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1 Method of characteristics

For the problems in this section, assume that the solutions are all classical.

Question 1 Let u be a solution to a first order equation

ut + b(t, x, u) · ∇u = c(t, x, u).

Assume that c(t, x, u) ≤ C0|u|. Prove that

u(t, x) ≤ eC0t max(0,max
x

u0(x)).

Question 2 Let u be a solution of the Hamilton-Jacobi equation

ut + u2
x/2 = 0.

Prove that its derivative, v = ux, is a solution of the Burgers equation

vt + vvx = 0.

Question 3 Let u be a solution to the Burgers equation

ut + uux = 0, for x ∈ R, t > 0,

with initial data u(x, 0) = u0.

(a). Assume that u0 is compactly supported. Prove that u(·, t) is compactly supported for all t > 0.

(b). Assume that u0 is compactly supported. Prove that the integral

I(t) =

∫
R
u(x, t)2 dx,

is constant in t for as long as the smooth solution exists.

(c). For all x ∈ R and t > 0, ux(x, t) ≤ 1/t. This estimate is independent of the initial data u0.

Hint. Differentiate the equation and derive a transport equation for ux. Recall that the solution to the
ODE Ṗ = −P 2 with P (0) = +∞ is P (t) = 1/t.

(d). Using (b) and (c), prove the a priori estimate

max
x∈R

u(x, t) ≤
(

3
∫
u0(x)2 dx

t

)1/3

.

Note. It is not hard to check that maxx∈R u(x, t) is constant in time for as long as the smooth solution
exists. The estimate from (d) gives us a very indirect proof that the smooth solution may not last
forever.

Question 4 We look for a function u : R× (a, b)→ R solving Burgers equation

ut + uux = 0 with u(0, x) = u0(x).

Prove that if u0 is smooth and u′0 ≥ 0, then the characteristic curves never cross and the classical solution
exists for all t > 0.
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2 Weak solutions

Question 5 Verify that the function

u(t, x) =


1 if 0 < x < t/2,

−1 if − t/2 < x < 0,

0 otherwise,

is a weak solution of the Burgers equation ut + uux = 0, however, it is not an entropy solution.

Question 6 Let u(t, x) be given by the following function

u(t, x) =


1 if x ∈ (0, t/2),

−1 if x ∈ (−t/2, 0),

0 elsewhere.

Prove that u is a weak solution of Burgers equation ut+∂(u2/2) = 0 with zero initial data (i.e. u(0, x) = 0).

Question 7 Given an example of a non-identically-zero bounded function u : R×R→ R such that u(t, x) = 0
if t ≤ 0 or t ≥ 1, and u is a weak solution of the Burgers equation everywhere (but not an entropy solution).

3 Entropy solutions

Note. I edited these questions to apply to solutions to scalar conservation law equations in arbitrary
dimension.

Question 8 Describe explicitly the unique entropy solution to the Burgers equation ut+uux = 0 with initial
data

u(0, x) =

{
1 if x ∈ [0, 1],

0 otherwise.

Hint. The function u(t, x) is equal to 1 in some region, to x/t in another, and to 0 elsewhere. You need to
determine the curves separating these domains using the Rankine-Hugoniot condition.

Question 9 Let u and v be two entropy solutions of the conservation law equation

ut + div f(u) = vt + div f(v) = 0.

Assume that u, v ∈ C([0,∞), L1
loc(Rd)), in the sense that the equation (18) in the notes holds. Assume that

both bounded functions u and v take values in an interval I ⊂ R and let M = max{f ′(w) : w ∈ I}. Prove
that for any a < b, the quantity

D(t) =

∫
BR−Mt

[u(t, x)− v(t, x)]+ dx,

is monotone decreasing in t.
Conclude that the initial value problem

ut + div f(u) = 0,

u(0, x) = u0(x)

has the following finite speed of propagation property. The values of u0(x) for x ∈ BR(x0) determine the
values of u(t, y) for all (t, y) such that |y − x0| < R−Mt.

Question 10 Let u, v ∈ C([0,∞), L1
loc(Rd)) be two entropy solutions to the same conservation law equation.

Prove that if u(0, x) ≤ v(0, x) for all x ∈ R, then u(t, x) ≤ v(t, x) for (almost) all t > 0 and x ∈ Rd.
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Question 11 Let u and v be two entropy solutions to the same conservation law equation. Prove that
max(u, v) is a weak subsolution of the same equation.

Question 12 Let uk be a uniformly bounded sequence of entropy solutions of ∂tuk + div f(uk) = 0. Assume
that uk → u in L1

loc([0,∞)× Rd) in the sense that for any compact subset K ⊂ [0,∞)× Rd we have

lim
k→∞

∫∫
K

|uk(t, x)− u(t, x)| dx dt = 0.

Prove that u is also an entropy solution of the same equation.

Question 13 Given any convex function η : R→ R, we define the entropy dissipation measure as

µ = −η(u)t − div q(u).

By definition, this is a nonnegative measure in [0,∞)×Rd. Prove that it is absolutely continuous with respect
to Hd (that is the Haussdorff measure of dimension d for subsets in Rd+1).

Question 14 The space of functions of bounded variation is by definition given by the functions for which
their BV norm is finite:

‖f‖BV = ‖f‖L1 + sup
h∈Rd

‖f − f(· − h)‖L1

|h|
.

(a) Prove that if the initial data u0 ∈ BV , and u ∈ C([0,∞), L1(Rd)) ∩ L∞([0,∞) × Rd) is an entropy
solution, then u(t, ·) ∈ BV for all t > 0 and ‖u(t, ·)‖BV ≤ ‖u0‖BV .

(b) Prove that f ∈ BV if and only f its distributional derivatives are signed measures with finite total
variation and

‖f‖BV ≈ ‖f‖L1 +
∑
i

|∂if |.

Note. Part (b) in Question 14 is just for general knowledge. The first definition given above for the BV
norm is all we need for now.

4 The vanishing viscosity method

Question 15 Let u0 ∈ L∞ ∩ L1(Rd). Assume f is C∞. Prove that for every ε > 0, there exists a solution
u to the equation

∂tu+ div f(u)− ε∆u = 0,

u(0, x) = u0(x).
(1)

So that u(t, ·)→ u0 in L1(Rd) as t→ 0 and u is C∞ for all t > 0.
Note that if f is less regular than C∞, we also get a solution uε that will be correspondingly less regular.

Hint. After setting up the proof as a fixed point by the contraction mapping theorem, note that the amount
of time that we can allow the equation to evolve depends on the L1 norm of the initial data only. A posteriori,
justify that the L1 norm of the solution is non-increasing in time, so the intervals of time that we increase
in each application of the contraction mapping does not shrink to zero.

Question 16 Let u and v be solutions of (1), for the same value of ε > 0, with different initial data. Prove
that ∫

Rd
|u(t, x)− v(t, x)| dx,

is non-increasing in time.
In particular, if for some modulus of continuity ω the initial data satisfies∫

Rd
|u0(x)− u0(x+ h)| dx ≤ ω(|h|),
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then we also have for all t > 0, ∫
Rd
|u(t, x)− u(t, x+ h)| dx ≤ ω(|h|).

Question 17 The purpose of this question is to obtain a modulus of continuity with respect to time for
solutions of (1).

(a) Let ϕ : Rd → R be a bounded smooth function. Let u be a solution of (1). Verify that∣∣∣∣∫
Rd
ϕ(x)(u(t+ h, x)− u(t, x)) dx

∣∣∣∣ ≤ h (|∇ϕ|L∞ [f ]Lip + ε‖∆ϕ‖L∞) ‖u‖L∞t L1
x
.

This implies that the function u is weakly continuous respect to t independently of ε.

(b) Let ηδ be a standard mollifier supported in Bδ. Let us apply part (a) to ϕ = [u(t, ·) − u(t, · + h)] ∗ ηδ
and obtain ∣∣∣∣∫

Rd
ϕ(x)(u(t+ h, x)− u(t, x)) dx

∣∣∣∣ . (hδ +
εh

δ2

)
‖u‖L1 .

(c) Prove that

0 ≤
∫
Rd
|u(t+ h, x)− u(t, x)| − ϕ(x)(u(t+ h, x)− u(t, x) dx ≤ 2ω(δ),

where ω is the modulus of integrability of the initial data like in the previous question.

(d) Conclude that there is another modulus of continuity ω̃, depending only on ω, [f ]Lip and ‖u0‖L1 , so
that for any ε ∈ (0, 1), t > 0 and h > 0,∣∣∣∣∫

Rd
|u(t+ h, x)− u(t, x)| dx

∣∣∣∣ ≤ ω̃(h).

Question 18 Using the previous questions, justify that for any initial data u0 ∈ L∞ ∩L1(Rd), the solutions
to the equation (1) for ε ∈ (0, 1) satisfy the following three properties.

• They are uniformly bounded in L∞ by ‖u0‖L∞ .

• They are equi-continuous in t with values in L1(Rd).

• For all t > 0, they take values in a compact subset of L1(Rd).

Consequently, there exists a subsequential limit u = limuεk with εk → 0 that is an entropy solution of the
inviscid conservation law equation.

ut + div f(u) = 0.

Question 19 Given u0 ∈ L∞(Rd), prove that there exists a unique entropy solution u ∈ L∞([0,∞)×Rd)∩
C([0,∞), L1

loc(Rd)) of

ut + div f(u) = 0,

u(0, x) = u0.

Question 20 Prove that the solutions uε to (1) converge to the solution u to the inviscid problem as ε→ 0.
In other words, it is not necessary to take a subsequence.

4



5 Semicontinuous envelopes

Question 21 Let u ∈ L∞loc(Rd). For any r > 0, let us define the functions ur and ur by the formula

ur(x) = esssupBr(x) u, ur(x) = essinfBr(x) u.

(a) Prove that

ur = lim
k→∞

sup{u(x+ ri/k) : i = −k, . . . ,−1, 0, 1, . . . , k} a.e.,

ur = lim
k→∞

inf{u(x+ ri/k) : i = −k, . . . ,−1, 0, 1, . . . , k} a.e..

(b) Let u = limr→0 ur and u = limr→0 ur. Prove that these limits exists at every point x ∈ Rd. Moreover,
u is upper semicontinuous and u is lower semicontinuous.

(c) Give an example of a function u ∈ L∞(Rd) such that u is not equal to u almost everywhere.

(d) Prove that u is the smallest upper semicontinuous function which is larger or equal to u almost every-
where. Correspondingly, u is the larger lower semicontinuous function which is smaller or equal to u
almost everywhere.

(d) Prove that u is almost everywhere equal to a continuous function in a set D ⊂ Rd if and only if u = u
in D.

Question 22 Let u : [0,∞)× Rd → R be an entropy solution to a scalar conservation law

ut + div f(u) = 0.

Let ur and ur be, for each fixed t, as in Question 21.

(a) Prove that ur is an entropy subsolution and ur is an entropy supersolution.

(b) For α > 0, let us define the following seminorm, for f ∈ L∞(Rd) ∩ L1(Rd),

[f ]α := sup
r>0

1

rα
‖fr − fr‖L1 .

Prove that [u(t, ·)]α is non-increasing in time. In particular, for a smooth enough initial data u0

decaying appropriately at infinity, we will have [u(t, ·)]1 uniformly bounded.

(c) Prove that if [f ]α < +∞ for some function f : Rd → R, then f is continuous except on a set of
Haussdorff dimension at most d− α.

Question 23 Let u : [0,∞)× Rd → R be an entropy solution to a scalar conservation law

ut + div f(u) = 0.

Assume that for some t0 ∈ [0,∞), the function u(t0, ·) is continuous at the point x0 ∈ Rd. Prove that the
function u is continuous in space-time at the point (t0, x0).

Question 24 Let u : [0,∞)× Rd → R be an entropy solution to a scalar conservation law

ut + div f(u) = 0.

Prove that if its initial value u0 is continuous almost everywhere, then u is also continuous almost everywhere.
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6 Genuinely nonlinear equations

We will deduce some surprising regularization effects for entropy solutions to nonlinear conservation law
equations. We first need a notion of a genuinely nonlinear equation.

Definition 1 We say an equation a(u) ·∇u = 0 is genuinely nonlinear with order α > 0 if for every ξ ∈ ∂B1

we have
|{v ∈ I : |a(v) · ξ| < δ}| . δα.

Here I denotes an interval of real numbers where the function u takes its values. Since we always work with
solutions in L∞, we can always reduce our analysis to a finite interval of possible values for u.

Question 25 Write an example of a genuinely nonlinear function a : [0, 1]→ R3.

Question 26 Assume the equation is genuinely nonlinear. Prove that the values of a(v) for v in any small
interval (r, s) ⊂ I linearly span the full space Rd.

Question 27 If a is smooth, prove that the genuine nonlinearity condition is equivalent to the fact that there
is an integer k > 0 such that for all v ∈ I, the vectors

{a(v), a′(v), a′′(v), . . . , a(k)(v)}

span the full space Rd.

Question 28 Prove that there is no genuinely nonlinear equation in dimension d with α > 1/d.

7 Kinetic formulation

Question 29 Given any function u(t, x), we build the following auxiliary function χ(t, x, v).

χ(t, x, v) :=


1 if 0 ≤ v < u(t, x),

−1 if u(t, x) ≤ v < 0,

0 otherwise.

Prove that u is an entropy solution of ut+div f(u) = 0 for (t, x) ∈ Ω if and only if there exists a nonnegative
Borel measure m in Ω× R, whose support is bounded in v, such that

χt + a(v) · ∇χ = ∂vm,

where a(v) = f ′(v). Moreover, the following relations hold

• u =
∫
χ dv.

• For any entropy pair (η, q), the entropy dissipation measure µ = −η(u)t − div q(u) is equal to the
integral of m against η′′(v) with respect to v. That is, for any test function ϕ(t, x),

−
∫∫

(η(u)t + div q(u))ϕ dx dt =

∫∫∫
η′′(v)ϕ(t, x) dm.

At this point, the role played by the time variable is irrelevant. It is more convenient to consider the
equation is stationary form. There is no loss of generality since we can think of the time variable as another
spatial coordinate by writing the equation in one more dimension like

(1, a(u)) · (∂t,∇x)u = 0.

Without a time variable, the kinetic formulation of the equation is slightly shorter to write

χ(x, v) :=


1 if 0 ≤ v < u(x),

−1 if u(x) ≤ v < 0,

0 otherwise.

(2)
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The function u is an entropy solution of div f(u) = a(u) · ∇u = 0 in some domain Ω ⊂ Rd if and only if

a(v) · ∇χ(x, v) = ∂vm in Ω× R,

for some Borel measure m ≥ 0.
By analogy with kinetic equations in statistical mechanics (i.e. Boltzmann, Vlasov or Landau equations),

we call this reformulation of the notion of entropy solutions the kinetic formulation of conservation laws.

Question 30 Consider the following modified kinetic function χ̃

χ̃(x, v) :=

{
1 if v < u(x),

0 if u(x) ≤ v.

Prove that u is an entropy solution of a(u) · ∇u = 0 if and only if a(v) · ∇xχ̃ = ∂vm for some Borel measure
m ≥ 0 whose support is bounded in v.

Question 31 Let u : BR → R be an entropy solution to the conservation law a(u) · ∇u = 0. Consider its
kinetic formulation as in (2). Prove that for r < R,

m(Br × R) .
(max|a|)
R− r

∫
BR

|u|2 dx.

Question 32 Prove that if u ∈ C1/2+ε for any ε > 0, then the kinetic entropy dissipation measure m
vanishes.

Note. It is actually the case that if u is continuous, then m ≡ 0, but it will take a bit longer to prove.

Question 33 Let χ and m be as in (2). Assume that m ≡ 0. Thus, the function χ solves

a(v) · ∇χ = 0,

in the sense of distributions. Prove that (after modification in a set of measure zero if necessary), χ satisfies
the identity

χ(x) = χ(x+ ta(v)),

pointwise for any points x ∈ Rd, v ∈ R and t ∈ R so that the full segment x+ sa(v) is inside the domain of
the equation for s ∈ [0, t].

Question 34 Assume a is genuinely nonlinear. Let u : Rd → R be a global bounded entropy solution of
a(u) · ∇u = 0 so that m = 0 in (2). Prove that u is constant.

Hint. If u(x) > u(y), find points u(y) < v1 < · · · < vd < u(x) so that a(v1), . . . , a(vd) span Rd. Construct
a polygonal joining x with y following these directions and track the values of the kinetic function χ along
this polygonal.

Question 35 Assume a is genuinely nonlinear. Let u : B2 → R be a bounded entropy solution of a(u) ·∇u =
0 so that m = 0 in (2). Prove that u is Hölder continuous in B1 (with a Hölder exponent depending on α).

Hint. If x, y ∈ B1 are sufficiently close to each other depending on u(x)− u(y), the polygonal constructed
in the previous question will stay inside B2. Quantifying this properly may require some nontrivial linear
algebra.
Note. The previous question shows the regularization effect of the kinetic formulation in its most basic
form: when the right hand side is equal to zero. We will see that the equation

a(v) · ∇χ = . . .

has a subtle regularization effect depending on what is on the right hand side. When we have the derivative
of a measure ∂vm on the right hand side, we will get that u ∈W s,1 for all s < α/(2+α). This is in some way
optimal for the kinetic equation (2), but it is not an optimal result for conservation laws. It is conjectured
that u ∈W s,1 for all s < α. This conjectured optimal regularity is known to hold for the Burgers equation.
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8 Averaging lemmas

In this section of problems we study generic solution of the transport equation

a(v) · ∇xf = ∂vg. (3)

We could study more generic situation in which the right-hand side is not necessarily the derivative in v of
a function/measure g. Since we aim at applying the results to conservation laws, let us stick to this one
formulation. However, we do not assume that g is a nonnegative measure or that f has any particular form.
We will consider f and g to be compactly supported in x and v in order to keep some technicalities cleaner.
Our purpose is to study the regularity of

∫
f dv in terms of the regularity of f and g. As we will see, it turns

out that we can often prove that f̄ is more regular than f . This was observed by the mid 80’s in the work
of François Golse in the context of kinetic equations (as in the equations of statistical mechanics). Because
of the kinetic formulation of conservation laws, we will be able to take advantage of these averaging results
and get somewhat surprising regularization effects.

Here are some basic facts that will be used below. We first recall that fourier multipliers correspond to
convolution operators: (

φ(ξ)f̂(ξ)
)∨

= φ̌ ∗ f.

It also works in specific directions. For e ∈ ∂B1 and φ : R→ R,(
φ(ξ · e)f̂(ξ)

)∨
=

∫ ∞
−∞

φ̌(ze) ∗ f(x− ze) dz.

Young’s inequality helps us estimate the Lp norms of convolutions.

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq for 1 + 1/r = 1/p+ 1/q.

We start by describing the Littlewood-Paley decomposition of generic functions. We start with some
smooth nonnegative bump function ψ0 : Rd → R supported in B1 such that it equals one in B1. For
j = 1, 2, . . . , et ψj(ξ) = ψ0(2−jξ)− ψ0(2−j+1ξ). For any f : Rd → R, e define ∆jf to be the function whose
Fourier transform equals

(∆jf)
∧

= ψj(ξ)f̂(ξ).

Each term ∆jf in the Littlewood-Paley decomposition is localized in a dyadic annulus in frequency space.
This decomposition is sometimes handy in order to rephrase some properties of functions. Intuitively, the
regularity of f corresponds to the decay in the norm of the terms ∆jf . Note that each term ∆jf can also
be expressed as the convolution ψ̌j ∗ f and ‖ψ̌j‖L1 is a constant for j = 1, 2, 3, . . . .

Question 36 Given f ∈ L2(Rd), prove that

(a) f =
∑∞
j=0(∆jf) (with convergence in L2).

(b) ‖f‖2L2 ≈
∑∞
j=0 ‖∆jf‖2L2 .

(c) If f and g satisfy (3) and fj = ∆x
j f and gj = ∆x

j g, then

a(v) · ∇xfj = ∂vgj .

(d) For any p ∈ [1,∞], prove that ‖∆jf‖Lp ≤ C‖f‖Lp with a constant C independent of j.

Hint. For part (d), rewrite the operator ∆j as a convolution and use Young’s inequality.
We will further decompose the solutions to (3). For an arbitrary sequence δj > 0, we write

fj =

∞∑
k=0

fjk,
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where

f̂jk(ξ, v) = ψk

(
a(v) · ξ
δj

)
ψj(ξ)f̂(ξ, v).

Here f̂(ξ, v) denotes the Fourier transform of f in x only (not in v). Note we are abusing notation since the
ψk in the first factor is over R whereas the φj in the second factor is over Rd.

The idea of this decomposition is that in the support of each fjk with k > 1 we have a lower bound for
|a(v) · ξ|. The equation will be useful to estimate the norm of each fjk with k > 1 in terms of gj . for the
reminder term fj0, we will use the genuine nonlinearity condition to bound its norm using that for each ξ
there cannot be too many values of v so that fj0(ξ, v) 6= 0.

Question 37 Let Tk be the operator whose Fourier multiplier is ψk

(
a(v)·ξ
δ

)
. Prove that Tk is bounded from

Lq to Lq uniformly with respect to k, v and δ. Moreover, the norm of T0 is ‖ψ̌0‖L1 and the norm of Tk is
‖ψ̌1‖L1 for any k ≥ 1.

Hint. Rewrite the Fourier multiplier operator as a convolution in one variable and apply the Young’s
inequality.

Question 38 Assume that a is genuinely nonlinear. For any j ≥ 1, let f̄j0 =
∫
fj0 dv. Prove the estimates

(a) ‖f̄j0‖L2 ≤ C min(1, δ
α/2
j 2−αj/2)‖fj‖L2 .

(b) ‖f̄j0‖L1 ≤ C‖fj‖L1 .

(c) ‖f̄j0‖Lp ≤ C min(1, δαj 2−αj)1/p′‖fj‖Lp for any p ∈ [1, 2].

The constant C depends on the parameters of the genuine nonlinearity condition and the length of the support
of f in v.

Hint. Use the Cauchy Schwartz inequality in Fourier side.

Question 39 Verify the following identity

(f̄jk)∧(ξ) = i

∫
ĝ(ξ, v)

(
a′(v) · ξ

2kδj

)
ψ̃′1

(
a(v) · ξ

2kδj

)
ψj(ξ)

2kδj
dv,

where ψ̃1 : R→ R is the function ψ̃1(z) = ψ1(z)/z.

Hint. There should be no difficulty in this question. I had to put the formula somewhere.

Question 40 For any a in a bounded set, prove that the operators whose Fourier multipliers are(
a′(v) · ξ

2j

)
ψj(ξ) and ψ̃1

(
a(v) · ξ

2kδ

)
,

are bounded from Lp to Lp, for any p ∈ [1,∞], with their norms bounded independently of k, j and δ.

Question 41 Prove that for any q ∈ [1,∞],

‖
∞∑
k=1

f̄jk‖Lq ≤ C
2j

δ2
j

‖g‖Lq .

Here, as before, f̄j =
∫
fj dv.

The following question is a general fact about interpolation of Lp spaces. It is a particular case of the
K-method of real interpolation.
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Question 42 Let ϕ : M → R be any measurable function from a measure space M . Let 1 ≤ p < q ≤ ∞.
Assume that

inf
ϕ0+ϕ1=f

(‖ϕ0‖Lp + t‖ϕ1‖Lq ) ≤ C0t
θ,

then
‖ϕ‖Lr,∞ := sup{λ−1|{x : f(x) > λ}|1/r : λ > 0} . C0,

for r given by 1/r = θ/q + (1− θ)/p.

Question 43 Let ϕ : Rd → R and ϕj = ∆jϕ be its Littlewood-Paley blocks. Is it true that

‖ϕj‖Lr ≤ C‖ϕj‖Lr,∞ ,

for a constant C independent of j?

Question 44 Going back to the functions f =
∑
j fj as before, prove that for p ∈ [1, 2] and q ∈ [1,∞],

‖f̄j‖Lr ≤ 2−jθ‖f‖1−θLp ‖g‖
θ
Lq ,

where

θ =
α

2p′ + α
and

1

r
= θ · 1

q
+ (1− θ) · 1

p
.

Hint. Combine the interpolation result of Question 42 with the estimates from Questions 38 and 41. Pick
the optimal choice of δj > 0 in terms of all the other parameters.

Question 45 Given any function ϕ : Rd → R. Assume that

‖∆jϕ‖Lp,∞ ≤ C2−jθ.

Prove that ϕ ∈ W s,r(B1) whenever s ∈ (0, θ] and p ∈ (1, p] and either s < θ or r < p. Here, we use the
definition

‖ϕ‖W s,r(B1) :=

(∫∫
B1×B1

|ϕ(x)− ϕ(y)|r

|x− y|d+sr
dy dx

)1/r

+ ‖ϕ‖Lr(B1).

Verify that the inclusion also holds for all variants of the space of functions with s derivatives in Lr that
Isaac can come up with.

Question 46 Let u : B2 → R be an entropy solution of a genuinely nonlinear scalar conservation law

a(u) · ∇u = 0 in B2.

Prove that u ∈ W s,r(B1) for all s < θ and 1/r = (1 + θ)/2, where θ = α/(4 + α). Moreover, an inequality
holds

‖u‖W s,r(B1) ≤ C‖u‖
(1+θ)/2
L1(B2) ,

for a constant C that depends on dimension, the parameters of the genuine nonlinearity condition, and
‖u‖L∞ .

Note. The estimate above is a consequence of averaging results for general kinetic equations. There is a lot
of structure which is specific of conservation law equations that we are not using. In particular, we do not
use that f only takes the values +1, −1 and 0 and has the specific form of Question 29. We do not use that
m ≥ 0 either. The best regularity result that is currently known is that f ∈ W s,1 for all s ∈ (0, α/(2 + α)).
This result is proved using averaging lemmas as above, combined with some of the extra information about
conservation laws. It is conjectured that the actual threshold is s ∈ (0, α).
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9 De Giorgi iteration

Question 47 Prove that u : Ω → R is an entropy subsolution of the equation a(u) · ∇u ≤ 0 if and only if
there exist two nonnegative measures m0 and m1 in Ω× R such that the function χ defined in Question 29
satisfies

a(v) · ∇xχ = ∂m0 −m1.

Question 48 Let u : BR → [0,+∞) be a non-negative entropy subsolution of the equation a(u) · ∇u ≤ 0.
Prove that there are measures m0 and m1 as in Question 47 that satisfy the bounds

(a)

m0(Br × R) ≤ C

R− r
‖u‖L1(BR)‖u‖L∞(BR) and m1(Br × R) ≤ C

R− r
‖u‖L1(BR).

Here C is a constant depending on a only.

(b)

m0(Br × R) ≤ C lim sup
h→0

‖u(· − h)− u‖2L2(BR−|h|)

|h|
and m1(Br × R) ≤ C

R− r
‖u‖L1(BR).

Here C is a constant depending on a only.

Note. The measures m0 and m1 of Question 47 are not unique. That is why in Question 48 you are
supposed to show that the bounds holds for some pair and not all.

Question 49 Let u : BR → [0,+∞) be a non-negative entropy subsolution of the equation a(u) · ∇u ≤ 0
with a genuinely nonlinear. Use averaging to justify the following inequalities

(a) For any ϕ : Rd → R supported inside BR,

‖uϕ‖W s,r ≤ C‖u‖
1+θ
2

L1(BR)‖∇ϕ‖
θ
L∞ ,

for any s < θ and for some constant C depending on ‖u‖L∞ and a. The constants θ and r should be
the same as in Question 46.

(b) For p > 1 such that 1/p > (1 + θ)/2− θ/d,

‖u‖Lp(Br) ≤ C‖u‖
1+θ
2

L1(BR)(R− r)
−θ.

Hint. You need to use the embedding W s,r ⊂ Lp for fractional Sobolev spaces, which you may not
have seen before.

(c) For any p′ > 1 such that 1/p′ < (1− θ)/2 + θ/d, we have

‖u‖L1(Br) ≤ C(R− r)−θ‖u‖
1+θ
2

L1(BR)|{u > 0} ∩Br}|1/p
′
.

(d) Verify that the values of 1+θ
2 + 1/p′ > 1 for some valid values of p′ in the previous inequality.

Note. It is interesting to take a moment and think of the significance of the result in the last question. For
any exponents α and β such that α+ β ≤ 1, the inequality

‖u‖L1(Ω) ≤ C‖u‖αL1(Ω)|{u > 0} ∩ Ω|β

is satisfied for some constant C depending on ‖u‖L∞ and Ω by any function u (regardless of the equation).
The same inequality is not necessarily true, and thus it must be obtained as a consequence of the equation,
as soon as α+ β > 1.
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Question 50 Let u : B2 → [0,+∞) be a nonnegative subsolution to a genuinely nonlinear conservation law.
The purpose of this question is to prove the following estimate

esssupB1
u ≤ C‖u‖γL1(B2), (4)

for some γ > 0 and a constant C depending on the parameters of the genuine nonlinearity condition, ‖a‖C1 ,
and ‖u‖L∞(B2).

(a) For an arbitrary constant U > 0, let us define

rk = 1 + 2−k,

`k = U(1− 2−k),

uk = (u− `k)+,

ak = ‖uk‖L1(Brk ).

Show that esssupB1
u ≤ U if and only if ak → 0 as k →∞.

(b) Prove the following recurrence relation

ak+1 ≤ C2Cka
(1+θ)/2+1/p′

k U−1/p′ .

(c) Let δ := (1 + θ)/2 + 1/p′ − 1 and γ = δp′. Prove that if U ≥ Caγ0 for some large C, then ak → 0 as
k →∞.

(d) Conclude the proof of (4).

Question 51 Let uj be a uniformly bounded sequence of entropy solutions to a genuinely nonlinear conser-
vation law that converges in L1

loc to a constant. Prove that it also converges to a constant locally uniformly.

10 Jump set

Question 52 Let m be the entropy dissipation measure as in Question 29. Let us define the jump set J as

J :=

{
x : lim sup

r→0

m(Br(x)× R)

rd−1
> 0

}
.

Prove that the Haussdorff dimension of J is at most d− 1.

Question 53 Let u : Ω → R solve a genuinely nonlinear conservation law equation. For any fixed point
x ∈ Ω, let us define a sequence of rescalings

ur(y) = u(x+ ry).

Prove that ur solves the same conservation law equation independently of the value of r. Moreover, there
is a subsequence rk → 0 so that urk converges in L1

loc to what we call a blow-up limit at x. Consequently,
blow-up limits also solve the same equation.

Question 54 Prove that any blow-up limit of a solution to a genuinely nonlinear conservation law equation
at a point outside of the jump set J must be constant.

Question 55 We say that a function u ∈ L1
loc(Ω) is VMO (Vanishing Mean Oscillation) at the point x if

lim
r→0

1

|Br|

∫
Br(x)

|u(y)−m(r)| dy = 0,

where m : (0, r0)→ R is the average m(r) = |Br|−1
∫
Br(x)

u(y) dy.

Prove that any entropy solution u to a genuinely nonlinear conservation law is VMO at any point outside
of the jump set J .
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Question 56 Give an example of a bounded function u : B1 → R so that u is VMO at every point, but not
all points are Lebesgue points. Give an example of a bounded function u : B1 → R so that every point is a
Lebesgue point but the function is not continuous.

Question 57 Prove that any entropy solution u to a genuinely nonlinear conservation law is continuous at
any point outside of J .

Question 58 Prove that for any solution of a genuinely nonlinear conservation law we have

J :=

{
x : lim inf

r→0

m(Br(x)× R)

rd−1
> 0

}
.
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