()				
0				

Advection-diffusion equation. The proof

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

On the Hamilton-Jacobi equation with critical diffusion

Luis Silvestre

University of Chicago

March 30, 2010

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		0	0
			0000

Introduction

The Hamilton-Jacobi equation with diffusion References

Advection-diffusion equation.

Differentiating Hamiton-Jacobi References Weak solutions

The proof

Generalities Improvement of oscillation Lemma Pointwise estimate from measure estimate The dirty details

0	+			~	
U	L			e	

Hamilton Jacobi equation

The Hamilton-Jacobi equation

 $u_t + H(\nabla u) = 0$

appears in deterministic control problems (convex case) or deterministic games (nonconvex case) .

Outline						
	()					
	0					

Introduction •00 •00 Advection-diffusion equation. The

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hamilton Jacobi equation

The Hamilton-Jacobi equation with diffusion

$$u_t + H(\nabla u) - \Delta u = 0$$

appears in control problems (convex case) or games (nonconvex case) with Brownian diffusion .

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		0	0
			0000

Hamilton Jacobi equation

The Hamilton-Jacobi equation with fractional diffusion

$$u_t + H(\nabla u) + (-\triangle)^s u = 0$$

appears in control problems (convex case) or games (nonconvex case) with α -stable diffusion.

0					
U	ι			e	

・ロット (雪) (日) (日) (日)

sub- and super-critical regime

$u_t + H(\nabla u) + (-\triangle)^s u = 0$

- Subcritical case *s* > 1/2: smooth solutions can be obtained by a fixed point approach.
- Supercritical case s < 1/2: there are viscosity solutions that are Lipschitz but not C¹.
- Critical case s = 1/2: All terms of the equation are of order one. No perturbative methods apply. The subject of this talk: the solutions are C^{1,α} (classical) in the critical case.

()				
\sim				

sub- and super-critical regime

 $u_t + H(\nabla u) + (-\triangle)^s u = 0$

- Subcritical case s > 1/2: smooth solutions can be obtained by a fixed point approach.
- Supercritical case s < 1/2: there are viscosity solutions that are Lipschitz but not C¹.
- Critical case s = 1/2: All terms of the equation are of order one. No perturbative methods apply. The subject of this talk: the solutions are C^{1,α} (classical) in the critical case.

()	F.				
\sim	ч.		з.		

The proof

sub- and super-critical regime

 $u_t + H(\nabla u) + (-\triangle)^s u = 0$

- Subcritical case s > 1/2: smooth solutions can be obtained by a fixed point approach.
- Supercritical case s < 1/2: there are viscosity solutions that are Lipschitz but not C¹.
- Critical case s = 1/2: All terms of the equation are of order one. No perturbative methods apply. The subject of this talk: the solutions are C^{1,α} (classical) in the critical case.

()				
\sim				

sub- and super-critical regime

 $u_t + H(\nabla u) + (-\triangle)^s u = 0$

- Subcritical case s > 1/2: smooth solutions can be obtained by a fixed point approach.
- Supercritical case s < 1/2: there are viscosity solutions that are Lipschitz but not C¹.
- Critical case s = 1/2: All terms of the equation are of order one. No perturbative methods apply.

The subject of this talk: the solutions are $C^{1,lpha}$ (classical) in the critical case.

()				
\sim				

sub- and super-critical regime

 $u_t + H(\nabla u) + (-\triangle)^s u = 0$

- Subcritical case s > 1/2: smooth solutions can be obtained by a fixed point approach.
- Supercritical case s < 1/2: there are viscosity solutions that are Lipschitz but not C¹.
- Critical case s = 1/2: All terms of the equation are of order one. No perturbative methods apply. The subject of this talk: the solutions are C^{1,α} (classical) in the critical case.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

ne	Introduction	Advection-diffusion equation.	The proof
	000 •0	00	000
		0	0000

Earlier references

The equations $u_t + H(\nabla u) + (-\triangle)^s u = 0$ has previously been considered in the following works:

- J. Droniou, T. Gallouët, and J. Vovelle. JEE 2003: One dimensional case. The regularity for s = 1/2 is left open.
- C. Imbert. JDE 2005: Case *s* > 1/2.
- C. Imbert and J. Droniou. ARMA 2006: Lipschitz viscosity solutions for s ∈ (0, 1).
- G. Karch and W. Woyczynski. TAMS 2008: Long time assymptotics.
- Several authors in recent years: Biler, Funaki, Woyczynski, Jourdain, Méléard, Droniou, Imbert, Caffarelli, Vasseur, Czubak, Chan, Kiselev, Nazarov, Shterenberg: Conservation laws with fractional diffusion.

itline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	0	0	00
		0	0
			0000

More general result

The equation $u_t + H(\nabla u) + (-\triangle)^s u = 0$ can be written as

$$\inf_{i} \sup_{j} b_{ij} \cdot \nabla u + (-\triangle)^{s} u = 0$$

A more general version is

$$\inf_{i} \sup_{j} b_{ij} \cdot \nabla u + \int \frac{u(x) - u(x+y)}{|y|^{n+2s}} a_{ij}(y) \, \mathrm{d}y = 0$$

where a_{ij} satisfies $\lambda \leq a_{ij} \leq \Lambda$ and $a_{ij}(y) = a_{ij}(-y)$. The results apply to the most general equation, but in order to keep the presentation simpler, we concentrate in the former.

・ロト ・ 日本・ 小田・ 小田・ 小田・

tline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	0	0	00
		0	0
			0000

More general result

The equation $u_t + H(\nabla u) + (-\triangle)^s u = 0$ can be written as

$$\inf_{i} \sup_{j} b_{ij} \cdot \nabla u + (-\triangle)^{s} u = 0$$

A more general version is

$$\inf_{i} \sup_{j} b_{ij} \cdot \nabla u + \int \frac{u(x) - u(x+y)}{|y|^{n+2s}} a_{ij}(y) \, \mathrm{d}y = 0$$

where a_{ij} satisfies $\lambda \le a_{ij} \le \Lambda$ and $a_{ij}(y) = a_{ij}(-y)$. The results apply to the most general equation, but in order to

keep the presentation simpler, we concentrate in the former.

0	÷				
U				e	

Advection-diffusion equation. •O O The proof 0 00 0 0000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Strategy for $C^{1,\alpha}$ regularity

We differentiate the equation

$$u_t + H(\nabla u) + (-\triangle)^{1/2}u = 0$$

so that if $v = \partial_e u$,

$$v_t + H'(\nabla u) \cdot \nabla v + (-\triangle)^{1/2} v = 0$$

0					
U	ι			e	

Advection-diffusion equation. •O O The proof

Strategy for $C^{1,\alpha}$ regularity

We differentiate the equation

$$u_t + H(\nabla u) + (-\triangle)^{1/2}u = 0$$

so that if $v = \partial_e u$,

$$v_t + H'(
abla u) \cdot
abla v + (- riangle)^{1/2} v = 0$$

We assume H to be (locally) Lipschitz.

()			

Advection-diffusion equation.

The proof 0 00 0 0000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Strategy for $C^{1,\alpha}$ regularity

We differentiate the equation

$$u_t + H(\nabla u) + (-\triangle)^{1/2}u = 0$$

so that if $v = \partial_e u$,

$$v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$$

For some vector field w in L^{∞} . no modulus of continuity can be assumed a priori for w

0	÷				
U			5	e	

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Advection-(fractional)diffusion equation

The regularity of the critical Hamilton-Jacobi equation follows from the following theorem.

Theorem (S.)

If v solves

$$v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$$

for an arbitrary bounded vector field w, then v becomes immediately Hölder continuous.

This is the important result to prove.

0					
U	ι		ľ		

Advection-diffusion equation.

Related results

Theorem (Caffarelli and Vasseur. To appear in Annals of Math.)

If v solves

$$v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$$

for an arbitrary BMO divergence free vector field w, then v becomes immediately Hölder continuous.

Proof.

Extend the equation to one more dimension, rewrite the problem as a local PDE and reproduce De Giorgi-Nash-Moser theorem.

This result implies the well posedness of the quasi-geostrophic equation. There is another proof given by Kiselev and Nazarov.

Essential difference with our result: divergence structure.

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		•	0
			0000

If div w = 0, the equation is defined in the weak sense integrating agains a smooth test function φ .

$$\iint (\mathbf{v}_t + \mathbf{w} \cdot \nabla \mathbf{v} + (-\triangle)^{1/2} \mathbf{v}) \varphi \, \mathrm{d} \mathbf{x} \, \mathrm{d} t = \mathbf{0}$$

What if div $w \neq 0$? All we can say from the equation $v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$ are the following two inequalities:

$$v_t + A|\nabla v| + (-\Delta)^{1/2} v \ge 0$$
$$v_t - A|\nabla v| + (-\Delta)^{1/2} v \le 0$$

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		•	0
			0000

If div w = 0, the equation is defined in the weak sense integrating agains a smooth test function φ .

$$\iint \mathbf{v}(-\varphi_t - \mathbf{w} \cdot \nabla \varphi + (-\triangle)^{1/2} \varphi) \, \mathrm{d} \mathbf{x} \, \mathrm{d} t = \mathbf{0}$$

What if div $w \neq 0$? All we can say from the equation $v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$ are the following two inequalities:

$$v_t + A|\nabla v| + (-\Delta)^{1/2} v \ge 0$$
$$v_t - A|\nabla v| + (-\Delta)^{1/2} v \le 0$$

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		•	0
			0000

If div w = 0, the equation is defined in the weak sense integrating agains a smooth test function φ .

$$\iint \mathbf{v}(-\varphi_t - \mathbf{w} \cdot \nabla \varphi + (-\triangle)^{1/2} \varphi) \, \mathrm{d} x \, \mathrm{d} t = 0$$

What if div $w \neq 0$? All we can say from the equation $v_t + w \cdot \nabla v + (-\Delta)^{1/2} v = 0$ are the following two inequalities:

$$v_t + A|\nabla v| + (-\Delta)^{1/2} v \ge 0$$
$$v_t - A|\nabla v| + (-\Delta)^{1/2} v \le 0$$

Outline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		•	0
			0000

If div w = 0, the equation is defined in the weak sense integrating agains a smooth test function φ .

$$\iint \mathbf{v}(-\varphi_t - \mathbf{w} \cdot \nabla \varphi + (-\triangle)^{1/2} \varphi) \, \mathrm{d} x \, \mathrm{d} t = 0$$

What if div $w \neq 0$? All we can say from the equation $v_t + w \cdot \nabla v + (-\triangle)^{1/2} v = 0$ are the following two inequalities:

$$egin{aligned} & v_t + A |
abla v | + (- riangle)^{1/2} v \geq 0 \ & v_t - A |
abla v | + (- riangle)^{1/2} v \leq 0 \end{aligned}$$

	÷			

Advection-diffusion equation.

General strategy for proving Hölder continuity First prove an improvement of oscillation lemma

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

Outline	Introd
	000

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

e	Introduction	Advection-diffusion equation.
	000 00	00 0 0

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

which imples a C^{α} modulus of continuity for $\alpha = \frac{\log(1-\theta)}{\log(\lambda)}$.

The proof

e	Introduction	Advection-diffusion equation.
	000 00	00 0 0

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

which imples a C^{α} modulus of continuity for $\alpha = \frac{\log(1-\theta)}{\log(\lambda)}$.

The proof

tline	Introduction	Advection-diffusion equation.	The proof
	000	00	•
	00	0	00
		0	0
			0000

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

tline	Introduction	Advection-diffusion equation.	The proof
	000	00	•
	00	0	00
		0	0
			0000

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

tline	Introduction	Advection-diffusion equation.	The pro
	000	00	•
	00	0	00
		0	0
			0000

$$\operatorname{osc}_{Q_{\lambda R}} v \leq (1- heta) \operatorname{osc}_{Q_R} v \qquad Q_R := B_R \times [-R,0]$$

and then iterate it to obtain

$$\mathop{\mathrm{osc}}_{Q_{\lambda^{k_R}}} v \leq (1- heta)^k \mathop{\mathrm{osc}}_{Q_R} v$$

0	÷			0
\cup				0

Advection-diffusion equation. 00 0

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_R} v \leq 1$,

$$egin{aligned} & v_t + A |
abla v | + (- riangle)^{1/2} v \geq 0 \ & v_t - A |
abla v | + (- riangle)^{1/2} v \leq 0 \end{aligned}$$

then $\operatorname{osc}_{Q_1} v \leq 1 - \theta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introductio 000 00 Advection-diffusion equation. 00 0 The proof

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_R} v \leq 1$,

$$egin{aligned} & v_t + A |
abla v | + (- riangle)^{1/2} v \geq 0 \ & v_t - A |
abla v | + (- riangle)^{1/2} v \leq 0 \end{aligned}$$

then $\operatorname{osc}_{Q_1} v \leq 1 - \theta$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introductio 000 00 Advection-diffusion equation. 00 0 The proof

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_R} v \leq 1$,

$$egin{aligned} & v_t + A |
abla v | + (- riangle)^{1/2} v \geq 0 \ & v_t - A |
abla v | + (- riangle)^{1/2} v \leq 0 \end{aligned}$$

then $\operatorname{osc}_{Q_1} v \leq 1 - \theta$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introductio 000 00 Advection-diffusion equation. 00 0 The proof

Improvement of oscillation lemma

If $\operatorname{osc}_{Q_R} v \leq 1$,

$$egin{aligned} & v_t + A |
abla v | + (- riangle)^{1/2} v \geq 0 \ & v_t - A |
abla v | + (- riangle)^{1/2} v \leq 0 \end{aligned}$$

then $\operatorname{osc}_{Q_1} v \leq 1 - \theta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

()				
\sim				

Advection-diffusion equation. 00 0

Improvement of either the sup or the inf We prove an improvement of oscillation from $B_R \times [-2,0]$ to $B_1 \times [-1,0] \ (= Q_1).$

For the improvement of oscillation we prove that either sup v decreases or inf v increases. We do one or the other depending on wheather $v \ge 0$ or $v \le 0$ most often (in measure) in $B_1 \times [-2, -1]$.

Dutline	Introduction	Advection-diffusion equation.	The proof
	000	00	0
	00	0	00
		0	•
			0000

From an estimate in measure

Lemma

If v less than one:
$$v \leq 1$$
 in $\mathbb{R}^n \times [-2,0]$,
v is often negative: $|\{v \leq 0\} \cap (B_1 \times [-2,-1])| \geq \mu$, and
v is a subsolution: $v_t - A|\nabla v| + (-\Delta)^{1/2}v \leq 0$ in $B_R \times [-2,0]$
then $v \leq 1 - \theta$ in $B_1 \times [-1,0]$.

0	+			~	
U	L			e	

Construction of a barrier

Let β be the function: $\frac{\beta}{0 + 1 + 2}$ and $b(x, t) = \beta(|x| - A|t|)$. The function w = 1 - mb(x, t) is a supersolution of the pure transport part $w_t - A|\nabla w| = 0$ for any constant m.

We use the diffusion term to make *m* variable. Let *m* solve

$$m(-2) = 0$$

$$m'(t) = c_0 |\{x \in [-1, 1] : u(x, t) \le 0\}| - C_1 m(t).$$

We will show that if $c_0 \ll 1$ and $C_1 \gg 1$ then $v \leq 1 - m(t)b(x, t)$ everywhere.

0	÷			~	
U	L			e	

Construction of a barrier

Let β be the function: $\frac{\beta}{0 - 1 - 2}$ and $b(x, t) = \beta(|x| - A|t|)$. The function w = 1 - mb(x, t) is a supersolution of the pure transport part $w_t - A|\nabla w| = 0$ for any constant m. We use the diffusion term to make m variable. Let m solve

$$m(-2) = 0$$

 $m'(t) = c_0 | \{ x \in [-1, 1] : u(x, t) \le 0 \} | - C_1 m(t).$

We will show that if $c_0 \ll 1$ and $C_1 \gg 1$ then $v \leq 1 - m(t)b(x, t)$ everywhere.

0	÷			~	
U	L			e	

Construction of a barrier

Let β be the function: $\frac{\beta}{0 - 1 - 2}$ and $b(x, t) = \beta(|x| - A|t|)$. The function w = 1 - mb(x, t) is a supersolution of the pure transport part $w_t - A|\nabla w| = 0$ for any constant m. We use the diffusion term to make m variable. Let m solve

$$m(-2) = 0$$

$$m'(t) = c_0 |\{x \in [-1, 1] : u(x, t) \le 0\}| - C_1 m(t).$$

We will show that if $c_0 \ll 1$ and $C_1 \gg 1$ then $v \leq 1 - m(t)b(x, t)$ everywhere.

0					
U	ι			e	

Construction of a barrier

Let β be the function: $\frac{\beta}{0 - 1 - 2}$ and $b(x, t) = \beta(|x| - A|t|)$. The function w = 1 - mb(x, t) is a supersolution of the pure transport part $w_t - A|\nabla w| = 0$ for any constant m. We use the diffusion term to make m variable. Let m solve

$$m(-2) = 0$$

$$m'(t) = c_0 |\{x \in [-1, 1] : u(x, t) \le 0\}| - C_1 m(t).$$

We will show that if $c_0 \ll 1$ and $C_1 \gg 1$ then $v \leq 1 - m(t)b(x, t)$ everywhere.

()				
0				

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Contradiction if v and 1 - mb ever touch

$$\begin{aligned} \mathbf{v}_t &\geq \mathbf{w}_t = -\mathbf{m}'\mathbf{b} - \mathbf{m}\mathbf{b}_t = -\mathbf{m}'\mathbf{b} + \mathbf{m}A|\nabla \mathbf{b}| \\ |\nabla \mathbf{v}| &= |\nabla \mathbf{w}| = \mathbf{m}|\nabla \mathbf{b}| \\ (-\Delta)^{1/2}\mathbf{v} &\geq (-\Delta)^{1/2}\mathbf{w} = -\mathbf{m}(-\Delta)^{1/2}\mathbf{b} \quad \leftarrow \text{ can be improved}! \end{aligned}$$

()				
0				

The	proof
0	
00	
0	
000	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Contradiction if v and 1 - mb ever touch

$$\begin{aligned} v_t &\geq w_t = -m'b - mb_t = -m'b + mA|\nabla b| \\ |\nabla v| &= |\nabla w| = m|\nabla b| \\ (-\Delta)^{1/2}v &\geq (-\Delta)^{1/2}w = -m(-\Delta)^{1/2}b \quad \leftarrow \text{ can be improved}! \end{aligned}$$

()				
0				

The	proof
0	
00	
0	
000	0

Contradiction if v and 1 - mb ever touch

$$v_t \ge w_t = -m'b - mb_t = -m'b + mA|\nabla b|$$
$$|\nabla v| = |\nabla w| = m|\nabla b|$$
$$(-\wedge)^{1/2}v \ge (-\wedge)^{1/2}w = -m(-\wedge)^{1/2}b \quad (-\infty)b|$$

()					
\cup		5	5		

The proof
0
00
0
0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Contradiction if v and 1 - mb ever touch

$$\begin{split} v_t &\geq w_t = -m'b - mb_t = -m'b + mA|\nabla b| \\ |\nabla v| &= |\nabla w| = m|\nabla b| \\ (-\triangle)^{1/2}v &\geq (-\triangle)^{1/2}w = -m(-\triangle)^{1/2}b \quad \leftarrow \text{ can be improved}! \end{split}$$

Introductio 000 00 Advection-diffusion equation.

Т	he pr	oof
0		
0	0	
0		
0	000	

Sharper estimate of $(-\triangle)^{1/2}v$

$$(-\triangle)^{1/2}v(x) = c \int \frac{v(x) - v(y)}{|x - y|^{n+1}} dy$$

 $\ge c \int \frac{w(x) - w(y)}{|x - y|^{n+1}} dy$
 $\ge (-\triangle)^{1/2}w(x) + c_0 | \{u < 0\} \cap B_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

()				
0				

Advection-diffusion equation.

The proof
0
00
0
0000

Sharper estimate of $(-\triangle)^{1/2}v$

$$(-\triangle)^{1/2} v(x) = c \int \frac{v(x) - v(y)}{|x - y|^{n+1}} \, \mathrm{d}y$$

$$\geq c \int \frac{w(x) - w(y)}{|x - y|^{n+1}} \, \mathrm{d}y + c \int_{u(y) \le 0} \frac{w(y)}{|x - y|^{n+1}} \, \mathrm{d}y$$

$$\geq (-\triangle)^{1/2} w(x) + c_0 |\{u < 0\} \cap B_1|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

()				
0				

Advection-diffusion equation.

The proof
0
00
0
0000

Sharper estimate of $(-\triangle)^{1/2}v$

$$(-\triangle)^{1/2}v(x) = c \int \frac{v(x) - v(y)}{|x - y|^{n+1}} \, \mathrm{d}y$$

$$\geq c \int \frac{w(x) - w(y)}{|x - y|^{n+1}} \, \mathrm{d}y + c \int_{u(y) \le 0} \frac{w(y)}{|x - y|^{n+1}} \, \mathrm{d}y$$

$$\geq (-\triangle)^{1/2}w(x) + c_0 |\{u < 0\} \cap B_1|$$

0					
U	ι			e	

Advection-diffusion equation.

Tł	ne proof
0	
00	2
0	
00	000

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A| \nabla v| + (-\triangle)^{1/2} v \ge -m'b - m(-\triangle)^{1/2}b(x) + c_0|\{u < 0\} \cap B_1|$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \le 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large

0					
U	ι			e	

Advection-diffusion equation.

The	proof
0	
00	
0	
000	•

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A|
abla v| + (- \triangle)^{1/2} v \geq C_1 m b - m (- \triangle)^{1/2} b(x)$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \le 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large

0					
U	ι			e	

Advection-diffusion equation.

The	proof
0	
00	
0	
000	•

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A| \nabla v| + (-\triangle)^{1/2} v \geq C_1 m b - m (-\triangle)^{1/2} b(x)$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \leq 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large.

0					
U	ι			e	

Advection-diffusion equation.

The proof
0
00
0
0000

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A| \nabla v| + (-\triangle)^{1/2} v \geq C_1 m b - m (-\triangle)^{1/2} b(x)$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \le 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large.

Contradiction with ハー・AIVハー・(ーム)^{N2}ハミロ オロトオ@トオミトオミトニミーのAC

0					
U	ι			e	

Advection-diffusion equation.

The	proof
0	
00	
0	
000	•

Sac

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A| \nabla v| + (-\triangle)^{1/2} v \geq C_1 m b - m (-\triangle)^{1/2} b(x)$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \le 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large.

Contradiction with $v_t - A|\nabla v| + (-\Delta)^{1/2}v \leq 0$.

0					
U	ι			e	

Advection-diffusion equation.

The proof
0
00
0
0000

Putting all estimates together

$$egin{aligned} & v_t \geq -m'b+mA|
abla b| \ & |
abla v| = m|
abla b| \ & (- riangle)^{1/2}v \geq -m(- riangle)^{1/2}b(x)+c_0|\{u<0\}\cap B_1| \end{aligned}$$

Therefore

$$|v_t - A|
abla v| + (- \triangle)^{1/2} v \geq C_1 m b - m (- \triangle)^{1/2} b(x)$$

Two cases:

1. b(x, t) is small $\Rightarrow (-\triangle)^{1/2}b \le 0$. 2. b(x, t) is large \Rightarrow we choose C_1 large.

Contradiction with $v_t - A|\nabla v| + (-\triangle)^{1/2}v \leq 0$.