
Boot camp - Problem set

Luis Silvestre

September 29, 2017

In the summer of 2017, I led an intensive study group with four undergraduate students at the University
of Chicago (Matthew Correia, David Lind, Jared Marx-Kuo, and Isaac Neal). They read Luis Caffarelli’s
notes The obstacle problem from the Fermi lectures 1998. This problem set was given to complement those
readings and introduce more material.

1 Week 1

1.1 Variational analysis

The purpose of the following questions is to obtain a standard theorem from variational analysis. Most of
these steps are done somewhere in Brezis’ book.

Question 1. Prove that a closed convex set in a Banach space is weakly closed.

Definition 1.1. A function f : X → R, where X is any metric (or topological) space is said to be lower
semicontinuous when f−1({x : x > a}) is open for every a ∈ R.

Equivalently, f−1({x : x ≤ a}) is closed for every a ∈ R.
Equivalently (at least for Hausdorff spaces), f(x) ≤ limy→x f(y) for all x ∈ X.

Question 2. Prove that any lower semicontinuous function on a compact set attains its minimum.

Question 3. Let X be a Banach space and f : X → R be continuous (with respect to the norm topology)
and convex. Prove that f is lower semicontinuous with respect to the weak topology.

Definition 1.2. We say f : X → R is coercive if

lim
R→∞

inf{f(x) : ‖x‖ ≥ R} = +∞.

Question 4. Let X be a Banach space and f : X∗ → R be coercive and weak-∗ lower semicontinuous. Prove
it attains its global minimum.

Question 5. Prove that any convex coercive continuous function on a closed convex subset of a reflexive
Banach space attains its minimum.

The result in the last question is restricted to reflexive spaces. This is to put together the facts that
closed convex sets are closed in the weak topology, and closed and bounded sets are compact in the weak-∗
topology. It is not an artifact of the proof, as the following problem shows.

Question 6. Give an example of a convex, continuous and coercive function f : L1(R)→ R which does not
attain its minimum.

1.2 Variational problems for elliptic PDE

Question 7. Given Ω ⊂ Rd bounded and Lipschitz, g ∈ L2(Ω) and f ∈ H1(Ω), define the function

J(u) =

∫
Ω

aij(x)∂iu∂ju+ g(x)u(x) dx.
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We assume that the coefficients aij are uniformly elliptic. That means that for each index i, j, we have
aij ∈ L∞ and moreover, there is a constant λ > 0 so that

{aij(x)} ≥ λI a.e.

Verify J attains its minimum in the set

{u ∈ H1(Ω) : u = f ∈ ∂Ω}.

Moreover, the minimizer satisfies the following equation in the sense of distributions

∂i (aij(x)∂ju) =
1

2
g in Ω.

Here, repeated indexes denote summation.

Question 8. Given f ∈ H1(Ω) and ϕ : Ω→ R measurable, prove that the set

{u ∈ H1(Ω) : u− f ∈ H1
0 (Ω) and u ≥ ϕ a.e. in Ω},

is closed and convex in Ω.

Question 9. Given Ω ⊂ Rd bounded and Lipschitz, and f ∈ H1(Ω). Prove that the following two minimiza-
tion problems

min

{∫
Ω

|∇u|2 + u+ dx : u− f ∈ H1
0 (Ω)

}
,

min

{∫
Ω

|∇u|2 + u dx : u− f ∈ H1
0 (Ω) and u ≥ 0

}
,

are achieved at the same function.
Here u+ = u if u > 0, and u+ = 0 otherwise. Compute the Euler-Lagrange equation for the minimizer.

Question 10. Prove that if u, v ∈ H1(Ω), then min(u, v) ∈ H1(Ω).

Question 11. (a) Prove that if u, v ∈ L1(Ω) are superharmonic, then min(u, v) is also superharmonic.

(b) Prove that if u, v ∈ H1(Ω) satisfy ∂iaij(x)∂ju ≤ 0 and ∂iaij(x)∂jv ≤ 0 in the sense of distributions,
then for w = minu, v, we also have

∂iaij(x)∂jw ≤ 0.

Question 12. (∗) Is there a superharmonic function u ∈ L∞(B1) which is lower semicontinuous but not
continuous?

1.3 Lipschitz and Hölder spaces

Question 13. Let f : Rd−1 → R be a Lipschitz function. Let S = {x ∈ Rd : xd < f(x1, . . . , xd−1)}. Prove
that there is a bi-Lipschitz function ϕ : Rd → Rd so that ϕ−1(S) = {x ∈ Rd : xd < 0}.

Question 14. Prove that C∞(R) is not dense in C1,1(R). What is the closure of C∞(R) with respect to the
norm in C1,1(R)?

2 Week 2

2.1 Hölder spaces

A function f : Ω→ R is in the Hölder space Cα(Ω) if it is continuous and the following norm is finite.

‖f‖Cα(Ω) := ‖f‖L∞(Ω) + sup
x,y∈Ω

|f(x)− f(y)|
|x− y|α

.

Here α ∈ (0, 1). The case α = 1 corresponds to Lipschitz functions. The space of Lipschitz functions is
sometimes written as C0,1.
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Question 15. Let f ∈ L∞(Ω). Assume that for every ball Br(x) ⊂ Rd which intestects Ω in a set of positive
measure, we have

esssupΩ∩Br(x)f − essinfΩ∩Br(x)f ≤ Crα.

Prove that f is a.e. equal to a Hölder continuous function.

Question 16. Let f : B2 → R be a bounded function. Assume that there is a δ > 0 so that for every ball
Br(x) ⊂ B2, the following inequality holds

osc
Br/2(x)

f ≤ (1− δ) osc
Br(x)

f.

Prove that f is Hölder continuous in B1 for some α > 0 depending on δ.

Question 17. Let f ∈ Cα(B1). Prove that

‖f‖Cα(B1) ≤ C
(
‖f‖L1(B1) + sup

x,y∈Ω

|f(x)− f(y)|
|x− y|α

)
,

for some constant C depending on α only.

Question 18. Let f ∈ C1(Ω). Prove that the following two definitions of the C1,α norms are equivalent.

‖f‖C1,α = ‖f‖L∞ + sup
x,y∈Ω

|∇f(x)−∇f(y)|
|x− y|α

≈ ‖f‖L∞ + sup
x,y∈Ω

|f(x)− f(y)− (x− y) · ∇f(y)|
|x− y|1+α

.

We say that f ∈ C1,α(Ω) when these norms are finite.
When Ω is a ball, prove also that

‖f‖C1,1 ≈ ‖f‖L∞ + ‖D2f‖L∞ .

Question 19. Let Ω be a convex domain and f ∈ C1,α(Ω). Prove that

‖∇f‖L∞(Ω) ≤ C‖f‖C1,α(Ω),

where the constant C depends on Ω only.

Note. The interpolation inequality above holds for nonconvex Ω, provided that its boundary is not too
wild.

Question 20. Let f ∈ C(Ω). Assume that for any ball Br(x) contained in Ω, there exists a linear function
`(x) = a · x+ b such that

sup
x∈Ω
|f(x)− `(x)| ≤ Cr1+α.

Prove that f ∈ C1,α(Ω).

2.2 The Laplace equation

There are some standard properties of the Laplace equation that are typically covered in any PDE class and
you should know. These are

• The mean value property, both in spheres and in balls.

• The strong maximum principle.

• The Harnack inequality.

• Existence and uniqueness of solutions of the Dirichlet problem in a bounded domain with nice boundary.

• Liouville’s theorem.

3



• Solvability of the equation ∆u = f in the full space using the fundamental solution.

Question 21. Let u : Ω→ R. Assume that u attains its maximum at a point x0 ∈ Ω. Prove that x0 belongs
to the support of ∆u.

Question 22. Let Φ : Rd → R be the fundamental solution. Prove that for any x ∈ B1,∫
∂B1

Φ(x− y) dy = Constant independent of x.

Question 23. Let x ∈ Rd. Compute the following integral (explicitly as a function of x),

2d

∫
y∈Rd

Φ(y) + x · ∇Φ(y)− Φ(y + x) dy.

(it takes me 5 keystrokes to write the correct answer in LATEX).

Question 24. Let u : Br → R satisfy the equation

u ≤ 0 on ∂Br,

∆u ≥ −C0 in Br.

Prove that

u ≤ C0

2d
r2 in Br.

Question 25. Prove the following generalization of the Harnack inequality. Let u : B4r → R be a nonnegative
function that satisfies

∆u = f in B4r.

Then

max
Br

u ≤ C
(

min
Br

u+ ‖f‖L∞r2

)
,

for some constant C depending on dimension only.

Note. The Harnack inequality above is still true if we replace B4r by B2r or B1.0001r. The proof with B4r

is marginally easier.

Question 26. (a) Let u : B1 → R be a convex function. Prove that if ∆u ≤ C, then u ∈ C1,1(B1).

(b) Let u : B1 → R be a superharmonic fuction. Assume that there is a constant N > 0, so that for every
x ∈ B1, there exists a b ∈ Rd such that

u(y) ≥ u(x) + b · (y − x)−N |y − x|2 for all y ∈ B1.

Prove that u ∈ C1,1(B1).

2.3 The obstacle problem

Given ϕ : Ω → R and f : ∂Ω → R so that f ≥ ϕ on ∂Ω, the solution of the obstacle problem is the unique
function which satisfies the following properties.

u = f on ∂Ω,

u ≥ ϕ in Ω,

∆u ≤ 0 in Ω (i.e. u is superharmonic),

∆u = 0 in {u > ϕ}.

If Ω has a Lipschitz boundary, f is the boundary value of a function in H1(Ω) and ϕ is any function
in H1(Ω) (or even rougher perhaps), then the solution to the obstacle problem corresponds to the function
where the following minimization is achieved.

min

{∫
Ω

|∇u|2 dx : u ≥ ϕ in Ω, u− f ∈ H1
0 (Ω)

}
.
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Question 27. Prove that the function u where the above minimization is achieved, is indeed the solution to
the obstacle problem described previously.

Question 28. Prove that if v is any superharmonic function such that v ≥ f on ∂Ω and v ≥ ϕ, then v ≥ u.

Question 29. Let u be a solution to the obstacle problem in B1. Assume that ϕ ∈ C1,1 and for some reason
we know that u ∈ C1,1 in a neighborhood of the boundary ∂B1 (this would be the case for example if f is
C1,1 and f > ϕ on ∂B1). The following is an alternative strategy to prove that u ∈ C1,1.

(a) For any h ∈ Rd sufficiently small, we would have that the function

vh(x) =
1

2
(u(x+ h) + u(x− h)) +N |h|2,

is larger than ϕ and larger than u on ∂B1−δ for some δ > 0 small. Here N is the maximum between
‖ϕ‖C1,1(B1) and ‖u‖C1,1(B1\B1−2δ)

(b) The function vh is also superharmonic, and therefore vh ≥ u in B1−δ.

(c) For any h ∈ Rd small and x ∈ B1−δ,

u(x+ h) + u(x− h)− 2u(x)

|h|2
≥ −2N.

Consequently ∂eeu ≥ −2N in B1−δ for any unit vector e.

(d) Using that ∆u ≤ 0, we conclude u ∈W 2,∞(B1−δ) = C1,1(B1−δ).

3 Week 3

3.1 Haudorff measure

The usual definition of the m-dimensional Hausdorff measure is the following.

Hm(A) = sup
δ>0

(
inf

{ ∞∑
i=0

(diam(Ui))
m :

∞⋃
i=1

Ui ⊃ A, diam(Ui) < δ

})
.

This defines an outer measure. Using Caratheodory’s trick, one defines measurable sets, which should
include all Borel sets.

The Hausdorff dimension of a set A is defined as the infimum of those values of m such that Hm(A) = 0.
A related concept is the Minkowski content and dimension.
We define the m-dimensional Minkowski content by the formula

Mm(A) = lim sup
r>0

|A+Br|
rm

.

(alternatively, with lim inf, but let’s not care about that one)

Question 30. Prove that for any set A ⊂ Rd and 0 ≤ m ≤ d,

Hm(A) ≤ CMm(A),

for some constant C depending on d and m only.
Verify that the opposite inequality does not hold if m > 0 (use A = Qd).

The main result in section 3.1 in the notes is that the free boundary ∂{u = ϕ} has finite (d − 1)-
dimensional Hausdorff measure. This is a stronger statement than saying that {u = ϕ} is a set of finite
perimeter. We define the perimeter of a set by the formula

Per(A) = sup

{∣∣∣∣∫
A

divϕ

∣∣∣∣ : ϕ ∈ C1
c (Rn;Rn), ||ϕ||L∞ ≤ 1

}
(3.1)
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This is the same as the BV (semi)norm of the function χA. Here, BV is the space of functions whose
derivatives are finite signed Borel measures.

A set A has finite perimeter when Per(A) < +∞.
The study of sets of finite perimeter is delicate and has several interesting results. The couple of questions

below shows some of the most basic properties.

Question 31. Prove that if A ⊂ Rd is a compact set with C1 boundary, then

Per(A) = Hd−1(∂A) =

∫
∂A

1 dS.

Question 32. Prove that for any Lebesgue measurable set,

Per(A) ≤ CHd−1(A).

In particular, if Hd−1(A) < +∞, then A is a set with finite perimeter.

Question 33. Prove that the set

A =

∞⋃
i=0

B2−i(qi),

where qi is an enumeration of Qd, is of finite perimeter. However, the Hausdorff dimension of ∂A is equal
to d.

Some finer properties of a set of finite perimeter is that there is a special set called reduced boundary,
∂∗A ⊂ ∂A, and a vector field ν : ∂∗A→ ∂B1, such that∫

A

∇ϕ dx =

∫
∂∗A

ϕ(x)ν(x) dHd−1.

Moreover, for every x ∈ ∂∗A, we have that the blow-up sequence

fR(y) = χR(A−x),

converges to a half space (perpendicular to ν(x)) in L1
loc as R→∞.

Proving this takes more time. It was covered in our recent summer school by Maggi’s minicourse. A
good source is Maggi’s book “Sets of Finite Perimeter and Geometric Variational Problems”.

It’s easy to verify that for the set A in the last question, the reduced boundary is the union of the spheres⋃∞
i=0 ∂B2−i(qi).

Question 34. Let A ⊂ Rd be a Lebesgue measurable set. Assume that there is a constant C such that for
all r ∈ (0, 1),

|(A+Br) \A| ≤ Crd−1.

Prove that A has finite perimeter. Is it true that Hd−1(∂A) . C?

Question 35. Besides the obstacle problem, another classical free boundary problem consists in the following
equations

u ≥ 0 everywhere,

∆u = 0 where u > 0,

uν = 1 in ∂{u > 0}.

This problem is obtained by minimizing the (noncovex) functional

J(u) =

∫
|∇u|2 dx+ |{u > 0}|,

for some given nonnegative boundary condition.
Assuming that u is a solution to this problem in B1 and u ∈ C1(B1 ∩ {u > 0}) (obviously, it isn’t

differeniable on ∂{u > 0} if we look outwards, you know what I mean), prove that

Hd−1(∂{u > 0} ∩B1/2) ≤ C,

for some constant C.
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Hint. Here |∇u| ≥ 1 − ε in a neighborhood of ∂{u > 0}. Moreover, from the assumption we should also
be able to deduce that u(x) ≈ dist(x, ∂{u > 0}). Taking this into account, we have

|({u = 0}+Bδ) \ {u = 0}| ≈
∫

0<u<δ

|∇u|2 dx.

4 Week 5

4.1 De Giorgi - Nash theory

Throughout this section, we study elliptic equations with variable coefficients aij(x).

∂i[aij(x)∂ju] = 0.

We use the convention that repeated indexes denote summation. We say that he coefficients aij are
uniformly elliptic if there are two constants Λ ≥ λ > 0 so that for every x in the domain of the equation,

λI ≤ {aij(x)} ≤ ΛI.

These are matrix inequalities. For every x, aij(x) should be a symmetric matrix whose eigenvalues lie
between λ and Λ.

We do not make any regularity assumption on the cofficients aij(x) other than being measurable functions.

Question 36. For any bounded open set Ω ⊂ Rd, prove that∫
Ω

aij(x)∂iu∂ju dx,

is equivalent to the usual norm in H1
0 .

Question 37. Prove that the minimizer of

min

{∫
Ω

aij(x)∂iu∂ju dx : u ∈ H1(Ω), u = f on ∂Ω

}
,

is attained by a function that solves the equation

u = f on ∂Ω,

∂i[aij(x)∂ju] = 0 in Ω.

We say that a function u : Ω → R is a subsolution of the equation ∂i[aij∂j ] ≥ 0, if for any C1 function
ϕ : Ω→ R, with ϕ ≥ 0 and ϕ = 0 on ∂Ω, we have∫

Ω

aij(x)∂iu(x)∂jϕj(x) dx ≤ 0. (4.1)

Question 38. Prove that if u ∈ H1(Ω) is a subsolution, then (4.1) holds for any ϕ ∈ H1
0 .

Question 39.

• Let u ∈ H1(Ω) ∩ L∞(Ω) and f : R → R be differentiable. Prove that f ◦ u ∈ H1(Ω) and ∇(f ◦ u) =
f ′(u)∇u.

• Let u ∈ H1(Ω). Prove that u+ ∈ H1(Ω) and

∇u+(x) =

{
∇u(x) if u(x) > 0,

0 otherwise.

• Prove that ∇u = 0 almost everywhere in the set {u = 0}.

7



• Prove that if there is a measurable set A ⊂ Ω and the function

u(x) =

{
1 if x ∈ A,
0 otherwise,

belongs to H1(Ω), then either A = ∅ or A = Ω.

Question 40.

1. Prove that if u ∈ H1(Ω) is a subsolution and F : R→ R is monotone increasing and convex, then F ◦u
is also a subsolution.

2. Prove that if u, v ∈ H1(Ω) are both subsolutions, then max(u, v) is also a subsolution.

Question 41. (Cacciopoli’s inequality) Let u ≥ 0 be a subsolution in B1+δ and ϕ : B1+δ → R be a
nonnegative function such that ϕ = 0 on ∂B1+δ. Prove that there is a constant C > 0, such that∫

B1+δ

ϕ2|∇u|2 dx ≤ C
∫
B1+δ

u2|∇ϕ|2 dx.

In particular ‖∇u‖L2(B1) ≤ Cδ−1‖u‖L2(B1+δ).

We want to prove the following result.

Theorem 4.1. Let u : B2 → R be a nonnegative subsolution (∂i[aij(x)∂ju] ≥ 0) with aij uniformly elliptic.
Then

ess-supB1
u ≤ C‖u‖L2(B2),

for some constant C which depends only of dimension and the ellipticity constants λ, Λ.

Question 42. Prove that Theorem 4.1 would follow from the following statement: there exists a constant
δ0, which depends only of dimension and the ellipticity constants λ, Λ, so that if ‖u‖L2(B2) ≤ δ0, then
‖u‖L∞(B1) ≤ 1.

In order to prove Theorem 4.1, we consider the following setup. Let

`k := 1− 2−k,

rk := 1 + 2−k,

uk := (u− `k)+,

Ak := ‖uk‖L2(Brk )

Observe that each uk is a nonnegative subsolution and uk+1 ≤ uk. Therefore, Ak+1 ≤ Ak.

Question 43. Prove that Theorem 4.1 is equivalent to the statement: if A0 ≤ δ0, then limk→∞Ak = 0.

Question 44. Prove that
‖uk+1‖Lp(Brk+1

) ≤ C2k‖uk+1‖L2(Brk ),

where 1/p = 1/2− 1/d.

Hint: combine the Cacciopoli inequality with the Sobolev inequality.

Question 45. Prove that

‖uk+1‖L2(Brk+1
) ≤ C2k‖uk+1‖L2(Brk )|{uk+1 > 0} ∩Brk+1

|2/d.

Hint: combine the previous question with Hölder’s inequality.

Question 46. Prove that

Ak+1 ≤ C2k+4k/dA
1+4/d
k .

And this recurrent relation implies that if A0 < δ0 for some small δ0, then limk→∞Ak = 0.
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Hint: combine the previous question with Chevischev’s inequality.
After solving the questions above, we are done with the proof of Theorem 4.1.

Question 47. Let u : B2 → R be a nonnegative supersolution (i.e. −u is a subsolution). Prove that there
is a constant ε0 > 0 so that if

|{x ∈ B2 : u(x) ≥ 1}| ≥ (1− ε0)|B2|,

then u(x) ≥ 1/2 almost everywhere in B1.

Question 48. For any constants C, δ0 > 0 and δ1 > 0, prove that there exists an ε > 0 (depending only on
these constants and dimension) so that the following statement is true.

If u : B1 → [0, 1] is such that ‖u‖H1(B1) ≤ C, |{u = 0}| ≥ δ0 and |{u = 1}| ≥ δ1, then |{0 < u(x) <
1}| > ε.

Hint. Assume the opposite. There would be a sequence of functions with certain properties. Use Rellich-
Kondrachov theorem to obtain a subsequence which converges in L2. What would the limit function be?

Question 49. Let u : B2 → R be a nonnegative supersolution. Assume that |{x ∈ B2 : u(x) ≥ 1}| ≥ δ. Let

δk := |{x ∈ B3/2 : u(x) < 2−k}|.

Prove that δk → 0 as k → ∞. Moreover, an upper bound for δk depends on δ, k, the ellipticity constants
and dimension only (it may not be explicit though).

Question 50. Let u : B2 → R be a nonnegative supersolution. Assume that |{x ∈ B2 : u(x) ≥ 1}| ≥ δ.
Prove that

ess-infB1
u ≥ θ,

for some θ > 0 which depends on δ, the ellipticity constants and dimension only.

Hint. Combine questions 47 and 49.

Question 51. Let u : B2 → [0, 1] be a solution. Prove that

osc
B1

u :=
(
ess-supB1

u− ess-infB1
u
)
≤ (1− θ),

for some θ > 0 depending only on dimension and the ellipticity constants.

Hint: either |{x ∈ B2 : u(x) ≥ 1/2}| ≥ |B2|/2 or |{x ∈ B2 : u(x) ≤ 1/2}| ≥ |B2|/2.

Question 52. Let u : B2 → R be a solution. Then,

‖u‖Cα(B1) ≤ C‖u‖L2(B2).

for some constants C and α > 0 depending on dimension and the ellipticity constants only.

Hint: at any point x0 ∈ B1/2, iterate the oscillation gain from the previous question.

Question 53. Let u : Ω→ R be a nonnegative supersolution, and R > 0, x0 ∈ Ω be such that

B2R(x0) ⊆ Ω.

If r < R and inf
Br(x0)

u ≥ a, prove that

inf
BR(x0)

u ≥ c
( r
R

)q
a, (4.2)

for some c, q > 0 universal.
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Question 54. Let u : B2 → R be a nonnegative solution. Our goal is to prove the Harnack inequality,

sup
B1/4

u ≤ Cu(0), (4.3)

for some constant C universal. We will do so by showing that if the ratio sup
B1/4

u/u(0) was sufficiently large,

then we could construct a sequence of points {xk}∞k=1 ⊆ B1/2 such that u(xk) → ∞, contradicting the
boundedness of u in B1.

1. Prove that for any xk ∈ B1/2 and rk sufficiently small that

u(0) ≥ crqk inf
Brk (xk)

. (4.4)

2. Taking xk+1 = sup
Brk (xk)

u, prove that

u(xk+1) ≥
u(xk)− c−1r−qk u(0)

1− θ
. (4.5)

3. Show that if

sup
B1/4

u

u(0)
was sufficiently large, then you could choose rk so that

u(xk+1) ≥ βu(xk), (4.6)

for some β > 1, and that
∞∑
k=1

rk ≤ 1/2. (4.7)

Complete the proof.

4. Prove that
sup
B1/8

u ≤ C inf
B1/8

u. (4.8)

5 Week 6

6 More about uniformly elliptic equations with rough coefficients

The first question suggests that perhaps we do not always need to worry about weird functions.

Question 55. Let Ω ⊂ Rd be a bounded open set, un : Ω→ R, fn : Ω→ R and an : Ω→ Rd×d be sequences
so that

• For each n = 1, 2, 3, . . . ,
∂i[a

n
ij(x)∂jun] = fn in Ω.

• The coefficients anij are uniformly elliptic, with constants uniform in n. Moreover anij → aij almost
everywhere in Ω.

• fn → f in H−1(Ω).

• un → u in H1(Ω).

Then,
∂i[aij(x)∂ju] = f in Ω. (6.1)

Conversely, if we have a solution to (6.1), there are sequences un, fn and an of C∞ functions as above.
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Question 56. Let u ∈ H1(B+
1 ) be a solution of the equation

∂i[aij(x)∂ju] = 0 in B+
1 ,

where {aij} : B+
1 → Rd×d are uniformly elliptic measurable coefficients. Assume that the trace of u on

B1 ∩ {xn = 0} is zero. Consider the reflection:

u(x′,−xn) = −u(x′, xn) for (x′, xn) ∈ B+
1 ,

aij(x
′,−xn) = aij(x

′, xn).

Prove that this extended function u : B1 → R (yes, I still call it u) satisfies the equation

∂i[aij(x)∂ju] = 0 in B1.

Hint. Do some surgery. At some point you will need to notice that ∇u(x′, xn) = ∇u(x′,−xn).

Question 57. For any α > 0, prove that there exists a solution to a uniformly elliptic equation in B1 which
is not Cα at the origin (of course, the uniform ellipticity constants will depend on α).

Question 58. Let f ∈ Lp(B1) for some p > d/2. Let u be a solution of

∂i[aij(x)∂ju] = f in B1,

u = 0 on ∂B1.

Then
‖u‖L∞(B1) ≤ C‖f‖Lp(B1).

Moreover, u is Hölder continuous in B1 with a norm depending on ellipticity, dimension and ‖f‖Lp only.

Hint. Unfortunatelly, to solve this question you might have to redo a significant part of last week’s homework.
I don’t know if there is a smarter way. Do not use LSW theory here since we will need it for the next question
(which is literally LSW).

Question 59. Let Ω ⊂ Rd be a Lipschitz domain. Here d ≥ 3. Let us consider the operator S : L2(Ω) →
H1

0 (Ω) defined as Sf := u where

∂i[aij(x)∂ju] = f in Ω,

u = 0 on ∂Ω.

Here aij are symmetric uniformly elliptic coefficients as usual. Prove that there exists a function G : Ω×Ω→
R such that

Sf(x) =

∫
Ω

G(x, y)f(y) dy.

Needless to say, this function G is the Green function. Moreover,

(a) For every fixed x ∈ Ω, G(x, ·) ∈ Lq(Ω) for every q ∈ [1, d/(d− 2)).

Hint. This is the starting point. Use the previous question here.

(b) The map x→ G(x, ·) is continuous from Ω to Lq(Ω).

(c) We have G(x, y) = G(y, x) and G ≥ 0.

(d) The function G satisfies the equation

∂xj [aij(x)∂xjG(x, y)] = 0 for (x, y) ∈ Ω× Ω \ {x = y}.

(e) For every fixed x ∈ Ω, ∇yG(x, ·) ∈ L1(Ω).
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(f) For any C1 function ϕ which vanishes on ∂Ω, the following identity holds

ϕ(x) =

∫
Ω

aij(y)∂iϕ(y)∂yiG(x, y) dy.

(g) Prove that ∫
B2r(x)\Br(x)

|∇yG(x, y)|2 dy & r2−d.

Hint. Use part (f) with a well chosen ϕ.

(h) There is a constant C (depending on the uniform ellipticity assumption only) such that for every r > 0,

sup{G(x, y) : y ∈ B2r(x) \Br(x)} ≤ C inf{G(x, y) : y ∈ B2r(x) \Br(x)}.

Provided that B3r(x) ⊂ Ω.

Hint. Use Harnack’s inequality.

(i) Let m = inf{G(x, y) : y ∈ B2r(x) \Br(x)}. Assume B4r(x) ⊂ Ω. Prove that∫
B2r(x)\Br(x)

|∇yG(x, y)|2 dy . m2rd−2.

Hint. Use Cacciopoli’s inequality in a slightly larger ring.

(j) Prove that if |x− y| < dist(x, ∂Ω)/2,

G(x, y) & |x− y|2−d.

Hint. Combine (g) and (i).

(k) Prove the other inequality
G(x, y) . |x− y|2−d.

(lack of)Hint. You’re on your own here.

6.1 Back to the obstacle problem

Question 60. Let w : BR → R be a solution to the obstacle problem min(w, 1 − ∆w) = 0. Assume that
w(x) = 0 for some x ∈ B1 and R > 2. Prove that

‖w‖C1,1(BR/2) ≤ C,

for some universal constant C.

Question 61. We define the width of a set Λ ⊂ Rd as

width(Λ) := inf
|e|=1

osc{x · e : x ∈ Λ}.

Here oscA = supA− inf A.
Prove that if un : B2 → R is a sequence of continuous functions which converges uniformly to u in B2,

then
lim sup
n→∞

width({un = 0} ∩B1) ≤ width({u = 0} ∩B1).
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