x to V in A

stopped at V is the same as that of LERW from x to V in A \ {x} stopped at V .

Proof Let X0,X1, . . . denote an hV,A-process started at x, and let τ = τA be the first time that the

walk leaves A, which with probability one is the first time that the walk visits V . Let

σ = max{m < τA : Xm = x}.
Then using last-exit decomposition ideas (see Proposition 4.6.5) and Proposition 11.1.1, the distri-

bution of

[Xσ,Xσ+1, . . . ,XτA ]

is the same as that of an hV,A-process stopped at V conditioned not to return to x. This is the

same as an hV,A\{x}-process.

If x ∈ ∂A \ V , then the first step Ŝ1 of the LERW from x to V in A has the same distribution as

the first step of the hV,A-process from x to V . Hence,

Px{Ŝ1 = y} =
hV,A(y)

∑

|z−x|=1 hV,A(z)
.

Proposition 11.2.4 Suppose x ∈ A \V and Ŝ0, . . . , Ŝρ denotes LERW from x to V in A. Suppose

η = [η0, . . . , ηm] is a self-avoiding path with η0 = x and η1, . . . , ηm ∈ A. Then

Px{ρ > m; [Ŝ0, . . . , Ŝm] = η} =
Pηm{SτA\η

∈ V }
(2d)m Px{SτA ∈ V }

Fη(A).

Proof Let ω = [ω0, . . . , ωn] be a nearest neighbor path with ω0 = x, ωn ∈ V and ω0, . . . , ωn−1 ∈ A
such that the length of LE(ω) is greater than m and the first m steps of LE(ω) agrees with η. Let

s = max{j : ωj = ηm}
and write ω = ω− ⊕ ω+ where

ω− = [ω0, ω1, . . . , ωs], ω+ = [ωs, ωs+1, . . . , ωn].

Then L(ω−) = η and ω+ is a nearest neighbor path from ηm to V with

ωs = ηm, {ωs+1, . . . , ωn−1} ∈ A \ η, ωn ∈ V. (11.2)

Every such ω can be obtained by concatenating an ω− in A with L(ω−) = η with an ω+ satisfying

(11.2). The total measure of the set of ω− is given by (2d)−m Fη(A) and the total measure of the

set of ω+ is given by Pηm{SτA\η
∈ V }. Again, the term Px{SτA ∈ V } comes from the normalization

to make the LERW a probability measure.

The LERW is not a Markov process. However, we can consider the LERW from x to V in A

as a Markov chain on a different state space. Fix V , and consider the state space X of ordered

pairs (x,A) with x ∈ Zd, A ⊂ Zd \ (V ∪ {x}) and either x ∈ V or Px{SτA ∈ V } > 0. The states

(x,A), x ∈ V are absorbing states. For other states, the probability of the transition

(x,A) −→ (y,A \ {y})
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is the same as the probability that an hV,A-process starting at x takes its first step to y. The fact

that this is a Markov chain is sometimes called the domain Markov property for LERW.

11.3 LERW in Zd

The loop-erased random walk in Zd is the process obtained by erasing the loops from the path of

a d-dimensional simple random walk. The d = 1 case is trivial, so we will focus on d ≥ 2. We will

use the term self-avoiding path for a nearest neighbor path that is self-avoiding.

11.3.1 d ≥ 3

The definition of LERW is easier in the transient case d ≥ 3 for then we can take the infinite path

[S0, S1, S2, . . .]

and erase loops chronologically to obtain the path

[Ŝ0, Ŝ1, Ŝ2, . . .].

To be precise, we let

σ0 = max{j ≥ 0 : Sj = 0},

and for k > 0,

σk = max{j > σk−1 : Sj = Sσk−1+1},

and then

[Ŝ0, Ŝ1, Ŝ2, . . .] = [Sσ0 , Sσ1 , Sσ2 , . . .].

♣ It is convenient to define chronological erasing as above by considering the last visit to a point. It is not

difficult to see that this gives the same path as obtained by “nonanticipating” loop erasure, i.e., every time one

visits a point that is on the path one erases all the points in between.

The following properties follow from the previous sections in this chapter and we omit the proofs.

• Given Ŝ0, . . . , Ŝm, the distribution of Ŝm+1 is that of the h∞,Am-process starting at Ŝm where

Am = Zd \ {Ŝ0, . . . , Ŝm}. Indeed,

P{Ŝm+1 = x | [Ŝ0, . . . , Ŝm]} =
h∞,Am(x)

∑

|y−Ŝm|=1 h∞,Am(y)
, |x− Ŝm| = 1.

• If η = [η0, . . . , ηm] is a self-avoiding path with η0 = 0,

P
{

[Ŝ0, . . . , Ŝm] = η
}

=
EsAm(ηm)

(2d)m
Fη(Zd) =

EsAm(ηm)

(2d)m

m
∏

j=0

GAj−1(ηj , ηj).

Here A−1 = Zd.
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• Suppose Zd \A is finite,

Ar = A ∩ {|z| < r}, V r = ∂Ar ∩ {|z| ≥ r},

and Ŝ
(r)
0 , . . . , Ŝ

(r)
m denotes (the first m steps of) a LERW from 0 to V r in Ar. Then for every

self-avoiding path η,

P
{

[Ŝ0, . . . , Ŝm] = η
}

= lim
r→∞

P
{

[Ŝ
(r)
0 , . . . , Ŝ(r)

m ] = η
}

.

11.3.2 d = 2

There are a number of ways to define LERW in Z2; all the reasonable ones give the same answer.

One possibility (see Exercise 11.2) is to take simple random walk conditioned not to return to

the origin and erase loops. We take a different approach in this section and define it as the limit

as N → ∞ of the measure obtained by erasing loops from simple random walk stopped when it

reaches ∂BN . This approach has the advantage that we obtain an error estimate on the rate of

convergence.

Let Sn denote simple random walk starting at the origin in Z2. Let Ŝ0,N , . . . , ŜρN ,N denote

LERW from 0 to ∂BN in BN . A This can be obtained by erasing loops from

[S0, S1, . . . , SξN ].

As noted in Section 11.2, if we condition on the event that τ0 > ξN , we get the same distribution on

the LERW. Let ΞN denote the set of self-avoiding paths η = [0, η1, . . . , ηk] with η1, . . . , ηk−1 ∈ BN ,

and ηN ∈ ∂BN and let νN denote the corresponding probability measure on ΞN ,

νN (η) = P{[Ŝ0,N , . . . , Ŝn,N ] = η}.

If n < N , we can also consider νN as a probability measure on Ξn, by considering the path η up

to the first time it visits ∂Bn and removing the rest of the path. The goal of this subsection is to

prove the following result.

Proposition 11.3.1 Suppose d = 2 and n < ∞. For each N ≥ n, consider νN as a probability

measure on Ξn. Then the limit

ν = lim
N→∞

νN ,

exists. Moreover, for every η ∈ Ξn.

νN (η) = ν(η)

[

1 +O

(

1

log(N/n)

)]

, N ≥ 2n. (11.3)

♣ To be more specific, (11.3) means that there is a c such that for all N ≥ 2n and all η ∈ Ξn,
∣

∣

∣

∣

νN (η)

ν(η)
− 1

∣

∣

∣

∣

≤ c

log(N/n)
.

The proof of this proposition will require an estimate on the loop measure as defined in Chapter
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9. We start by stating the following proposition which is an immediate application of Proposition

11.2.4 to our situation.

Proposition 11.3.2 If n ≤ N and η = [η0, . . . , ηk] ∈ Ξn,

νN (η) =
Pηk

{

ξN < τZd\η
}

(2d)|η|
Fη(BN ) =

Pηk

{

ξN < τZd\η
}

(2d)|η| P{ξN < τ0}
Fη(BN \ {0}).

♣ Since 0 ∈ η,
Fη(BN ) = GBN

(0, 0)Fη(BN \ {0}) = P{ξN < τ0}−1 Fη(BN \ {0}),

which shows the second equality in the proposition.

We will say that a loop disconnects the origin from a set A if there is no self-avoiding path starting

at the origin ending at A that does not intersect the loop; in particular, loops that intersect the

origin disconnect the origin from all sets. Let m denote the unrooted loop measure for simple

random walk as defined in Chapter 9.

Lemma 11.3.3 There exists c < ∞ such that the following holds for simple random walk in Z2.

For every n < N/2 <∞ consider the set U = U(n,N) of unrooted loops ω satisfying

ω ∩ Bn 6= ∅, ω ∩ (Zd \ BN ) 6= ∅
and such that ω does not disconnect the origin from ∂Bn. Then

m(U) ≤ c

log(N/n).

Proof Order Z2 = {x0 = 0, x1, x2, . . .} so that j < k implies |xj| ≤ |xk|. Let Ak = Z2 \
{x0, . . . , xk−1}. For each unrooted loop ω, let k be the smallest index with xk ∈ ω and, as be-

fore, let dxk
(ω) denote the number of times that ω visits xk. By choosing the root uniformly among

the dxk
(ω) visits to xk, we can see that

m(U) =

∞
∑

k=1

∑

ω∈Ũk

1

(2d)|ω| dxk
(ω)
≤

∞
∑

k=1

∑

ω∈Ũk

1

(2d)|ω|
,

where Ũk = Ũk(n,N) denotes the set of (rooted) loops rooted at xk satisfying the following three

properties:

• ω ∩ {x0, . . . , xk−1} = ∅,
• ω ∩ (Zd \ BN ) 6= ∅,
• ω does not disconnect the origin from ∂Bn.

We now give an upper bound for the measure of Ũk for xk ∈ Bn. Suppose

ω = [ω0, . . . , ω2l] ∈ Ũk.
Let s0 = ω0, s5 = 2l and define s1, . . . , s4 as follows.

• Let s1 be the smallest index s such that |ωs| ≥ 2|xk|.
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• Let s2 be the smallest index s ≥ s1 such that |ωs| ≥ n
• Let s3 be the smallest index s ≥ s2 such that |ωs| ≥ N .

• Let s4 be the largest index s ≤ 2l such that |ωs| ≥ 2|xk|.
Then we can decompose

ω = ω1 ⊕ ω2 ⊕ ω3 ⊕ ω4 ⊕ ω5,

where ωj = [ωsj−1 , . . . , ωsj ]. We can use this decomposition to estimate the probability of Ũk.

• ω1 is a path from xk to ∂B2|xk| that does not hit {x0, . . . , xk−1}. Using gambler’s ruin (or a

similar estimate), the probability of such a path is bounded above by c/|xk|.
• ω2 is a path from ∂B2|xk| to ∂Bn that does not disconnect the origin from ∂Bn. There

exists c, α such that the probability of reaching distance n without disconnecting the origin

is bounded above by c (|xk|/n)α (see Exercise 3.4).

• ω3 is a path from ∂Bn to ∂BN that does not disconnect the origin from ∂Bn. The probability

of such paths is bounded above by c/ log(N/n), see Exercise 6.4.

• The reverse of ω5 is a path like ω1 and has probability c/|xk|.
• Given ω3 and ω5, ω4 is a path from ωs3 ∈ ∂BN to ωs4 ∈ ∂B2|xk| that does not enter

{x0, . . . , xk−1}. The expected number such paths is O(1).

Combining all these estimates we see that the measure of Ũk is bounded above by a constant times

1

|xk|2−α nα
1

log(N/n)
.

By summing over xk ∈ Bn, we get the proposition.

♣ Being able to verify all the estimates in the last proof is a good test that one has absorbed a lot of material

from this book!

Proof [of Proposition 11.3.1] Let ǫr = 1/ log r. We will show that for 2n ≤ N ≤ M and η =

[η0, . . . , ηk] ∈ Ξn,

νM (η) = νN (η) [1 +O(ǫN/n)]. (11.4)

Standard arguments using Cauchy sequences then show the existence of ν satisfying (11.3). Propo-

sition 11.3.2 implies

νM (η) = νN (η)
Fη(BM )

Fη(BN )
Pηk

{

ξM < τZ2\η | ξN < τZ2\η
}

.

The set of loops contributing to the term Fη(BM )/Fη(BN ) are of two types: those that disconnect

the origin from ∂Bn and those that do not. Loops that disconnect the origin from ∂Bn intersect

every η̃ ∈ Ξn and hence contribute a factor C(n,N,M) that is independent of η. Hence, using

Lemma 11.3.3, we see that

Fη(BM )

Fη(BN )
= C(n,N,M) [1 +O(ǫN/n)], (11.5)
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Using Proposition 6.4.1, we can see that for every x ∈ ∂BN ,

Px{ξM < τZ2\∂Bn
} =

log(N/n)

log(M/n)

[

1 +O(ǫN/n)
]

(actually the error is of smaller order than this). Using (6.49), if x ∈ Bn,

Px{ξN < τZ2\η} ≤
c

log(N/n)
.

We therefore get

Pηk
{

ξM < τZ2\η | ξN < τZ2\η
}

=
log(N/n)

log(M/n)

[

1 +O(ǫN/n)
]

.

Combining this with (11.5) we get

νM (η) = νN (η)C(n,N,M)
log(N/n)

log(M/n)

[

1 +O(ǫN/n)
]

,

where we emphasize that the error term is bounded uniformly in η ∈ Ξn. However, both νN and

νM are probability measures. By summing over η ∈ Ξn on both sides, we get

C(n,N,M)
log(N/n)

log(M/n)
= 1 +O(ǫN/n),

which gives (11.4).

The following is proved similarly (see Exercise 9.7).

Proposition 11.3.4 Suppose d ≥ 3 and n < ∞. For each N ≥ n, consider νN as a probability

measure on Ξn. Then the limit

ν = lim
N→∞

νN ,

exists and is the same as that given by the infinite LERW. Moreover, for every η ∈ Ξn.

νN (η) = ν(η)
[

1 +O
(

(n/N)d−2
)]

, N ≥ 2n. (11.6)

11.4 Rate of growth

If Ŝ0, Ŝ1, . . . , denotes LERW in Zd, d ≥ 2, we let

ξ̂n = min{j : |Ŝj | ≥ n}.

Let

F̂ (n) = F̂d(n) = E[ξ̂n].

In other words it takes about F̂ (n) steps for the LERW to go distance n. Recall that for simple

random walk, E[ξn] ∼ n2. Note that

F̂ (n) =
∑

x∈Bn

P{Ŝj = x for some j < ξ̂n}.
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By Propositions 11.3.1 and 11.3.4, we know that if x ∈ Bn,

P{Ŝj = x for some j < ξ̂n} ≍ P{x ∈ LE(S[0, ξ2n])}

=

∞
∑

j=0

P{j < ξ2n;Sj = x;LE(S[0, j]) ∩ S[j + 1, ξ2n] = ∅}.

If S, S1 are independent random walks, let

Q̂(λ) = (1− λ)2
∑

x∈Zd

∞
∑

n=0

∞
∑

m=0

λn+m P0,x{LE(S[0, n]) ∩ S1[0,m] = ∅}.

In Proposition 10.2.1, a probability of nonintersection of random walks starting at the origin was

computed in terms of a “long-range” intersection quantity Q(λ). We do something similar for

LERW using the quantity Q̂(λ). The proof of Proposition 10.2.1 used a path decomposition: given

two intersecting paths, the proof focused on the first intersection (using the time scale of one of the

paths) and then translating to make that the origin. The proof of the next proposition is similar

given a simple random walk that intersects a loop-erased walk. However, we get two different

results depending on whether we focus on the first intersection on the time scale of the simple walk

or on the time scale of the loop-erased walk.

Proposition 11.4.1 Let S, S1, S2, S3 be independent simple random walks starting at the origin

in Zd with independent geometric killing times Tλ, T
1
λ , . . . , T

3
λ .

(i) Let V 1 = V 1
λ be the event that

Sj[1, T 1
λ ] ∩ LE(S[0, Tλ]) = ∅, j = 1, 2,

and

S3[1, T 3
λ ] ∩ [LE(S[0, Tλ]) \ {0}] = ∅.

Then

P (V 1) = (1− λ)2 Q̂(λ). (11.7)

(ii) Let V 2 = V 2
λ be the event that

S1[1, T 1
λ ] ∩ LE(S[0, Tλ]) = ∅,

and

S2[1, T 2
λ ] ∩

[

LE(S[0, Tλ]) ∪ LE(S1[0, T 1
λ ]) = ∅

}

.

Then

P (V 2) = (1− λ)2 Q̂(λ). (11.8)

Proof We use some of the notation from the proof of Proposition 10.2.1. Note that

Q̂(λ) = (1− λ)2
∞
∑

n=0

∞
∑

m=0

∑

ω,η

λn+m p(ω) p(η),
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where the last sum is over all ω, η with |ω| = n, |η| = m,ω0 = 0 and L(ω) ∩ η 6= ∅. We write

ω̂ = L(ω) = [ω̂0, . . . , ω̂l].

To prove (11.7), on the event ω̂ ∩ η 6= ∅, we let

u = min{j : ω̂j ∈ η}, s = max{j : ωj = ω̂u}, t = min{k : ηk = ω̂u}.

We define the paths ω−, ω+, η−, η+ as in the proof of Proposition 10.2.1 using these values of s, t.

Our definition of s, t implies for j > 0,

ω+
j 6∈ LER(ω−), η−j 6∈ LER(ω−), η+

j 6∈ LER(ω−) \ {0}. (11.9)

Here we write LER to indicate that one traverses the path in the reverse direction, erases loops,

and then reverses the path again — this is not necessarily the same as LE(ω−). Conversely, for any

4-tuple (ω−, ω+, η−, η+) satisfying (11.9), we get a corresponding (ω, η) satisfying L(ω) ∩ η 6= ∅.
Therefore,

Q̂(λ) = (1− λ)2
∑

0≤n−,n+,m−,m+

∑

ω,ω+,η−,η+

λn−+n++m−+m+ p(ω−)p(ω+)p(η−)p(η+),

where the last sum is over all (ω−, ω+, η−, η+) with |ω−| = n−, |ω+| = n+, |η−| = m−, |η+| = m+

satisfying (11.9). Using Corollary 11.2.2, we see that the sum is the same if replace (11.9) with:

for j > 0,

ω+
j 6∈ LE(ω−), η−j 6∈ LE(ω−), η+

j 6∈ LE(ω−) \ {0}.

To prove (11.8), on the event ω̂ ∩ η 6= ∅, we let

t = min{k : ηk ∈ ω̂}, s = max{j : ωj = ηt},

and define (ω−, ω+, η−, η+) as before. The conditions now become for j > 0,

ω+
j 6∈ LER(ω−), η−j 6∈ [LER(ω−) ∪ LE(ω+)],

It is harder to estimate Q̂(λ) then Q(λ). We do not give a proof here but we state that if

λn = 1− 1
n , then as n→∞,

Q̂(λn) ≍
{

nd/2, d < 4

n2 [log n]−1, d = 4.

This is the same behavior as for Q(λn). Roughly speaking, if two random walks of length n start

distance
√
n away, then the probability that one walk intersects the loop erasure of the other is of

order 1 for d ≤ 3 and of order 1/ log n for d = 4. For d = 1, 2, this is almost obvious for topological

reasons. The hard cases are d = 3, 4. For d = 3 the set of “cut points” (i.e., points Sj such that

S[0, j] ∩ S[j + 1, n] = ∅) has a “fractal dimension” strictly greater than one and hence tends to be

hit by a (roughly two-dimensional) simple random walk path. For d = 4, one can also show that

the probability of hitting the cut points is of order 1/ log n. Since all cut points are retained in loop
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erasure this gives a bound on the probability of hitting the loop-erasure. This estimate of Q̂(λ)

yields

P(V 1
λn

) ≍ P(V 2
λn

) ≍
{

n
d−4
2 , d < 4

1
logn , d = 4.

To compute the growth rate we would like to know the asymptotic behavior of

P{LE(S[0, λn]) ∩ S1[1, Tλn ] = ∅} = E[Yn],

where

Yn = P{LE(S[0, λn]) ∩ S1[1, Tλn ] = ∅ | S[0, λn]}.

Note that

P(V 1
λn

) ≍ E[Y 3
n ].

11.5 Short-range intersections

Studying the growth rate for LERW leads one to try to estimate probabilities such as

P{LE(S[0, n]) ∩ S[n+ 1, 2n] = ∅},

which by Corollary 11.2.2 is the same as

q̂n =: P{LE(S[0, n]) ∩ S1[1, n] = ∅},

where S, S1 are independent walks starting at the origin. If d ≥ 5,

q̂n ≥ P{S[0, n] ∩ S1[1, n] = ∅} ≥ c > 0,

so we will restrict our discussion to d ≤ 4. Let

Ŷn = P{LE(S[0, n]) ∩ S[n+ 1, 2n] = ∅ | S[0, n]}.

Using ideas similar to those leading up to (11.7), one can show that

E[Ŷ 3
n ] ≍

{

(log n)−1, d = 4

n
d−4
2 , d = 1, 2, 3.

(11.10)

This can be compared to (10.6) where the second moment for an analogous quantity is given. We

also know that

E[Ŷ 3
n ] ≤ E[Ŷn] ≤

(

E[Ŷn]
)1/3

. (11.11)

In the “mean-field” case d = 4, it can be shown that E[Ŷ 3
n ] ≍

(

E[Ŷn]
)3
. and hence that

qn ≍ (log n)−1/3.

Moreover, if we appropriately scale the process, the LERW converges to a Brownian motion.
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For d = 2, 3, we do not expect E[Ŷ 3
n ] ≍

(

E[Ŷn]
)3
. Let us define an exponent α = αd roughly as

qn ≈ n−α. The relations (11.10) and (11.11) imply that

α ≥ 4− d
6

.

It has been shown that for d = 2 the exponent α exists with α = 3/8; in other words, the expected

number of points in LE(S[0, n]) is of order n5/8 (see [6] and also [15]). This suggests that if we

scale appropriately, there should be a limit process whose paths have fractal dimension 5/4. In fact,

this has been proved. The limit process is the Schramm-Loewner evolution (SLE) with parameter

κ = 2 [13].

For d = 3, we get the bound α ≥ 1/6 which states that the number of points in LE(S[0, n])

should be no more than n5/6. We also expect that this bound is not sharp. The value of α3 is any

open problem; in fact, the existence of an exponent satisfying qn ≈ n−α has not been established.

However, the existence of a scaling limit has been shown in [9]

Exercises

Exercise 11.1 Suppose d ≥ 3 and Xn is simple random walk in Zd conditioned to return to the

origin. This is the h-process with

h(x) = Px{Sn = 0 for some n ≥ 0}.
Prove that

(i) For all d ≥ 3, Xn is a recurrent Markov chain.

(ii) Assume X0 = 0 and let T = min{j > 0 : Xj = 0}. Show that there is a c = cd > 0 such that

P{T = 2n} ≍ n−d/2, n→∞.
In particular,

E[T ]

{

=∞, d ≤ 4,

<∞, d ≥ 5.

Exercise 11.2 Suppose Xn is simple random walk in Z2 conditioned not to return to the origin.

This is the h-process with h(x) = a(x).

(i) Prove that Xn is a transient Markov chain.

(ii) Show that if loops are erased chronologically from this chain, then one gets LERW in Z2.
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Appendix

12.1 Some expansions

12.1.1 Riemann sums

In this book we often approximate sums by integrals. Here we give bounds on the size of the error

in such approximation.

Lemma 12.1.1 If f : (0,∞)→ R is a C2 function, and bn is defined by

bn = f(n)−
∫ n+(1/2)

n−(1/2)
f(s) ds,

then

|bn| ≤
1

24
sup

{

|f ′′(r)| : |n− r| ≤ 1

2

}

. (12.1)

If
∑ |bn| <∞, let

C =
∞
∑

n=1

bn, Bn =
∞
∑

j=n+1

|bn|.

Then
n
∑

j=1

f(j) =

∫ n+(1/2)

1/2
f(s) ds+ C +O(Bn).

Also, for all m < n
∣

∣

∣

∣

∣

∣

n
∑

j=m

f(j)−
∫ n+(1/2)

m−(1/2)
f(s) ds

∣

∣

∣

∣

∣

∣

≤ Bm.

Proof Taylor’s theorem shows that for |s− n| ≤ 1/2,

f(s) = f(n) + (s− n) f ′(n) +
1

2
f ′′(rs) (rs − n)2,

for some |n− rs| < 1/2. Hence, for such s,

|f(s) + f(−s)− 2f(n)| ≤ s2

2
sup{|f ′′(r)| : |n− r| ≤ s}.

259
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Integrating gives (12.1). The rest is straightforward.

Example. Suppose α < 1, β ∈ R and

f(n) = nα logβ n.

Note that for t ≥ 2,

|f ′′(t)| ≤ c tα−2 logβ t.

Therefore, there is a C(α, β) such that

n
∑

j=2

nα logβ n =

∫ n+(1/2)

2
tα logβ t dt+ C(α, β) +O(nα−1 logβ n)

=

∫ n

2
tα logβ t dt+

1

2
nα logβ n+ C(α, β) +O(nα−1 logβ n) (12.2)

12.1.2 Logarithm

Let log denote the branch of the complex logarithm on {z ∈ C; Re(z) > 0} with log 1 = 0. Using

the power series

log(1 + z) =





k
∑

j=1

(−1)j+1zj

j



+Oǫ(|z|k+1), |z| ≤ 1− ǫ.

we see that if r ∈ (0, 1) and |ξ| ≤ rt,

log

(

1 +
ξ

t

)t

= ξ − ξ2

2t
+

ξ3

3t2
+ · · ·+ (−1)k+1 ξk

ktk−1
+Or

( |ξ|k+1

tk

)

,

(

1 +
ξ

t

)t

= eξ exp

{

−ξ
2

2t
+
ξ3

3t2
+ · · ·+ (−1)k+1 ξk

ktk−1
+Or

( |ξ|k+1

tk

)}

. (12.3)

If |ξ|2/t is not too big, we can expand the exponential in a Taylor series. Recall that for fixed

R <∞, we can write

ez = 1 + z +
z2

2!
+ · · ·+ zk

k!
+OR(|z|k+1), |z| ≤ R.

Therefore, if r ∈ (0, 1), R <∞, |ξ| ≤ rt, |ξ|2 ≤ Rt, we can write

(

1 +
ξ

t

)t

= eξ
[

1− ξ2

2t
+

8ξ3 + 3ξ4

24t2
+ · · · + fk(ξ)

tk−1
+O

( |ξ|2k
tk

)]

, (12.4)

where fk is a polynomial of degree 2(k−1) and the implicit constant in the O(·) term depends only

on r,R and k. In particular,
(

1 +
1

n

)n

= e

[

1− 1

2n
+

11

24n2
+ · · · + bk

nk
+O

(

1

nk+1

)]

. (12.5)
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Lemma 12.1.2 For every positive integer k, there exist constants c(k, l), l = k + 1, k + 2, . . ., such

that for each m > k,
∞
∑

j=n

k

jk+1
=

1

nk
+

m
∑

l=k+1

c(k, l)

nl
+O

(

1

nm+1

)

. (12.6)

Proof If n > 1,

n−k =

∞
∑

j=n

[j−k − (j + 1)−k] =

∞
∑

j=n

j−k [1− (1 + j−1)−k] =

∞
∑

l=k

b(k, l)

∞
∑

j=n

l

jl+1
,

with b(k, k) = 1 (the other constants can be given explicitly but we do not need to). In particular,

n−k =

m
∑

l=k

b(k, j)





∞
∑

j=n

l

jl+1



+O

(

1

nm+1

)

.

The expression (12.6) can be obtained by inverting this expression; we omit the details.

Lemma 12.1.3 There exists a constant γ (called Euler’s constant) and b2, b3, . . . such that for

every integer k ≥ 2,

n
∑

j=1

1

j
= log n+ γ +

1

2n
+

k
∑

l=2

bl
nl

+O

(

1

nk+1

)

.

In fact,

γ = lim
n→∞





n
∑

j=1

1

j



− log n =

∫ 1

0
(1− e−t) 1

t
dt−

∫ ∞

1
e−t

1

t
dt. (12.7)

Proof Note that
n
∑

j=1

1

j
= log

(

n+
1

2

)

+ log 2 +

n
∑

j=1

βj ,

where

βj =
1

j
− log

(

j +
1

2

)

+ log

(

j − 1

2

)

= −
∞
∑

k=1

2

(2k + 1) (2j)2k+1
.

In particular, βj = O(j−3), and hence
∑

βj <∞. We can write

n
∑

j=1

1

j
= log

(

n+
1

2

)

+ γ −
∞
∑

j=n+1

βj = log n+ γ +
∞
∑

l=1

(−1)l+1

2l nl
−

∞
∑

j=n+1

βj ,

where γ is the constant

γ = log 2 +
∞
∑

j=1

βj .
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Using (12.6), we can write

∞
∑

j=n+1

βj =

k
∑

l=3

al
nl

+O

(

1

nk+1

)

,

for some constants al.

We will sketch the proof of (12.7) leaving the details to the reader. By Taylor’s series, we know

that

log n = − log

[

1−
(

1− 1

n

)]

=

∞
∑

j=1

(

1− 1

n

)j 1

j
.

Therefore,

γ = lim
n→∞





n
∑

j=1

1

j



− log n

= lim
n→∞

n
∑

j=1

[

1−
(

1− 1

n

)j
]

1

j
− lim

n→∞

∞
∑

j=n+1

(

1− 1

n

)j 1

j
.

We now use the approximation (1− n−1)n ∼ e−1 to get

lim
n→∞

n
∑

j=1

[

1−
(

1− 1

n

)j
]

1

j
= lim

n→∞

n
∑

j=1

1

n
(1− e−j/n) 1

j/n
=

∫ 1

0
(1− e−t) 1

t
dt,

lim
n→∞

∞
∑

j=n+1

(

1− 1

n

)j 1

j
= lim

n→∞

∞
∑

j=n+1

1

n
e−j/n

1

j/n
=

∫ ∞

1
e−t

1

t
dt.

Lemma 12.1.4 Suppose α ∈ R and m is a positive integer. There exist constants r0, r1, . . ., such

that if k is a positive integer and n ≥ m,

n
∏

j=m

(

1− α

j

)

= r0 n
−α
[

1 +
r1
n

+ · · ·+ rk
nk

+O

(

1

nk+1

)]

.

Proof Without loss of generality we assume that |α| ≤ 2m; if this does not hold we can factor out

the first few terms of the product and then analyze the remaining terms. Note that

log

n
∏

j=m

(

1− α

j

)

=

n
∑

j=m

log

(

1− α

j

)

= −
n
∑

j=m

∞
∑

l=1

αl

l jl
= −

∞
∑

l=1

n
∑

j=m

αl

l jl
.

For the l = 1 term we have

n
∑

j=m

α

j
= −

m−1
∑

j=1

α

j
+ α

[

log n+ γ +
1

2n
+

k
∑

l=2

bl
nl

+O

(

1

nk+1

)

]

.
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All of the other terms can be written in powers of (1/n). Therefore, we can write

log

n
∏

j=m

(

1− α

j

)

= −α log n+

k
∑

l=0

Cl
nl

+O

(

1

nk+1

)

.

The lemma is then obtained by exponentiating both sides.

12.2 Martingales

A filtration F0 ⊂ F1 ⊂ · · · is an increasing sequence of σ-algebras.

Definition. A sequence of integrable random variables M0,M1, . . . is called a martingale with

respect to the filtration {Fn} if each Mn is Fn-measurable and for each m ≤ n,

E[Mn | Fm] = Mm. (12.8)

If (12.8) is replaced with E[Mn | Fm] ≥ Mm the sequence is called a submartingale. If (12.8) is

replaced with E[Mn | Fm] ≤Mm the sequence is called a supermartingale.

Using properties of conditional expectation, it is easy to see that to verify (12.8) it suffices to

show for each n that E[Mn+1 | Fn] = Mn. This equality only needs to hold up to an event of

probability zero; in fact, the conditional expectation is only defined up to events of probability

zero. If the filtration is not specified, then the assumption is that Fn is the σ-algebra generated by

M0, . . . ,Mn. If M0,X1,X2, . . . are independent random variables with E[|M0|] <∞ and E[Xj ] = 0

for j ≥ 1, and

Mn = M0 +X1 + · · ·+Xn,

then M0,M1, . . . is a martingale. We omit the proof of the next lemma which is the conditional

expectation version of Jensen’s inequality.

Lemma 12.2.1 (Jensen’s inequality) If X is an integrable random variable; f : R → R is

convex with E[|f(X)|] <∞; and F is a σ-algebra, then E[f(X) | F ] ≥ f(E[X | F ]). In particular, if

M0,M1, . . . is a martingale; f : R→ R is convex with E[|f(Mn)|] <∞ for all n; and Yn = f(Mn);

then Y0, Y1, . . . is a submartingale.

In particular, if M0,M1, . . . is a martingale then

• if α ≥ 1, Yn := |Mn|α is a submartingale;

• if b ∈ R, then Yn := ebMn is a submartingale.

In both cases, this is assuming that E[Yn] <∞.

12.2.1 Optional Sampling Theorem

A stopping time with respect to a filtration {Fn} is a {0, 1, . . .} ∪ {∞}-valued random variable T

such that for each n, {T ≤ n} is Fn-measurable. If T is a stopping time, and n is a positive integer,

then Tn := T ∧ n is a stopping time satisfying Tn ≤ n.
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Proposition 12.2.2 Suppose M0,M1, . . . is a martingale and T is a stopping time each with respect

to the filtration Fn. Then Yn := MTn is a martingale with respect to Fn. In particular,

E[M0] = E[MTn ].

Proof Note that

Yn+1 = MTn 1{T ≤ n}+Mn+1 1{T ≥ n+ 1}.

The event {T ≥ n + 1} is the complement of the event {T ≤ n} and hence is Fn-measurable.

Therefore, by properties of conditional expectation,

E[Mn+1 1{T ≥ n+ 1} | Fn] = 1{T ≥ n+ 1}E[Mn+1 | Fn] = 1{T ≥ n+ 1}Mn.

Therefore,

E[Yn+1 | Fn] = MTn 1{T ≤ n}+Mn 1{T ≥ n+ 1} = Yn.

The optional sampling theorem states that under certain conditions, if P{T < ∞} = 1, then

E[M0] = E[MT ]. However, this does not hold without some further assumptions. For example, if

Mn is one-dimensional simple random walk starting at the origin and T is the first n such that

Mn = 1, then P{T < ∞} = 1, MT = 1, and hence E[M0] 6= E[MT ]. In the next theorem we list a

number of sufficient conditions under which we can conclude that E[M0] = E[MT ].

Theorem 12.2.3 (Optional Sampling Theorem) Suppose M0,M1, . . . is a martingale and T

is a stopping time with respect to the filtration {Fn}. Suppose that P{T < ∞} = 1. Suppose also

that at least one of the following conditions holds:

• There is a K <∞ such that P{T ≤ K} = 1.

• There exists an integrable random variable Y such that for all n, |MTn | ≤ Y .

• E [|MT |] <∞ and limn→∞ E[|Mn|;T > n] = 0.

• The random variables M0,M1, . . . are uniformly integrable, i.e., for every ǫ > 0 there is a

Kǫ <∞ such that for all n,

E[|Mn|; |Mn| > Kǫ] < ǫ.

• There exists an α > 1 and a K <∞ such that for all n, E[|Mn|α] ≤ K.

Then E[M0] = E[MT ].

Proof We will consider the conditions in order. The sufficiency of the first follows immediately

from Proposition 12.2.2. We know that MTn →MT with probability one. Proposition 12.2.2 gives

E[MTn ] = E[M0]. Hence we need to show that

lim
n→∞

E[MTn ] = E[MT ]. (12.9)

If the second condition holds, then this limit is justified by the dominated convergence theorem.

Now assume the third condition. Note that

MT = MTn +MT 1{T > n} −Mn 1{T > n}.
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Since P{T > n} → 0, and E[|MT |] <∞, it follows from the dominated convergence theorem that

lim
n→∞

E[MT 1{T > n}] = 0.

Hence if E[Mn 1{T > n}]→ 0, we have (12.9). Standard exercises show that the fourth implies the

third and the fifth condition implies the fourth, so either the fourth or fifth condition is sufficient.

12.2.2 Maximal inequality

Theorem 12.2.4 (Maximal inequality) Suppose M0,M1, . . . is a nonnegative submartingale

with respect to {Fn} and λ > 0. Then

P
{

max
0≤j≤n

Mj ≥ λ
}

≤ E[Mn]

λ
.

Proof Let T = min{j ≥ 0 : Mj ≥ λ}. Then,

P
{

max
0≤j≤n

Mj ≥ λ
}

=

n
∑

j=0

P{T = j},

E[Mn] ≥ E[Mn;T ≤ n] =

n
∑

j=0

E[Mn;T = j].

Since Mn is a submartingale and {T = j} is Fj-measurable,

E[Mn;T = j] = E[E[Mn | Fj ];T = j] ≥ E[Mj;T = j] ≥ λP{T = j}.

Combining these estimates gives the theorem.

Combining Theorem 12.2.4 with Lemma 12.2.1 gives the following theorem.

Theorem 12.2.5 (Martingale maximal inequalities) Suppose M0,M1, . . . is a martingale with

respect to {Fn} and λ > 0. Then if α ≥ 1, b ≥ 0,

P
{

max
0≤j≤n

|Mj | ≥ λ
}

≤ E[|Mn|α]

λα
, (12.10)

P
{

max
0≤j≤n

Mj ≥ λ
}

≤ E[ebMn ]

ebλ
.

Corollary 12.2.6 Let X1,X2, . . . be independent, identically distributed random variables in R
with mean zero, and let k be a positive integer for which E[|X1|2k] < ∞. There exists c <∞ such

that for all λ > 0,

P
{

max
0≤j≤n

|Sj | ≥ λ
√
n

}

≤ c λ−2k. (12.11)
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Proof Fix k and allow constants to depend on k. Note that

E[S2k
n ] =

∑

E[Xj1 · · ·Xj2k
],

where the sum is over all (j1, . . . , j2k) ∈ {1, . . . , n}2k. If there exists an l such that ji 6= jl for i 6= l,

then we can use independence and E[Xjl ] = 0 to see that E[Xj1 · · ·Xj2k
] = 0. Hence

E[S2k
n ] =

∑

E[Xj1 · · ·Xj2k
],

where the sum is over all (2k)-tuples such that if l ∈ {j1, . . . , j2k}, then l appears at least twice.

The number of such (2k)-tuples is O(nk) and hence we can see that

E

[

(

Sn√
n

)2k
]

≤ c.

Hence we can apply (12.10) to the martingale Mj = Sj/
√
n.

Corollary 12.2.7 Let X1,X2, . . . be independent, identically distributed random variables in R
with mean zero, variance σ2, and such that for some δ > 0, the moment generating function

ψ(t) = E[etXj ] exists for |t| < δ. Let Sn = X1 + · · · +Xn. Then for all 0 ≤ r ≤ δ√n/2,

P
{

max
0≤j≤n

Sj ≥ r σ
√
n

}

≤ e−r2/2 exp

{

O

(

r3√
n

)}

. (12.12)

If P{X1 ≥ R} = 0 for some R, this holds for all r > 0.

Proof Without loss of generality, we may assume σ2 = 1. The moment generating function of

Sn = X1 + · · ·+Xn is ψ(t)n. Letting t = r/
√
n, we get

P
{

max
0≤j≤n

Sj ≥ r
√
n

}

≤ e−r2 ψ(r/
√
n)n.

Using the expansion for ψ(t) at zero,

ψ(t) = 1 +
t2

2
+O(t3), |t| ≤ δ

2
,

we see that for 0 ≤ r ≤ δ√n/2,

ψ(r/
√
n)n =

[

1 +
r2

2n
+O

(

r3

n3/2

)]n

≤ er2/2 exp

{

O

(

r3√
n

)}

.

This gives (12.12). If P{X1 > R} = 0, then (12.12) holds for r > R
√
n trivially, and we can choose

δ = 2R.

Remark. From the last corollary, we also get the following modulus of continuity result for random

walk. Let X1,X2, . . . and Sn be as in the previous lemma. There exist c, b such that for every m ≤ n
and every 0 ≤ r ≤ δ√m/2

P{ max
0≤j≤n

max
1≤k≤m

|Sk+j − Sj | ≥ r
√
m} ≤ c n e−br2 . (12.13)

This next lemma is not about martingales, but it does concern exponential estimates for proba-

bilities so we will include it here.
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Lemma 12.2.8 If 0 < α <∞, 0 < r < 1 and Xn is a binomial random variable with parameters

n and αe−2α/r, then

P{Xn ≥ rn} ≤ e−αn.

Proof

P{Xn ≥ rn} ≤ e−2αn E[e(2α/r)Xn ] ≤ e−2αn [1 + α]n ≤ e−αn.

12.2.3 Continuous martingales

A process Mt adapted to a filtration Ft is called a continuous martingale if for each s < t, E[Mt |
Ms] = Ms and with probability one the function t 7→ Mt is continuous. If Mt is a continuous

martingale, and δ > 0, then

M (δ)
n := Mδn

is a discrete time martingale. Using this, we can extend results about discrete time martingales to

continuous martingales. We state one such result here.

Theorem 12.2.9 (Optional Sampling Theorem) Suppose Mt is a uniformly integrable con-

tinuous martingale and τ is a stopping time with P{τ < ∞} = 1 and E[|Mτ |] < ∞. Suppose

that

lim
t→∞

E[|Mt|; τ > t] = 0.

Then

E[MT ] = E[M0].

12.3 Joint normal distributions

A random vector Z = (Z1, . . . , Zd) ∈ Rd is said to have a (mean zero) joint normal distribution

if there exist independent (one-dimensional) mean zero, variance one normal random variables

N1, . . . , Nn and scalars ajk such that

Zj = aj1N1 + · · ·+ ajnNn, j = 1, . . . , d,

or in matrix form

Z = AN.

Here A = (ajk) is a d× n matrix and Z,N are column vectors. Note that

E(ZjZk) =
n
∑

m=1

ajm akm.

In other words, the covariance matrix Γ = [ E(ZjZk) ] is the d× d symmetric matrix

Γ = AAT .
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We say Z has a nondegenerate distribution if Γ is invertible.

The characteristic function of Z can be computed using the known formula for the characteristic

function of Nk,

E[eitNk ] = e−t
2/2,

E[exp{iθ · Z}] = E



exp







i

d
∑

j=1

θj

n
∑

k=1

ajkNk











= E



exp







i
n
∑

k=1

Nk

d
∑

j=1

θjajk











=

n
∏

k=1

E



exp







iNk

d
∑

j=1

θjajk











=

n
∏

k=1

exp







−1

2





d
∑

j=1

θjajk





2




= exp







−1

2

n
∑

k=1

d
∑

j=1

d
∑

l=1

θj θl ajk alk







= exp

{

−1

2
θAAT θT

}

= exp

{

−1

2
θΓθT

}

.

Since the characteristic function determines the distribution, we see that the distribution of Z

depends only on Γ.

The matrix Γ is symmetric and nonnegative definite. Hence we can find an orthogonal basis

u1, . . . , ud of unit vectors in Rd that are eigenvectors of Γ with nonnegative eigenvalues α1, . . . , αd.

The random variable

Z =
√
α1N1 u1 + · · · +√αdNd ud

has a joint normal distribution with covariance matrix Γ. In matrix language, we have written Γ =

ΛΛT = Λ2 for a d× d nonnegative definite symmetric matrix Λ. The distribution is nondegenerate

if and only if all of the αj are strictly positive.

♣ Although we allow the matrix A to have n columns, what we have shown is that there is a symmetric,

positive definite d× d matrix Λ which gives the same distribution. Hence joint normal distribution in Rd can be

described as linear combinations of d independent one-dimensional normals. Moreover, if we choose the correct

orthogonal basis for Rd, the components of Z with respect to that basis are independent normals.

If Γ is invertible, then Z has a density f(z1, . . . , zd) with respect to Lebesgue measure that can
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be computed using the inversion formula

f(z1, . . . , zd) =
1

(2π)d

∫

e−iθ·z E[exp{iθ · Z}] dθ

=
1

(2π)d

∫

exp

{

−iθ · z − 1

2
θΓθT

}

dθ.

(Here and for the remainder of this paragraph the integrals are over Rd and dθ represents ddθ.) To

evaluate the integral, we start with the substitution θ1 = Λθ which gives
∫

exp

{

−iθ · z − 1

2
θΓθT

}

dθ =
1

detΛ

∫

e−|θ1|2/2 e−i(θ1·Λ
−1z) dθ1.

By completing the square we see that the right-hand side equals

e−|Λ−1z|2/2

det Λ

∫

exp

{

1

2
(iθ1 − Λ−1z) · (iθ1 − Λ−1z)

}

dθ1.

The substitution θ2 = θ1 − iΛ−1z gives
∫

exp

{

1

2
(iθ1 − Λ−1z) · (iθ1 − Λ−1z)

}

dθ1 =

∫

e−|θ2|2/2 dθ2 = (2π)d/2.

Hence, the density of Z is

f(z) =
1

(2π)d/2
√

det Γ
e−|Λ−1z|2/2 =

1

(2π)d/2
√

det Γ
e−(z·Γ−1z)/2. (12.14)

Corollary 12.3.1 Suppose Z = (Z1, . . . , Zd) has a mean zero, joint normal distribution such that

E[ZjZk] = 0 for all j 6= k. Then Z1, . . . , Zd are independent.

Proof Suppose E[ZjZk] = 0 for all j 6= k. Then Z has the same distribution as

(b1N1, . . . , bdNd),

where bj =
√

E[Z2
j ]. In this representation, the components are obviously independent.

♣ If Z1, . . . , Zd are mean zero random variables satisfying E[ZjZk] = 0 for all j 6= k, they are called

orthogonal. Independence implies orthogonality but the converse is not always true. However, the corollary tells

us that the converse is true in the case of joint normal random variables. Orthogonality is often easier to verify

than independence.

12.4 Markov chains

A (time-homogeneous) Markov chain on a countable state space D is a process Xn taking values

in D whose transitions satisfy

P{Xn+1 = xn+1 | X0 = x0, . . . ,Xn = xn} = p(xn, xn+1)
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where p : D ×D → [0, 1] is the transition function satisfying
∑

y∈D p(x, y) = 1 for each x. If A is

finite, we call the transition function the transition matrix P = [p(x, y)]x,y∈A. The n-step transitions

are given by the matrix Pn. In other words, if pn(x, y) is defined to be P{Xn = y | X0 = x}, then

pn(x, y) =
∑

z∈D
p(x, z) pn−1(z, y) =

∑

z∈D
pn−1(x, z) p(z, y).

A Markov chain is called irreducible if for each x, y ∈ A, there exists an n = n(x, y) ≥ 0 with

pn(x, y) > 0. The chain is aperiodic if for each x there is an Nx such that for n ≥ Nx, pn(x, x) > 0.

If D is finite, then the chain is irreducible and aperiodic if and only if there exists an n such that

Pn has strictly positive entries.

Theorem 12.4.1 [Perron-Froebenius Theorem] If P is an m×m matrix such that for some positive

integer n, Pn has all entries strictly positive, then there exists α > 0 and vectors v,w, with strictly

positive entries such that

vP = αv, P w = αw.

This eigenvalue is simple and all other eigenvalues of P have absolute value strictly less than α. In

particular, if P is the transition matrix for an irreducible aperiodic Markov chain there is a unique

invariant probability π satisfying
∑

x∈D
π(x) = 1, π(x) =

∑

y∈D
π(y)P (y, x).

Proof We first assume that P has all strictly positive entries. It suffices to find a right eigenvector,

since the left eigenvector can be handled by considering the transpose of P . We write w1 ≥ w2 if

every component of w1 is greater than or equal to the corresponding component of w2. Similarly, we

write w1 > w2 if all the components of w1 are strictly greater than the corresponding components

of w2. We let 0 denote the zero vector and ej the vector whose jth component is 1 and whose

other components are 0. If w ≥ 0, let

λw = sup{λ : Pw ≥ λw}.

Clearly λw <∞, and since P has strictly positive entries, λw > 0 for all w > 0. Let

α = sup{λw : w ≥ 0,
m
∑

j=1

[w]j = 1}.

By compactness and continuity arguments we can see that there exists a w with w ≥ 0,
∑

j[w]j = 1

and λw = α. We claim that Pw = αw. Indeed, if [Pw]j > α[w]j for some j, one can check that

there exist positive ǫ, ρ such that P [w + ǫej] ≥ (α+ ρ) [w + ǫej], which contradicts the maximality

of α. If v is a vector with both positive and negative component, then for each j,

|[Pv]j | < [P |v|]j ≤ α [|v|]j .

Here we write |v| for the vector whose components are the absolute values of the components of v.

Hence any eigenvector with both positive and negative values has an eigenvalue with absolute value

strictly less than α. Also, if w1,w2 are positive eigenvectors with eigenvalue α, then w1− tw2 is an

eigenvector for each t. If w1 is not a multiple of w2 then there is some value of t such that w1− tw2
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has both positive and negative values. Since this is impossible, we conclude that the eigenvector

w is unique. If w ≥ 0 is an eigenvector, then the eigenvalue must be positive. Therefore, α has a

unique eigenvector (up to constant), and all other eigenvalues have absolute value strictly less than

α. Note that if v > 0, then Pv has all entries strictly positive; hence the eigenvector w must have

all entries strictly positive.

We claim, in fact, that α is a simple eigenvalue. To see this, one can use the argument as in

the previous paragraph to all submatrices of the matrix to conclude that all eigenvalues of all

submatrices of the matrix are strictly less than α in absolute value. Using this (details omitted),

one can see that the derivative of the function f(λ) = det(λI−P ) is nonzero at λ = α which shows

that the eigenvalue is simple.

If P is a matrix such that Pn has all entries strictly positive, and w is an eigenvector of P with

eigenvalue α, then w is an eigenvector for Pn with eigenvalue αn. Using this, we can conclude the

result for P . The final assertion follows by noting that the vector of all 1s is a right eigenvector for

a stochastic matrix.

♣ A different derivation of the Perron-Froebenius Theorem which generalizes to some chains on infinite state

spaces is done in Exercise 12.4.

If P is the transition matrix for a irreducible, aperiodic Markov chain, then pn(x, y) → π(y) as

n → ∞. In fact, this holds for countable state space provided the chain is positive recurrent, i.e.,

if there exists an invariant probability measure. The next proposition gives a simple, quantitative

version of this fact provided the chain satisfies a certain condition which always holds for the finite

irreducible, aperiodic case.

Proposition 12.4.2 Suppose p : D×D → [0, 1] is the transition probability for a positive recurrent,

irreducible, aperiodic Markov chain on a countable state space D. Let π denote the invariant

probability measure. Suppose there exist ǫ > 0 and a positive integer k such that for all x, y ∈ D,

1

2

∑

z∈D
|pk(x, z) − pk(y, z)| ≤ 1− ǫ. (12.15)

Then for all positive integers j and all x ∈ A,

1

2

∑

z∈D
|pj(x, z) − π(z)| ≤ c e−βj ,

where c = (1− ǫ)−1 and e−β = (1− ǫ)1/k.

Proof If ν is any probability distribution on D, let

νj(x) =
∑

y∈D
ν(y)pj(y, x).

Then (12.15) implies that for every ν,

1

2

∑

z∈D
|νk(z)− π(z)| ≤ 1− ǫ.
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In other words we can write νk = ǫ π + (1− ǫ) ν(1) for some probability measure ν(1). By iterating

(12.15), we can see that for every integer i ≥ 1 we can write νik = (1 − ǫ)i ν(i) + [1− (1− ǫ)i]π for

some probability measure ν(i). This establishes the result for j = ki (with c = 1 for these values of

j) and for other j we find i with ik ≤ j < (i+ 1)k.

12.4.1 Chains restricted to subsets

We will now consider Markov chains restricted to a subset of the original state space. If Xn is an

irreducible, aperiodic Markov chain with state space D and A is a finite proper subset of D, we

write PA = [p(x, y)]x,y∈A. Note that (PA)n = [pAn (x, y)]x,y∈A where

pAn (x, y) = P{Xn = y;X0, . . . ,Xn ∈ A | X0 = x} = Px{Xn = y, τA > n}, (12.16)

where τA = inf{n : Xn 6∈ A}. Note that

Px{τA > n} =
∑

y∈A
pAn (x, y).

We call A connected and aperiodic (with respect to P ) if for each x, y ∈ A, there is an N such that

for n ≥ N , pAn (x, y) > 0. If A is finite, then A is connected and aperiodic if and only if there exists

an n such that (PA)n has all entries strictly positive. In this case all of the row sums of PA are less

than or equal to one and (since A is a proper subset) there is at least one row whose sum is strictly

less than one.

Suppose Xn is an irreducible, aperiodic Markov chain with state space D and A is a finite,

connected, aperiodic proper subset of D. Let α be as in the Perron-Froebenius Theorem for the

matrix PA. Then 0 < α < 1. Let v,w be the corresponding positive eigenvectors which we write

as functions,
∑

x∈A
v(x) p(x, y) = α v(y),

∑

y∈A
w(y) p(x, y) = αw(x).

We normalize the functions so that
∑

x∈A
v(x) = 1,

∑

x∈A
v(x)w(x) = 1,

and we let π(x) = v(x)w(x). Let

qA(x, y) = α−1 p(x, y)
w(y)

w(x)
.

Note that
∑

y∈A
qA(x, y) =

∑

y∈A p(x, y)w(y)

αw(x)
= 1.

In other words, QA := [qA(x, y)]x,y∈A is the transition matrix for a Markov chain which we will

denote by Yn. Note that (QA)n = [qAn (x, y)]x,y∈A where

qAn (x, y) = α−n pAn (x, y)
w(y)

w(x)



12.4 Markov chains 273

and pAn (x, y) is as in (12.16). From this we see that the chain is irreducible and aperiodic. Since

∑

x∈A
π(x) qA(x, y) =

∑

x∈A
v(x)w(x)α−1 p(x, y)

w(y)

w(x)
= π(y),

we see that π is the invariant probability for this chain.

Proposition 12.4.3 Under the assumptions above, there exist c, β such that for all n,

|α−n pAn (x, y) −w(x) v(y)| ≤ c e−βn.
In particular,

P{X0, . . . ,Xn ∈ A | X0 = x} = w(x)αn [1 +O(e−βn)].

Proof Consider the Markov chain with transition matrix QA. Choose positive integer k and ǫ > 0

such that qAk (x, y) ≥ ǫ π(y) for all x, y ∈ A. Proposition 12.4.2 gives

|qAn (x, y)− π(y)| ≤ c e−βn,
for some c, β. Since π(y) = v(y)w(y) and qAn (x, y) = α−n pAn (x, y)w(y)/w(x), we get the first

assertion, using the fact that A is finite so that inf v > 0. The second assertion follows from the

first using
∑

y v(y) = 1 and

P{X0, . . . ,Xn ∈ A | X0 = x} =
∑

y∈A
pAn (x, y).

If the Markov chain is symmetric (p(y, x) = p(x, y)), then w(x) = c v(x), π(x) = c v(x)2. The

function g(x) =
√
c v(x) can be characterized by the fact that g is strictly positive and satisfies

PAg(x) = αg(x),
∑

x∈A
g(x)2 = 1.

♣ The chain Yn can be considered the chain derived from Xn by conditioning the chain to “stay in A forever”.
The probability measures v, π are both “invariant” (sometimes the word quasi-invariant is used) probability
measures but with different interpretations. Roughly speaking, the three measures v, w, π can be described
as follows.

• Suppose the chain Xn is observed at a large time n and it known that the chain has stayed in A for all times
up to n. Then the conditional distribution on Xn given this information approaches v.

• For x ∈ A, the probability that the chain stays in A up to time n is asymptotic to w(x)αn.
• Suppose the chain Xn is observed at a large time n and it is known that the chain has stayed in A and will

stay in A for all times up to N where N ≫ n. Then the conditional distribution on Xn given this information
approaches π. We can think of the first term of the product v(x)w(x) as the conditional probability of being
at x given that the walk has stayed in A up to time n and the second part of the product is the conditional
probability given this that the walk stays in A for times between n and N .

The next proposition gives a criterion for determining the rate of convergence to the invariant

distribution v. Let us write

p̂An (x, y) =
pAn (x, y)

∑

z∈A p
A
n (x, z)

= Px{Xn = y | τA > n}.
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Proposition 12.4.4 Suppose Xn is an irreducible, aperiodic Markov chain on the countable state

space D. Suppose A is a finite, proper subset of D and A′ ⊂ A. Suppose there exist ǫ > 0 and

integer k > 1 such that the following is true.

• If x ∈ A,
∑

y∈A′
p̂k(x, y) ≥ ǫ. (12.17)

• If x, x′ ∈ A,
∑

y∈A′
[p̂Ak (x, y) ∧ p̂Ak (x′, y)] ≥ ǫ. (12.18)

• If x ∈ A, y ∈ A′ and n is a positive integer

Py{τA > n} ≥ ǫPx{τA > n}. (12.19)

Then there exists δ > 0, depending only on ǫ, such that for all x, z ∈ A and all integers m ≥ 0,

1

2

∑

y∈A

∣

∣p̂Akm(x, y)− p̂Akm(z, y)
∣

∣ ≤ (1− δ)m.

Proof We fix ǫ and allow all constants in this proof to depend on ǫ. Let qn = maxy∈A Py{τA > n}.
Then (12.19) implies that for all y ∈ A′ and all n, Py{τA > n} ≥ ǫ qn. Combining this with (12.17)

gives for all positive integers k, n,

c qn Px{τA > k} ≤ Px{τA > k + n} ≤ qn Px{τA > k}. (12.20)

Let m be a positive integer and let

Y0, Y1, Y2, . . . Ym

be the process corresponding to X0,Xk,X2k, . . . ,Xmk conditioned so that τA > mk. This is a time

inhomogeneous Markov chain with transition probabilities

P{Yj = y | Yj−1 = x} =
pAk (x, y) Py{τA > (m− j)k}

Px{τA > (m− j + 1)k} , j = 1, 2, . . . ,m.

Note that (12.20) implies that for all y ∈ A,

P{Yj = y | Yj−1 = x} ≤ c2 p̂Ak (x, y),

and if y ∈ A′,

P{Yj = y | Yj−1 = x} ≥ c1 p̂Ak (x, y).

Using this and (12.18), we can see that there is a δ > 0 such that if x, z ∈ A and j ≤ m,

1

2

∑

y∈A
|P{Yj = y | Yj−1 = x} − P{Yj = y | Yj−1 = z}| ≤ 1− δ,

and using an argument as in the proof of Proposition 12.4.2 we can see that

1

2

∑

y∈A
|P{Ym = y | Y0 = x} − P{Ym = y | Y0 = z}| ≤ (1− δ)m.
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12.4.2 Maximal coupling of Markov chains

Here we will describe the maximal coupling of a Markov chain. Suppose that p : D ×D → [0, 1] is

the transition probability function for an irreducible, aperiodic Markov chain with countable state

space D. Assume that g1
0 , g

2
0 are two initial probability distributions on D. Let gjn denote the

corresponding distribution at time n, given recursively by

gjn(x) =
∑

z∈D
gjn−1(z) p(z, x).

Let ‖ · ‖ denote the total variation distance,

‖g1
n − g2

n‖ =
1

2

∑

x∈D
|g1
n(x)− g2

n(x)| = 1−
∑

x∈D
[g1
n(x) ∧ g2

n(x)].

Suppose

X1
0 ,X

1
1 ,X

1
2 , . . . , X2

0 ,X
2
1 ,X

2
2 , . . .

are defined on the same probability space such that for each j, {Xj
n : n = 0, 1, . . .} has the

distribution of the Markov chain with initial distribution gj0. Then it is clear that

P{X1
n = X2

n} ≤ 1− ‖g1
n − g2

n‖ =
∑

x∈D
g1
n(x) ∧ g2

n(x). (12.21)

The following theorem shows that there is a way to define the chains on the same probability space

so that equality is obtained in (12.21). This theorem gives one example of the powerful probabilistic

technique called coupling. Coupling refers to the defining of two or more processes on the same

probability space in a way so that each individual process has a certain distribution but the joint

distribution has some particularly nice properties. Often, as in this case, the two processes are

equal except for an event of small probability.

Theorem 12.4.5 Suppose p, g1
n, g

2
n are as defined in the previous paragraph. We can define

(X1
n,X

2
n), n = 0, 1, 2, . . . on the same probability space such that:

• for each j, Xj
0 ,X

j
1 , . . . has the distribution of the Markov chain with initial distribution gj0;

• for each integer n ≥ 0,

P{X1
m = X2

m for all m ≥ n} = 1− ‖g1
n − g2

n‖.

♣Before doing this proof, let us consider the easier problem of defining (X1,X2) on the same

probability space so that Xj has distribution gj0 and

P{X1 = X2} = 1− ‖g1
0 − g2

0‖.
Assume 0 < ‖g1

0 − g2
0‖ < 1. Let f j(x) = gj0(x)− [g1

0(x) ∧ g2
0(x)].

• Suppose that J,X,W 1,W 2 are independent random variables with the following distributions.

P{J = 0} = 1− P{J = 1} = ‖g1
0 − g2

0‖.

P{X = x} =
g1(x) ∧ g2(x)
1− ‖g1

0 − g2
0‖
, x ∈ D
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P{W j = x} =
f j(x)

‖g1
0 − g2

0‖
, x ∈ D.

• Let Xj = 1{J = 1}X + 1{J = 0}W j .

It is easy to check that this construction works.

Proof For ease, we will assume that ‖g1
0 − g2

0‖ = 1 and ‖g1
n − g2

n‖ → 0 as n → ∞; the adjustment

needed if this does not hold is left to the reader. Let (Z1
n, Z

2
n) be independent Markov chains with

the appropriate distributions. Let f jn(x) = gjn(x)− [g1
n(x)∧g2

n(x)] and define hjn by hj0(x) = gj0(x) =

f j0 (x) and for n > 1,

hjn(x) =
∑

z∈S
f jn−1(z) p(z, x).

Note that f jn+1(x) = hjn+1(x)− [h1
n(x) ∧ h2

n(x)]. Let

ρjn(x) =
h1
n(x) ∧ h2

n(x)

hjn(x)
if hjn(x) 6= 0.

We set ρjn(x) = 0 if hjn(x) = 0. We let {Y j(n, x) : j = 1, 2;n = 1, 2, . . . ;x ∈ D} be independent 0-1

random variables, independent of (Z1
n, Z

2
n), with P{Y j(n, x) = 1} = ρjn(x).

We now define 0-1 random variables Jjn as follows:

• Jj0 ≡ 0

• If Jjn = 1, then Jjm = 1 for all m ≥ n.

• If Jjn = 0, then Jjn+1 = Y j(n+ 1, Zjn+1).

We claim that

P{Jjn = 0;Zjn = x} = f jn(x).

For n = 0, this follows immediately from the definition. Also,

P{Jjn+1 = 0;Zjn+1 = x} =

∑

z∈D
P{Jjn = 0;Zjn = z}P{Zjn+1 = x, Y j(n+ 1, x) = 0 | Jjn = 0;Zjn = z}.

The random variable Y j(n+1, x) is independent of the Markov chain, and the event {Jjn = 0;Zjn =

z} depends only on the chain up to time n and the values of {Y j(k, y) : k ≤ n}. Therefore,

P{Zjn+1 = x, Y j(n+ 1, x) = 0 | Jjn = 0;Zjn = z} = p(z, x) [1 − ρjn+1(x)].

Therefore, we have the inductive argument

P{Jjn+1 = 0;Zjn+1 = x} =
∑

z∈D
f jn(z) p(z, x) [1 − ρjn+1(x)]

= hjn+1(x) [1− ρjn+1(x)]

= hjn+1(x)− [h1
n+1(x) ∧ h2

n+1(x)] = f jn+1(x),

which establishes the claim.
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Let Kj denote the smallest n such that Jjn = 1. The condition ‖g1
0 − g2

0‖ → 0 implies that

Kj <∞ with probability one. A key fact is that for each n and each x,

P{K1 = n+ 1;Z1
n = x} = P{K2 = n+ 1;Z2

n = x} = h1
n+1(x) ∧ h2

n+1(x).

This is immediate for n = 0 and for n > 0,

P{Kj = n+ 1;Zjn+1 = x}
=

∑

z∈D
P{Jn = 0;Zjn = z}P{Y j(n+ 1, x) = 1;Zjn+1 = x | Jn = 0;Zjn = z}

=
∑

z∈D
f jn(z) p(z, x) ρ

j
n+1(x)

= hjn+1(x) ρ
j
n+1(x) = h1

n+1(x) ∧ h2
n+1(x).

The last important observation is that the distribution of Wm := Xj
m−n given the event {Kj =

n;Xj
n = x} is that of a Markov chain with transition probability p starting at x.

The reader may note that for each j, the process (Zjn, J
j
n) is a time-inhomogeneous Markov chain

with transition probabilities

P{(Zjn+1, J
j
n+1) = (y, 1) | (Zjn, Jjn) = (x, 1)} = p(x, y),

P{(Zjn+1, Jn+1) = (y, 0) | (Zjn, Jjn) = (x, 0)} = p(x, y) [1− ρjn+1(y)],

P{(Zjn+1, Jn+1) = (y, 1) | (Zjn, Jjn) = (x, 0)} = p(x, y) ρjn+1(y).

The chains (Z1
n, J

1
n) and (Z2

n, J
2
n) are independent. However, the transition probabilities for these

chains depend on both initial distributions and p.

We are now ready to make our construction of (X1
n,X

2
n).

• Define for each (n, x) a process {W n,x
m : m = 0, 1, 2, . . .} that has the distribution of the

Markov chain with initial point x. Assume that all these processes are independent.

• Choose (n, x) according to the probability distribution

h1
n+1(x) ∧ h2

n+1(x) = P{Kj = n;Zjn = x}.

Set Jjm = 1 for m ≥ n, Jjm = 0 for m < n, and K1 = K2 = n. Note that Kj is the smallest

n such that Jjn = 1.

• Given (n, x), choose X1
0 , . . . ,X

1
n from the conditional distribution of the Markov chain with

initial distribution g1
0 conditioned on the event {K1 = n;Z1

n = x}.
• Given (n, x), choose X2

0 , . . . ,X
2
n (conditionally) independent of X1

0 , . . . ,X
1
n from the condi-

tional distribution of the Markov chain with initial distribution g2
0 conditioned on the event

{K2 = n;Z2
n = x}.

• Let

Xj
m = W n,x

m−n, m = n, n+ 1, . . . .

The two conditional distributions above are not easy to express explicitly; fortunately, we do not

need to do so.

To finish the proof, we need only check that the above construction satisfies the conditions. For
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fixed j, the fact that Xj
0 ,X

j
1 , . . . has the distribution of the chain with initial distribution gj0 is im-

mediate from construction and the earlier observation that the distribution of {Xj
n,X

j
n+1, . . .} given

{Kj = n;Zjn = x} is that of the Markov chain starting at x. Also, the construction immediately

gives X1
m = X2

m if m ≥ K1 = K2. Also,

P{Jjn = 0} =
∑

x∈D
f jn(z) = ‖gn1 − gn2 ‖.

Remark. A review of the proof of Theorem 12.4.5 shows that we do not need to assume that

the Markov chain is time-homogeneous. However, time-homogeneity makes the notation a little

simpler and we use the result only for time-homogenous chains.

12.5 Some Tauberian theory

Lemma 12.5.1 Suppose α > 0. Then as ξ → 1−,

∞
∑

n=2

ξn nα−1 ∼ Γ(α)

(1− ξ)α .

Proof Let ǫ = 1− ξ. First note that
∑

n≥ǫ−2

ξn nα−1 =
∑

n≥ǫ−2

[(1 − ǫ)1/ǫ]nǫ nα−1 ≤
∑

n≥ǫ−2

e−nǫ nα−1,

and the right-hand side decays faster than every power of ǫ. For n ≤ ǫ−2 we can do the asymptotics

ξn = exp{n log(1− ǫ)} = exp{n(−ǫ−O(ǫ2))} = e−nǫ[1 +O(nǫ2)].

Hence,
∑

n≤ǫ−2

ξn nα−1 = ǫ−α
∑

n≤ǫ−2

ǫ e−nǫ(nǫ)α−1 [1 + (nǫ)O(ǫ)].

Using Riemann sum approximations we see that

lim
ǫ→0+

∞
∑

n=1

ǫ e−nǫ(nǫ)α−1 =

∫ ∞

0
e−t tα−1 dt = Γ(α).

Proposition 12.5.2 Suppose un is a sequence of nonnegative real numbers. If α > 0, the following

two statements are equivalent:

∞
∑

n=0

ξn un ∼
Γ(α)

(1− ξ)α , ξ → 1−, (12.22)

N
∑

n=1

un ∼ α−1Nα, N →∞. (12.23)
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Moreover, if the sequence is monotone, either of these statements implies

un ∼ nα−1, n→∞.

Proof Let Un =
∑

j≤n uj where U−1 = 0. Note that

∞
∑

n=0

ξn un =

∞
∑

n=0

ξn [Un − Un−1] = (1− ξ)
∞
∑

n=0

ξn Un. (12.24)

If (12.23) holds, then by the previous lemma

∞
∑

n=0

ξn un ∼ (1− ξ)
∞
∑

n=0

ξn α−1 nα ∼ Γ(α+ 1)

α (1− ξ)α =
Γ(α)

(1− ξ)α .

Now suppose (12.22) holds. We first give an upper bound on Un. Using 1− ξ = 1/n, we can see

as n→∞,

Un ≤ n−1

(

1− 1

n

)−2n 2n−1
∑

j=n

(

1− 1

n

)j

Uj

≤ n−1

(

1− 1

n

)−2n ∞
∑

j=0

(

1− 1

n

)j

Uj ∼ e2 Γ(α)nα.

The last relation uses (12.24). Let ν(j) denote the measure on [0,∞) that gives measure j−α un to

the point n/j. Then the last estimate shows that the total mass of ν(j) is uniformly bounded on

each compact interval and hence there is a subsequence that converges weakly to a measure ν that

is finite on each compact interval. Using (12.22) we can see that that for each λ > 0,
∫ ∞

0
e−λx ν(dx) =

∫ ∞

0
e−λx xα−1 dx.

This implies that ν is xα−1 dx. Since the limit is independent of the subsequence, we can conclude

that ν(j) → ν and this implies (12.23).

The fact that (12.23) implies the last assertion if un is monotone is straightforward using

Un(1+ǫ) − Un ∼ α−1 [(n(1 + ǫ))α − nα] , n→∞,

The following is proved similarly.

Proposition 12.5.3 Suppose un is a sequence of nonnegative real numbers. If α ∈ R, the following

two statements are equivalent:

∞
∑

n=0

ξn un =

(

1

1− ξ

)

logα
(

1

1− ξ

)

, ξ → 1−, (12.25)

N
∑

n=1

un ∼ N logαN N →∞. (12.26)
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Moreover, if the sequence is monotone, either of these statements implies

un ∼ logα n, n→∞.

12.6 Second moment method

Lemma 12.6.1 Suppose X is a nonnegative random variable with E[X2] < ∞ and 0 < r < 1.

Then

P {X ≥ rE(X)} ≥ (1− r)2 E(X)2

E(X2)
.

Proof Without loss of generality, we may assume that E(X) = 1. Since E[X;X < r] ≤ r, we know

that E[X;X ≥ r] ≥ (1− r). Then,

E(X2) ≥ E[X2;X ≥ r] = P{X ≥ r}E[X2 | X ≥ r]
≥ P{X ≥ r} (E[X | X ≥ r])2

≥ E[X;X ≥ r]2
P{X ≥ r}

≥ (1− r)2
P{X ≥ r} .

Corollary 12.6.2 Suppose E1, E2, . . . is a collection of events with
∑

P(En) =∞. Suppose there

is a K <∞ such that for all j 6= k, P(Ej ∩ Ek) ≤ K P(Ej) P(Ek). Then

P{Ek i.o.} ≥ 1

K
.

Proof Let Vn =
∑n

k=1 1Ek
. Then the assumptions imply that

lim
n→∞

E(Vn) =∞,

and

E(V 2
n ) ≤

k
∑

j=1

P(Ej) +
∑

j 6=k
K P(Ej) P(Ek) ≤ E(Vn) +K E(Vn)

2 =

[

1

E(Vn)
+K

]

E(Vn)
2.

By Lemma 12.6.1, for every r > 0,

P{Vn ≥ rE(Vn)} ≥
(1− r)2

K + E(Vn)−1
.

Since E(Vn)→∞, this implies

P{V∞ =∞} ≥ (1− r)2
K

.

Since this holds for every r > 0, we get the result.
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12.7 Subadditivity

Lemma 12.7.1 (Subadditivity lemma) Suppose f : {1, 2, . . .} → R is subadditive, i.e., for all

n,m, f(n+m) ≤ f(n) + f(m). Then,

lim
n→∞

f(n)

n
= inf

n>0

f(n)

n
.

Proof Fix integer N > 0. We can write any integer n as jN + k where j is a nonnegative integer

and k ∈ {1, . . . , N}. Let bN = max{f(1), . . . , f(N)}. Then subadditivity implies

f(n)

n
≤ jf(N) + f(k)

jN
≤ f(N)

N
+
bN
jN

.

Therefore,

lim sup
n→∞

f(n)

n
≤ f(N)

N
.

Since this is true for every N , we get the lemma.

Corollary 12.7.2 Suppose rn is a sequence of positive numbers and b1, b2 > 0 such that for every

n,m,

b1 rn rm ≤ rn+m ≤ b2 rn rm. (12.27)

Then there exists α > 0 such that for all n,

b−1
2 αn ≤ rn ≤ b−1

1 αn.

Proof Let f(n) = log rn + log b2. Then f is subadditive and hence

lim
n→∞

f(n)

n
=
f(n)

n
:= α.

This shows that rn ≥ αn/b2. Similarly, by considering the subadditive function g(n) = − log rn −
log b1, we get rn ≤ b−1

1 αn.

Remark. Note that if rn satisfies (12.27), then so does βnrn for each β > 0. Therefore, we cannot

determine the value of α from (12.27).

Exercises

Exercise 12.1 Find f3(ξ), f4(ξ) in (12.4).

Exercise 12.2 Go through the proof of Lemma 12.5.1 carefully and estimate the size of the error

term in the asymptotics.
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Exercise 12.3 Suppose E1 ⊃ E2 ⊃ · · · is a decreasing sequence of events with P(En) > 0 for each

n. Suppose there exist α > 0 such that

∞
∑

n=1

|P(En | En−1)− (1− αn−1)| <∞.

Show there exists c such that

P(En) ∼ c n−α. (12.28)

(Hint: use Lemma 12.1.4.)

Exercise 12.4 In this exercise we will consider an alternative approach to the Perron-Froebenius

Theorem. Suppose

q : {1, 2, . . .} × {1, 2, . . .} → [0,∞),

is a function such that for each x > 0,

q(x) :=
∑

y

q(x, y) ≤ 1.

Define qn(x, y) by matrix multiplication as usual, that is, q1(x, y) = q(x, y) and

qn(x, y) =
∑

z

qn−1(x, z) q(z, y).

Assume for each x, qn(x, 1) > 0 for all n sufficiently large. Define

qn(x) =
∑

y

qn(x, y), pn(x, y) =
qn(x, y)

qn(x)
,

qn = sup
x
qn(x), q(x) = inf

n

qn(x)

qn
.

Assume there is a function F : {1, 2, . . .} → [0, 1] and a positive integer m such that

pm(x, y) ≥ F (y), 1 ≤ x, y <∞,
and such that

ρ :=
∑

y

F (y) q(y) > 0.

(i) Show there exists 0 < α ≤ 1 such that

lim
n→∞

q1/nn = α.

Moreover, qn ≥ αn. (Hint: qn+m ≤ qn qm.)

(ii) Show that

pn+k(x, y) =
∑

z

νn,k(x, z) pk(z, y),

where

νn,k(x, z) =
pn(x, z) qk(z)

∑

w pn(x,w) qk(w)
=

qn(x, z) qk(z)
∑

w qn(x,w) qk(w)
.
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(iii) Show that if k, x are positive integers and n ≥ km,

1

2

∑

y

|pkm(1, y) − pn(x, y)| ≤ (1− ρ)k.

(iv) Show that the limit

v(y) = lim
n→∞

pn(1, y)

exists and if k, x are positive integers and n ≥ km,

1

2

∑

y

|v(y)− pn(x, y)| ≤ (1− ρ)k.

(v) Show that

v(y) = α
∑

x

v(x) q(x, y).

(vi) Show that for each x, the limit

w(x) = lim
n→∞

α−n qn(x)

exists, is positive, and w satisfies

w(x) = α
∑

y

q(x, y)w(y).

(Hint: consider qn+1(x)/qn(x).)

(vii) Show that there is a C = C(ρ, α) <∞ such that if ǫn(x) is defined by

qn(x) = w(x)αn [1 + ǫn(x)] ,

then

|ǫn(x)| ≤ C e−βn,

where β = − log(1− ρ)/m.

(viii) Show that there is a C = C(ρ, α) <∞ such that if ǫn(x, y) is defined by

qn(x, y) = w(x)αn [v(y) + ǫn(x, y)] ,

then

|ǫn(x, y)| ≤ C e−βn.

(ix) Suppose that Q is an N ×N matrix with nonnegative entries such that Qm has all positive

entries. Suppose that the row sums of Q are bounded by K. For 1 ≤ j, k ≤ N , let

q(j, k) = K−1 q(j, k); set q(j, k) = 0 if k > N ; and q(k, j) = δj,1 if k > N . Show that the

conditions are satisfied (and hence we get the Perron-Froebenius Theorem).

Exercise 12.5 In the previous exercise, let q(x, 1) = 1/2 for all k, q(2, 2) = 1/2 and q(x, y) = 0

for all other x, y. Show that there is no F such that ρ > 0.
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Exercise 12.6 Suppose X1,X2, . . . are i.i.d. random variables in R with mean zero, variance one,

and such that for some t > 0,

β := 1 + E
[

X2
1e
tX1 ;X1 ≥ 0

]

<∞.
Let

Sn = X1 + · · ·+Xn.

(i) Show that for all n,

E
[

etSn
]

≤ eβnt2/2.
(Hint: expand the moment generating function for X1 about s = 0.)

(ii) Show that if r ≤ tβn,

P{Sn ≥ r} ≤ exp

{

− r2

2βn

}

.

Exercise 12.7 Suppose X1,X2, . . . are i.i.d. random variables in R with mean zero, variance one,

and such that for some t > 0 and 0 < α < 1,

β := 1 + E
[

X2
1e
tXα

1 ;X1 ≥ 0
]

<∞.
Let Sn = X1 + · · ·+Xn. Suppose r > 0 and n is a positive integer. Let

K =

(

nβt

r

) 1
1−α

, X̃j = Xj 1{Xj ≤ K},

S̃n = X̃1 + · · ·+ X̃n.

(i) Show that

P{Xj 6= X̃j} ≤ (β − 1)K−2 e−tK
α
.

(ii) Show that

E
[

etK
α−1S̃n

]

≤ eβnt2K2(α−1)/2.

(iii) Show that

P{Sn ≥ r} ≤ exp

{

− r2

2βn

}

+ n (β − 1)K−2 e−tK
α
.
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