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The Hamilton-Jacobi equation

us+ H(Vu) =0

appears in deterministic control problems (convex case) or
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Hamilton Jacobi equation

The Hamilton-Jacobi equation with diffusion

ur+ H(Vu)-Au=0

appears in control problems (convex case) or games (nonconvex

case) with Brownian diffusion .
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Hamilton Jacobi equation

The Hamilton-Jacobi equation with fractional diffusion
us + HVu)+(=A)u=0

appears in control problems (convex case) or games (nonconvex
case) with a-stable diffusion.
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sub- and super-critical regime

ur+HNVu)+(-L)°u=0
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sub- and super-critical regime

ur+HNVu)+(-L)°u=0

e Subcritical case s > 1/2: smooth solutions can be obtained by
a fixed point approach.
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e Subcritical case s > 1/2: smooth solutions can be obtained by
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are Lipschitz but not C1.

e Critical case s = 1/2: All terms of the equation are of order
one. No perturbative methods apply.
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sub- and super-critical regime

ur+HNVu)+(-L)°u=0

e Subcritical case s > 1/2: smooth solutions can be obtained by
a fixed point approach.

e Supercritical case s < 1/2: there are viscosity solutions that
are Lipschitz but not C1.

e Critical case s = 1/2: All terms of the equation are of order
one. No perturbative methods apply.
The subject of this talk: the solutions are C1:® (classical) in
the critical case.
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Earlier references

The equations u; + H(Vu) + (—A)°u = 0 has previously been
considered in the following works:
e J. Droniou, T. Gallouét, and J. Vovelle. JEE 2003: One
dimensional case. The regularity for s = 1/2 is left open.

e C. Imbert. JDE 2005: Case s > 1/2.

e C. Imbert and J. Droniou. ARMA 2006: Lipschitz viscosity
solutions for s € (0,1).

e G. Karch and W. Woyczynski. TAMS 2008: Long time
assymptotics.

® Several authors in recent years: Biler, Funaki, Woyczynski, Jourdain, Méléard,
Droniou, Imbert, Caffarelli, Vasseur, Czubak, Chan, Kiselev, Nazarov,

Shterenberg: Conservation laws with fractional diffusion.
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infsup bjj - Vu+ (=A)°u=0
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More general result

The equation u; + H(Vu) + (—=A)u = 0 can be written as

infsup bjj - Vu+ (=A)°u=0
Y

A more general version is

u(x) = u(x + y)
|y|n+2s

infsupb,-J--Vu+/ aj(y)dy =0
S/

where ajj satisfies A < ajj < A and aj(y) = aj(—y).
The results apply to the most general equation, but in order to
keep the presentation simpler, we concentrate in the former.
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Strategy for C1 regularity

We differentiate the equation

s+ H(Vu) + (~A)Y2u=0

so that if v = 0.u,

Ve + H'(Vu) - Vv + (A2 =0
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Strategy for C1 regularity

We differentiate the equation

ur + H(Vu) + (~A)2u=0
so that if v = O.u,
Ve + H(Vu) - Vv + (=AY =0

We assume H to be (locally) Lipschitz.
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Strategy for C1 regularity

We differentiate the equation

ur + H(Vu) + (—A)2u=0

so that if v = O.u,

Ve+w-Vv+(=A)Y2r =0

For some vector field w in L°°.

no modulus of continuity can be assumed a priori for w
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Advection-(fractional)diffusion equation

The regularity of the critical Hamilton-Jacobi equation follows
from the following theorem.

Theorem (S.)

If v solves
vi+w-Vv+(=A)Y2r =0

for an arbitrary bounded vector field w, then v becomes
immediately Holder continuous.

This is the important result to prove.
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Related results

Theorem (Caffarelli and Vasseur. To appear in Annals of Math. )

If v solves
Ve +w-Vv+(=A)Y2v =0

for an arbitrary BMO divergence free vector field w, then v

becomes immediately Holder continuous.

Proof.

Extend the equation to one more dimension, rewrite the problem
as a local PDE and reproduce De Giorgi-Nash-Moser theorem. [

This result implies the well posedness of the quasi-geostrophic
equation. There is another proof given by Kiselev and Nazarov.

Essential difference with our result: divergence structure.
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weak solutions

If divw = 0, the equation is defined in the weak sense integrating
agains a smooth test function ¢.

//(vt—k w- Vv 4 (=A)20)p dx dt = 0
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weak solutions

If divw = 0, the equation is defined in the weak sense integrating
agains a smooth test function ¢.

// V(—pr —w - Vo4 (=A)2p) dx dt = 0

What if divw # 07 All we can say from the equation
Ve +w- Vv + (=A)Y2r =0
are the following two inequalities:

vi + AlVv| + (=A)Y2y >0
ve — AlVv| + (=A)Y2y <0

which are well defined in the viscosity sense.
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General strategy for proving Holder continuity
First prove an improvement of oscillation lemma

oscv§(1—9)%scv Qr = Br x [—R, 0]
R

QxR

and then iterate it to obtain

osc v < (1—60) oscv

Q)\kR QR
which imples a C* modulus of continuity for o = Ioli(gl(;)e).
0SCQ, V
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If oscq, v <1,

ve + AlVv| + (=A)Y2y >0
ve — AlVv| + (=A)Y2v <0

then oscq, v <1 —0.

DA



Uu! ine n!roaug!lon !HVEC!IO"-HI usion equa!non. I“e prool
000 00
(e]e] o
(e}

o
o0
Improvement of oscillation lemma

0000

If oscq, v <1,

ve + AlVv| + (=A)Y2y >0
ve — AlVv| + (=A)Y2v <0

(1-0)
then oscq, v <1 —0.
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Improvement of either the sup or the inf
We prove an improvement of oscillation from Br x [—2,0] to
B; x [-1,0] (= @).
For the improvement of oscillation we prove that either sup v
decreases or inf v increases. We do one or the other depending on
wheather v > 0 or v < 0 most often (in measure) in By x [-2, —1].

(@]

t € [-2,0]
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From an estimate in measure
Lemma

If v less than one: v <1 in R" x [-2,0],
v is often negative: |{v <0} N (B x [-2,—1])| > u, and
v is a subsolution: vi — A|Vv| + (=A)Y2v <0 in Br x [-2,0]

then v <1—6 in By x [-1,0].

(@]

t € [-2,0]
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Construction of a barrier

Let (3 be the function: gﬁﬁ and b(x, t) = B(|x| — Alt]).

The function w = 1 — mb(x, t) is a supersolution of the pure
transport part wy — A|Vw| = 0 for any constant m.
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We use the diffusion term to make m variable.
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Construction of a barrier

Let (3 be the function: gﬁﬁ and b(x, t) = B(|x| — Alt]).

The function w = 1 — mb(x, t) is a supersolution of the pure
transport part wy — A|Vw| = 0 for any constant m.
We use the diffusion term to make m variable. Let m solve

m(—2) =0
m'(t) = col{x € [-1,1] : u(x,t) <0} — Cim(¢).

We will show that if cg < 1 and C; > 1 then v <1 — m(t)b(x,t)
everywhere.
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Construction of a barrier

Let (3 be the function: gﬁﬁ and b(x, t) = B(|x| — Alt]).

The function w = 1 — mb(x, t) is a supersolution of the pure
transport part wy — A|Vw| = 0 for any constant m.
We use the diffusion term to make m variable. Let m solve

m(—2) =0
m'(t) = col{x € [-1,1] : u(x,t) <0} — Cim(¢).
We will show that if cg < 1 and C; > 1 then v <1 — m(t)b(x,t)
everywhere.

Maximum principle type estimate: There cannot be a first time
when v(x,t) =1 — m(t)b(x, t).
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Contradiction if v and 1 — mb ever touch

If v(x,t) coincides with w(x, t) =1 — m(t)b(x, t) for the first
time at a point (x, t) the following happen:

Ve > wy = —m'b — mby
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Contradiction if v and 1 — mb ever touch

If v(x,t) coincides with w(x, t) =1 — m(t)b(x, t) for the first
time at a point (x, t) the following happen:

Ve > wy = —m'b— mb; = —m’'b + mA|Vb|
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If v(x,t) coincides with w(x, t) =1 — m(t)b(x, t) for the first
time at a point (x, t) the following happen:
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|Vv| = |Vw| = m|Vb|
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Contradiction if v and 1 — mb ever touch

If v(x,t) coincides with w(x, t) =1 — m(t)b(x, t) for the first
time at a point (x, t) the following happen:

Ve > wy = —m'b— mb; = —m’'b + mA|Vb|
|Vv| = |Vw| = m|Vb|

(—A)1/2v > (_A)1/2W = —m(—A)1/2b « can be improved!
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Sharper estimate of (—A)Y?v

(a0 = ¢ [ HE2 g

w(x) — w(y) / w(y)
>c | 2LV gy 4 ¢ _ TV g
/ =y T o x =y Y
> (=A)Y2w(x) + ol{u < 0} N By
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Putting all estimates together

ve > —m'b+ mA|Vb|
IVv| = m|Vb|

(=2)Y2v > —m(=A)Y2b(x) + ol{u < 0} N By

Ve—AVV|+(=A) 2y > —m'b—m(—=A)Y2b(x)+co|{u < 0}N B
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Putting all estimates together

ve > —m'b+ mA|Vb|
IVv| = m|Vb|
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Therefore

Ve — AlVv| 4+ (=2)Y2v > Cimb — m(—A)Y2b(x)
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Putting all estimates together

ve > —m'b+ mA|Vb|
IVv| = m|Vb|

(=) 2y > —m(=2)Y2b(x) + co|{u < 0} N By
Therefore

Ve — AlVv| 4+ (=2)Y2v > Cimb — m(—A)Y2b(x)
Two cases:

1. b(x, t) is small = (—A)Y2p < 0.
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Putting all estimates together

ve > —m'b+ mA|Vb|
IVv| = m|Vb|

(=2)Y2v > —m(=A)Y2b(x) + ol{u < 0} N By

Therefore
Ve — AlVv| 4+ (=2)Y2v > Cimb — m(—A)Y2b(x)
Two cases:

1. b(x, t) is small = (—A)Y2p < 0.
2. b(x,t) is large = we choose C; large.
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Putting all estimates together

ve > —m'b+ mA|Vb|
IVv| = m|Vb|

(=) 2y > —m(=2)Y2b(x) + co|{u < 0} N By
Therefore

Ve — AlVv| 4+ (=2)Y2v > Cimb — m(—A)Y2b(x)
Two cases:

1. b(x, t) is small = (—A)Y2p < 0.
2. b(x,t) is large = we choose C; large.

Contradiction with v; — A|Vv| + (=A)Y2v < 0.
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