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Hamilton Jacobi equation

The Hamilton-Jacobi equation

ut + H(∇u) = 0

appears in deterministic control problems (convex case) or
deterministic games (nonconvex case) .
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Hamilton Jacobi equation

The Hamilton-Jacobi equation with diffusion

ut + H(∇u)−4u = 0

appears in control problems (convex case) or games (nonconvex
case) with Brownian diffusion .



Outline Introduction Advection-diffusion equation. The proof

Hamilton Jacobi equation

The Hamilton-Jacobi equation with fractional diffusion

ut + H(∇u)+(−4)su = 0

appears in control problems (convex case) or games (nonconvex
case) with α-stable diffusion.
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sub- and super-critical regime

ut + H(∇u) + (−4)su = 0

• Subcritical case s > 1/2: smooth solutions can be obtained by
a fixed point approach.

• Supercritical case s < 1/2: there are viscosity solutions that
are Lipschitz but not C 1.

• Critical case s = 1/2: All terms of the equation are of order
one. No perturbative methods apply.
The subject of this talk: the solutions are C 1,α (classical) in
the critical case.
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Earlier references

The equations ut + H(∇u) + (−4)su = 0 has previously been
considered in the following works:

• J. Droniou,T. Gallouët, and J. Vovelle. JEE 2003: One
dimensional case. The regularity for s = 1/2 is left open.

• C. Imbert. JDE 2005: Case s > 1/2.

• C. Imbert and J. Droniou. ARMA 2006: Lipschitz viscosity
solutions for s ∈ (0, 1).

• G. Karch and W. Woyczynski. TAMS 2008: Long time
assymptotics.

• Several authors in recent years: Biler, Funaki, Woyczynski, Jourdain, Méléard,

Droniou, Imbert, Caffarelli, Vasseur, Czubak, Chan, Kiselev, Nazarov,

Shterenberg: Conservation laws with fractional diffusion.
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More general result

The equation ut + H(∇u) + (−4)su = 0 can be written as

inf
i

sup
j

bij · ∇u + (−4)su = 0

A more general version is

inf
i

sup
j

bij · ∇u +

∫
u(x)− u(x + y)

|y |n+2s
aij(y) dy = 0

where aij satisfies λ ≤ aij ≤ Λ and aij(y) = aij(−y).
The results apply to the most general equation, but in order to
keep the presentation simpler, we concentrate in the former.
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Strategy for C 1,α regularity

We differentiate the equation

ut + H(∇u) + (−4)1/2u = 0

so that if v = ∂eu,

vt + H ′(∇u) · ∇v + (−4)1/2v = 0
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Strategy for C 1,α regularity

We differentiate the equation

ut + H(∇u) + (−4)1/2u = 0

so that if v = ∂eu,

vt + H ′(∇u) · ∇v + (−4)1/2v = 0

We assume H to be (locally) Lipschitz.
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Strategy for C 1,α regularity

We differentiate the equation

ut + H(∇u) + (−4)1/2u = 0

so that if v = ∂eu,

vt + w · ∇v + (−4)1/2v = 0

For some vector field w in L∞.
no modulus of continuity can be assumed a priori for w
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Advection-(fractional)diffusion equation

The regularity of the critical Hamilton-Jacobi equation follows
from the following theorem.

Theorem (S.)

If v solves
vt + w · ∇v + (−4)1/2v = 0

for an arbitrary bounded vector field w, then v becomes
immediately Hölder continuous.

This is the important result to prove.
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Related results

Theorem (Caffarelli and Vasseur. To appear in Annals of Math.)

If v solves
vt + w · ∇v + (−4)1/2v = 0

for an arbitrary BMO divergence free vector field w, then v
becomes immediately Hölder continuous.

Proof.

Extend the equation to one more dimension, rewrite the problem
as a local PDE and reproduce De Giorgi-Nash-Moser theorem.

This result implies the well posedness of the quasi-geostrophic
equation. There is another proof given by Kiselev and Nazarov.

Essential difference with our result: divergence structure.
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weak solutions

If div w = 0, the equation is defined in the weak sense integrating
agains a smooth test function ϕ.∫∫

(vt + w · ∇v + (−4)1/2v)ϕ dx dt = 0

What if div w 6= 0? All we can say from the equation
vt + w · ∇v + (−4)1/2v = 0
are the following two inequalities:

vt + A|∇v |+ (−4)1/2v ≥ 0

vt − A|∇v |+ (−4)1/2v ≤ 0

which are well defined in the viscosity sense.
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weak solutions

If div w = 0, the equation is defined in the weak sense integrating
agains a smooth test function ϕ.∫∫

v(−ϕt − w · ∇ϕ+ (−4)1/2ϕ) dx dt = 0

What if div w 6= 0? All we can say from the equation
vt + w · ∇v + (−4)1/2v = 0
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General strategy for proving Hölder continuity
First prove an improvement of oscillation lemma

osc
QλR

v ≤ (1− θ) osc
QR

v QR := BR × [−R, 0]

and then iterate it to obtain

osc
Q

λkR

v ≤ (1− θ)k osc
QR

v

which imples a Cα modulus of continuity for α = log(1−θ)
log(λ) .

oscQR
v

← R →
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Improvement of oscillation lemma

If oscQR
v ≤ 1,

vt + A|∇v |+ (−4)1/2v ≥ 0

vt − A|∇v |+ (−4)1/2v ≤ 0

then oscQ1 v ≤ 1− θ.
← osc v = 1

← osc v = 1− θ



Outline Introduction Advection-diffusion equation. The proof

Improvement of oscillation lemma

If oscQR
v ≤ 1,

vt + A|∇v |+ (−4)1/2v ≥ 0

vt − A|∇v |+ (−4)1/2v ≤ 0

then oscQ1 v ≤ 1− θ.

← osc v = (1− θ)2
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Improvement of oscillation lemma

If oscQR
v ≤ 1,

vt + A|∇v |+ (−4)1/2v ≥ 0

vt − A|∇v |+ (−4)1/2v ≤ 0

then oscQ1 v ≤ 1− θ.

← osc v = (1− θ)3

← osc v = 1
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Improvement of oscillation lemma

If oscQR
v ≤ 1,

vt + A|∇v |+ (−4)1/2v ≥ 0

vt − A|∇v |+ (−4)1/2v ≤ 0

then oscQ1 v ≤ 1− θ.

← osc v = (1− θ)4

← osc v = 1
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Improvement of either the sup or the inf
We prove an improvement of oscillation from BR × [−2, 0] to
B1 × [−1, 0] (= Q1).
For the improvement of oscillation we prove that either sup v
decreases or inf v increases. We do one or the other depending on
wheather v ≥ 0 or v ≤ 0 most often (in measure) in B1× [−2,−1].

Q1

B1 × [−2,−1]

BR

t ∈ [−2, 0]
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From an estimate in measure

Lemma

If v less than one: v ≤ 1 in Rn × [−2, 0],
v is often negative: |{v ≤ 0} ∩ (B1 × [−2,−1])| ≥ µ, and
v is a subsolution: vt − A|∇v |+ (−4)1/2v ≤ 0 in BR × [−2, 0]

then v ≤ 1− θ in B1 × [−1, 0].

Q1

B1 × [−2,−1]

BR

t ∈ [−2, 0]
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Construction of a barrier

Let β be the function:
← β

0 1 2
and b(x , t) = β(|x | −A|t|).

The function w = 1−mb(x , t) is a supersolution of the pure
transport part wt − A|∇w | = 0 for any constant m.
We use the diffusion term to make m variable. Let m solve

m(−2) = 0

m′(t) = c0|{x ∈ [−1, 1] : u(x , t) ≤ 0}| − C1m(t).

We will show that if c0 � 1 and C1 � 1 then v ≤ 1−m(t)b(x , t)
everywhere.

Maximum principle type estimate: There cannot be a first time
when v(x , t) = 1−m(t)b(x , t).
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Contradiction if v and 1−mb ever touch

If v(x , t) coincides with w(x , t) = 1−m(t)b(x , t) for the first
time at a point (x , t) the following happen:

vt ≥ wt = −m′b −mbt = −m′b + mA|∇b|
|∇v | = |∇w | = m|∇b|
(−4)1/2v ≥ (−4)1/2w = −m(−4)1/2b ← can be improved!
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Sharper estimate of (−4)1/2v

(−4)1/2v(x) = c

∫
v(x)− v(y)

|x − y |n+1
dy

≥ c

∫
w(x)− w(y)

|x − y |n+1
dy

≥ (−4)1/2w(x) + c0|{u < 0} ∩ B1|

v(x) = w(x)
w(x)→

v(x)→

↙{u ≤ 0}
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Putting all estimates together

vt ≥ −m′b + mA|∇b|
|∇v | = m|∇b|

(−4)1/2v ≥ −m(−4)1/2b(x) + c0|{u < 0} ∩ B1|

Therefore

vt−A|∇v |+(−4)1/2v ≥ −m′b−m(−4)1/2b(x)+c0|{u < 0}∩B1|

Two cases:

1. b(x , t) is small ⇒ (−4)1/2b ≤ 0.

2. b(x , t) is large ⇒ we choose C1 large.

Contradiction with vt − A|∇v |+ (−4)1/2v ≤ 0.
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