On the Hamilton-Jacobi equation with critical diffusion

Luis Silvestre
University of Chicago

March 30, 2010

Introduction
The Hamilton-Jacobi equation with diffusion References

Advection-diffusion equation.
Differentiating Hamiton-Jacobi
References
Weak solutions

The proof
Generalities
Improvement of oscillation Lemma
Pointwise estimate from measure estimate
The dirty details

Hamilton Jacobi equation

The Hamilton-Jacobi equation

$$
u_{t}+H(\nabla u)=0
$$

appears in deterministic control problems (convex case) or deterministic games (nonconvex case) .

Hamilton Jacobi equation

The Hamilton-Jacobi equation with diffusion

$$
u_{t}+H(\nabla u)-\triangle u=0
$$

appears in control problems (convex case) or games (nonconvex case) with Brownian diffusion .

Hamilton Jacobi equation

The Hamilton-Jacobi equation with fractional diffusion

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

appears in control problems (convex case) or games (nonconvex case) with α-stable diffusion.

sub- and super-critical regime

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

sub- and super-critical regime

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

- Subcritical case $s>1 / 2$: smooth solutions can be obtained by a fixed point approach.

sub- and super-critical regime

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

- Subcritical case $s>1 / 2$: smooth solutions can be obtained by a fixed point approach.
- Supercritical case $s<1 / 2$: there are viscosity solutions that are Lipschitz but not C^{1}.

sub- and super-critical regime

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

- Subcritical case $s>1 / 2$: smooth solutions can be obtained by a fixed point approach.
- Supercritical case $s<1 / 2$: there are viscosity solutions that are Lipschitz but not C^{1}.
- Critical case $s=1 / 2$: All terms of the equation are of order one. No perturbative methods apply.

sub- and super-critical regime

$$
u_{t}+H(\nabla u)+(-\triangle)^{s} u=0
$$

- Subcritical case $s>1 / 2$: smooth solutions can be obtained by a fixed point approach.
- Supercritical case $s<1 / 2$: there are viscosity solutions that are Lipschitz but not C^{1}.
- Critical case $s=1 / 2$: All terms of the equation are of order one. No perturbative methods apply.
The subject of this talk: the solutions are $C^{1, \alpha}$ (classical) in the critical case.

Earlier references

The equations $u_{t}+H(\nabla u)+(-\triangle)^{s} u=0$ has previously been considered in the following works:

- J. Droniou, T. Gallouët, and J. Vovelle. JEE 2003: One dimensional case. The regularity for $s=1 / 2$ is left open.
- C. Imbert. JDE 2005: Case $s>1 / 2$.
- C. Imbert and J. Droniou. ARMA 2006: Lipschitz viscosity solutions for $s \in(0,1)$.
- G. Karch and W. Woyczynski. TAMS 2008: Long time assymptotics.
- Several authors in recent years: Biler, Funaki, Woyczynski, Jourdain, Méléard, Droniou, Imbert, Caffarelli, Vasseur, Czubak, Chan, Kiselev, Nazarov, Shterenberg: Conservation laws with fractional diffusion.

More general result

The equation $u_{t}+H(\nabla u)+(-\triangle)^{s} u=0$ can be written as

$$
\inf _{i} \sup _{j} b_{i j} \cdot \nabla u+(-\triangle)^{s} u=0
$$

A more general version is

where $a_{i j}$ satisfies $\lambda \leq a_{i j} \leq \Lambda$ and $a_{i j}(y)=a_{i j}(-y)$
keep the presentation simpler, we concentrate in the former.

More general result

The equation $u_{t}+H(\nabla u)+(-\triangle)^{s} u=0$ can be written as

$$
\inf _{i} \sup _{j} b_{i j} \cdot \nabla u+(-\triangle)^{s} u=0
$$

A more general version is

$$
\inf _{i} \sup _{j} b_{i j} \cdot \nabla u+\int \frac{u(x)-u(x+y)}{|y|^{n+2 s}} a_{i j}(y) \mathrm{d} y=0
$$

where $a_{i j}$ satisfies $\lambda \leq a_{i j} \leq \Lambda$ and $a_{i j}(y)=a_{i j}(-y)$.
The results apply to the most general equation, but in order to keep the presentation simpler, we concentrate in the former.

Strategy for $C^{1, \alpha}$ regularity

We differentiate the equation

$$
u_{t}+H(\nabla u)+(-\triangle)^{1 / 2} u=0
$$

so that if $v=\partial_{e} u$,

$$
v_{t}+H^{\prime}(\nabla u) \cdot \nabla v+(-\triangle)^{1 / 2} v=0
$$

Strategy for $C^{1, \alpha}$ regularity

We differentiate the equation

$$
u_{t}+H(\nabla u)+(-\triangle)^{1 / 2} u=0
$$

so that if $v=\partial_{e} u$,

$$
v_{t}+H^{\prime}(\nabla u) \cdot \nabla v+(-\triangle)^{1 / 2} v=0
$$

We assume H to be (locally) Lipschitz.

Strategy for $C^{1, \alpha}$ regularity

We differentiate the equation

$$
u_{t}+H(\nabla u)+(-\triangle)^{1 / 2} u=0
$$

so that if $v=\partial_{e} u$,

$$
v_{t}+w \cdot \nabla v+(-\triangle)^{1 / 2} v=0
$$

For some vector field w in L^{∞}.
no modulus of continuity can be assumed a priori for w

Advection-(fractional)diffusion equation

The regularity of the critical Hamilton-Jacobi equation follows from the following theorem.

Theorem (S.)
If v solves

$$
v_{t}+w \cdot \nabla v+(-\triangle)^{1 / 2} v=0
$$

for an arbitrary bounded vector field w, then v becomes immediately Hölder continuous.

This is the important result to prove.

Related results

Theorem (Caffarelli and Vasseur. To appear in Annals of Math.)

If v solves

$$
v_{t}+w \cdot \nabla v+(-\triangle)^{1 / 2} v=0
$$

for an arbitrary BMO divergence free vector field w, then v becomes immediately Hölder continuous.

Proof.

Extend the equation to one more dimension, rewrite the problem as a local PDE and reproduce De Giorgi-Nash-Moser theorem.

This result implies the well posedness of the quasi-geostrophic equation. There is another proof given by Kiselev and Nazarov.

Essential difference with our result: divergence structure.

weak solutions

If $\operatorname{div} w=0$, the equation is defined in the weak sense integrating agains a smooth test function φ.

$$
\iint\left(v_{t}+w \cdot \nabla v+(-\triangle)^{1 / 2} v\right) \varphi \mathrm{d} x \mathrm{~d} t=0
$$

weak solutions

If $\operatorname{div} w=0$, the equation is defined in the weak sense integrating agains a smooth test function φ.

$$
\iint v\left(-\varphi_{t}-w \cdot \nabla \varphi+(-\triangle)^{1 / 2} \varphi\right) \mathrm{d} x \mathrm{~d} t=0
$$

weak solutions

If $\operatorname{div} w=0$, the equation is defined in the weak sense integrating agains a smooth test function φ.

$$
\iint v\left(-\varphi_{t}-w \cdot \nabla \varphi+(-\Delta)^{1 / 2} \varphi\right) \mathrm{d} x \mathrm{~d} t=0
$$

What if div $w \neq 0$?

weak solutions

If $\operatorname{div} w=0$, the equation is defined in the weak sense integrating agains a smooth test function φ.

$$
\iint v\left(-\varphi_{t}-w \cdot \nabla \varphi+(-\Delta)^{1 / 2} \varphi\right) \mathrm{d} x \mathrm{~d} t=0
$$

What if $\operatorname{div} w \neq 0$? All we can say from the equation $v_{t}+w \cdot \nabla v+(-\triangle)^{1 / 2} v=0$
are the following two inequalities:

$$
\begin{aligned}
& v_{t}+A|\nabla v|+(-\triangle)^{1 / 2} v \geq 0 \\
& v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0
\end{aligned}
$$

which are well defined in the viscosity sense.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

General strategy for proving Hölder continuity

First prove an improvement of oscillation lemma

$$
\underset{Q_{\lambda R}}{\operatorname{osc} v \leq(1-\theta) \underset{Q_{R}}{\operatorname{osc} v} \quad Q_{R}:=B_{R} \times[-R, 0]}
$$

and then iterate it to obtain

$$
\underset{Q_{\lambda^{k} R}}{\operatorname{osc}} v \leq(1-\theta)^{k} \underset{Q_{R}}{\operatorname{osc}} v
$$

which imples a C^{α} modulus of continuity for $\alpha=\frac{\log (1-\theta)}{\log (\lambda)}$.

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_{R}} v \leq 1$,

$$
\begin{aligned}
& v_{t}+A|\nabla v|+(-\triangle)^{1 / 2} v \geq 0 \\
& v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0
\end{aligned}
$$

then $\operatorname{osc}_{Q_{1}} v \leq 1-\theta$.

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_{R}} v \leq 1$,

$$
\begin{aligned}
& v_{t}+A|\nabla v|+(-\triangle)^{1 / 2} v \geq 0 \\
& v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0
\end{aligned}
$$

then $\operatorname{osc}_{Q_{1}} v \leq 1-\theta$.

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_{R}} v \leq 1$,

$$
\begin{aligned}
& v_{t}+A|\nabla v|+(-\triangle)^{1 / 2} v \geq 0 \\
& v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0
\end{aligned}
$$

then $\operatorname{osc}_{Q_{1}} v \leq 1-\theta$.

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_{R}} v \leq 1$,

$$
\begin{aligned}
& v_{t}+A|\nabla v|+(-\triangle)^{1 / 2} v \geq 0 \\
& v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0
\end{aligned}
$$

then $\operatorname{osc}_{Q_{1}} v \leq 1-\theta$.

Improvement of either the sup or the inf

We prove an improvement of oscillation from $B_{R} \times[-2,0]$ to $B_{1} \times[-1,0]\left(=Q_{1}\right)$.
For the improvement of oscillation we prove that either sup v decreases or $\inf v$ increases. We do one or the other depending on wheather $v \geq 0$ or $v \leq 0$ most often (in measure) in $B_{1} \times[-2,-1]$.

From an estimate in measure

Lemma

If v less than one: $v \leq 1$ in $\mathbb{R}^{n} \times[-2,0]$,
v is often negative: $\left|\{v \leq 0\} \cap\left(B_{1} \times[-2,-1]\right)\right| \geq \mu$, and
v is a subsolution: $v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0$ in $B_{R} \times[-2,0]$
then $v \leq 1-\theta$ in $B_{1} \times[-1,0]$.

Construction of a barrier

Let β be the function: $\begin{aligned} & \\ & 0\end{aligned} \quad<\beta$
The function $w=1-m b(x, t)$ is a supersolution of the pure transport part $w_{t}-A|\nabla w|=0$ for any constant m.

Construction of a barrier

Let β be the function: $\begin{aligned} & \\ & 0\end{aligned} \quad<\beta$
The function $w=1-m b(x, t)$ is a supersolution of the pure transport part $w_{t}-A|\nabla w|=0$ for any constant m. We use the diffusion term to make m variable.

Construction of a barrier

Let β be the function: $\begin{array}{lll} & \leftarrow \beta \\ 0 & 1 & 2\end{array}$ and $b(x, t)=\beta(|x|-A|t|)$.
The function $w=1-m b(x, t)$ is a supersolution of the pure transport part $w_{t}-A|\nabla w|=0$ for any constant m.
We use the diffusion term to make m variable. Let m solve

$$
\begin{aligned}
m(-2) & =0 \\
m^{\prime}(t) & =c_{0}|\{x \in[-1,1]: u(x, t) \leq 0\}|-C_{1} m(t)
\end{aligned}
$$

We will show that if $c_{0} \ll 1$ and $C_{1} \gg 1$ then $v \leq 1-m(t) b(x, t)$ everywhere.

Construction of a barrier

Let β be the function: $\begin{aligned} & \square \\ & 0\end{aligned} \frac{\leftarrow}{} \frac{\leftarrow}{2}$ and $b(x, t)=\beta(|x|-A|t|)$.
The function $w=1-m b(x, t)$ is a supersolution of the pure transport part $w_{t}-A|\nabla w|=0$ for any constant m.
We use the diffusion term to make m variable. Let m solve

$$
\begin{aligned}
m(-2) & =0 \\
m^{\prime}(t) & =c_{0}|\{x \in[-1,1]: u(x, t) \leq 0\}|-C_{1} m(t)
\end{aligned}
$$

We will show that if $c_{0} \ll 1$ and $C_{1} \gg 1$ then $v \leq 1-m(t) b(x, t)$ everywhere.

Maximum principle type estimate: There cannot be a first time when $v(x, t)=1-m(t) b(x, t)$.

Contradiction if v and $1-m b$ ever touch

If $v(x, t)$ coincides with $w(x, t)=1-m(t) b(x, t)$ for the first time at a point (x, t) the following happen:

$$
v_{t} \geq w_{t}=-m^{\prime} b-m b_{t}
$$

Contradiction if v and $1-m b$ ever touch

If $v(x, t)$ coincides with $w(x, t)=1-m(t) b(x, t)$ for the first time at a point (x, t) the following happen:

$$
v_{t} \geq w_{t}=-m^{\prime} b-m b_{t}=-m^{\prime} b+m A|\nabla b|
$$

Contradiction if v and $1-m b$ ever touch

If $v(x, t)$ coincides with $w(x, t)=1-m(t) b(x, t)$ for the first time at a point (x, t) the following happen:

$$
\begin{aligned}
& v_{t} \geq w_{t}=-m^{\prime} b-m b_{t}=-m^{\prime} b+m A|\nabla b| \\
& |\nabla v|=|\nabla w|=m|\nabla b|
\end{aligned}
$$

Contradiction if v and $1-m b$ ever touch

If $v(x, t)$ coincides with $w(x, t)=1-m(t) b(x, t)$ for the first time at a point (x, t) the following happen:

$$
\begin{aligned}
& v_{t} \geq w_{t}=-m^{\prime} b-m b_{t}=-m^{\prime} b+m A|\nabla b| \\
& |\nabla v|=|\nabla w|=m|\nabla b| \\
& (-\triangle)^{1 / 2} v \geq(-\triangle)^{1 / 2} w=-m(-\triangle)^{1 / 2} b \quad \leftarrow \text { can be improved! }
\end{aligned}
$$

Sharper estimate of $(-\triangle)^{1 / 2} v$

$$
\begin{aligned}
(-\Delta)^{1 / 2} v(x) & =c \int \frac{v(x)-v(y)}{|x-y|^{n+1}} \mathrm{~d} y \\
& \geq c \int \frac{w(x)-w(y)}{|x-y|^{n+1}} \mathrm{~d} y
\end{aligned}
$$

Sharper estimate of $(-\triangle)^{1 / 2} v$

$$
\begin{aligned}
(-\triangle)^{1 / 2} v(x) & =c \int \frac{v(x)-v(y)}{|x-y|^{n+1}} \mathrm{~d} y \\
& \geq c \int \frac{w(x)-w(y)}{|x-y|^{n+1}} d y+c \int_{u(y) \leq 0} \frac{w(y)}{|x-y|^{n+1}} d y
\end{aligned}
$$

Sharper estimate of $(-\triangle)^{1 / 2} v$

$$
\begin{aligned}
(-\Delta)^{1 / 2} v(x) & =c \int \frac{v(x)-v(y)}{|x-y|^{n+1}} \mathrm{~d} y \\
& \geq c \int \frac{w(x)-w(y)}{|x-y|^{n+1}} \mathrm{~d} y+c \int_{u(y) \leq 0} \frac{w(y)}{|x-y|^{n+1}} \mathrm{~d} y \\
& \geq(-\triangle)^{1 / 2} w(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq-m^{\prime} b-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
$$

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq C_{1} m b-m(-\triangle)^{1 / 2} b(x)
$$

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq C_{1} m b-m(-\triangle)^{1 / 2} b(x)
$$

Two cases:

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq C_{1} m b-m(-\triangle)^{1 / 2} b(x)
$$

Two cases:

1. $b(x, t)$ is small $\Rightarrow(-\triangle)^{1 / 2} b \leq 0$.

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq C_{1} m b-m(-\triangle)^{1 / 2} b(x)
$$

Two cases:

1. $b(x, t)$ is small $\Rightarrow(-\triangle)^{1 / 2} b \leq 0$.
2. $b(x, t)$ is large \Rightarrow we choose C_{1} large.

Putting all estimates together

$$
\begin{aligned}
v_{t} & \geq-m^{\prime} b+m A|\nabla b| \\
|\nabla v| & =m|\nabla b| \\
(-\triangle)^{1 / 2} v & \geq-m(-\triangle)^{1 / 2} b(x)+c_{0}\left|\{u<0\} \cap B_{1}\right|
\end{aligned}
$$

Therefore

$$
v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \geq C_{1} m b-m(-\triangle)^{1 / 2} b(x)
$$

Two cases:

1. $b(x, t)$ is small $\Rightarrow(-\triangle)^{1 / 2} b \leq 0$.
2. $b(x, t)$ is large \Rightarrow we choose C_{1} large.

Contradiction with $v_{t}-A|\nabla v|+(-\triangle)^{1 / 2} v \leq 0$.

