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Composite materials

Composites are engineered
materials made from two or more
constituent materials with
significantly different physical
properties (For ex. Thermal
conductivity).
The mixing of the materials is at
a small scale, we compute the
conductivity properties at a larger
scale by a process called
homogenization.
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Periodic composites

In a periodic two-component composite, the conductivity at each
point is given by a periodic function a with the following form in
the unit cube Q.

a(x) =

{
σ1 if x ∈ A

σ2 if x ∈ Q \ A

A

a(x) = σ1

a(x) = σ2

Where A is the part of the cube covered by the first constituent
material.
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homogenization

If the function a is periodic in cubes of size ε, we have equations
like

div(a(x/ε)∇uε(x)) = f (x)

As ε → 0, the solutions uε will converge to a solution u to the
homogenized problem:

div(Aeff∇u(x)) = f (x)

where the matrix Aeff depends on σ1, σ2 and the exact shape of
the set A.
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Cell problem

Formula to obtain Aeff

The matrix Aeff is a self-adjoint matrix such that

〈Aeff v , v〉 = min
w∈H1

per(Q)

∫
Q

a(x)|v +∇w |2 dx .

Note that 〈Aeff v , v〉 is the energy of a function u(x) = x · v +w(x)
that is periodic perturbation of a plane and solves

div(a(x)∇u) = 0 in Q



Introduction to composites Homogenization Shape optimization

Interpretation of the cell problem

The function u = x · v + w is a
periodic perturbation of a plane
that solves div(a(x)∇u) = 0 in Q.

〈Aeff v, v〉 = min
w∈H1

per(Q)

Z
Q

a(x)|v + ∇w|2 dx.
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Interpretation of the cell problem

In a coarser scale, the function u
approximates a plane. Its energy
is still 〈Aeffv , v〉.
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Interpretation of the cell problem

In an even larger scale, it could be
a piece of a smooth function.

〈Aeff v, v〉 = min
w∈H1
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Effective conductivity.

In general Aeff is a selfadjoint n × n matrix.

In case the set A (the part of the unit cube occupied by the first
component) is cubically symmetric, then we know Aeff will be a
scalar aeffI .
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First Question of optimization.

Question

Given σ1 < σ2 and µ > 0, what is the maximum value that aeff can
take for all cubically symmetric shapes A such that |A| = µ??

Answer

The maximum conductivity is given by the Hashin-Shtrikman bound:

aeff ≤ µσ1 + (1− µ)σ2 −
µ(1− µ)(σ2 − σ1)

2

(nσ2 + (1− µ)(σ1 − σ2))

Moreover, there is a unique connected shape A that realizes the
bound and it is given by the contact set of an obstacle problem.
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General Vigdergauz structures

The unique connected shape A that
achieves the Hashin-Shtrikman bound is
the contact set of the following obstacle
problem.

• q is a Q-periodic function.

• q ≥ −|x |2 in Q.

• 4q(x) = k for every x where
q(x) > −|x |2.

• 4q(x) ≤ k in Q.

A

Liu, James and Leo - 2006
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A more symmetric problem

Consider a composite where one constituent is a good thermal
conductor (conductivity 1) but a bad electric conductor
(conductivity ε). The other has the exact oposite properties:
thermal conductivity ε and electric conductivity 1.

Let aeff and beff be the effective thermal and electric conductivities
of the mix.

In a series of papers, Torquato, Hyun and Donev studied the
problem of maximizing aeff + beff from all cubically symmetric
shapes A in 3D such that |A| = |Q|/2.
Not that if we exchange A with Q \ A, the quantity aeff + beff does
not change.
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Bergman’s bounds

Using classical cross-property bounds due to Bergman (1978), we
can obtain the following upper bound in 3D:

aeff + beff ≤ (1 + ε)− (1− ε)2

3(1 + ε)
.

Question: Is the bound achievable?

Pseudo-answer: Numeric computations by Torquato, Hyun and
Donev suggest it is.
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The expected optimal microstructure

The expected shape of an optimal
structure A would be triply
connected.

Moreover Q \ A would be triply
connected too.

Moreover A and Q \ A should be
congruent sets due to the
symmetry of the problem.
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The set A and Q \ A are identical up to translation

Q \ A is the same as A translated half diagonal of the unit cube.
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Conjecture.

From the numeric computations it was
natural to believe that ∂A was the
Schwartz P surface.

The Schwartz P surface is a bicontinuous periodical minimal surface.

Picture of the Schwartz P surface from the
website of Ken Brakke.
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Characterization of optimal structures

Theorem

Bergman’s upper bound is achieved for a set A ⊂ Q if and only if
the periodic solution to

4q =

{
1 in A

− 1 in Q \ A

satisfies

D2q(x) =

{
M(x) + ν ⊗ ν on the A side of ∂A

M(x)− ν ⊗ ν on the Q \ A side of ∂A

for some matrix M such that M(x) · ν = 0.

Proof in the blackboard.
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Counterproof of the conjecture

Question

Can Bergman’s upper bound be achieved if ∂A has mean curvature
zero?

If that was the case, it can be shown that

• q is constant (= 0) on ∂A.

• qν is also constant on ∂A.

So, at the same time we would have that q+ and q− solve the one
phase problem, and q solves the two-phase membrane problem.

For a given set A, these conditions can be checked numerically in a very simple way. Indeed, they are not satisfied
if ∂A is the Schwartz P surface.
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