◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

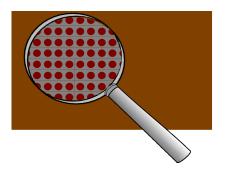
A problem of optimal design of composites

Luis Silvestre

Courant Institute

Oct. 25th, 2007

Composite materials



Composites are engineered materials made from two or more constituent materials with significantly different physical properties (For ex. Thermal conductivity). The mixing of the materials is at a small scale, we compute the conductivity properties at a larger scale by a process called homogenization.

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

Periodic composites

In a periodic two-component composite, the conductivity at each point is given by a periodic function a with the following form in the unit cube Q.

$$a(x) = egin{cases} \sigma_1 & ext{if } x \in A \ \sigma_2 & ext{if } x \in Q \setminus A \end{cases}$$

$$a(x) = \sigma_1$$

Where A is the part of the cube covered by the first constituent material.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

homogenization

If the function ${\it a}$ is periodic in cubes of size $\varepsilon,$ we have equations like

$$\operatorname{div}(a(x/\varepsilon)\nabla u^{\varepsilon}(x)) = f(x)$$

As $\varepsilon \to 0$, the solutions u^{ε} will converge to a solution u to the *homogenized* problem:

$$\operatorname{div}(A_{\operatorname{eff}}\nabla u(x)) = f(x)$$

where the matrix $A_{\rm eff}$ depends on σ_1 , σ_2 and the exact shape of the set A.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Cell problem

Formula to obtain $A_{\rm eff}$

The matrix A_{eff} is a self-adjoint matrix such that

$$\langle A_{\mathsf{eff}} v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Note that $\langle A_{\text{eff}} v, v \rangle$ is the energy of a function $u(x) = x \cdot v + w(x)$ that is periodic perturbation of a plane and solves

$$\operatorname{div}(a(x)\nabla u) = 0 \quad \text{in } Q$$

Interpretation of the cell problem

The function $u = x \cdot v + w$ is a periodic perturbation of a plane that solves $div(a(x)\nabla u) = 0$ in Q.

$$\langle A_{\mathsf{eff}} \; v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \; \mathrm{d}x.$$

- 10

Interpretation of the cell problem

The function $u = x \cdot v + w$ is a periodic perturbation of a plane that solves $div(a(x)\nabla u) = 0$ in Q.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

-

Interpretation of the cell problem

The function $u = x \cdot v + w$ is a periodic perturbation of a plane that solves $div(a(x)\nabla u) = 0$ in Q.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Interpretation of the cell problem

The function $u = x \cdot v + w$ is a periodic perturbation of a plane that solves $div(a(x)\nabla u) = 0$ in Q.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

-

Interpretation of the cell problem

The function $u = x \cdot v + w$ is a periodic perturbation of a plane that solves $div(a(x)\nabla u) = 0$ in Q.

$$\langle A_{\mathsf{eff}} \; v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \; \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In a coarser scale, the function u approximates a plane. Its energy is still $\langle A_{\text{eff}}v, v \rangle$.

$$\langle A_{\mathsf{eff}} | v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

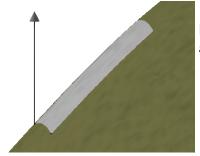
Interpretation of the cell problem

In a coarser scale, the function u approximates a plane. Its energy is still $\langle A_{\text{eff}}v, v \rangle$.

$$\langle A_{\mathsf{eff}} | v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

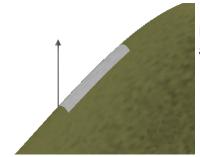


In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

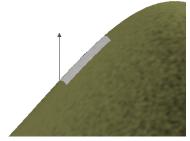


In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

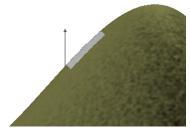


In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} | v, v \rangle = \min_{w \in H^1_{\text{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

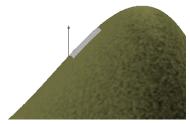


In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

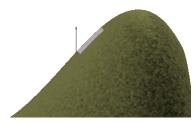


In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem



In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \, v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} | v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \ v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \ \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} | v, v \rangle = \min_{w \in H^1_{\text{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} | v, v \rangle = \min_{w \in H^1_{\text{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} | v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} v, v \rangle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q a(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} v, v \rangle = \min_{w \in H^{1}_{\text{per}}(Q)} \int_{Q} a(x) |v + \nabla w|^{2} dx.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} v, v \rangle = \min_{w \in H^{1}_{\text{per}}(Q)} \int_{Q} a(x) |v + \nabla w|^{2} dx.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\mathsf{eff}} \, v, v
angle = \min_{w \in H^1_{\mathsf{per}}(Q)} \int_Q \mathsf{a}(x) |v + \nabla w|^2 \, \mathrm{d}x.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} | v, v \rangle = \min_{w \in H^{1}_{\text{Der}}(Q)} \int_{Q} a(x) |v + \nabla w|^{2} dx.$$

Shape optimization

Interpretation of the cell problem

In an even larger scale, it could be a piece of a smooth function.

$$\langle A_{\text{eff}} | v, v \rangle = \min_{w \in H^{1}_{\text{per}}(Q)} \int_{Q} a(x) |v + \nabla w|^{2} dx.$$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Effective conductivity.

In general A_{eff} is a selfadjoint $n \times n$ matrix.

In case the set A (the part of the unit cube occupied by the first component) is cubically symmetric, then we know A_{eff} will be a scalar $a_{\text{eff}}I$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

First Question of optimization.

Question

Given $\sigma_1 < \sigma_2$ and $\mu > 0$, what is the maximum value that a_{eff} can take for all cubically symmetric shapes A such that $|A| = \mu$?

Answer

The maximum conductivity is given by the Hashin-Shtrikman bound:

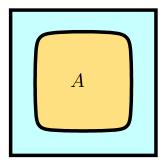
$$a_{\mathsf{eff}} \leq \mu \sigma_1 + (1-\mu) \sigma_2 - rac{\mu (1-\mu) (\sigma_2 - \sigma_1)^2}{(n \sigma_2 + (1-\mu) (\sigma_1 - \sigma_2))}$$

Moreover, there is a unique connected shape A that realizes the bound and it is given by the contact set of an obstacle problem.

General Vigdergauz structures

The unique connected shape A that achieves the Hashin-Shtrikman bound is the contact set of the following *obstacle* problem.

- q is a Q-periodic function.
- $q \geq -|x|^2$ in Q.
- riangle q(x) = k for every x where $q(x) > -|x|^2$.
- $riangle q(x) \leq k$ in Q.



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Liu, James and Leo - 2006

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A more symmetric problem

Consider a composite where one constituent is a good thermal conductor (conductivity 1) but a bad electric conductor (conductivity ε). The other has the exact oposite properties: thermal conductivity ε and electric conductivity 1.

Let $a_{\rm eff}$ and $b_{\rm eff}$ be the effective thermal and electric conductivities of the mix.

In a series of papers, Torquato, Hyun and Donev studied the problem of maximizing $a_{\rm eff} + b_{\rm eff}$ from all cubically symmetric shapes A in 3D such that |A| = |Q|/2. Not that if we exchange A with $Q \setminus A$, the quantity $a_{\rm eff} + b_{\rm eff}$ does not change.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

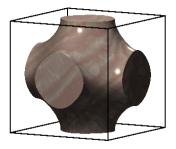
Bergman's bounds

Using classical cross-property bounds due to Bergman (1978), we can obtain the following upper bound in 3D:

$$a_{ ext{eff}} + b_{ ext{eff}} \leq (1 + arepsilon) - rac{(1 - arepsilon)^2}{3(1 + arepsilon)}.$$

Question: Is the bound achievable?

Pseudo-answer: Numeric computations by Torquato, Hyun and Donev suggest it is.

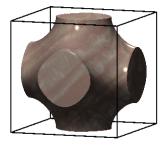


The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

(日) (雪) (日) (日) (日)



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

(日) (雪) (日) (日) (日)

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

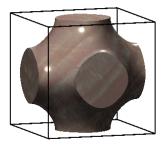
Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

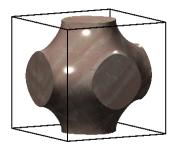
Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

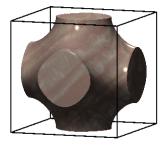
Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

(日) (雪) (日) (日) (日)

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

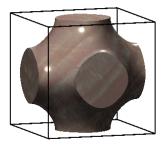
Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

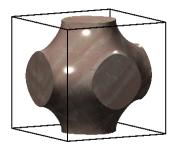
Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.



The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

The expected shape of an optimal structure *A* would be triply connected.

Moreover $Q \setminus A$ would be triply connected too.

Moreover A and $Q \setminus A$ should be congruent sets due to the symmetry of the problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The set A and $Q \setminus A$ are identical up to translation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The set A and $Q \setminus A$ are identical up to translation

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The set A and $Q \setminus A$ are identical up to translation

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The set A and $Q \setminus A$ are identical up to translation

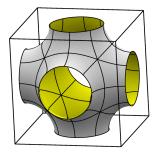
▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The set A and $Q \setminus A$ are identical up to translation

Conjecture.

From the numeric computations it was natural to believe that ∂A was the Schwartz *P* surface.

The Schwartz P surface is a bicontinuous periodical minimal surface.



Picture of the Schwartz *P* surface from the website of Ken Brakke.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Characterization of optimal structures

Theorem

Bergman's upper bound is achieved for a set $A \subset Q$ if and only if the periodic solution to

$$riangle q = \left\{egin{array}{ccc} 1 & \mbox{in } A \ -1 & \mbox{in } Q \setminus A \end{array}
ight.$$

satisfies

$$D^{2}q(x) = \begin{cases} M(x) + \nu \otimes \nu & \text{on the A side of } \partial A \\ M(x) - \nu \otimes \nu & \text{on the } Q \setminus A \text{ side of } \partial A \end{cases}$$

for some matrix M such that $M(x) \cdot \nu = 0$.

Proof in the blackboard.

Counterproof of the conjecture

Question

Can Bergman's upper bound be achieved if ∂A has mean curvature zero?

If that was the case, it can be shown that

- q is constant (= 0) on ∂A .
- q_{ν} is also constant on ∂A .

So, at the same time we would have that q^+ and q^- solve the one phase problem, and q solves the two-phase membrane problem.

For a given set A, these conditions can be checked numerically in a very simple way. Indeed, they are **not** satisfied if ∂A is the Schwartz P surface.